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Abstract: Prostate cancer, a leading cause of cancer-related mortality among men, often
presents challenges in accurate diagnosis and effective monitoring. This systematic re-
view explores the potential of exosomal biomolecules as noninvasive biomarkers for the
diagnosis, prognosis, and treatment response of prostate cancer. A thorough systematic
literature search through online public databases (Medline via PubMed, Scopus, and Web
of science) using structured search terms and screening using predefined eligibility crite-
ria resulted in 137 studies that we analyzed in this systematic review. We evaluated the
findings from these clinical studies, revealing that the load of exosomes in the blood and
urine of prostate cancer patients, which includes microRNAs (miRNAs), proteins, and
lipids, demonstrates disease-specific changes. It also shows that some exosomal markers
can differentiate between malignant and benign hyperplasia of the prostate, predict disease
aggressiveness, and monitor treatment efficacy. Notably, miRNA emerged as the most
frequently studied biomolecule, demonstrating superior diagnostic potential compared to
traditional methods like prostate-specific antigen (PSA) testing. The analysis also highlights
the pressing need for a standardised analytic approach through multi-centre studies to
validate the full potential of exosomal biomarkers for the diagnosis and monitoring of
prostate cancer.
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1. Introduction
Prostate cancer is the second most commonly diagnosed cancer and the fifth leading

cause of cancer death among men worldwide, with an estimated 1.5 million new cases and
397,000 deaths worldwide [1]. A range of genetic, hereditary, and environmental factors
contribute to an increased risk of developing prostate cancer, including advancing age, a
family history of prostate cancer and African ethnicity.

Screening of prostate cancer is performed globally by digital rectal examination (DRE),
the prostate-specific antigen (PSA) blood test, and transrectal ultrasound (TRUS)-guided
biopsy [2]. Elevated PSA in serum is of limited specificity to prostate cancer, detecting
only one-fifth of patients, raising concerns over the accuracy of testing and diagnosis [3].
DRE is commonly practised in clinical settings for screening, though it falls short in early
diagnosis [4]. Tissue biopsy is challenging and comes with a risk of infection, bleeding,
and pain associated with the procedures [2]. Recent large-scale genomic sequencing efforts
have provided new insight into the genetic landscape of prostate cancer. Mutations in DNA
damage repair genes are present in 19% of primary prostate cancer cases and nearly 23%
of metastatic castration-resistant prostate cancer (mCRPC) cases, leading to compromised
genomic integrity [5,6]. Regarding molecular screening, the IMPACT study confirmed
BReast CAncer gene 1 and 2 (BRCA1/2) genotyping could aid in detecting aggressive vari-
ants of prostate cancer, recommending surveillance for the carriers of this genotype [7,8].
Therapeutically, agents targeting DNA damage repair pathways are being explored as
standalone treatments or in combination with therapies that induce DNA damage, with
ongoing clinical trials assessing their effectiveness in prostate cancer management [9].

The diagnosis of prostate cancer relies on the microscopic analysis of prostate tissue
obtained through transrectal ultrasonography (TRUS) in a grid-like pattern. Based on the
cellular architecture and appearance, the biopsy results are evaluated against the primary
Gleason group grade for the predominant histological and malignancy patterns. Serum
PSA variant tests help estimate the prostate cancer risk in patients with prior negative
biopsies. Advanced imaging techniques have also been incorporated into diagnostic
protocols, and, most notably, magnetic resonance imaging (MRI), which utilises specialised
sequences alongside T2-weighted imaging [10]. The sensitivity and specificity of MRI
for detecting prostate cancer are reported to be 89% and 73%, respectively [11]. Patients
are categorised as having a low, intermediate, or high risk based on their Gleason scores,
PSA levels, and clinical stage [12,13]. The interest in molecular or functional imaging
using positron emission tomography (PET) has grown, with several radiotracers showing
promise in prostate cancer detection. Of these, three—C-choline, 18F-fluciclovine, and
18F-sodium fluoride—have received FDA approval [14]. PET-CT and PET-MRI have shown
comparative advantages over existing imaging methods, particularly for detecting regional
lymph node metastases and in patients with low PSA levels. Recently, multiple studies
have illustrated the application of artificial intelligence (AI) in PET/CT for prostate cancer,
showcasing its utility in various clinical measures such as lesion detection, delineation, and
outcome prediction [15].

Current treatment protocols for localised prostate cancer include active surveillance,
radical prostatectomy, and ablative radiotherapy. Active surveillance involves regular
PSA testing, physical exams, and prostate biopsies, either individually or in combination,
to monitor disease progression [16]. For patients with more advanced disease, such as
those presenting with PSA levels above ten ng/mL or palpable nodules detected via DRE,
surgery and radiation remain effective treatment options. The latter has advanced with
the introduction of intensity-modulated radiation therapy (IMRT), which has primarily
replaced 3D-conformal radiation therapy. Stereotactic ablative radiotherapy (SABR) is an in-
novative and promising treatment for men with oligometastatic prostate cancer. SABR has
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demonstrated safety and efficacy and is appealing compared to other ablative techniques
due to its noninvasive nature, providing an outpatient procedure that can be adminis-
tered using a standard linear accelerator [17,18]. For metastatic prostate cancer, androgen
deprivation therapy (ADT) is the mainstay of first-line treatment [19,20]. Newer agents
have emerged that target the androgen axis; abiraterone acetate inhibits androgen biosyn-
thesis, while enzalutamide, darolutamide, and apalutamide disrupt androgen-receptor
signalling [19–25]. Furthermore, biallelic inactivation of Cyclin Dependent Kinase 12
(CDK12) is linked to a distinct genome instability phenotype characterised by CDK12-
specific focal tandem duplications, which can result in the altered expression of oncogenic
drivers like Cyclin D1 (CCND1) and CDK4. These advances suggest the potential suscepti-
bility of CDK12-mutated tumours to CDK4/6 inhibitors [26].

Exosomes are extracellular vesicles secreted by cells, ranging from 40 to 100 nm in
diameter and constructed of a spherical lipid bilayer [27,28]. They are formed as intralu-
minal vesicles by the inward folding of the endosomal membrane during the formation
of multivesicular endosomes (MVEs). After reaching maturity, these MVEs fuse with the
cell membrane, releasing the exosomes [29,30]. The exosome content that has been charac-
terised in great detail includes nucleic acids, lipids, proteins, transcription factor receptors,
cytokines, and various metabolites [31]. Exosomes play a crucial role in physiological
processes such as intercellular communication, angiogenesis, inflammation, metabolic
regulation, and others, with their dysfunction contributing to metabolic, cardiovascular,
and neurodegenerative disease and cancers [32–35].

There is a growing trend toward favouring liquid biopsies over tissue biopsies due to
their less invasive nature and systemic approach. In addition to circulating neoplastic cells
and DNA fragments found in bodily fluids, exosomes in liquid biopsies provide a wealth of
information about the molecular composition of tumours. Urinary liquid biopsy presents
an appealing and promising method for detecting prostate cancer. Beyond specific urine
biomarkers, potential serum biomarkers that could drive the precision medicine revolution
include androgen receptor variants, markers of bone metabolism, neuroendocrine indica-
tors, and metabolite biomarkers [36]. Within this context, the extraction and analysis of
exosomes from the liquid biopsy samples (i.e., blood, urine, and semen) of prostate cancer
patients have shown significant advantages as a source of potential biomarkers [37,38].
We identified that the currently available reviews on similar topics are narrative reviews,
address all types of liquid biopsy contents in prostate cancer [39,40], discuss the role of
liquid biopsy in all types of cancer [41,42], focus on particular exosomal contents [43],
or address the role of exosomes in particular subgroups of prostate cancer patients [44].
Thus, we designed this systematic review protocol to evaluate and integrate comprehensive
evidence supporting the utility of exosomal biomolecules in liquid biopsy for the diagnosis,
prognosis, and treatment response of prostate cancer.

