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Discussion

Cancer is currently one of the leading causes of death worldwide, and according to
data from the World Health Organization reported in 2020, it ranks as the second leading
cause of death globally, accounting for 10 million fatalities [1]. Over the past century,
our understanding of cancer biology has advanced remarkably. This progress has been
especially accelerated in recent decades due to technological and conceptual breakthroughs
in various fields, such as next-generation sequencing, omics sciences, high-resolution mi-
croscopy, molecular immunology, flow cytometry, single-cell analysis and sequencing, new
cell culture methods, and the development of animal models, among others [2–5]. Despite
these advances, many questions remain unanswered, and numerous challenges persist
in addressing this disease, so oncological research remains essential. Cancer is strongly
linked to genetic factors, with oncogenesis playing a crucial role in the initial stages of
tumor formation [6]. Most common cancers arise from acquired mutations in somatic cells,
while specific germline mutations are responsible for rare hereditary cancer syndromes [7].
Among cancer-related genes, oncogenes become activated, exhibiting a dominant pheno-
type, while tumor suppressor genes are inactivated, showing a recessive phenotype. The
accurate diagnosis, prognosis, and prediction of cancer patients’ responses to treatment are
crucial for ensuring the most effective engagement, minimizing harmful side effects, and
targeting therapies to specific cancer mechanisms [8]. To this end, the molecular biology of
cancer has become increasingly vital in oncology. This Special Issue, entitled “Molecular Bi-
ology of Cancer—Implications for Diagnosis and Treatment: 2nd Edition” includes twelve
contributions, consisting of nine original articles and three reviews, offering new insights
into cancer biology, molecular genetics, and innovative therapeutic strategies.

Immune checkpoint blockade therapies treat cancer by lifting inhibitory signals and
activating the host’s immune system. One of the breakthroughs in immunotherapy has
been the successful use of treatments that block the Programmed Cell Death Protein 1
(PD-1)/Programmed Cell Death Ligand 1 (PD-L1) pathway, effectively treating various can-
cers [9]. However, a significant fraction of tumors remain resistant to these therapies [10],
and interest has been increasing in exploring immune pathways to identify new therapeutic
targets. One such target is the human endogenous retrovirus-H Long repeat-associating
2 (HHLA2), a member of the B7 family that was first identified in 1999 [11]. HHLA2 is
an unconventional checkpoint molecule within the B7 family, structurally unique that is
not expressed in mice or rats. It is consistently expressed in human antigen-presenting
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cells (APCs) and normal tissues, and its expression is elevated in various cancers. HHLA2
interacts with the co-stimulatory Transmembrane and Immunoglobulin Domain Contain-
ing 2 (TMIGD2) and the co-inhibitory Killer Cell Immunoglobulin-Like Receptor, Three
Ig Domains, and Long Cytoplasmic Tail 3 (KIR3DL3) [12]. TMIGD2 is found in naïve T
cells, memory T lymphocytes, tissue-resident T cells, natural killer (NK) cells, plasmacytoid
dendritic cells, and innate lymphoid cells. The HHLA2 and TMIGD2 interaction activates
the proliferation and differentiation of T cells and enhance cellular cytotoxicity effect of
NK cells [13]. Conversely, KIR3DL3 inhibits NK cell function and mediates HHLA2 tumor
resistance against NK cells. As T cells become activated, TMIGD2 expression decreases,
while KIR3DL3 expression increases, enhancing HHLA2′s co-inhibitory functions. Tumors
may use the KIR3DL3-HHLA2 pathway to evade immune surveillance, making this path-
way a promising target for new immunotherapy approaches [11]. The prognostic value of
HHLA2 in various cancers is still uncertain.

Kula et al. performed a systematic review and meta-analysis of existing studies, en-
compassing 18 reports and a total of 2880 patients with solid tumors (Contribution 1). The
meta-analysis showed that elevated HHLA2 expression is linked to a poor prognosis. El-
evated HHLA2 levels were specifically identified as a risk factor for overall survival (OS)
(HR = 1.58, 95% CI: 1.23–2.03) and relapse-free survival (RFS) (HR = 1.95, 95% CI: 1.38–2.77).
Furthermore, the analysis revealed that patients with high HHLA2 expression had poorer
disease-free survival (DFS) compared to those with low expression. A subgroup anal-
ysis of gastrointestinal cancers showed that patients with high HHLA2 expression had
shorter OS (random-effects model, HR = 1.88, 95% CI: 1.55–2.28). However, the meta-
analysis did not find a significant association between high HHLA2 expression and shorter
progression-free survival (PFS) (HR = 1.07, 95% CI: 0.43–2.63) or disease-specific survival
(DSS) (HR = 1.52, 95% CI: 0.88–2.62). Moreover, high HHLA2 expression was linked to poor
OS regardless of its location within the tumor. The results of the meta-analysis of Kula et al.
revealed significant heterogeneity among the included studies. A key factor contributing
to this high heterogeneity is the use of different cut-off values for HHLA2 levels to distin-
guish between high and low expression in different cohorts. Most studies assessed HHLA2
expression using H-scores, which are calculated by multiplying the percentage of tumor cells
expressing HHLA2 by the intensity of the staining. However, the use of varying methods to
categorize tumors into high- and low-expression groups makes it difficult to compare studies
and complicates the meta-analysis results. Further research is essential to fully uncover the
prognostic significance of HHLA2 expression in patients with solid tumors.

Liquid biopsy, which involves analyzing biomarkers that tumors release into body
fluids, is an emerging area in translational cancer research. It allows for dynamic patient
monitoring and a more personalized approach to medicine [14]. Within this context,
there has been a significant surge in interest in extracellular vesicles (EVs). These small,
membrane-encapsulated particles are released by various cell types and can be found
in most biological fluids. EVs play a crucial role in intercellular signaling under both
physiological and pathological conditions, including cancer, because they carry a variety of
bioactive molecules derived from their cells of origin, such as microRNAs (miRNAs) and
long non-coding RNA (lncRNA) [15]. Compared to free circulating miRNAs and lncRNAs,
those contained within EVs are better protected by the lipid bilayer, which enhances their
stability and half-life. This makes EV-derived miRNAs and lncRNAs particularly attractive
for research and quantification in biological fluids, offering potential diagnostic, prognostic,
and therapeutic applications in oncology.

