
Annals of GIS

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tagi20

Regional allocation of EV chargers’ grid load

Bardia Mashhoodi & Pablo Muñoz Unceta

To cite this article: Bardia Mashhoodi & Pablo Muñoz Unceta (2023) Regional allocation of EV
chargers’ grid load, Annals of GIS, 29:2, 227-241, DOI: 10.1080/19475683.2023.2166111

To link to this article:  https://doi.org/10.1080/19475683.2023.2166111

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group, on behalf of Nanjing Normal
University.

Published online: 29 Jan 2023.

Submit your article to this journal 

Article views: 1383

View related articles 

View Crossmark data

Citing articles: 4 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tagi20

https://www.tandfonline.com/journals/tagi20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19475683.2023.2166111
https://doi.org/10.1080/19475683.2023.2166111
https://www.tandfonline.com/action/authorSubmission?journalCode=tagi20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tagi20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/19475683.2023.2166111?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/19475683.2023.2166111?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/19475683.2023.2166111&domain=pdf&date_stamp=29%20Jan%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/19475683.2023.2166111&domain=pdf&date_stamp=29%20Jan%202023
https://www.tandfonline.com/doi/citedby/10.1080/19475683.2023.2166111?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/19475683.2023.2166111?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=tagi20


Regional allocation of EV chargers’ grid load
Bardia Mashhoodi a and Pablo Muñoz Unceta b

aLandscape Architecture and Spatial Planning Group, Department of Environmental Sciences, Wageningen University & Research, 
Wageningen, Netherlands; bFab Lab Barcelona, Institute for Advance Architecture of Catalonia, Barcelona, Spain

ABSTRACT
This study develops a multiscale model for allocation of EV infrastructure to accommodate 
residents’ demand during nights and that of residents and visitors during days under two 
scenarios: maximum 40% or 80% increase in load on the electricity grid. Developing a mixed- 
integer linear optimization model including regional traffic flow, local electricity demand and 
parking availability in Amsterdam Metropolitan Area (AMA), the scenarios’ optimal solutions 
offer different spatial strategies. This study shows that multiscale allocation of EV chargers 
substantially improves the efficiency of use: in both scenarios, more than 53% of EVs can charge 
at their daily destination. However, in the 40% scenario, the extra electricity load is homogeneously 
allocated across the towns and villages around the AMA centre. In an 80% scenario, in contrast, the 
load is concentrated in a few areas (1) accessible for substantial numbers of EVs at the regional 
scale, (2) with relatively low annual consumption, (3) reasonably high number of registered EVs to 
use chargers in the nights. The manuscript ends with a discussion of the results and their policy 
implications and offers further studies.
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1. Introduction

1.1. Upcoming demand for electric vehicle charging 
infrastructure and the necessity of grid load 
allocation

The further adaptation of electric vehicles (EV), a globally 
fast-growing and celebrated development as one of the 
cardinal solutions to mitigate climate change, urges for 
spatial allocation of a vast number of new EV chargers. 
The possibility for the latter, however, is severely con-
fined by the energy grids’ shortage of capacity, which 
can render the allocation of new chargers in areas with 
a high density of cars and congested energy grid impos-
sible. The point of departure of this study is to develop 
and introduce a novel model which optimally benefits 
from the left-over capacities of the energy grid at the 
regional scale. The intention is to use real-world data on 
the existing load on the energy grid and travel survey 
among the neighbourhoods of a large-scale region and 
seek the neighbourhoods that can serve all of the region 
during days or nights. The following paragraphs of this 
section elaborate on the above-mentioned trends, 
necessities, and the objective and approach of this 
study.

The number of electric vehicles (EVs) is rapidly grow-
ing in the Netherlands. The share of battery electric 

vehicles (BEV) of cars sold has increased from 1.1% in 
2016 to 20.5% in 2020. The share of registered BEVs of 
total passenger vehicles enlarged from 0.16% to 1.98% 
in the same period (Netherlands Enterprise Agency 
2020). The trend is expected to amplify, given the ambi-
tions of the Dutch government to achieve a climate- 
neutral mobility system. The Green Deal on Electric 
Transport aims for 50% of all cars sold in 2025 to have 
an electric powertrain and at least 15% to be fully emis-
sion-free (Government of the Netherlands 2015). The 
Dutch climate agreement aims for 100% of cars sold in 
2030 to be electric and emission-free (Ministry of 
Economic Affairs and Climate Policy 2019). A projection 
suggests that by 2030 will be more than 3 million EVs 
registered in the Netherlands (The Netherlands 
Knowledge Platform for Charing Infrastructure 2017).