2. Methods
2.1. Search Strategy

The protocol of this systematic review was registered with PROSPERO (registration
number: CRD42024522627). A systematic search was performed in the Medline database
through the PubMed, Web of Science Core Collection, and Scopus online databases. The
articles were searched from inception till September 2024. The search strategy included
keywords such as ‘prostate cancer’, ‘exosome’, ‘diagnosis’, ‘prognosis’, ‘therapy response’,
and ‘role’, following the PICO (population, intervention, comparison, and outcome) frame-
work. We formulated four different comprehensive search terms using the keywords,
which were (prostate cancer) AND (exosome) AND (diagnosis), (prostate cancer) AND
(exosome) AND (prognosis), (prostate cancer) AND (exosome) AND (therapy response)
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and (prostate cancer) AND (exosome) AND (role). In PubMed and Web of Science Core
Collection, the search was performed in the ‘all field’ section, and in the Scopus database,
the search was performed in the ‘title, abstract, keywords’ section. A total of 2170 records
were found initially from all three databases. After eliminating duplicated records using
Rayyan [45], a web-based software for systematic reviews, 973 articles were selected for
title and abstract screening.

2.2. Study Selection

The following were inclusion criteria for this systematic review: (i) cohort and case–
control studies including patient samples; (ii) sample source was liquid biopsy (i.e., blood
or urine); and (iii) effect was measured with inferential statistics (i.e., Receiver Operating
Characteristic (ROC) or analysis of variance (ANOVA)). Records were excluded based
on the following: (i) in vitro studies, bioinformatic studies, review articles; (ii) samples
including tumour or tissue biopsy only; (iii) studies including other cancers apart from
prostate cancer; and (iv) articles not written in English.

2.3. Data Extraction and Synthesis

Four independent reviewers screened the articles and performed the full-text assess-
ment. Initial title and abstract screening was performed using ASReview software LAB v1.5,
and 160 articles were put forward for the full-text evaluation [46]. At least two independent
reviewers reviewed each article. Any conflict was resolved by consensus between the
reviewers. After a thorough review and assessment for eligibility, 137 articles were selected
based on eligibility criteria for data extraction and synthesis (Figure 1). Extracted data
include name and type of exosomal component, role in disease diagnosis, prognosis or
therapy response, measurement of effect (expression level, p-value, sensitivity, specificity,
area under ROC curve, etc.), type of study, source of sample, and sample size. Extracted
data were compiled in a master spreadsheet, and further tabulation was carried out based
on the data categories in this article. The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) checklist 2020 was used to report the systematic review [47].Int. J. Mol. Sci. 2025, 26, 802 5 of 29 
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2.4. Quality Assessment

The articles’ quality and risk of bias assessments were performed using the Newcastle–
Ottawa quality assessment scale (NOS), as it is suitable for assessing non-randomised
studies [48]. NOS assesses the quality of an article in three domains: selection, comparabil-
ity, and outcome assessment. Each article was assigned a score from 0 (zero) to 9 (nine).
Any article with a score more than 7 (seven) was considered a high-quality article for this
systematic review.

3. Results
3.1. General Features of the Included Articles

In this systematic review, we included 137 articles, of which 91 were case–control
studies, and 46 were cohort studies. Most of the case–control studies included healthy
individuals as control groups. However, 36 studies included patients with benign prostate
hyperplasia (BPH) as control groups, and 13 articles used multiple control groups in their
studies. The majority of the cohort studies were retrospective, and only two studies were
prospective cohorts. The earliest paper we included is from the year 2009, and the latest is
from the year of writing, 2024. Most of the articles were published between 2018 and 2024,
and most of the papers included in this systematic review were from 2021 (Figure 2).
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In total, 17,419 patients with prostate cancer of different stages were studied in the in-
cluded articles. Among them, 13,303 were enrolled in cohort studies and 4116 were enrolled
in case–control studies. As control groups, 1701 healthy individuals and 3638 patients with
BPH were enrolled. Two studies enrolled prostatitis patients as the control group [49,50],
and two enrolled healthy individuals with raised PSA levels [51,52].

We included studies that used liquid biopsy samples to measure the effect of exosomal
components. The most frequent samples were blood, either plasma or serum (73 articles),
and urine (64 articles), from which exosomes were isolated. There were only two studies
that explored semen, one study of prostatic fluid, and one study examined saliva. Three of
the studies used multiple liquid biopsy samples.

The exosomal contents that were investigated included proteins, RNAs, lipids, metabo-
lites, and fragments of DNA. Different categories of RNA were investigated, among which
microRNAs (miRNA) were mostly observed, comprising 49 articles (Figure 3). The rest of
the types were messenger RNAs (mRNAs), long noncoding RNAs (lncRNA), small non-
coding RNAs (sncRNA), PIWI-interacting RNAs (piRNA), and circular RNAs (circRNA).
mRNA were measured to quantify particular gene expression. The most abundant types
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of proteins that were investigated were cell surface proteins and cancer-related proteins
(oncoproteins), followed by hormones, cytokines, and enzymes.
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We explored the articles that investigated the role of different exosomal contents in the
diagnosis, prognosis, and treatment response of prostate cancer. Most of the studies exam-
ined the possibility of utilising exosomal contents as a diagnostic biomarker (94 articles).
The prognosis of the disease was described in terms of the overall survival (OS), risk groups,
disease classification (i.e., Gleason score or group grade), biochemical recurrence-free sur-
vival, and cancer metastasis. Forty-eight of the articles investigated the role of exosomes
in disease prognosis, and twenty examined the role of using exosomes as biomarkers to
measure treatment response. Twenty-seven studies explored exosomes’ role in multiple
domains of prostate cancer (Figure 4).
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3.2. Exosomal Contents with Diagnostic Value

Most studies evaluating exosomal contents for potential diagnostic biomarkers mea-
sured various miRNAs (34 articles). These articles studied 59 different types of miRNA
overall (Table 1). The majority reported the overexpression of miRNA; however, a few stud-
ies reported the decreased expression of certain miRNAs in prostate cancer patients [53–57].
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In most of the reports of diagnostic efficacy with ROC, the area under the ROC curve (AUC)
was significantly higher than the gold standard for prostate cancer diagnosis—the analysis
of the serum PSA level. One study mentioned that miRNA (miR-145) combined with PSA
can infer a better diagnostic value [58].

Two articles studied piRNAs for their role as diagnostic biomarkers [59,60]. Peng
et al. examined four novel piRNAs that yielded significant AUCs in the ROC analysis [59].
Merkert et al. studied piRNAs and miRNAs, finding that the AUC was more than 0.7
for most individual biomarkers [60]. At least eight different lncRNAs were analysed in
five articles, all of which found that lncRNAs were significantly overexpressed in prostate
cancer. In one study, the authors developed a urinary exosomal lncRNA assay incorporating
PCA3 and MALAT1 to diagnose prostate cancer and high-grade prostate cancer. This assay
achieved a superior AUC in predicting biopsy results, outperforming current clinical
parameters [61].

The protein expression, measured by Western blots, enzyme-linked immunosorbent as-
says (ELISAs), or sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
was examined in 30 articles. Most of them measured either cancer-related proteins (i.e.,
PSMA, PCA3, TMPRSS2:EGR, or PSA) or exosomal cell surface proteins (CD9, CD3, Ep-
CAM, or CD81). Two articles found cytokines as a potent diagnostic biomarker [62,63]. Two
articles found some enzymes (Carbonic anhydrase IX and Gamma-glutamyltransferase) to
be significantly increased in prostate cancer [64,65].