Giordano et al. performed next-generation sequencing (NGS) followed by quantitative
reverse transcription polymerase chain reaction (qRT-PCR) to investigate the differences
in circulating EV-miRNA profiles between breast cancer patients and healthy controls
(Contribution 2). They found a significant reduction in miRNA-27a expression within EVs
in both the breast cancer screening and validation cohorts. Receiver operating characteristic
(ROC) analyses indicated that circulating EV-derived miRNA-27a effectively distinguished
breast cancer patients from healthy individuals, achieving a favorable area under the curve
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(AUC) value, which suggests its potential utility in breast cancer diagnosis. Additionally,
the expression of miRNA-27a did not correlate with human epidermal growth factor
receptor 2 (HER2) status or tumor grade, but it was associated with hormone receptor
status and Ki-67 levels. The authors could not reveal a difference in serum miRNA-27a
and miRNA-128 levels between patients and controls. However, there was a distinct
discrepancy between the miRNA profiles of EVs and serum, indicating that purified serum-
EV miRNA-27a and miRNA-128 may offer higher diagnostic accuracy for breast cancer
compared to bulk serum miRNAs. Table 1 summarizes the results of 11 studies regarding
biofluid type and miRNA levels in the relevant population [16–26]. Larger prospective
studies are needed to more accurately assess the potential diagnostic value of cell-free
miRNA-27a and/or miRNA-128 (whether circulating or EV-derived) as sensitive and
specific non-invasive molecular biomarkers.

Table 1. An overview of 11 studies on the roles of miRNA-27a and miRNA-128 in breast cancer.

MicroRNA Biofluid Type Deregulation Reference

miRNA-27a

Serum ↑ breast cancer vs. control [16]

Plasma

↑ breast cancer vs. control
↑ late breast cancer vs. early breast cancer

= benign vs. control vs. high risk breast cancer
= high risk breast cancer vs. control

[17]

Plasma ↑ breast cancer vs. control [18]

Serum
↑ primary breast cancer vs. benign breast lesions

↑ primary breast cancer vs. control
↑ benign breast lesions vs. control

[19]

Plasma

↑ breast cancer vs. control
↓ breast cancer after chemotherapy vs. breast

cancer before chemotherapy
↑ breast cancer after chemotherapy vs. control

[20]

Serum ↓ breast cancer vs. control [21]
Plasma ↓ breast cancer vs. control [22]
Serum ↑ breast cancer vs. control [23]
Plasma ↑ breast cancer vs. control [24]

miRNA-128
Plasma ↓ breast cancer vs. high-risk breast cancer [25]
Serum = breast cancer vs. control [26]

Mammary gland cancer usually arises in the epithelial cells of the ducts, where the
accumulation of mutations can lead to cellular damage [27]. The tissue repair process that
follows this damage triggers an inflammatory response, causing both quantitative and
qualitative shifts in the immune cell population at the injury site. Chronic inflammation, in
turn, can promote additional cell mutations and proliferation, often creating a microenvi-
ronment that supports cancer development [28]. The interleukin 1 (IL-1) family, known for
its diverse effects on inflammation, includes numerous ligands and receptors, with IL-1α
and IL-1β being the two primary agonists [29,30]. Interleukin 1 receptor type 1 (IL1R1)
is the main receptor for both ligands and forms a tertiary complex with the IL-1 receptor
accessory protein (IL1RaP, also known as IL1R3), which facilitates positive signaling and
recruits downstream proteins [31,32]. However, IL1R1 also has an antagonistic ligand
(IL1RN, also known as IL1RA), which can be either overexpressed or downregulated
in different types of cancer [31–35]. Interestingly, high IL1RN expression is associated
with both better [32,36–38] and worse cancer prognoses [37,39], depending on the context.
The Interleukin 6 (IL-6)-like family consists of proteins with similar structural and func-
tional characteristics. The IL-6 signal transducer (IL6ST, also known by its gene name) is
a transmembrane receptor that functions as a signal transducer for all cytokines within
this family [40]. Its functions are closely linked to many of the key hallmarks of cancer
development and progression [41–43].

Koning et al. (Contribution 3) investigated the expression of inflammation-related
genes, including IL1R1, interleukin 1 receptor antagonist (IL1RN), ILRaP, IL6ST, C-X-C
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motif chemokine ligand 3 (CXCL3), C-X-C motif chemokine ligand 5 (CXCL5), and C-X-
C motif chemokine ligand 6 (CXCL6), using the previously established Alpha Model of
estrogen and radiation-induced breast cancer [44]. They compared the gene expression in
the Alpha Model with data from online breast cancer patient databases, focusing on the
expression of these genes in innate immune system cells, various breast cancer subtypes,
and estrogen receptor (ER) alpha. Additionally, the study results revealed variations in
the expression of inflammatory genes at different stages of breast cell transformation in
the Alpha model. To compare the gene expression between healthy individuals and breast
cancer patients, the TIMER2.0 online database platform was used. The findings revealed
that IL1RN expression was higher in tumor tissue compared to adjacent normal tissue.
Conversely, IL1R1, ILRaP, IL6ST, CXCL3, CXCL5, and CXCL6 genes were more highly
expressed in adjacent normal tissue than in breast tumor tissue. IL1R1 gene expression
was significantly associated with an increased risk (Z-score, p < 0.05) for patients with
Luminal A subtype breast invasive carcinoma, whereas higher IL1RaP gene expression was
linked to an increased risk in Luminal B patients. However, based on the Cox proportional
hazard model, the expression levels of the IL1RN, IL6ST, CXCL3, CXCL5, and CXCL6 genes
were not significantly associated with clinical survival in breast cancer patients. Luminal
A patients with low IL1R1 expression had better survival than those with high IL1R1
expression, who showed no survival beyond 150 months. For Luminal B patients, high
IL1RaP expression was linked to lower survival rates compared to low IL1RaP expression.
This survival disparity was observed between 30 and 130 months, after which both high
and low IL1RaP expression patients had the same cumulative survival rate of 0.2. Patients
with high IL6ST expression levels were found to have a positive ER status. However, those
with elevated IL1RaP, CXCL3, CXCL5, and CXCL6 expression levels were associated with
a negative ER status. The study by Koning et al. highlighted the crucial role of both the
IL-1 gene family and chemokines in the development and progression of breast cancer. In
terms of the current clinic practice, the European Society for Medical Oncology (ESMO)
guidelines for early breast cancer recommend using immunohistochemistry to evaluate
classical molecular markers, including estrogen receptors (ER), progesterone receptors
(PR), HER2, and Ki-67, as well as Sanger sequencing or NGS to identify specific gene
alterations [45]. Germline Breast Cancer gene 1 and 2 (BRCA1 and BRCA2) mutation testing
is recommended for patients with a family history of breast cancer, a personal history
of ovarian cancer, breast cancer diagnosed before age 50, triple-negative breast cancer
diagnosed before age 60, and male patients [46]. For metastatic breast cancer, the guidelines
suggest the classical biomarkers along with germline BRCA mutation testing for patients
with triple-negative breast cancer or ER-positive, HER2-negative breast cancer, while
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutation testing
is optional in both cases. The genomic profiling of additional tumor tissue or circulating
tumor DNA (ctDNA) testing is suggested only if the results would influence the treatment
plan or make the patient eligible for clinical trials (Table 2).