The rapid growth in the number of EVs is parallel with 
a substantial increase in demand for EV charging infra-
structure and the limited electricity grid capacity. 
Between 2016 and 2020, while the absolute number of 
passenger BEVs grew 13 times in the Netherlands, public 
EV chargers have increased only four times (Netherlands 
Enterprise Agency 2020). In 2018, the number of EVs per 
every public charger in the Netherlands was the fourth 
highest among the European Union (EU) and European 
Free Trade Association (Tsakalidis and Thiel 2018). The 
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urgent need for new EV charging infrastructures is 
reflected in the EU and Dutch policies. The European 
Parliament’s Directive, 2014/94/EU on the deployment 
of alternative fuels infrastructure, calls for the develop-
ment of a minimum of one charging station per every 10 
EVs in the member states (Official Journal of the 
European Union 2014). ‘Improving and expanding the 
charging infrastructure for EVs’ is the first of the goals 
put forward by Electric Transport Green Deal 2016–2020 
(Government of the Netherlands 2015, 4). Dutch climate 
accord aims to expand EV charging infrastructure by 
2025 and develop spatial plans for allocation of such 
infrastructure specifically in the three major metropoli-
tan areas of the country, among them Amsterdam 
Metropolitan Area, AMA (Ministry of Economic Affairs 
and Climate Policy 2019).

The need for expansion of EV charging infrastructure 
coincides with the shortage in the electricity grid capa-
city. Network operators in the Netherlands, companies 
that run the electricity grid in different parts of the 
country estimate that there is no or limited capacity 
left to meet additional electricity demand in most loca-
tions. For instance, Liander, a network operator, esti-
mates that it is short of capacity in most operating 
areas, including the AMA (Figure 1). Doubtlessly, the 
capacity of the electricity grid needs to be expanded in 
the coming decades. The challenge is how the allocation 
of new EV infrastructure should consider the grid load 
and, in line with the Dutch climate accord’s ambitions, 
seek optimal solutions at the regional scales.

This study proposes and implements a novel method 
to face the above-mentioned challenge of the electricity 
grid capacity shortage and the development of new EV 
infrastructure. The location-allocation model put for-
ward by this study incorporates the real-world data on 
the actual electricity consumption within the neighbour-
hoods of a large-scale region and introduces constraints 
on the maximum extra grid load caused by new EV 
chargers. Such an approach is unprecedented in the 
existing studies on EV charger allocation, possibly due 
to the unavailability of data in most countries. Seizing 
the opportunity to access such data in the Netherlands, 
the richest EU country in terms of publicly available data 
on energy (Eurostat 2013), this study shows that incor-
porating data on the electricity grid helps optimally 
meet a 4000% increase in charging demand at the 
regional scale. Using the transport survey in the 
Amsterdam Metropolitan Area, the study seeks the opti-
mal solutions in which EV chargers are only allocated in 
the areas with leftover grid capacity while all the EVs of 
the region have access to a charger during the day or 
night: an unprecedented approach. In the following 
parts of the manuscript, a knowledge gap in existing 

studies is introduced, and the study’s approach is pre-
sented. Subsequently, data and the method of the study 
are explained, results are presented and discussed, and 
potential policies are recommended. The manuscript 
ends with a series of suggestions for further exploration.

1.2. Previous studies and knowledge gaps

A growing body of literature discusses models for the 
optimal allocation of EV charging infrastructure. The 
models use several types of data and constraints to 
define optimal locations, including data related to tech-
nology – e.g. battery life, charging technology, beha-
viour – e.g. range anxiety, route, and destination 
patterns, and EVs’energy demand (He et al. 2018). 
Various studies have developed numerical models for 
the allocation of EV chargers (Souley et al., 2021; 
Davidov and Pantoš 2017; Hung & Michailidis, 2015). 
A brief overview of the previous studies is presented in 
the next paragraph, and the knowledge gap mentioned 
above is elaborated.

Given the geographic scale of analysis, previous stu-
dies on the optimal allocation of EV charging infrastruc-
ture could be classified into three main types. The first 
type is large-scale studies searching for optimal solutions 
at the metropolitan, regional or national scales. Neubauer 
and Wood (2014) used Puget Sound Regional Council’s 
traffic behaviour data to analyse the sensitivity of EV 
drivers to range anxiety and developed various scenarios 
of working or home charging. Pearre et al. (2011) used 
driving records of 484 instrumented gasoline vehicles in 
the US over one year to analyse potential travel beha-
viours of EVs at a large scale. Kuby et al. (2009) developed 
a spatial decision support system to allocate hydrogen 
stations in the Orlando metropolitan area. Similar large- 
scale approaches were adapted by Xi, Sioshansi, and 
Marano (2013) on the central-Ohio region, and by Galus 
et al. (2012) to study the metropolitan area of Zurich. 
Several studies developed or tested EV charging infra-
structure location models along long-distance corridors 
(Alhazmi, Mostafa, and Salama 2017; Chen, Liu, and Yin 
2017; Ghamami, Zockaie, and Nie 2016). The second type 
is studies on a small town or a neighbourhood. Napoli 
et al. (2021) analysed spatial potentials for electricity gen-
eration to meet the demand of EVs’ last-mile travel in 
Capo d’Orlando, a 13,000 inhabitants city located in 
Sicily (Italy). Two previous studies on a district in the city 
of Amsterdam, with a population of 60,000 inhabitants 
(roughly 7% of the city’s population) tested the impact of 
an increase of walking distance between destinations and 
charging stations from 2,5 to 5 minutes (Mashhoodi et al., 
2021), and the influence of drivers range anxiety 
(Mashhoodi and van der Blij, 2021) on the overall cost of 
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Figure 1. Electricity transmission capacity per areas covered by Liander, a network operator company, and the location of AMA 
(Liander 2021).
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EV infrastructure. The third type of studies involves those 
with a multiscale approach to allocating EVs charging 
infrastructure (Fredriksson, Dahl, and Holmgren 2019; 
Shahraki et al. 2015).