Sixteen articles studied the expression of multiple genes that had the potential for
detecting prostate cancer. Most of these genes are prostate cancer-related genes (i.e., ERG,
PCA3, and AR-V7). Two studied the role of ExoDx, a commercial three urinary gene
expression (ERG, PCA3, and SPDEF)-based method (Table 2), and validated its diagnostic
and prognostic efficacy in larger cohorts [66,67]. Chu et al. found that sex-related steroid
hormones (i.e., dehydroepiandrosterone and testosterone) have a significant diagnostic
role in prostate cancer [68]. Additionally, one study found elevated urinary exosomal
glycoprofile marker, while another report found changes in five different circRNA, which
could be utilised as potential diagnostic biomarkers [69,70]. There is a common trend
to observe that exosomal biomarkers are generally overexpressed in prostate cancer or
associated with high-grade disease or poor therapy response, except a few studies that
found the downregulation of the biomarkers detailed in Tables 1 and 2.

Table 1. List of different exosomal biomolecules with diagnostic value.

Year Authors
(et al.) Exosome Contents

Type of
Exosome
Content

Detection
Method

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2022 Zhang
H

SERPINA3, LRG1,
SCGB3A1 Protein Mass

spectrometry Blood PC: 20,
prostatitis: 20 Increased Case–

control [50]

2023 Ge Q PSEP and PSA Protein ELISA Urine AP: 54, CP: 72,
PC: 36 Increased Case–

control [51]

2021 Matsuzaki
K

miR-30b-3p and
miR-126-3p miRNA Microarray Urine

PC: 10
biopsy negative

raised PSA: 4
Increased Case–

control [52]

2022 Luedemann
C

mir-331-3p and
mir-200b miRNA qRT-PCR Saliva PC: 43, control:

31 (raised PSA) Reduced Case–
control [53]

2020 Zhou
C

miR-217 and
miR-23b-3p miRNA Small RNA

sequencing Blood PC: 10, HC: 10

miR-217:
increased,

miR-23b-3p:
reduced

Case–
control [54]

2023
Cruz-

Burgos
M

miR-150-5p miRNA Microarray Blood PC: 20, HC: 15 Reduced Case–
control [55]
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Table 1. Cont.

Year Authors
(et al.) Exosome Contents

Type of
Exosome
Content

Detection
Method

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2017 Rodríguez
M

miR-196a-5p,
miR-501-3p miRNA Next-generation

sequencing Urine PC: 28, HC: 19 Reduced Case–
control [56]

2024 Evin D miR-15a, miR-16,
miR-19a-3p, and miR-21 miRNA qRT-PCR Blood mCRPC: 51,

BPH: 48 Reduced Case–
control [58]

2017 Xu Y MiR-145 miRNA qRT-PCR Urine PC: 60, BPH: 37 Increased Case–
control [59]

2021 Peng Q

novel_pir349843,
novel_pir382289,

novel_pir158533, and
hsa_piR_002468

piRNA RT-qPCR Urine PC: 30, HC: 10 Increased Case–
control [60]

2021 Markert
L

miR-15p, miR-3126-3p,
miR-324-5p,
miR-150-5p,

miR-425-3p, miR-6078,
piR_018849, piR_019324

piRNA
and

miRNA

Next-generation
sequencing Urine BPH: 25, PC: 28

miR-6078:
increased,

rest are
reduced

Case–
control [61]

2021 Li Y PCA3, MALAT1, and
lncRNA

mRNA
and

lncRNA
qRT-PCR Urine PC: 218 BPH:

347 Increased Case–
control [62]

2023 Xu F Interleukin 8 Protein ELISA Blood PC: 32, HC: 10 Increased Case–
control [63]

2020 Logozzi
M Carbonic anhydrase IX Protein ELISA Blood PC: 8, HC: 8 Increased Case–

control [65]

2017 Kawakami
K

Gamma-
glutamyltransferase Protein Western blot Blood PC: 31, BPH: 8 Increased Case–

control [66]

2017 Vermassen
T UGM, PSA

Glycoprofile
and

protein

Multicapillary
carbohydrate

electrophoresis
and

immunoassay

Urine PC: 85, BPH:
122 Increased Case–

control [70]

2023 Liu P Apolipoprotein E, LRG1
and ITIH3, metabolites Protein Mass

spectrometry Blood PC: 30, HC: 15 Increased Case–
control [71]

2022 Zhai
TY miR-20b-5p miRNA RT-qPCR Prostatic

fluid PC: 10, HC: 27 Increased Case–
control [72]

2019 Danarto
R

miR-21-5p and
miR-200c-3p miRNA RT-qPCR Urine BPH: 20, PC:60

miR-21-5p:
increased,

miR-200c-3p:
reduced

Case–
control [73]

2012 Khan S Survivin Protein ELISA Blood
PC: 39, BPH: 20,
Recurrent PC:8,

HC: 16
Increased Case–

control [74]

2021 Ji J
CDC42, IL32, MAX,
NCF2, PDGFA, and

SRSF2
mRNA RNA

sequencing Blood PC: 141, BPH:
170, HC: 30 Increased Case–

control [75]

2023 Wang
CB PSMA Protein ELISA Urine BPH: 194, PC:

80 Increased Case–
control [76]

2015 Korzeniewski
N miRNA-483-5p miRNA Microarray Urine HC: 18, PC: 71 Increased Case–

control [77]

2021 Li Q lncRNA AY927529 lncRNA Western blot Blood PC: 10, HC: 10 Increased Case–
control [78]

2021 Kohaar
I PCA3, PCGEM1 mRNA droplet digital

PCR Urine N: 271 Increased Cohort [79]

2016 Motamedinia
P TMPRSS2:ERG mRNA RT-qPCR Urine PC: 84, Control:

88 Increased Case–
control [80]

2016 Bryzgunova
OE miR-19b miRNA qRT-PCR Urine PC: 14, HC: 20 Reduced Case–

control [81]

2015 Duijvesz
D CD9, CD63 Protein Fluorescence

immunoassay Urine PC: 67, HC: 76 Increased Case–
control [82]
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Table 1. Cont.

Year Authors
(et al.) Exosome Contents

Type of
Exosome
Content

Detection
Method

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2009 Lu Q Delta-catenin Protein SDS-PAGE Urine

PC (Active
cancer): 16,

Control
(Inactive

cancer): 15

Increased Case–
control [83]

2016 Turay D

Apolipoproteins,
Pregnancy Zone

Protein,
Macroglobulins,

Keratin, Albumin
Precursors,

Haptoglobin,
Ceruloplasmins,

Transferrin,
Complement Proteins

and Fibronectin

Protein Mass
spectrometry Blood PC: 12, HC: 9 Increased Case–

control [84]

2022 Gan J ERG, PCA3, PSMA,
CK19, and EpCAM mRNA RT-qPCR Urine PC: 63, HC: 61 Increased Case–

control [85]

2017 Logozzi
M CD81 Protein ELISA Blood PC: 15, HC: 15 Increased Case–

control [86]

2017 Worst
TS Claudin 3 Protein Mass

spectrometry Blood PC: 58, BPH: 15,
HC: 15 Increased Case–

control [87]

2015 Hata K NEU3 Protein ELISA Blood PC: 34, HC: 13 Increased Case–
control [88]

2015 Işın M lincRNA-p21 lncRNA qRT-PCR Urine PC: 30, BPH
control: 49 Increased Case–

control [89]