Colorectal cancer (CRC) ranks as the third most frequently diagnosed cancer, after
breast and lung cancer, and the second most common cause of cancer-related deaths world-
wide [1]. Survival rates for CRC differ markedly by stage [47]. Patients with stage III
CRC have a 5-year survival rate of 72%, whereas those with stage IV disease face a signifi-
cantly lower survival rate of 13% [48]. For stage III colon cancer, the standard treatment
involves surgery followed by adjuvant chemotherapy, whereas the benefit of adjuvant
chemotherapy for resected stage II disease is less well-established [49,50]. Identifying and
validating biomarkers for CRC is essential for selecting high-risk patients who may benefit
from adjuvant chemotherapy [51]. Several biomarkers are currently used to conduct a
comprehensive assessment of CRC, including carcinoembryonic antigen (CEA), mismatch
repair deficiency (MMR), microsatellite instability (MSI), v-raf murine sarcoma viral onco-
gene homolog B1 (BRAF) mutations, reticular activating system (RAS) mutations, and
caudal-type homeobox transcription factor 2 (CDX2) [52]. Numerous studies have shown
that the expression of various miRNAs in CRC patients differs significantly from that in
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the general population. These differences can serve as valuable biomarkers for the early
diagnosis and prognosis of CRC [53]. As new non-invasive biomarkers, these miRNAs
demonstrate high accuracy and specificity in early CRC detection, marking a significant
advancement in non-invasive diagnostic techniques. Table 3 presents miRNAs used as
biomarkers for the early diagnosis of colorectal cancer.

Table 2. Diagnostic methods used for hereditary and somatic breast cancer.

Nucleic Acid-Based Molecular Diagnostics of the Breast Cancer

Hereditary cancer-linked
gene mutations

Non-hereditary tumor
genomic mutations Tumor gene expression profile

Method Next-generation sequencing Next-generation sequencing RNA expression assay

Applicable samples
Tissue (isolated DNA)
Blood (isolated DNA

from leukocytes)

Tumor tissue (isolated DNA)
Blood (isolated circulating
tumor or cell-free DNA)

Tumor tissue (isolated RNA)

Genes or number of genes tested BRCA1, BRCA2, P53, PTEN,
CDH1, PALB2, and other genes From 2 to over 400 Depends on assay 7–80

Gained biological information
Germline DNA mutations,
deletions, amplifications,

and fusions

Mutations, deletions,
amplifications, and

fusions in tumor DNA

Alterations of gene expression
in tumor tissue

Clinical relevance Identification of patients
for targeted therapy

Prognostic information, possible
gene targets for targeted therapy
and information about recurrence

or resistance to treatment

Prognostic information and
prediction of benefit
from chemotherapy

Table 3. MiRNAs used as biomarkers for the early diagnosis of colorectal cancer.

MiRNA Abundance Target Impact on Colorectal Cancer Reference

miR-21 High MEG2 Promoting cell proliferation
and inhibit apoptosis [54]

miR-485–3p Low TPX2 Inhibiting cell proliferation [55]
miR-4728–5p Low MST4 Inhibiting cell proliferation [55]

miR-3937 High BCL2L12 Promoting cell invasion
and migration [56]

miR-31 High RAS p21 GTPase Promoting cell proliferation [57]

miR-22–3p Low KDM3A Inhibiting the proliferation,
migration and invasion [58]

miR-20a High Smad4, E-cadherin Promoting the invasion
and migration [59]

miR-145 Low Fasin-1, MYC Inhibiting cell proliferation
and metastasis [59]

miR-223 High FBXW7 Promoting proliferation,
invasion and migration [60,61]

miR-182 High High MTDH
Enhancing colorectal cancer cell

survival, invasion, and
drug resistance

[61,62]

miR-92a High Bim
Promoting colorectal cancer cell

proliferation, invasion
and migration

[63]

miR-18a Low CDC42 Making cell cycle arrest,
promote apoptosis [64]

The CDX2 protein family, which is part of the ParaHox gene cluster, consists of three
members—CDX1, CDX2, and CDX4 [65,66]. A deficiency in CDX2 results in compromised
barrier function and enterocyte atrophy, and it is thought that the loss of CDX2 is primarily
due to epigenetic changes rather than genetic mutations [67]. CDX2 downregulation or loss
has been observed in a subset of CRC, and the absence of CDX2 expression is associated
with more aggressive features, including advanced stage, poor differentiation, vascular
invasion, and BRAF mutation, all of which can contribute to lower survival rates [68–70].
Evidence in the literature indicates that patients with CDX2-negative tumors typically have
lower survival rates than those with CDX2-positive tumors. Additionally, the loss of CDX2
expression may help identify a subset of stage II colon cancer patients at increased risk for
disease recurrence who could benefit from adjuvant chemotherapy [71]. These findings



Int. J. Mol. Sci. 2024, 25, 13090 6 of 20

highlight the potential of CDX2 as both a prognostic biomarker, offering insights into
disease progression or outcomes regardless of treatment, and a predictive biomarker, which
provides information on the likelihood of response to specific therapies. The reported
incidence of CDX2-negative cases varies widely, ranging from 5% to 30% across different
studies, as illustrated in Table 4 [71–79].