There is lack of a model in previous studies which 
integrates actual load on the energy grid and travel 
survey at the local and regional scales and seeks 
multi-scalar optimal solutions for EVs’ grid load alloca-
tion. The major shortcoming of the models described 
above is neglecting the real-world data on the exist-
ing grid congestion. Although various factors are 
incorporated in the models, e.g. battery life, charging 
technology, range anxiety, route, destination patterns, 
EVs’energy demand, the capacity of the energy grid 
which needs to fuel the allocated charging stations is 
not considered. Considering the multiscale approach 
of the previous studies, three knowledge gaps in the 
three types of studies mentioned above are eminent. 
Regarding the large-scale studies, the results are often 
determining the share of chargers allocated at work 
or home at the regional scale. The studies neglect the 
spatial and temporal dimension of regional electric 
mobility, i.e. one’s workplace during the day can be 
the living location of another during the night. In 
other words, by neglecting the charging demand 
and household energy consumption at the neighbour-
hood level of scale, such studies do not benefit from 
the potential synergies between regional and local 
demands. On the contrary, studies on the local scale 
often miss the overall picture of the regional infra-
structure network, such as the availability of large- 
scale parking areas and the regional traffic flow dur-
ing the days. Such studies, consequently, miss the 
opportunity of the shared use of infrastructure by 
the EV drivers of different districts. Ultimately, 
although benefiting from multi-scalar synergies, the 
previous studies combining the different scales did 
not consider the EVs’ grid load. Multiscale allocation 
of EVs opens new opportunities for controlled distri-
bution of the new load on the energy grid. Previous 
studies, however, did not seize the opportunity.

1.3. Approach of this study and research design

This study aims to bridge the gap in previous studies by 
developing a model for the allocation of EV chargers and 
grid load at multiple levels of scales. To do so, the study 
is designed based on three principles:

Principle 1. Allocation of EV chargers should consider 
both local and regional scales. At the local scale, the 
allocation of EV chargers responds to local demand 

during nights by serving the residents of a neighbour-
hood. At the regional scale, the allocation of EV chargers 
responds to regional demand during days by serving 
both residents and visitors from the region. This princi-
ple is in line with Article 26 of Directive 2014/94/EU of 
the European Parliament on the deployment of alterna-
tive fuels infrastructure, which urges to plan EV infra-
structure based on estimated of both residents and 
visitors demand (Official Journal of the European Union 
2014). It also corresponds to the Dutch climate accord 
emphasis on spatial allocation of EV infrastructure at the 
regional scale (Ministry of Economic Affairs and Climate 
Policy 2019).

Principle 2. Allocation of chargers needs to consider 
the additional load on the electricity grid. This principle 
is in line with Article 30 of the EU Directive, which 
emphasizes the importance of considering electricity 
grid capacity in the planning of EV infrastructure 
(Official Journal of the European Union 2014). It is also 
in line with the shortage of capacity in the current 
electricity grid in the Netherlands.

Principle 3. Chargers can have multiple plugins, in line 
with Article 33 of the EU Directive (ibid).

Principle 4. Allocation of the chargers aims to meet 
the upcoming charging demand of an extra 40% of the 
total vehicles. Due to lack of data, the study does not 
include the number of existing chargers, serving less 
than 1% of the existing vehicles. It, however, includes 
the load of existing chargers on the electricity grid. The 
analysis focuses on the allocation of the ‘new chargers’ 
based on the assumption that the existing EVs are 
already provided with a charger, given the current 
approach of the Dutch municipalities to provide 
a charger on request. This approach could not be con-
tinued because of the lack of electricity grid capacity, 
which triggered the basic idea of this manuscript.

To achieve a multiscale model for allocation of EV 
chargers, i.e. regional in days and local at nights, this 
study is designed based on the specification of EVs and 
travel behaviour in the Netherlands. Table 1 shows the 
average EV battery capacity and consumption of the ten 
most common BEVs sold in the Netherlands in 2018 – 
the year prior to the dataset used in this study 
(Rijksdienst voor Ondernemend Nederland 2019). 
Accordingly, the average battery capacity is 48.3 kWh 
and, given the average driving range of 252.7 km, the 
average electricity consumption is 191.1 Wh/km.