2017 Yang JS Lipids (DAG, TAG, and
ChE) Lipid

Liquid
chromatography-

tandem mass
spectrometry

Urine PC: 4, HC: 4 Increased Case–
control [90]

2019 Barceló
M

miR-130a-3p,
miR-142-3p,
miR-142-5p,
miR-223-3p,

miRNA qRT-PCR Semen PC: 31, HC: 11,
BPH control: 7 Increased Case–

control [91]

2024 Wang C miR-320c, miR-944 miRNA RT-qPCR Blood PC: 87, HC: 112

miR-320c:
increased,
miR-944:
reduced

Case–
control [92]

2024 Yu J RAB5B, WWP1 mRNA qRT-PCR Urine PC: 10, HC: 10 Increased Case–
control [93]

2021 Dai Y EpCAM-CD9 Protein Chemiluminescent
immunoassay Urine PC: 112, BPH:

55, HC: 26 Reduced Case–
control [94]

2021 Zabegina
L

miR-145, miR-451a,
miR-141,

and miR-221
miRNA RT-qPCR Blood PC: 55, HC: 30 Increased Case–

control [95]

2024 Martorana
E

STAT3, CyclinD1,
ERBB3, ALK, and CD81 Protein Western blot Blood PC: 42, BPH: 12 Increased Case–

control [96]

2020 McKiernan
J

PCA3, ERG and SPDEF
(ExoDx) mRNA qRT-PCR Urine N: 229 Increased Cohort [97]

2020 Davey
M

FOLH1, HPN, CD24,
TMPRSS2-ERG, ITSN1,

ANXA3, SLC45A3
mRNA qRT-PCR Urine PC: 28, HC: 28 Increased Case–

control [98]

2015 Li M miR375, miR21, miR574 miRNA qRT-PCR Blood PC: 14, HC: 10 Increased Case–
control [99]

2017 Sanda
MG TMPRSS2-ERG, PCA3 mRNA qRT-PCR Urine

Development
cohort: 761
Validation
cohort: 743

Increased Cohort [100]
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Table 1. Cont.

Year Authors
(et al.) Exosome Contents

Type of
Exosome
Content

Detection
Method

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2019 Gu CY PSEP Protein ELISA Urine N: 674 Increased Cohort [101]

2017 Endzelin, š
E

miR-200c-3p and
miR-21-5p miRNA RT-qPCR Blood PC: 50, BPH: 22 Increased Case–

control [102]

2021 Kim J miR-221 miRNA RT-qPCR Blood PC: 39, BPH: 8 Increased Case–
control [103]

2023 Tutrone
R

PCA3, ERG and SPDEF
(ExoDx) mRNA qRT-PCR Urine N: 833 Increased Cohort [104]

2017 Foj L miRNA-21, miR-375,
let-7c miRNA qRT-PCR Urine PC: 60, HC: 10 Increased Case–

control [105]

2016 Li Z miRNA-141 miRNA RT-qPCR Blood PC: 20, BPH: 20,
HC: 20 Increased Case–

control [106]

2023
Yazbek
Hanna

M

GJB1, RPS10,
TMPRSS2:ERG,

ERG_Exons_4-5, HPN
mRNA qRT-PCR Urine PC: 40,

non-cancer: 36 Increased Case–
control [107]

2015 Øverbye
A TM256 and LAMTOR1 Protein Mass

spectrometry Urine PC: 16, HC: 15 Increased Case–
control [108]

2019 Logozzi
M CD81 and PSA Protein Immunocapture-

based ELISA Blood PC: 80,BPH: 80,
HC: 80 Increased Case–

control [109]

2021 Zhang S miR-146a-5p,miR-24-3p
and miR-93-5p miRNA qRT-PCR Blood PC: 86, HC: 86 Increased Case–

control [110]

2022 Holdmann
J

miR-532-3p and
miR-6749-5p miRNA

Next-
generation
sequencing

Urine PC: 28, BPH: 25 Increased Case–
control [111]

2020 Worst
TS

miR-10a-5p and
miR-29b-3p miRNA

Next-
generation
sequencing

Blood PC: 18, BPH: 7 Increased Case–
control [112]

2017 Skotland
T

phosphatidylserine,
lactosylceramide Lipid

High-
throughput

mass
spectrometry

Urine PC: 15, HC: 13 Increased Case–
control [113]

2020 Li W miR-125a-5p and
miR-141-5p miRNA RT-qPCR Blood PC: 38, HC: 19

miR-125a-5p:
reduced,

miR-141-5p:
increased

Case–
control [114]

2014 Dijkstra
S PCA3 mRNA qRT-PCR Urine N: 30 Increased Cohort [115]

2017 Khan S Inhibitors of
apoptosisproteins (IAP) Protein ELISA Blood PC: 72, HC: 10 Increased Case–

control [116]

2020 Konoshenko
MY

miR-19b, miR-30e,
miR-31, miR-92a,

miR-125, miR-200,
miR-205, and miR-660

miRNA RT-qPCR Urine PC: 10, BPH: 8,
HC: 11 Increased Case–

control [117]

2018 Wang
YH

SAP30L-AS1 and
SChLAP1 lncRNA qRT-PCR Blood PC: 34, BPH: 46,

HC: 30 Increased Case–
control [118]

2024 Jiang S FOXA1, PCA3,
and KLK3 mRNA RT-qPCR Urine

Training cohort:
234

Validation
cohort:101

Increased Cohort [119]

2022 Jin X
AMACR

(a-Methylacyl-CoA
racemase)

Protein ELISA Urine PC: 87, BPH:
185 Increased Case–

control [120]

2019 Woo
HK AR-V7, AR-FL mRNA droplet digital

PCR Urine

CRPC: 14,
hormone-

sensitive PC:
22, HC: 11

Increased Case–
control [121]

2022 Kretschmer
A

ERG, PCA3 and SPDEF
(ExoDx) mRNA qRT-PCR Urine N = 109 Increased Cohort [122]



Int. J. Mol. Sci. 2025, 26, 802 11 of 29

Table 1. Cont.

Year Authors
(et al.) Exosome Contents

Type of
Exosome
Content

Detection
Method

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2019 Li P PSA, PCA3 mRNA qRT-PCR Urine PC: 20, HC: 15 Increased Case–
control [123]

2014 Neeb A AGR2 mRNA qRT-PCR Urine PC: 24, BPH: 15 Increased Case–
control [124]

2015 Samsonov
R

miR-574-3p,
miR-141-5p and

miR-21-5p
miRNA RT-qPCR Urine PC: 35, HC: 35 Increased Case–

control [125]

PC, prostate cancer; AP, acute prostatitis; CP, chronic prostatitis; HC, healthy control; ELISA, enzyme-linked
immunosorbent assay; qRT-PCR, quantitative real-time polymerase chain reaction; RT-qPCR, reverse transcription
quantitative polymerase chain reaction; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis;
UGM, urinary glycoprofile marker; CRPC, castration-resistant prostate cancer; BPH, benign prostate hyperplasia;
mCRPC, metastatic castration-resistant prostate cancer; miRNA, microRNA; mRNA, messenger RNA; lncRNA,
long noncoding RNA; AGR2, anterior gradient 2; PSEP, prostatic exosomal protein; LRG1, leucine-rich alpha-2-
glycoprotein 1; ITIH3, inter-alpha-trypsin inhibitor heavy chain H3; NEU3, neuraminidase 3; PSA, prostate-specific
antigen; PSMA, prostate-specific membrane antigen; AR-V7, androgen receptor variant 7.

Table 2. List of exosome contents with multiple biomarker roles in prostate cancer.

Year Authors
(et al.)