Table 4. The variability in CDX2 negative tumor assessment.

Detection
Method CDX2 (−) (%) Patients (n) CDX2

(−)/Total
Independent

DFS Predictor Reference

mRNA 4.1 87/2115 NA
[71]mRNA 6.9 32/466 yes

protein 12.1 38/314 yes
protein 5.3 8/150 yes [72]
protein 5.9 42/713 yes [73]
protein 10.9 25/232 in MSS CRC [74]
protein 10.0 102/1003 no [75]
protein 6.0 39/637 yes [76]
mRNA 15.6 73/469 yes [77]
protein 29.0 183/621 in familial CRC [78]

protein 11.6 66/571
in combined cohort [79]8.5 50/586

Abbreviations: DFS, disease-free survival; mRNA, messenger RNA; MSS, microsatellite stable; CRC, colorectal
cancer; NA, non-applicable.

In a retrospective study, Chan et al. evaluated a cohort of patients with stage I to IV
CRC for CDX2 staining and analyzed its correlation with patient demographics, clinico-
pathologic features, and cancer outcomes, including OS, DFS, and RFS (Contribution 4).
Additionally, they analyzed these parameters separately for colon and rectal cancer pa-
tients. Low CDX2 expression was significantly associated with adverse prognostic features,
including poor tumor differentiation, lymphovascular or perineural invasion, and reduced
OS and DFS in both colon and rectal cancers. In addition to assessing the prognostic value
of CDX2 expression, Chan et al. explored its potential as a predictive biomarker. The study
showed a trend toward improved survival with adjuvant chemotherapy in patients with
low CDX2 expression, although this trend did not achieve statistical significance (p = 0.113).
In stage III colon cancer, adjuvant chemotherapy was associated with a statistically sig-
nificant improvement in OS for both high (HR 0.19 [CI 0.11–0.32]), p < 0.0001)- and low
(HR 0.05, [CI 0.01–0.23], p < 0.001)-CDX2 expression tumors. However, this result is less
clinically impactful because most stage III colon cancer patients are typically recommended
adjuvant chemotherapy irrespective of CDX2 expression. The study by Chan et al. also
investigated the role of CDX2 in predicting risk for rectal cancer, an area with limited
literature compared to studies combining colon and rectal cancers. The lack of significant
differences in survival outcomes between patients with high and low CDX2 expression
who received adjuvant chemotherapy for rectal cancer suggests that CDX2 is unlikely to
predict chemotherapy response in this group. Indeed, OS improved regardless of whether
their CDX2 expression was high (p = 0.017) or low (p < 0.0001). Furthermore, the impact of
adjuvant therapy on observed outcomes is uncertain, especially since some patients had
received pre-operative treatment. Additionally, CDX2 expression did not correlate with
treatment outcomes in the rectal cancer cohort undergoing neoadjuvant therapy (p = 0.825).
The study also revealed a significant increase in the percentage of cases with CDX2 expres-
sion loss as cancer stage advanced, with rates of 3.5% in stage I, 5.0% in stage II, 10.7% in
stage III, and 12.1% in stage IV (p = 0.015). Two clinicopathological features significantly
associated with CDX2 expression were tumor differentiation (p < 0.001) and the presence
of lymphovascular or perineural invasion (p = 0.002). Regarding tumor sidedness, low
CDX2 expression was more common in right-sided tumors (11.7%) compared to left-sided
tumors (6.0%), which was statistically significant. Similarly, there was a higher proportion
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of low CDX2 expression in colon tumors (9.2%) versus rectal tumors (5.7%), although this
difference was not statistically significant.

Apocrine gland anal sac adenocarcinoma (AGASACA) is a relatively uncommon tu-
mor in dogs, accounting for approximately 17% of perianal malignancies [80,81]. These neo-
plasms exhibit variable local aggressiveness and a high potential for metastasis [80–82]. Sur-
gical excision is the gold standard, whereas additional treatment options include chemother-
apy, radiotherapy, electrochemotherapy, molecular targeted therapy, and cyclooxygenase-2
inhibitors [81,83–85]. HER2 is a membrane protein belonging to the epidermal growth
factor receptor (EGFR/HER) family, normally expressed in various tissues. When over-
expressed, the HER2 receptor initiates proliferative signals and disrupts cellular control
mechanisms, contributing to tumorigenesis [86–88]. HER2 overexpression has been ob-
served in several types of neoplasms and its potential as a therapeutic target has been
explored through the use of anti-HER2 monoclonal antibodies [89–92]. Ki67, a nuclear
protein associated with cell proliferation, is present in cells undergoing active division
and is either minimal or absent in quiescent cells [93,94]. Its expression is detected in all
proliferating cells, both normal and neoplastic, and is characterized by a short half-life of
approximately one hour [80,94,95]. Ki67 is widely used as a key marker of cell proliferation,
serving as a prognostic indicator of the proliferative index across various tumor types.