According to the data on travel behaviour, in 2019, 
8.53 million passenger cars in the Netherlands (CBS 
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2021a) have travelled 110,227 million Kilometres (CBS 
2021b). This shows that every passenger car in the 
Netherlands travels an average of 12,922 Kilometres 
per year. Given the average consumption of EVs sold in 
the Netherlands, this implies that an EV consumes an 
average of 6,762 Wh per day. Setting drivers’ range 
anxiety, i.e. the percentage of battery being empty 
before a driver decides to charge her/his EV, at 70%, 
EVs would need to be charged every five days for 33.81 
kWh. This would take roughly 40 minutes using a fast 
charger with a capacity of 50 kWh. Assuming that every 
charger is unused for 20 minutes between two charging 
sessions, a fast charger would be able to charge 15 EVs 
during a day between 6 am to 9 pm (see Figure 2a). 
During the nights, using multiple plugins and avoiding 
wasting time between charging two EVs, the same fast 
charger can charge 13 EVs (Figure 2b).

This study aims to elaborate and test a multiscale 
model for day and night charging demands at the regio-
nal and local scales by allocating chargers described in 
Figure 2. To do so, two scenarios for allocation of EV grid 
load are elaborated:

● Scenario #1: the extra load on the electricity grid 
after allocation of EV chargers should not exceed 
40% of current electricity use by buildings.

● Scenario #2: the extra load on the electricity grid 
after allocation of EV chargers should not exceed 
80% of current electricity use by buildings.

2. Data and case study area

2.1. Case study area

The case study of this research is the Amsterdam 
Metropolitan Area (AMA). According to Metropoolregio 
Amsterdam, AMA is one of the five top economic regions 
in Europe and has a population of 2.5 million. The region 
comprises urban and rural landscapes and includes 32 
municipalities, Schiphol airport, port of Amsterdam, mul-
tiple universities, business districts, a media park, and 
a considerable concentration of tourism and leisure 
activities (Metropoolregio Amsterdam 2019). There is 
an intense traffic flow between the areas of the AMA. 
According to the travel survey in 2019, 89% of the car 
trips that originated from a Postcode 3 (PC3) in AMA was 
aiming for another AMA PC3, accounting for the trips 
aiming to stay at destinations between 30 and 60  

Table 1. Battery capacity, driving range, and consumption per 
kilometre of the ten most popular BEVs sold in the Netherlands 
in 2018.

Battery [kWh] Driving range [km]
Consumption 

[Wh/km]

BMW I3 33 183 180
Tesla Model S 90 426 211
Hyundai Ioniq 28 200 140
Jaguar I-Pace 90 377 239
Nissan Leaf 30 172 174
Opel Ampera 18.4 85 216
Smart Fortwo 16.7 108 155
Tesla Model X 100 475 210
Renault ZOE 41 300 137
Volkswagen Golf 36 201 179
Average 48.3 252.7 191.1

Figure 2. Capacity of a fast charger using a single plugin during days, 6 am to 9 pm, (a) and multiple plugins in nights, 9 pm 
to 6 am (b).
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minutes (authors computation based on DANS 2020). 
Additionally, the Dutch climate accord designated AMA 
as one of the three major Dutch metropolitan areas with 
the urgent need for spatial planning for the allocation of 
EV infrastructure (Ministry of Economic Affairs and 
Climate Policy 2019). In this respect, AMA is a suitable 
case study for the objectives of this research.

2.2. Number of EVs, electricity consumption, and 
parking capacity

The number of EVs in AMA is set based on a projection 
that suggests there will be 3 million EVs in the 
Netherlands by 2030 (The Netherlands Knowledge 
Platform for Charing Infrastructure 2017). Given that 
there were 7.64 million passenger vehicles in the 
Netherlands in 2020 (CBS 2020), it suggests that by 
2030 about 40% of vehicles in each PC3 will be electric 
(Figure 3a). Besides the expected number of EVs in each 
PC3, three other datasets were prepared as input for this 
study, including available parking areas, the percentage 
of visitors travelling to each PC3, and the annual elec-
tricity consumption also at PC3 level. To obtain the total 
number of parking lots available for allocation of EV 
chargers in each PC3, using the Open Street Map 
(Geofabrik 2021), the areas designated as car parking 
are selected. The number of parking lots is calculated 
based on 3 × 5.5 m space necessary for each lot and 33% 
circulation space (Figure 3b). To calculate the fraction of 
parking lots that can be used for allocation of EV char-
gers, using travel survey in AMA, 2019 (DANS 2020), the 
percentage of visitors of each PC3 who travel from an 
origin inside AMA and stay at their destination between 
30 and 60 minutes are obtained (Figure 3c). To control 
the maximum percentage points of increase in electricity 
consumption in a PC3 after allocation of EV chargers, the 
annual electricity consumption of residential and non- 
residential buildings in PC3 of AMA in 2018 (CBS 2019) 
are obtained and mapped (Figure 3d).

2.3. Travel behaviour of car drivers in AMA

To estimate the maximum number of EVs from a certain 
PC3 which can charge in another PC3 during days, the 
Dutch travel survey in 2019 is used (DANS 2020). The 
survey includes the records of trips with origin and 
destination inside AMA and a weight factor for each 
trip. There are not enough records to estimate the traffic 
flow between all PC3 of AMA. The data, however, can 
provide insights into the length of car travels inside 
AMA. Table 2 shows the deciles of trip length with origin 
and destination inside AMA.