Exosome
Contents

Type of
Exosome
Content

Detection
Method

Role of
Biomarkers
in Disease

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2021 Li Z

miR-375,
miR-451a,

miR-486-3p,
and

miR-486-5p

miRNA

Next-
generation
sequenc-

ing

Diagnosis
and

prognosis
Urine PC: 47, BPH:

29, HC: 25

miR-375:
increased;
miR-451a,

miR-486-3p
and

miR-486-5p:
reduced

Case–
control [57]

2021 Macías M
CCL2, CXCL5,

S100A9 and
TGF-ß

Cytokine

Magnetic
bead-
based

im-
munoas-
say and
ELISA

Diagnosis
and

treatment
response

Blood PC: 26, HC: 16 Increased Case–
control [64]

2018 McKiernan
J

ERG, PCA3,
and SPDEF

(ExoDx)
mRNA qRT-PCR

Diagnosis
and

prognosis
Urine 503 Increased Cohort [67]

2016 McKiernan
J

ERG, PCA3,
and SPDEF

(ExoDx)
mRNA qRT-PCR

Diagnosis
and

prognosis
Urine

Training
cohort: 255
Validation
cohort: 519

Increased Cohort [68]

2022 Chu L

DHEA,
DHEAS,

testosterone,
DHT

Hormone

Liquid
chro-

matogra-
phy

tandem
mass

spectrom-
etry

Diagnosis
and

prognosis
Urine PC: 231, HC:

55

DHEA,
DHEAS:

increased;
testosterone,

DHT: reduced

Case–
control [69]

2022 Hansen
EB

circSMARCA5,
circHIPK3,

circACVR2A,
circN4BP2L2,

and
circMAN1A2

circRNA
Total

RNA se-
quencing

Diagnosis
and

prognosis
Blood LPC: 21, MPC:

6, HC: 27 Increased Case–
control [126]

2023 Wei C PSA Protein ELISA
Diagnosis

and
prognosis

Urine

272
participants
undergoing

prostate
biopsy

Increased Cohort [127]
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Table 2. Cont.

Year Authors
(et al.)

Exosome
Contents

Type of
Exosome
Content

Detection
Method

Role of
Biomarkers
in Disease

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2021 Salvi S

CD62P, CD41b,
CD42a, CD29,

CD31, CD9,
CD63, and

CD24

Protein Flow cy-
tometry

Diagnosis
and

prognosis

Blood
and

urine

PC: 10, BPH:
10, healthy
donors: 10

Reduced Case–
control [128]

2024 Matijašević
Joković S

PSMA and
Caveolin-1 Protein Western

blot

Diagnosis
and

prognosis
Blood PC: 39, BPH:

33 Increased Case–
control [129]

2023 Tao W

AC015987.1,
CTD-

2589M5.4,
RP11-363E6.3

lncRNA RNA se-
quencing

Diagnosis
and

prognosis
Urine

Training
cohort: 350
Validation

cohort:
232,251

Increased Cohort [130]

2012 Bryant RJ

miR-141,
miR-375,

miR-107, and
miR-574-3p

miRNA qRT-PCR
Diagnosis

and
prognosis

Blood PC: 78, HC: 28 Increased Case–
control [131]

2021 Albino D miR-424 miRNA RT-qPCR
Diagnosis

and
prognosis

Blood

BPH: 6,
primary PC:
25, mCSPC:
16, mCRPC:

17

Increased Case–
control [132]

2016 Alhasan
AH

miR-200c,
miR-605,

miR-135a,
miR-433, and

miR-106a

miRNA qRT-PCR
Diagnosis

and
prognosis

Blood

VHR PC: 9,
LR PC: 9,
healthy

donors: 10

miR-200c,
miR-605,
miR-135a:
reduced;

miR-433 and
miR-106a:
increased

Case–
control [133]

2021 Khanna K STEAP1 Protein Western
blot

Diagnosis
and

prognosis
Blood PC: 121. HC:

55 Increased Case–
control [134]

2019 Bryzgunova
OE

miR-30a:
miR-125b;
miR-425:
miR-331;
miR-29b:
miR-21;
miR-191:

miR-200a;
miR-331:
miR-106b

miRNA qRT-PCR

Diagnosis
and

treatment
response

Urine PC: 10, HC:
10, BPH: 10 Increased Case–

control [135]

2020 Wang Y miR-181a-5p miRNA

Deep se-
quencing
and mi-
croRNA

chip array

Diagnosis
and

prognosis
Blood

nbmPCa: 35,
BPH: 23,

bmPCa: 16
Increased Case–

control [136]

2018 Li S EphrinA2 Protein

ELISA
and

Western
blot

Diagnosis
and

prognosis
Blood PC: 50, BPH:

21, HC: 20 Increased Case–
control [137]

2020 Wang
WW

sncRNA-
Sentinel™ sncRNA qRT-PCR

Diagnosis
and

prognosis
Urine

Test cohort:
235

Validation
cohort:
613,823

Increased Cohort [138]

2018 Bhagirath
D miRNA-1246 miRNA qRT-PCR

Diagnosis
and

prognosis
Blood PC: 44, BPH:

4, HC: 8 Increased Case–
control [139]
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Table 2. Cont.

Year Authors
(et al.)

Exosome
Contents

Type of
Exosome
Content

Detection
Method

Role of
Biomarkers
in Disease

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2016 Park YH PSMA Protein ELISA
Diagnosis

and
prognosis

Blood PC: 82, BPH:
28 Increased Case–

control [140]

2024 Pang B LAMB1 and
Histone H4 Protein

ELISA
and

Western
blot

Diagnosis
and

prognosis

Blood
and

urine

HC: 15, LPC:
30, MPC: 15 Increased Case–

control [141]

2023 Lei Y

miR-222,
miR-1290,
miR-182,
miR-21,

miR-221, and
miR-10b

miRNA

Dual-
surface-
protein-
guided
miRNA
profiling

Diagnosis
and

prognosis
Blood PC: 47, HC: 27 Increased Case–

control [142]

2021 Ali HEA

miR-6068,
miR-1915-3p,
miR-3692-3p,

miR-3939,
miR-6716-5p,

and
miR-3692-3

miRNA qRT-PCR
Diagnosis

and
prognosis

Blood N: 150 Increased Cohort [143]

2023 Tao W

circCEP112,
circFAM13A,
circBRWD1,
circVPS13C,

and
circMACROD2

circRNA RNA se-
quencing

Prognosis
and

treatment
response

Blood

Training
cohort: 203
Validation

cohort:
183,166

circCEP112,
circFAM13A,

and
circBRWD1:
increased;

circVPS13C
and circ-

MACROD2:
reduced in
positive OS

Cohort [144]

2024 Erdmann
K

AMACR,
PCA3, and

PCAT29
mRNA qRT-PCR

Prognosis
and

treatment
response

Urine N: 72 Increased Cohort [145]

2022 Wang C AR-V7 mRNA qRT-PCR

Prognosis
and

treatment
response

Urine

mCRPC: 34
(ABI-Sta: 16,
ABI-Res: 18),

HC: 20

Increased Case–
control [146]

PC, prostate cancer; HC, healthy control; LPC, localised prostate cancer; MPC, metastatic prostate cancer; CRPC,
castration-resistant prostate cancer; BPH, benign prostate hyperplasia; ELISA, enzyme-linked immunosorbent as-
say; qRT-PCR, quantitative real-time polymerase chain reaction; RT-qPCR, reverse transcription quantitative poly-
merase chain reaction; OS, overall survival; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone-
sulfate; DHT, dihydrotestosterone; mCRPC, metastatic castration-resistant prostate cancer; mCSPC, metastatic
castration-sensitive prostate cancer; bmPCa, bone metastatic prostate cancer; nbmPCa, non-bone metastatic
prostate cancer; VHR PC, very-high-risk prostate cancer; LR PC, low-risk prostate cancer; ABI-sta, stable response
to abiraterone; ABI-res, resistant to abiraterone; PSA, prostate-specific antigen; PSMA, prostate-specific membrane
antigen; STEAP1, six-transmembrane epithelial antigen of the prostate 1; miRNA, microRNA; mRNA, messenger
RNA; lncRNA, long noncoding RNA; sncRNA, small noncoding RNA; circRNA, circular RNA; AR-V7, androgen
receptor variant 7.