Paiva et al. investigated the expression of HER2 and Ki67 in cases of canine AGASACA,
focusing on their presence and clinical significance (Contribution 5). Immunohistochemistry
(IHC) showed that 45% of the neoplastic cases were positive for HER2 staining, while the
control group exhibited 100% negative HER2 staining. Several studies have explored
tumor size as a prognostic factor in AGASACA cases, using various cutoff values [82,96,97].
The most widely accepted size criteria come from Polton and Brearley’s 2007 staging
model, where measurements are conducted through clinical evaluation with a caliper [98].
However, in the study by Paiva et al., tumor size was measured directly on formalin-fixed
tissue. Evaluating the primary tumor samples including T1 (largest tumor diameter smaller
than 2.5 cm) and T2 (largest tumor diameter larger than 2.5 cm), positive HER2 staining
was observed in 45% of the cases, all of which had a score of 2+, with no cases scoring 3+.
A statistical analysis showed no correlation between HER2 expression and tumor size. This
suggests that HER2 expression is present even in smaller tumors diagnosed at early stages,
indicating that these cases might also benefit from targeted therapies. HER2 expression was
also detected in metastatic lymph node samples, with no statistically significant difference
compared to primary tumors, making it difficult to assess its effectiveness as a prognostic
marker. Ki67 expression was measured at 25% across all groups, except for the control
group, which had a median expression of 8%. Other studies have reported higher levels,
with a median of 34.33% and a mean of 34.58% (ranging from 19.6% to 55.98%), as well
as lower levels, with a median of 7.75% (ranging from 0% to 54%) [99,100]. Overall, both
HER2 and Ki67 show distinct expression and represent promising therapeutic targets for
the development of new anticancer therapies.

The heterodimerization of HER2 with other members of the HER family, or its ligand-
independent homodimerization, results in the autophosphorylation of the cytoplasmic
domain. HER2 overexpression is observed in approximately 20% of breast cancers and
20% of gastric cancers and is linked to higher recurrence rates and reduced OS [101,102].
Trastuzumab, an anti-HER2 monoclonal antibody, has shown anti-proliferative activity
in vitro and significant antitumor effects in vivo [103,104]. This has resulted in its approval
by the U.S. Food and Drug Administration (FDA) for the treatment of HER2-positive
breast cancer [105]. Trastuzumab is given to patients with tumors that overexpress HER2,
which is characterized by solid, complete membranous staining of more than 10% of cells
in IHC (IHC 3+) and/or amplification detected by in situ hybridization (ISH) [106]. Addi-
tionally, trastuzumab–deruxtecan (T-DXd), an antibody-drug conjugate (ADC) based on
trastuzumab, has also received FDA approval [107]. T-DXd demonstrates greater efficacy
not only in HER2-positive breast cancers but also in HER2-low (IHC 1+ or IHC 2+/ISH
non-amplified) advanced breast cancers and HER2-mutant lung cancers [108–112]. Since
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half of all breast cancers are classified as HER2-low, a substantial number of patients are
likely to benefit from T-DXd therapy [113]. Cardiotoxicity is a common adverse effect
associated with anti-HER2 monoclonal antibodies and ADCs, necessitating routine cardiac
monitoring for patients [114]. Research teams have developed CasMabs targeting HER2
(H2Mab-250), podocalyxin (PcMab-6), and podoplanin (LpMab-2 and LpMab-23), and
evaluated their reactivity against both cancer and normal cells using flow cytometry and
IHC [115–117]. H2Mab-250 exhibits a strong in vivo antitumor effect, despite its lower
in vitro reactivity and affinity compared to trastuzumab [115,116]. The underlying reasons
for this discrepancy have not yet been clarified.

Suzuki et al. compared the antibody-dependent cellular cytotoxicity (ADCC) and
complement-dependent cytotoxicity (CDC) of H2Mab-250 and trastuzumab (Contribution
6). They found that H2Mab-250 demonstrated superior CDC activity against breast cancer
and HER2-overexpressing cells compared to trastuzumab. Moreover, both H2Mab-250-hG1
and H2Mab-250-mG2a showed comparable antitumor effects to those of trastuzumab’s cor-
responding isotypes. These findings suggest that the enhanced CDC activity of H2Mab-250
may offset its lower ADCC activity, contributing to its overall antitumor efficacy. Chimeric
antigen receptor (CAR)-T cell therapy is making significant strides as an anticancer treat-
ment, but designing the optimal CAR remains a challenge [118]. In solid tumors, immune
checkpoints such as PD-1, T cell immunoglobulin and mucin-domain-containing 3 (TIM-3),
and CTLA-4 are often overexpressed, leading to CAR-T cell exhaustion. The tumor microen-
vironment (TME) comprises immunosuppressive cells, including regulatory T cells (Tregs),
myeloid-derived suppressor cells (MDSCs), and M2 macrophages. These cells release
cytokines such as transforming growth factor-beta (TGFβ) and interleukin 10 (IL-10), which
diminish the effectiveness of CAR-T cells in targeting tumors [119]. To tackle this issue,
strategies include combining CAR-T cells with immune checkpoint inhibitors, like PD-1
inhibitors, or genetically modifying CAR-T cells to enhance their immune response and
resistance to inhibitory factors, thereby improving their anti-tumor efficacy [120]. Table 5
summarizes several clinical trials exploring the combination of CAR-T cells with immune
checkpoint blockades.

Table 5. Selected clinical trials combining ICIs and CAR-T therapy.

Clinical
Trials Phase Number of Patients ICI CAR-T Cell Target Cancer Type Preliminary

Results

NCT01822652 I 11 Pembro GD2 Neuroblastoma 6 PD, 2 CR (after
salvage), 5 SD

NCT02414269 I 27 Pembro Mesothelin

Malignant pleural diseases,
comprising metastatic lung

and breast cancers and
malignant pleural mesothelioma

2 CR, 8 SD (>6 months)

NCT03287817 I 19 Pembro CD19/22 dual target r/r DLBCL 64% ORR, 55% CRR
NCT03630159 Ib 4 Pembro CD19 r/r DLBCL 1 PR, 2 PD

NCT03726515 I 7 Pembro EGFRvIII EGFRvIII + , MGMT-unmethylated
glioblastoma

Low efficacy, 7 PD,
median PFS: 5.2 months,
median OS: 11.8 months

NCT04991948 Ib Estimated 34 Pembro NKG2D Colorectal cancer 2 deaths reported
NCT04995003 I Estimated 25 Pembro or nivo HER2 Advanced Sarcoma NA
NCT04003649 I Estimated 60 Nivo and ipi IL13Ra2 Glioblastoma NA

NCT04539444 II 16 Tisleli CD19/22 dual target R/R B-NHL CR 11, 1-year PFS: 68.8%,
1-year OS: 81.3%