3. Method

To find optimal solutions, this study employs a linear 
integer programming model for optimal allocation of 
EV chargers annually. The model’s objective function is 
minimizing the total number of new EV chargers in AMA 
(Equation 1). The optimization model includes four types 
of constraints. The first type of constraint (Equation 5) 
ensures that all the EVs of a PC3 area are assigned for 
charging between 6 am and 9 pm in either another or 
their PC3 between, or between 9 pm and 6 am in their 
PC. The second type of constraint (Equation 5) controls 
the daily capacity of chargers. This constraint ensures 
that every charger gives service to not more than 15 EVs 
between 6 am and 9 pm. The third type of constraint 
(Equation 5) controls for the night-time capacity of char-
gers. These constraints ensure that every charger gives 
service to not more than 13 EVs between 9 pm and 6 am. 
The fourth type of constraint (Equation 5) puts a cap on 
the maximum percentage of increase in electricity con-
sumption in PC3 code i after allocation of EV chargers. 
The constraints allow for a maximum 40% and 80% 
increase in consumption scenarios.

Regarding the upper bounds of the variables, the 
maximum number of cars from PC3 code i charging in 
PC3 code j during the day (Dij) is a function of the 
distance between the centroids of the PC3s. (Note that 
the model also allows for the possibility of an EV char-
ging in its PC3 during days, reflected by decision vari-
ables Dii.) According to the travel survey in AMA, only 
a fraction of cars in a PC3 travel for a certain distance (see 
Table 2). This is used for the calculation of the upper 
bounds of Dij. The upper bound of the number of EVs 
charging in their own PC3 during nights is the expected 
number of EVs in 2030, equal to 40% of total cars nowa-
days. The upper bound of the number of chargers in 
a PC3 is equal to the total number of parking lots divided 
by 13 (given that each charger can serve up to 13 EVs 
during nights) multiply the fraction of the visitors of the 
PC3 coming from other areas of AMA and stay in their 
destination between 30 and 60 minutes. The latter con-
straint is proposed to ensure that enough parking area is 
reserved for different travel purposes.

The novelty of the proposed spatial optimization 
model is (1) incorporating the real-world data on the 
existing load on the electricity grid and (2) introducing 
caps for the increase in the grid load relative to the 
existing load of PC3 zones in different scenarios. The 
approach is unprecedented among the existing models 
and is novel. In terms of the formulation of the model, 
the model novelistically includes Ci, i.e. annual electricity 
consumption in PC3 code i (kWh), and λ, i.e. the max-
imum percentage point of increase in electricity 
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consumption in PC3 code i after allocation of EV char-
gers (40% or 80% in different scenarios). The model 
introduces caps on the additional load on the electricity 
grid as the maximum percentage point of increase in the 
existing load, that is λCi. The additional load is the sum 
of (1) day-time new load, i.e. the product of electricity 
consumption of an EV, C(EV), and the total number 

of day-time EVs that the model assigns to a PC3 
P79

i¼1 Dij

� �
; and (2) night-time new load, i.e. the product 

of electricity consumption of an EV, C(EV), and the total 
number of night-time EVs that the model assigns to 

a PC3 
P79

i¼1 Nj

� �
. Overall, the novelty of the model is 

comprised in Equation 5 (the fourth constraint of the 

Figure 3. The basic data used for the optimization model includes the expected number of EV in 2030, i.e. 40% of total registered cars 
(a), number of public parking lots, excluding street parking (b), percentage of visitors from an origin in AMA staying in PC3s between 
30 and 60 minutes (c), the annual electricity consumption of residential and non-residential buildings (d).
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model) as follows: C EVð Þ
P79

i¼1 Dij þ C EVð ÞNj � λCi. The 
optimization model is formulated as follows.

Minimize 
X

i
Xi (1) 

Subject to: 
X79

j¼1
Dij þ Ni ¼ EVi (2) 

X79

i¼1
Dij � 15Xj � 0 (3) 

Ni � 13Xi � 0 (4) 

C EVð Þ
X79

i¼1
Dij þ C EVð ÞNj � λCi (5) 

i ∈ [1, 79]
j ∈ [1, 79] 

Dij 2 0; f Lij
� �

EVi
� �

Ni 2 0; EVi½ �

Xi 2 0; SiPi=15½ �

Xi;Dij;Ni : integer 

The decision variables of the model are as follows.

Xi: number of new chargers allocated at PC3 code i 
Dij: number of EVs from PC3 code i charging in PC3 code j 

during days (6 am to 9 pm)
Ni: number of EVs from PC3 code i charging in their own 
PC3 during nights (9 pm to 6 am)

The constants included in the model are as follows.
EVi: number of registered EVs in PC3 code i, i.e. 40% of 

the total number of cars
Lij: Walking distance between the centroids of PC3 code i 

and that of PC3 code j
f(Lij): maximum percentage of EVs in PC3 code i which 

may charge in PC3 code i during days, 32 based on 
Lij and the travel survey

Pi: number of available public parking spots in PC3 code
Si: percentage of visitors to PC3 code i from other areas 

of AMA using car and staying at their 35 destination 
between 30 to 60 minutes

Ci: Annual electricity consumption in PC3 code i (kWh)
C(EV): A constant showing annual electricity consump-

tion of an EV (2,468,130 kWh)
λ: The maximum percentage point of increase in electri-

city consumption in PC3 code i after 39 allocation of 
EV chargers (40% or 80% in different scenarios) 

The optimization models are developed using the 
MATLAB package for mixed-Integer Linear programming 
(MathWorks 2019).