3.3. Exosomes Predicting Disease Grade and Progression

The exosomal contents in liquid biopsy can be used to predict the prognosis of prostate
cancer, like the grade of disease, metastasis, overall survival, and biochemical recurrence-
free survival, as examined in the 48 articles reviewed (Table 3). miRNA is the most
frequently studied exosomal load (18 articles), followed by proteins and gene expression
based on mRNA, with 11 and 10 articles, respectively.

Forty-two different miRNAs were investigated and found to be prognostic mark-
ers for prostate cancer. Two articles found downregulation of miRNAs [56,146]. Most
articles measured prognosis using the category of grade or disease severity, while
some articles measured the projecting value of exosomal miRNA by predicting the
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metastasis [132,142,147,148]. Wang et al. studied a large cohort of prostate cancer pa-
tients and found three different sncRNAs—by using the platform SentinelTM—have higher
sensitivity and specificity in diagnosing and predicting high-grade prostate cancer [138].

Twelve different types of circRNAs have been investigated in four studies for
their role in prostate cancer prognosis with significant statistical deviations from the
norm [144,149–152]. Zavridou et al. studied the DNA methylation of the GSTP1 and
RASSF1A genes and found that they correlate with the OS [153]. Tao et al. found that
specific lncRNAs (AC015987.1, CTD-2589M5.4, and RP11-363E6.3) can be potentially used
for decision-making in active disease surveillance [130], while Kretschmer and co-workers
utilised the ExoDx method in a large cohort of 2,066 patients for determining the prognostic
value and found it can be used to classify grade group 1 to grade group 3 disease and
can be used for active surveillance [154]. All the studies that studied the prognostic value
of exosomal biomarkers found an increase in the expression level associated with poor
progression or high-grade disease except for the study of Ruiz-Plazas et al., which showed
the reduced expression of some miRNAs associated with high-risk disease (Table 3).

Table 3. List of exosomal biomarkers predicting prognosis of prostate cancer.

Year Authors
(et al.) Exosome Contents

Type of
Exosome
Content

Detection
Method

Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2024 Lee J miR-6880-5p miRNA Microarray and
RT-qPCR Blood PC: 17, HC: 5 Reduced Case–

control [155]

2021 Shin S
miR-21, miR-16,

miR-142-3p,
miR-451, miR-636

miRNA RT-qPCR Urine PC: 149
Increased

in poor
survival

Cohort [147]

2023 Temilola
DO

miR-194-5p/miR-
16-5p miRNA RNA

sequencing Blood PC: 24, BPH: 10
Increased

in
metastasis

Case–
control [148]

2020 Li T circ_0044516
(circRNA) circRNA Microarray Blood PC: 6, HC: 6

Increased
in

metastasis

Case–
control [149]

2023 Yang Z circ-DHPS
(circRNA) circRNA qRT-PCR Blood N: 31

Increased
in

metastasis
Cohort [150]

2021 Zavridou
M

GSTP1 and
RASSF1A

methylation

DNA
methyla-

tion

Real-time
methylation-
specific PCR

Blood mCRPC: 62, HC: 10
Increased

in poor
survival

Case–
control [153]

2022 Kretschmer
A

PCA3, ERG,
and SPDEF

(ExoDx)
mRNA qRT-PCR Urine N: 2,066

Increased
in high risk

disease
Cohort [154]

2022 Zhu S AKR1C3 mRNA Digital droplet
PCR Blood mCRPC: 62

Increased
in poor
survival

Cohort [156]

2015 Donovan
MJ PCA3 and ERG mRNA RT-qPCR Urine N: 195

Increased
in high
grade

disease

Cohort [157]

2019 Del Re
M AR-V7 mRNA Droplet digital

PCR Blood N: 73
Increased

in poor
survival

Cohort [158]

2019 Joncas
FH AR-V7 mRNA Droplet digital

PCR Blood PC: 89, HC: 10
Increased

in poor
survival

Case–
control [159]
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Detection
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Sample
Source Sample Size Change in

Expression
Type of
Study Reference

2023 Wang
JJ

ACP3, FOLH1,
HOXB13, KLK2,

KLK3, KLK4,
MSMB, RLN1,

SLC45A3, STEAP2,
and TMPRSS2

mRNA

Reverse-
transcription

droplet digital
PCR

Blood MPC: 20, LPC: 20
Increased

in
metastasis

Cohort [160]

2020 Ishizuya
Y Actinin-4 mRNA qRT-PCR Blood MPC: 36

Increased
in

metastasis
Cohort [161]

2024 Ding T

3-aminoquinoline,
6-

dimethylaminopurine,
diethyl-malonate,

indole-3-acetic acid,
n-3-hydroxypropyl

phthalimide and
n-benzoyl-2′-

deoxycytidine

Metabolite

Liquid
chromatography-

electrospray
ionisation

tandem mass
spectrometry

Urine PC: 60, BPH: 40

Increased
in

high-grade
disease

Case–
control [162]

2015 Huang
X

miR-1290 and
miR-375 miRNA qRT-PCR Blood

Screening cohort:
23 CRPC.

Follow-up cohort:
100 CRPC

Increased
in poor
survival

Cohort [163]

2023 Wang
W miR-222-3p miRNA

RNA
sequencing and

qRT-PCR
Blood ADPC: 15, CRPC:

15

Increased
in

high-grade
disease

Cohort [164]

2019 Fredsøe
J

miR-151a-5p,
miR-204-5p,
miR-222-3p,

miR-23b-3p, and
miR-331-3p

miRNA RT-qPCR Urine
Cohort 1: 215
Cohort 2: 199
Cohort 3: 205

Increased
in

recurrence
Cohort [165]

2022 Pudova
EA miRNA-148a-3p miRNA

Next-
generation

sequencing and
qRT-PCR

Blood N: 11

Increased
in

high-grade
disease

Cohort [166]

2021
Ruiz-

Plazas
X

miR-221-3p, -222-3p
and -31-5p,

miR-193-3p, and
-423-5p

miRNA qRT-PCR

Urine
and
se-

men

N: 97

miR-221-
3p, -222-3p
and -31-5p:
increased;
miR-193-
3p and
-423-5p:

reduced in
high-risk
disease

Cohort [167]

2021 Bhagirath
D

miR-28-5p and
miR-148a-3p miRNA

RNA
sequencing and

qRT-PCR
Blood CRPC-adeno: 21,

CRPC-NE: 6

Increased
in

high-grade
disease

Cohort [168]

2021 Kim
MY

miR-26a-5p,
miR-532-5p, and

miR-99b-3p
miRNA RT-qPCR Urine non-BCR: 49, BCR:

32

Increased
in

recurrence
Cohort [169]

2020 Ye LF PCA3 and PRAC Protein RT-qPCR Urine N: 89
Increased

in high-risk
disease

Cohort [170]

2023 Gardani
CFF CD39 Protein Flow cytometry Blood N: 25

Increased
in poor

prognosis
Cohort [171]