NCT04381741 Ib 8 Tisleli CD19 R/R DLBCL 4 CR, 1 PR, 2 PD

NCT02926833 I/II 28 Atezo CD19 DLBCL 75% ORR, 46% CR, 29%
PR,7%SD, 14%PD

NCT02706405 I 29 Durva CD19 R/R LBCL 35% ORR, 27% CR

NCT03310619 I/II Estimated 77 Durva, nivo,
Relatli CD19 R/R aggressive B-cell NHL NA

Abbreviations: ICI, immune checkpoint inhibitor; CAR-T cell, chimeric antigen receptor-T cell; Pembro, pem-
brolizumab; PD, progression disease; CR, complete response; SD, stable disease; R/R DLCBL, relapsed/refractory
diffuse large B cell lymphoma; ORR, overall response rate; CRR, complete response rate; PR partial, response;
EGFRvIII, epidermal growth factor receptor variant III; MGMT, O6-methylguanine-DNA methyltransferase;
PFS, progression-free survival; OS, overall survival; NKG2D, natural killer group 2D; Nivo, nivolumab; HER2,
epidermal growth factor receptor 2; NA, non-applicable; Ipi, ipilimumab; IL13Ra2, interleukin-13 receptor
subunit alpha-2; Tisleli, tislelizumab; R/R B-NHL, relapsed/refractory B-cell non-Hodgkin lymphoma; R/R
DLCBL, relapsed/refractory diffuse large B cell lymphoma; Atezo, atezolizumab; Durva, durvalumab; R/R LBCL,
relapsed/refractory large B cell lymphoma; Relatli, relatlimab.
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H2Mab-250 is currently being developed for CAR-T cell therapy and is undergo-
ing evaluation in a phase I trial for HER2-positive advanced solid tumors in the U.S.
(NCT06241456). Research indicates that resistance to CDC can arise from the expression
of complement regulators in tumor cells, facilitating their evasion of host immune re-
sponses [121]. The upregulation of these regulators, such as CD46, CD55, and CD59, has
been shown to inhibit CDC by blocking terminal complement activation and preventing
the formation of the membrane attack complex [122,123]. Future studies should investigate
the dual targeting of HER2 by H2Mab-250 and complement regulators in in vitro models.

Bladder cancer is the tenth most commonly diagnosed cancer globally and represents
a major cause of morbidity and mortality [124]. Urothelial carcinoma is the most preva-
lent histologic type; nevertheless, squamous cell carcinoma is more frequently observed
in regions of Africa where schistosomiasis is widespread [125]. Non-muscle-invasive
bladder cancer (NMIBC) comprises around 75% of bladder cancer cases and is character-
ized by a high recurrence rate, which can be mitigated with Mycobacterium bovis Bacillus
Calmette–Guérin (BCG) immunotherapy [126]. However, BCG immunotherapy fails in
30–50% of patients, and the frequent monitoring required contributes to high disease
management costs [127–129]. Research into the mechanisms underlying BCG’s action has
led to the investigation of single-nucleotide polymorphisms (SNPs) in genes related to
cytokine production, DNA repair pathways, and reactive oxygen species production for
their potential to predict responses to BCG therapy [130–134]. GSTT2 is a member of the
glutathione-S-transferase (GST) family of proteins, which detoxifies both xenobiotics and
endobiotics by conjugating them with glutathione (GSH). The pseudogene GSTT2B is a
duplicate of GSTT2 in a head-to-head arrangement. It is commonly lost in humans, leading
to a significant reduction in GSTT2 expression [135]. Higher GSTT2 expression has been
linked to a lower risk of colon cancer, esophageal squamous cell carcinoma, and Barrett’s
esophagus [136–138].

Rahmat et al. found that GSTT2 expression plays a crucial role in the intracellular
survival of BCG in host cells (Contribution 7). It has also been shown to act on secondary
lipid peroxidation products and organic hydroperoxides [139]. GSTT2 may facilitate BCG
elimination by regulating intracellular levels of these secondary lipid peroxidation products.
When bladder cancer cells internalize live BCG, there is an increase in cellular reactive
oxygen species (ROS) levels and lipid peroxidation, while lyophilized BCG induces the
opposite effect [140]. Rahmat et al. also observed that GSTT2 expression influences ROS
generation induced by BCG. In vitro, overexpression of GSTT2 resulted in increased net
ROS levels following treatment with lyophilized BCG and decreased survival of intra-
cellular live BCG. This suggests that after exposure to live BCG, the overexpression of
GSTT2 might deplete the intracellular supply of GSH, which is necessary to counteract
the effects of lipid peroxidation. The depletion of GSH would lead to elevated net ROS
levels, thereby contributing to the destruction of BCG particles via ROS. In contrast, in
GSTT2-silenced cells, GSTT2 activity does not deplete intracellular GSH following live
BCG treatment, resulting in lower net ROS levels and increased BCG survival. Overall,
the study by Rahmat et al. suggests that tailoring patient responses based on genotype
may be feasible. Genotyping could also help reduce the frequency of post-BCG therapy
surveillance for some patients.

Uterine myomas are the most common benign tumors of the female reproductive
system [141]. Also known as fibroids, they develop from smooth muscle cells and affect
more than 70% of women of reproductive age [142]. The development and growth of
myomas are influenced by various factors, such as steroid hormones, multiple cytokines,
growth factors, the extracellular matrix (ECM), microRNA, genetic predispositions, stem
cells, and vitamin D deficiency [143–146]. Angiogenesis is a complex process that involves
stimulatory factors, components of the ECM, and various cell types, and among the factors
that stimulate angiogenesis are angiopoietins. Angiopoietin 1 (ANG1), one of the three
well-known angiopoietins, is encoded by the ANGPT1 gene located on chromosome 8q23.1
and is expressed in smooth muscle cells, fibroblasts, and pericytes. The synthesis of ANG1
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is regulated by the hypoxia-inducible factor alpha (HIF-1α) and is associated with calcium
ions [147]. ANG1 has a localized effect on the ECM, with cell signaling mediated by
protein kinases such as Mitogen-activated Protein Kinase (MAPK) and Focal Adhesion
Kinase (FAK) [143,148]. The angiogenic functions of ANG1 are influenced by calcium
signaling pathways that depend on Ca2+ [149]. Calcium homeostasis is regulated by the
calcium-sensing receptor (CaSR), which is primarily expressed in the parathyroid glands,
kidneys, and brain and plays a role in numerous biological processes. FAK is present in
cells that form adhesion sites with the ECM or with other cells. It is also heavily involved
in regulating angiogenesis and is considered a potential target for anti-angiogenic therapies
in treating malignant tumors [150,151].