4. Results

After running the mixed integer linear programming 
models for the two scenarios, the optimal solution of 
the maximum 40% increase scenario is found. In the case 
of the scenario 80% increase, a suboptimal solution with 
a 0.07% gap with the lower bound (i.e. the problem 
relaxing the requirement of finding integer solutions) is 
found. Given the marginal gap between the suboptimal 
solution and the lower bound (2.15 charger), the solu-
tion is accepted and used for the 80% scenario. In the 
following sections, the results of the models are 
presented.

4.1. Total number of EV chargers and the 
distribution of charging during days and nights: 
similarities between scenarios

The results show that the optimal solution of the scenar-
ios with a maximum of 80% and 40% increase in elec-
tricity demand are similar in terms of the total number of 
allocated chargers and the share of car charging during 
days and nights. In the case of the scenario that allows 
up to an 80% increase in electricity demand, the optimal 
solution requires only four chargers less than the sce-
nario of 40% (account for 0.1% decrease). According to 
the U.S. Department of Energy, the cost of each fast 
charger is 25,000 euros, and 13 plugins will cost about 
147,000 euros, a total of 172,000 euros per charging 
station (Smith and Castellano 2015). This suggests that 
allowing the load on the electricity grid to be up to 40% 
higher saves 688 thousand euros out of almost 
514 million euros. In other words, although the financial 
benefit of relaxing the constraints on electricity load is 
considerable in absolute terms, it is marginal relative to 
the total cost of the new infrastructure. The day and 
night charging shares are similar in both scenarios, 
with more than 53% of EVs travelling to other 

Table 2. Deciles of car travels distance with 
origin and destination inside AMA.

Percentile
Max. travel 

distance [km]

10 1,70
20 2,70
30 4,00
40 5,00
50 8,00
60 11,00
70 16,10
80 25,00
90 40,00
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neighbours to charge during the day. This shows that 
multiscale allocation of EV chargers can vastly benefit 
from the regional flow of vehicles. In the max. 80% 
scenario, the share of charging in nights is 0.05% higher, 
which presumably contributes to fine tuning the optimal 
solution and the slight decrease in the number of char-
gers (Figure 4).

4.2. Spatial distribution of EVs’ electricity demand: 
variations between scenarios

Although the difference between the total number of 
chargers and the difference between the distribution 
of charging across days and nights in the two scenar-
ios are marginal, the distribution of extra electricity 
load substantially differs. The optimal solution for the 
scenario allowing for up to an 80% increase in 

electricity demand suggests a mixture of high and 
low allocation of extra load in different PC3s. In 
almost one-fourth of PC3s, the extra load outnumbers 
40% of current electricity demand. In almost one-fifth 
of the PC3s, the extra load is higher than 50%. In 
return, in 40% of the PC3s the extra load is smaller 
than 20% of current electricity demand, and in 6% 
the extra load is zero. On the contrary, a more homo-
genous allocation of the extra load is achieved in the 
scenario that limits the extra electricity load to the 
maximum of 40%. In 40% and 34% of the PC3s, the 
extra load is only 2% to 5% short of the upper limit. 
In two-fifths of the PC3s, the maximum amount of 
allowed extra load is allocated. In return, only one- 
fourth of the PCs enjoy an extra load smaller than 
20%, and in only one PCs no extra load is allocated 
(Figure 5).

Figure 4. Similarities between the two scenarios, including a similar night and day share and the total number of chargers.

Figure 5. Percentage of extra grid load in the two scenarios (max 40% and max 80% of increase).
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Figure 6. Distribution of extra electricity consumption for scenario 40% (a) and scenario 80% (b), and the difference in the extra grid 
load of scenario 80% and that of scenario 40% (c).
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The spatial distributions of the extra loads across the 
PC3s in the scenarios with 80% increase and 40% 
increase represent two different solutions for meeting 
the electricity demands of EVs. In the scenario which 
only allows up to 40% increase in electricity demand, 
the extra load is shared between energy-intensive and 
non-energy-intensive PC3s (Figure 6a). In contrast, in the 
scenario which allows for up to 80% of extra load, EV 
charging infrastructure is concentrated in the PC3s with 
three characteristics: (1) accessible for substantial num-
bers of EVs at the regional scale; (2) with relatively low 
annual consumption; (3) reasonably high number of 
registered EVs to use chargers in the nights (Figure 6b). 
The difference between the extra grid load allocation of 
the 80% and 40% scenarios shows that in the former 

case, the load is concentrated in the areas adjacent to 
the main population centres. In contrast, in the latter 
case, the new electricity demand is diffused to various 
areas, among population centres in Northeast of AMA 
such as Lelystad and Dronten (Figure 6c).