2022 Lucien
F STEAP1, PSMA Protein Flow cytometry Blood N: 79

Increased
in poor
survival

Cohort [172]
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2021 Guo T miR-423-3p miRNA
RNA

sequencing and
RT-qPCR

Blood

Discovery cohort:
Treatment-naive
PC: 24, CRPC 2

Validation cohort 1:
Treatment-naïve

PC: 108, CRPC: 42
Validation cohort 2:

Treatment-naïve:
30, CRPC: 30
Additional
comparison:

Non-CRPC patients
on ADT: 36

Increased
in

high-grade
disease

Cohort [173]

PC, prostate cancer; HC, healthy control; CRPC, castration-resistant prostate cancer; BPH, benign prostate hyper-
plasia; qRT-PCR, quantitative real-time polymerase chain reaction; RT-qPCR, reverse transcription quantitative
polymerase chain reaction; mCRPC, metastatic castration-resistant prostate cancer; MPC, metastatic prostate can-
cer; LPC, localised prostate cancer; ADPC, androgen-dependent prostate cancer; CRPC-adeno, castration-resistant
prostate cancer with adenocarcinoma features; CRPC-NE, castration-resistant prostate cancer with neuroendocrine
features; BCR, biochemical recurrence; miRNA, microRNA; mRNA, messenger RNA; circRNA, circular RNA;
STEAP1, six-transmembrane epithelial antigen of the prostate 1; STEAP2, six-transmembrane epithelial antigen of
the prostate 2; PSMA, prostate-specific membrane antigen; AR-V7, androgen receptor variant 7; ACTN4, actinin-4;
ADT, androgen deprivation therapy.

3.4. Exosomes Related to Treatment Response

Out of twenty articles exploring the role of exosomes in different treatment responses,
six examined gene expression, followed by miRNA and protein expression, at four articles
each (Table 4). Among the proteins that were quantified, two different glycoproteins (P-
glycoprotein and oncofetal glycoprotein-5T4) were found to be associated with docetaxel
resistance and the presence of residual malignant cells, respectively [174,175]. In the study
of Vardaki et al., the immune-checkpoint protein programmed death ligand 1 (PD-L1) was
associated with a shorter OS with Radium-223 therapy [176].

Some studies evaluated the role of the exosomal content in determining the treatment
response to chemotherapy agents, e.g., Docetaxel [177], while others examined their role in
androgen receptor signalling inhibitors (ARSIs), e.g., Abiraterone [178]. In most studies, the
biomarker expression is reduced with a favourable response, except one article that showed
that urinary miRNA (miR-664a-5p) was significantly upregulated in patients responding to
poly (ADP-ribose) polymerase (PARP) inhibitors [179].

Pukha et al. found that specific metabolites (glucuronate, D-ribose 5-phosphate, and
isobutyryl-L-carnitine) can be used as a marker for successful prostatectomy [180]. Another
study by Macías et al. reported that lncRNAs (CCL2, CXCL5, and S100A9) can predict the
efficacy of surgical interventions and recovery [64]. Three studies showed that androgen
receptor splice variant 7 (AR-V7) gene expression can significantly predict the treatment
response to ARSIs and hormone therapy [152,181,182]. Finally, a study by Malla and co-
workers studied the role of miRNAs (let-7a-5p and miR-21-5p) in response to radiotherapy
and found that their expression was elevated in high-risk prostate cancer patients compared
to the intermediate-risk group [183].
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Table 4. List of exosomal biomarkers predicting treatment response of prostate cancer.

Year Authors
(et al.) Exosome Contents

Type of
Exosome
Content

Detection
Method

Sample
Source

Sample
Size

Change in
Expression

Type of
Study Reference

2017 Del Re
M AR-V7 mRNA Digital

droplet PCR Blood CRPC: 36
Increased in poor

response to
hormonal therapy

Cohort [152]

2015 Kato T P-glycoprotein
(P-gp) Glycoprotein Western

blot Blood
Therapy-

naïve
patients: 6,
TR PC: 4

Increased in
Docetaxel
resistance

Cohort [174]

2009 Mitchell
PJ

PSA, PSMA,
oncofetal

glycoprotein-5T4
Protein and
glycoprotein

Electrophoresis
and

immuno-
blotting

Urine PC: 10, HC:
10

Reduced in ADT
response

Case–
control [175]

2021 Vardaki
I PD-L1 mRNA RNA

sequencing Blood N: 25
Increased in poor

response to
radiotherapy

Cohort [176]

2023 Jiang X lincROR lncRNA qRT-PCR Blood MPC: 27
Increased in

Docetaxel
resistance

Cohort [177]

2023 Kato T H19 lncRNA

RNA-
sequencing
and digital

droplet PCR

Blood

LPC: 58,
MPC: 14,
ARAT-

naïve: 7,
ARAT-

resistant
CRPC: 6

Increased in ARTA
resistance Cohort [178]

2024 Kim
MY miR-664a-5p miRNA

RNA
sequencing

and
RT-qPCR

Urine N: 8 Increased in PARP
inhibitor response Cohort [179]

2017 Puhka
M

Glucuronate,
D-ribose

5-phosphate and
Isobutyryl-L-

carnitine

Metabolite

Liquid
chromatography-

tandem
mass spec-
trometry

Urine PC: 3, HC: 3 Reduced in
prostatectomy

Case–
control [180]

2021 Del Re
M AR-V7 mRNA Digital

droplet PCR Blood mCRPC: 84 Reduced in ARTA
response Cohort [181]

2019 Strati A AR-V7, AR-567es mRNA RT-qPCR Blood mCRPC: 62,
HC: 10

Increased in ARAT
resistance

Case–
control [182]

2018 Malla B let-7a-5p,
miR-21-5p miRNA qRT-PCR Blood N: 25

Increased in
radiotherapy

resistance
Cohort [183]

2023 Vardaki
I

Stathmin-1 and
ITSN1 mRNA Transcriptome

microarray Blood CRPC: 19
Increased in
resistance to
Cabazitaxel

Cohort [184]

2021 Zhu S TUBB3 mRNA Digital
droplet PCR Blood mCRPC: 52

Increased in poor
Abiraterone

response
Cohort [185]

2024 Shutko
EV

miR-125b,
miR-660,

miR-200b,
miR-30e, and

miR-375

miRNA RT-qPCR Urine PC: 22, HC:
18

Reduced in radical
prostatectomy

response
Case–

control [186]

2015 Kharaziha
P

MDR-1/3 and
PABP4 Protein Western

blot Blood N: 6 (TR: 3,
TS: 3)

Increased in
Docetaxel
resistance

Cohort [187]

PC, prostate cancer; HC, healthy control; CRPC, castration-resistant prostate cancer; MPC: metastatic prostate
cancer; qRT-PCR, quantitative real-time polymerase chain reaction; RT-qPCR, reverse transcription quantitative
polymerase chain reaction; ADT, androgen deprivation therapy; ARTA, androgen receptor-targeted agent; PARP,
poly ADP ribose polymerase; LPC: localised prostate cancer; BPH, benign prostate hyperplasia; mCRPC, metastatic
castration-resistant prostate cancer; ARAT, androgen receptor axis-targeted therapy; PSA, prostate-specific antigen;
PSMA, prostate-specific membrane antigen; PD-L1, programmed death ligand 1; AR-V7, androgen receptor
variant 7; miRNA, microRNA; mRNA, messenger RNA; circRNA, circular RNA; lncRNA, long noncoding RNA;
TR, docetaxel-reistant; TS, docetaxel-sensitive.