Markowska et al. investigated the roles of ANG1, CaSR, and FAK in uterine fibroids
to explore their potential use in targeted therapies (Contribution 8). Their study found
that ANG1 was expressed in both myoma and the surrounding tissue, as well as in the
unaffected uterine tissue of women in the control group. However, among the 70 women
in the study (with myoma and peripheral tissue) and the 12 women in the control group
(with healthy uterine muscle), there were no significant differences in ANG1 expression
levels (p = 0.983). In the experimental arm of the 70 women with uterine myomas, CaSR
levels were measured in both the tumor tissue and its surrounding area. The concentra-
tions of CaSR were found to be lower in the myoma and its periphery compared to the
myometrium of healthy women (p = 0.001). These findings suggest that calcium supplemen-
tation may help prevent the growth of large myomas in women who already have small
myomas. They also found that FAK expression is significantly reduced in uterine myomas
and their surrounding tissue (18,338.54 ± 8824.04) compared to healthy uterine muscle
(39,665.24 ± 14,231.92). This suggests that FAK does not play a role in the growth of benign
tumors, making clinical trials of FAK inhibitors unnecessary.

Lung cancer is the second most prevalent cancer worldwide, and there is a growing
need for diagnostic methods based on biomarkers that enable the early detection of lung
cancer [152]. EVs from cancer cells modify the tumor microenvironment, facilitating
the transformation of stromal cells into angiogenic, pre-metastatic, or tumor-suppressing
cells [153,154]. Exosomes derived from cancer cells also display multiple tumor antigens
on their surface, making them useful for the non-invasive early detection of cancer and
monitoring treatment progress [155]. EVs play a crucial role in the diagnosis, treatment,
and prognosis of non-small cell lung cancer by regulating the production of miRNAs,
lncRNAs, circular RNAs (circRNAs), and proteins. Table 6 presents various components of
extracellular vesicles (EVs) as biomarkers in NSCLC immunotherapy research.

Table 6. Various components of EVs as biomarkers in NSCLC immunotherapy research.

Biomarkers Expression Recipient Cell Target Function Reference

miR-21 Up HBE cells STAT3 Blocking angiogenesis [156]
miR-494 miR-524-3p Up AD cells LnStr, LFb Regulating organs prior to tumor metastasis [157]

LINC00301 Up NSCLC cells TGF-b Impact on NSCLC development [158]
lncRNA UFC1 Up NSCLC cells EZH2 Impact on NSCLC development [159]
CircNDUFB2 Up NSCLC cells IGF2BPs Stimulates anti-tumor immunity [160]

has-circRNA-002178 Up AD cells None Promoting PDL1/PD1 expression in lung AD [161]
circUSP7 Up NSCLC cells CD8+ T cells Promotion of immunosuppression [162]

PKM2 Up NSCLC cells None Promotes NSCLC cell proliferation
and CDDP resistance [163]

PLA2G10 Up NSCLC cells None Negative correlation with NSCLC prognosis [164]
GCC2 Up NSCLC cells None Early diagnostic biomarkers for NSCLC [165]

GCC2-ALK Up NSCLC cells ALK For NSCLC diagnosis and treatment [166]
LBP Up NSCLC cells None Diagnosis of metastatic NSCLC [167]

Abbreviations: EVs, extracellular vesicles; NSCLC, non-small cell lung cancer; AD, adenocarcinoma; CDDP, cisplatin.

Over the past decade, several methods have been developed to quantitatively evaluate
exosomes, such as nanoparticle tracking analysis (NTA), Western blotting, fluorescence tech-
niques, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS),
and electrochemical sensing [168]. Of these, electrochemical detection stands out due to
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its simplicity, rapid response, high specificity, and accuracy [169]. Electrochemistry has
diverse biomedical applications, and biosensors are analytical devices that use biological
components to detect and quantify specific chemical compounds or biological molecules.
Electrochemical biosensors utilize electrodes to monitor changes in electrical signals when
a biological molecule attaches to a receptor on the electrode surface. Electrochemical tech-
niques such as cyclic voltammetry and electrochemical impedance spectroscopy, known for
their high sensitivity, user-friendliness, and minimal sample requirements, can be used to
develop highly accurate biosensors [170]. Various materials, such as conductive polymers,
metals, and semiconductors, can be employed to construct electrochemical biosensors [171].
To enhance the signal-to-noise ratio and sensitivity of electrochemical sensing systems, it is
crucial to identify a material suitable for use as a surface that has properties like small size,
a large electroactive surface area, good biocompatibility, and adequate conductivity.

Irani et al. sought to develop a reliable, reproducible, and sensitive biosensor for
detecting and quantifying exosomes using electrochemical methods (Contribution 9). The
process began with coating the electrode surface with a suitable layer of gold, followed by
thermal annealing to create primary gold seeds. These seeds were then grown to the desired
size, and the surface was activated by introducing functional groups with high-performance
materials, carefully adhering to the required timing for each step. Subsequent steps in-
volved designing system control tests to evaluate and confirm the biosensor’s functionality.
To validate the biosensor, exosomes derived from cancer cells and human serum samples
were used. Irani et al. concentrated on exosomes secreted by lung cancer cells (A549)
and utilized the CD-151 antigen to differentiate these exosomes from other environmental
factors. Their research employed multiple centrifugation steps at varying speeds, followed
by an ultracentrifugation step at high speed to purify the exosomes. The custom-designed
biosensor by Irani et al. achieved a limit of detection of 20 exosomes/mL in spiked blood
serum, which is promising for further cancer screening applications. Electrochemical meth-
ods for detecting exosomes hold significant potential. Nevertheless, enhancing sensitivity,
selectivity, and reproducibility, standardizing sample preparation protocols, and validating
results across various platforms are challenges that should be addressed.