The spatial distribution of extra grid load shows that 
multiscale allocation of EV infrastructure helps avoid 
allocating new chargers in Amsterdam city centre, the 
area with the most scarcity of space, in both scenarios. 
This is presumably due to the central location of 
Amsterdam city centre in AMA and accessibility of 
a large number of areas for daily charging. In the 40% 
scenario, the extra electricity load is homogeneously 
allocated across the areas around Amsterdam city cen-
tre. In an 80% scenario, however, the demand is 

Figure 7. Difference in the extra grid load of scenario 80% and that of scenario 40% expressed on three cross-sections.

ANNALS OF GIS 237



concentrated in the furthest possible areas from the 
centre (Figure 7a, Figure 7b). Among the peripheral 
areas of AMA, scenario 40% spread the extra load across 
the towns and villages in the region. In scenario 80%, in 
contrast, the load alternates between the most central 
and the most marginal towns, among them Hilversum, 
Almere, and Lelystad (Figure 7c).

5. Discussion and policy implications

The fast-growing adaptation of EVs puts a vast 
amount of effort into developing further charging 
infrastructure in motion. However, the development 
of such infrastructure is confined by the limited capa-
city of the electricity grid, which can render the allo-
cation of new chargers in areas with a high density of 
cars and congested energy grid impossible. The pre-
vious studies on the optimal allocation of EV chargers 
failed to introduce an effective approach for tackling 
this challenge, mainly due to not including the real- 
world data of the load on the energy grid, 
a shortcoming presumably related to lack of data 
and limited spatial scope of their analysis. This study 
puts a novel approach to tackling this challenge for-
ward. By incorporating the actual data on grid load at 
the local levels of scale, the approach allows control-
ling the increase in the grid load while allocating new 
charging stations. Such a novel component in the 
location-allocation models opens the opportunity for 
finding more realistic optimal solutions than the 
existing models that allocate EV stations regardless 
of the circumstances of the grid which need to fuel 
them. The multiscale approach introduced by this 
study opens new opportunities for the neighbour-
hoods with a congested grid and high density of 
cars, too. Incorporating the data on grid load at the 
regional scale help spotting the neighbourhoods with 
relatively lower pressure on the grid. Combined with 
travel survey data on the daily commute between the 
region’s neighbourhoods, such an insight help to 
concentrate the new chargers in the areas visited by 
a relatively high number of EVs during the day and 
with leftover grid capacity. The approach adopted by 
this study, in short, opens a new opportunity for 
meeting the demand of a large amount of EVs in 
a region by optimally allocating chargers in only 
a fraction of neighbourhoods and offers new pro-
spects for optimal distribution of grid load. This 
study shows that multiscale allocation of EV chargers 
substantially improves the efficiency of use, given 
that more than 53% of EVs can charge at their daily 

destination. The results also suggest that different 
scenarios for allocating extra grid load offer substan-
tially different spatial patterns. In the following para-
graphs, these results are further discussed.

5.1. Multiscale allocation of EV chargers: benefits 
and necessities

This study shows that the multiscale approach to electric 
mobility, i.e. allocation of day demand at the regional 
scale and night demand at the local scale, can substan-
tially increase the efficiency of the use of EV infrastruc-
ture. In both scenarios examined by this study, more 
than 53% of the capacity of chargers of an area is used 
by the EVs from other areas during days. Lacking 
a comprehensive analysis of traffic flow at a regional or 
metropolitan scale, the current approach to EV infra-
structure cannot guarantee the efficient use of the allo-
cated chargers during days. The multiscale approach 
proposed by this study can offer innovative solutions 
for meeting future demands. To realize the multiscale 
approach, two types of interventions are essential. First, 
for the governance of the EV infrastructure, a new deci-
sion-making body with authority at the regional scale 
needs to be established. The decision-making body 
needs to include different stakeholders, including muni-
cipalities, energy companies, network operators, and 
regional governments. To achieve the goals set by 
Dutch Climate Accord, thirty energy regions in the 
Netherlands have been defined, along with specific 
goals and spatial plans. The regional energy strategies 
need to be appended with public authorities operating 
at the similar scale.

Second, charging in areas other than one’s neigh-
bourhood of residence could cause individual dissatis-
faction, the so-called range anxiety. Range anxiety is the 
fear of an EV driver being stranded with an empty- 
battery vehicle before researching his or her destination 
or a charging point (Tate, Harpster, and Savagian 2008). 
It is likely that multiscale allocation of charging infra-
structure, in which more than half of the EV is supposed 
to charge in other neighbourhoods, will trigger resis-
tance among EV drivers. To tackle this problem, multi-
scale allocation of EV infrastructure needs to be coupled 
with the development of ICT infrastructure, which 
informs drivers of their options and effectively reduces 
their level of range anxiety. A study on travel behaviour 
of a group of EV drivers over six months shows that 
drivers’ range anxiety is a subjective matter, to 
a substantial extent. What causes anxiety is the driver’s 
perception of lacking enough charge before finding an 
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empty charger or the shortage of ‘useable range’ (Franke 
et al. 2012). Provision of data on accessible chargers in 
different neighbourhoods helps drivers to have an 
objective understanding of their ‘useable range’ and 
reduces range anxiety among them (Du and De 
Veciana 2013). Smartphone applications can collect 
data on real-time traffic, destinations and useable ranges 
of all EV and tailor the most energy-efficient routes for 
each EV driver. The applications could plan EV charging 
in advance and reserve a charging spot at a specific time 
to assure drivers of their charging opportunities at their 
destination (Yaqub and Cao 2012).