4. Discussion
This systematic review, encompassing 137 articles on the role of various exosomal loads

in prostate cancer diagnosis, prognosis, and treatment response, highlights the significant
advancements of noninvasive liquid biopsy in detection and making clinical decisions. The
findings presented herein showcase the growing body of evidence supporting the utility of
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exosomes as potential liquid biopsy biomarkers for prostate cancer, particularly exosomal
miRNAs and other loads.

4.1. Validity of the Study Design in Biomarker Study

Most studies included in the review were case–control studies (91 out of 137), in-
dicating a robust interest in comparing exosomal biomarkers between prostate cancer
patients and various control groups, including healthy individuals and those with BPH. A
substantial number of cohort studies (46 articles), some of which included training and val-
idation cohorts, further strengthened their analysis of the predictive exosomal biomarkers
of prostate cancer in larger populations. These study designs are crucial for establishing
the specificity and sensitivity of potential biomarkers.

4.2. Variation in Liquid Biopsy Samples

Trujillo et al. discussed the limitations of traditional tissue biopsies in clinical settings
and the need for noninvasive alternatives like liquid biopsies [188]. The diversity of
biological samples used for exosome isolation, primarily blood and urine, indicates the
versatility of liquid biopsies. The utilisation of liquid biopsies to capture the dynamic
nature of prostate cancer is a significant advancement, as traditional methods fall short in
determining tumour heterogeneity and evolution [188]. The limited exploration of other
fluids, such as semen and saliva, suggests that further research is needed to understand the
full potential of the use of exosomal cargo for the diagnosis of prostate cancer. The variety
of liquid biopsy sources indeed opens the possibility of developing a wide range of assays
and options for patients with prostate cancer.

4.3. Heterogeneity in Biomolecule Detection Method

The detection methods used by different research groups for similar biomolecules
differed from each other, thus creating the possibility of a non-harmonious conclusion.
Amidst the heterogeneity of the assay methods, some studies validated certain detection
methods (i.e., ExoDx) in large cohorts that are utilised commercially by patients and
clinicians. Some studies utilised a next-generation sequencing platform for profiling RNA,
which clearly is a more sensitive and high-throughput method of identifying a pool of
deranged RNAs.

4.4. Emergence of miRNA as a New Exosomal Biomarker

A key finding of this review is that exosomal cargo could provide critical information
to assist clinical decision-making, with miRNA, a type of noncoding RNA, being the
most widely characterised exosomal load, with 49 articles focusing on its potential as a
diagnostic, prognostic, and treatment response marker. The diagnostic efficacy of miRNA,
often measured using ROC analysis, has shown promising results, with several studies
reporting AUC values significantly higher than those of standard care testing (i.e., PSA).
This notion aligns with the conclusion drawn by Jain et al. that urinary exosomal miRNAs
might be highly instructive noninvasive biomarkers for early prostate cancer detection [189].
Additionally, Wang et al. noted that exosomal miRNAs could serve as reliable biomarkers
for monitoring disease progression and treatment response [44].

The combined analysis of multiple biomarkers with their higher-level interactions,
including miRNA and proteins, may offer a more comprehensive approach to diagnosis and
prognosis, potentially leading to improved patient stratification and personalised treatment
strategies. Combining the emerging miRNA biomarkers with traditional biomarkers like
PSA has been suggested by Gaglani et al. to further enhance the diagnostic accuracy and
staging of prostate cancer by integrating multiple biomarkers into tests [190].
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4.5. Potential of Exosomes as Prognostic Biomarkers

In terms of prognosis, the review highlights that exosomal content can predict various
outcomes, including the disease grade, metastasis, and OS. Specific miRNAs and lncRNAs
as prognostic markers are particularly compelling, as they significantly correlated with the
aggressiveness of the disease and the likelihood of recurrence. This notion agrees with the
conclusion drawn by Gao et al., who emphasised the role of exosomal miRNA in monitoring
prostate cancer invasion and metastasis [191]. The ability to stratify patients based on
Gleason scores and predict biochemical recurrence using exosomal biomarkers could
revolutionise active surveillance strategies, allowing for the more tailored management of
prostate cancer [44].

4.6. A New Horizon of Assessing Therapy Response Using Exosomes

The use of exosome load analysis in assessing the treatment response is another
intriguing aspect of this review. Identifying specific exosomal markers associated with
resistance to therapies, such as Docetaxel and ARSIs, exhibited the potential of exosomes to
inform treatment decisions, in line with Lorenc et al.’s forecast of the utility of exosomal
biomarkers in predicting therapeutic responses and guiding therapeutic schemes [192].
Finally, the ability to monitor the treatment response through noninvasive methods could
significantly improve long-term interventions, improving cancer management and allowing
for treatment flexibility based on real-time longitudinal data [38,187].

4.7. Limitations, Challenges, and Prospects

Despite the promising findings, several limitations of the studies must be acknowl-
edged. The predominance of retrospective studies raised concerns about potential biases,
confounding factors, and the quality of data collected. The retrospective approach also
limited the ability to draw definitive conclusions about the causality of biomarkers.

Most of the studies utilised a targeted detection method (i.e., qPCR or ELISA), thus
limiting their ability to exclude relevant confounding biomolecules. A comprehensive
biomolecule profiling (i.e., next-generation sequencing) and bioinformatics study is a
prerequisite for optimizing the identification and validation of target biomolecules. A
handful of studies further validated their finding in in vivo animal models, which, again,
can be regarded as a limitation of most of the studies.

The lack of standardisation in the methods of exosome isolation and characterisation
adds to the variability among the different studies, hence setting major obstacles for clinical
translation. The standardisation of exosome isolation, quantification, and downstream
analyses will be necessary to ensure reproducibility and comparability among studies.

The studies in this systematic review demonstrated marked heterogeneity regarding
the selection of study subjects. This challenges any synthesis of results, reducing the ability
to formulate definitive conclusions. For instance, using BPH patients as a control group
may show variation in the baseline characteristics between control populations. There is
a particular need for tailored studies addressing specific clinical scenarios, for example,
distinguishing aggressive versus indolent prostate cancer, to address these gaps and further
enhance the clinical applicability of exosomal biomarkers.

Finally, challenges remain in the integration of exosomal analysis into clinical practice
and therapeutic workflows. Initially, the liquid biopsy of exosomal biomolecules may serve
as complementary companions to standard-of-care investigations in achieving accuracy in
the early detection of prostate cancer with reduced false positivity. In addition, exosomal
components could provide actionable insights on disease progression and treatment resis-
tance. In addition, effort is needed for developing user-friendly, point-of-care diagnostic
devices based on exosomal biomarkers. The expertise of clinicians with an understanding
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of the biology and interpretation of exosomal biomarkers and their integration into existing
diagnostic frameworks will be crucial for successful implementation.

5. Conclusions
In conclusion, this systematic review presents the latest and most comprehensive

datasets demonstrating the transformative potential of exosomal liquid biopsy in diagnosis,
prognosis, and treatment response in prostate cancer. Indeed, exosomal analysis holds
much promise for improving the early detection and stratification of patients while reducing
unnecessary invasive interventions. We strongly advocate for a multicentric consortium
to conduct inclusive and comprehensive research to validate the emerging biomarkers
in diverse population. We also emphasize the standardisation of exosome isolation and
characterisation techniques and the development of a robust, comprehensive biomolecule
profiling protocol to ensure effective biomarker discovery. With the arrival of machine
learning and artificial intelligence-guided analytical tools, the multiplexing of various types
of biomarkers with the analysis of their interactions may revolutionize the field, leading to
breakthroughs in diagnosis and personalised therapy. Integrating exosomal analysis into
routine clinical practice could lead to the successful translation of discussed biomolecules
from the realm of research into clinical practice, paving the way for a new era of precision
medicine in uro-oncology.
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