Glioblastoma (GBM) remains the most prevalent and aggressive glial tumor, with
remarkable resistance to nearly all standard-of-care treatments, which typically include a
combination of chemotherapy and radiation following surgical resection [172]. The diffi-
culty in treating GBM primarily arises from a small population of therapy-resistant GBM
stem cells (GSCs) and the complex inter- and intra-tumor heterogeneity, which encompasses
various GBM subtypes and a diverse array of stromal cells within the TME [173–175]. GBM
cells also recruit and alter immune cells distinct from microglia, fostering tumor growth
and creating an immunosuppressive TME by releasing cytokines and EVs, and forming
intercellular nanotubes [176]. Agosti et al. provide an in-depth review of emerging im-
munotherapeutic approaches targeting GBMs (Contribution 10). CAR-T cell therapy shines
as a promising option, as these cells are meticulously engineered to target specific antigens.
The advancement of second-generation CAR-T cells, designed for enhanced specificity
and reduced off-target effects, underscores the potential of this therapy. Oncolytic viruses,
which function through dual mechanisms, are currently being evaluated in clinical trials.
Additionally, cancer vaccines, especially those aimed at neoantigens, present a personalized
strategy with considerable potential. Finally, immune checkpoint inhibitors, such as PD-1
and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) inhibitors, have shown promise
in clinical trials.

Given the pivotal role of GSCs in glioma biology, there is growing interest in devel-
oping targeted therapies to eradicate these cells. Agosti et al. examined the molecular
mechanisms underlying glioma progression linked to GSCs and pinpointed the critical
signaling pathways and molecular interactions involved in GSC maintenance, resistance
to therapy, and tumor recurrence (Contribution 11). Targeting the Notch, PI3K/AKT, and
Wnt/β-catenin signaling pathways with specific inhibitors offers a promising approach
to disrupting GSC maintenance and tumor growth. The advancement of these targeted
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therapies, along with sophisticated genomic and proteomic profiling, opens the door to
personalized treatment strategies in glioma.

Prostatic adenocarcinoma is the second most commonly diagnosed cancer in men,
with an estimated 1.4 million cases and 375,000 deaths worldwide in 2020 [177]. It serves
as a classic example of an epithelial tumor that, in its well-differentiated stages, resem-
bles normal prostate glands [178]. As the tumor advances, this normal-like architecture
becomes increasingly disorganized, progressing to a poorly differentiated state. It is hy-
pothesized that across all these tumor differentiation subtypes, the proliferation and growth
of carcinomas are driven by a critical cellular compartment that resembles normal stem
cells—these are often referred to as cancer stem cells (CSCs). Koukourakis et al. provided a
comprehensive review of the theories concerning the origin of prostate cancer stem cells
(PCSCs), their characterization, and the molecular pathways they engage (Contribution 12).
PCSCs have been identified and partially characterized, displaying surface markers such as
CD44, CD133, and integrin α2β1, as well as embryonic proteins like OCT4, NANOG, and
SOX. These cells exhibit the activation of key signaling pathways, including Notch, NF-kB,
PTEN/Akt/PI3K, RAS-RAF-MEK-ERK, and Hedgehog. The overexpression of stem cell
markers and the hyperactivation of these pathways have been effectively employed to
predict therapeutic responses and offer prognostic insights [179]. PCSCs are essential for
replenishing the population of prostate cancer cells during radiotherapy and chemotherapy,
and they exhibit notable resistance to androgen deprivation therapy [180]. Consequently,
the incorporation of stem cell-targeting agents is expected to improve the effectiveness of
these therapeutic approaches.

In summary, evaluated herein studies of the molecular biology of cancer with emerg-
ing biomarkers and therapeutic advances showcase the impressive progress along with
drawbacks and challenges. Within the broader context of translational and clinical cancer
research, these developments are anticipated to enable more sensitive, cost-effective, and
non-invasive tests to facilitate timely and accurate diagnosis and personalized engage-
ment, leading to prevention or precision-guided therapies. Unlike traditional anticancer
treatments, innovative strategies such as triggered release mechanisms, intracellular drug
targeting, cancer stem cell therapy, magnetic drug targeting, and ultrasound-mediated
drug delivery, along with gene delivery, have led to the development of new treatment
modalities for cancer. The crucial task in the development of anticancer drugs involves
achieving site-specific delivery while minimizing systemic toxicity. Tumors create a dy-
namic environment where factors such as angiogenic potential, cell mass, and extracellular
matrix composition constantly changing. Recent advances in drug delivery strategies are
identifying preventive interventions, allowing new chemopreventive agents to be delivered
via novel cell-targeting methods. Targeted drug delivery can be achieved by exploiting
the overexpression of transporters and receptors on the plasma membrane of cancer cells.
Additionally, ion channels such as potassium, sodium, calcium, chloride, and AQP4 chan-
nels may be targeted to regulate tumor metastasis. Cancer cells rely on these channels for
migration. Overall, combined with promising immunotherapies and precision delivery
systems, early detection and interventions with a customized approach is anticipated to im-
prove the outcomes of existing treatments and enable new mono- and combined therapies,
minimizing harmful side effects and improving the targeting of specific mechanisms with
desirable outcomes. In this exciting journey guided by the molecular biology of cancer,
it is hoped that the acquired knowledge summarized in this compendium will assist in
advancing the frontiers of cancer therapy for better management and care.

Author Contributions: Conceptualization, S.B. and S.V.O.; methodology, S.V.O.; software, M.S.;
validation, S.B., M.S. and S.V.O.; formal analysis, M.S.; investigation, S.B.; resources, S.B.; data
curation, M.S.; writing—original draft preparation, S.B.; writing—review and editing, S.B. and S.V.O.;
visualization, M.S.; supervision, S.V.O.; project administration, S.B.; funding acquisition, S.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Int. J. Mol. Sci. 2024, 25, 13090 13 of 20

Acknowledgments: The authors acknowledge support from the Research and Innovation Department
of the Medway NHS Foundation Trust.

Conflicts of Interest: The authors declare no conflicts of interest.

List of Contributions:
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