5.2. Allocation of EV grid load: two strategies

The scenarios considered in this study show two spatial 
strategies for allocating EVs’ charging load across 
a region. The first strategy is to concentrate a large 
amount of electricity demand in the areas where current 
electricity demand is low. It is necessary to consider vast 
developments in the electricity grid capacity to imple-
ment such a strategy. This may require direct connection 
of fast-charging stations to electricity substations to 
avoid imposing an extra load on the electricity grid. 
Direct connection to electricity substations must 
account for connectors’ power and development costs. 
The distance between the charging stations and electri-
city substations, affecting the cost for new cables, should 
also be considered (Anonymized for review – b, Sadeghi- 
Barzani, Rajabi-Ghahnavieh, and Kazemi-Karegar 2014). 
Additionally, the possibilities of generating solar photo-
voltaic electricity to meet the EV demand could be stu-
died (Verma et al. 2020). Regional allocation of EV 
infrastructure also opens opportunities for the use of 
wind energy to meet the electricity demand in the 
transportation sector (Mehrjerdi and Hemmati 2020). 
Models including solar and wind energy need to con-
sider various geographic factors: solar radiation, wind 
speed, energy demand in different seasons, facilities for 
electricity storage, distance from natural areas, and 
social acceptance of windmills.

The second strategy for allocation of EV load is to put 
a cap on the maximum increase in electricity demand 
and to distribute the extra load across different areas. 
Similar to the first strategy, it requires an increase in the 
capacity of the electricity grid. Nevertheless, this strategy 
opens opportunities to utilize the current capacity by 
adapting demand-response strategies. The EU legisla-
tion paves the way for introducing demand-response 
mechanisms by regulating charging fees and access to 
charging facilities. Article 15.4 of the Directive 2012/27/ 
EU on energy efficiency allows members states to adjust 
‘tariffs that are detrimental to the overall efficiency 

(including energy efficiency) of the generation, transmis-
sion, distribution, and supply of electricity [. . .]. Member 
States shall ensure [. . .] that tariffs allow suppliers to 
improve consumer participation in system efficiency, 
including demand response, depending on national cir-
cumstances’ (Official Journal of European Union 2012. 
pp. L 315/22). Article 26 of the European Parliament 
directive on the deployment of alternative fuels infra-
structure allows authorities to control the use of ‘rechar-
ging or refuelling point[s] accessible to the public [. . .] 
through registration cards [. . .] which allow [. . .] private 
users physical access with an authorization or 
a subscription’ (Official Journal of the European Union 
2014. pp. L 307/4). These legislations open opportunities 
to apply demand-response mechanisms by dynamic pri-
cing rate and direct control (Albadi and El-Saadany 
2008). By adopting dynamic pricing mechanisms, autho-
rities can charge different electricity fees to regulate the 
overall grid load in distinct locations. The direct control 
mechanism grants the authority to limit access to 
a charging facility, unplugging vehicles, or levying fine 
if and when the EV load exceeds a certain amount 
(Bonges and Lusk 2016).

6. Further studies

Further studies could benefit from detailed travel sur-
veys, including the exact numbers of travels between 
every origin and destination at the regional scale. 
Moreover, further studies can benefit from data col-
lected from smartphone apps used by a large and repre-
sentative group of inhabitants. Alternatively, they can 
also benefit from the apps used for parking payments. 
Further studies can also use existing travel surveys to 
simulate traffic flows, which can subsequently provide 
information to elaborate optimization models. Further 
studies may consider the allocation of various types of 
chargers: slow-chargers (Level I), semi-fast chargers 
(Level II) and fast-chargers (Level III). The allocation of 
different types of chargers and plugins (see the model 
adopted by Baouche et al. 2014) allows for finding the 
most cost-efficient solutions offering visitors with differ-
ent lengths of stay with charging opportunities.

Further studies can consider seasonal variations in the 
charging and electricity demand. Additionally, further 
studies in the Netherlands would need to consider the 
ambitions of the Dutch Government for phasing out gas 
consumption in dwellings before 2050 (Ministry of 
Economic Affairs and Climate Policy 2019) and 
a potential increase in electricity demand in cold sea-
sons. Moreover, the intensity in electricity consumption 
could further increase due to climate change and urban 
heat islands in warm seasons (Mashhoodi, 2020), and 
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potential inequality of global warming (Mashhoodi, 
2021) which can create new dimensions of energy- and 
transport poverty. Therefore, further studies could com-
bine the allocation of EV chargers and climate adapta-
tion models for efficient management of overall 
electricity load on the grid.
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