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Abstract: Wireless rechargeable sensor networks (WRSNs) have emerged as a critical infras-
tructure for monitoring and collecting data in large-scale and dynamic environments. The
energy autonomy of sensor nodes is crucial for the sustained operation of WRSNs. This
paper presents a comprehensive survey on the state-of-the-art approaches and technologies
in on-demand energy provisioning in large-scale WRSNs. We explore various energy
harvesting techniques, storage solutions, and energy management strategies tailored to
the unique challenges posed by the dynamic and resource-constrained nature of WRSNs.
This survey categorizes existing literature based on energy harvesting sources, including
solar, kinetic, and ambient energy, and discusses advancements in energy storage tech-
nologies such as supercapacitors and rechargeable batteries. Furthermore, we investigate
energy management techniques that adaptively balance energy consumption and harvest-
ing, optimizing the overall network performance. In addition to providing a thorough
overview of existing solutions, this paper identifies opportunities and challenges in the
field of on-demand energy provisioning for large-scale WRSNs. By synthesizing current
research efforts, this survey aims to provide insight to researchers and policymakers in
understanding the landscape of on-demand energy provisioning in large-scale WRSNs.
The insights gained from this study pave the way for future innovations and contribute to
the development of sustainable and self-sufficient wireless sensor networks, critical for the
advancement of applications such as environmental monitoring, precision agriculture, and
smart cities.

Keywords: wireless rechargeable sensor networks; energy harvesting; on-demand energy
provisioning; energy management; energy consumption; wireless charging; supercapacitors

1. Introduction
Wireless rechargeable sensor networks (WRSNs) have emerged as a transformative

paradigm in the domain of wireless sensor networks, enabling long-term and autonomous
operation through the integration of energy harvesting and rechargeable energy storage
technologies. Large-scale WRSNs, deployed in diverse environments ranging from en-
vironmental monitoring to industrial automation, face unique challenges in maintaining
sustained and reliable energy provision. The dynamic and often unpredictable nature of the
deployment environments, coupled with the resource constraints of sensor nodes, necessi-
tates innovative approaches for on-demand energy provisioning. Recent advancements
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in energy harvesting techniques, coupled with the evolution of energy storage technolo-
gies, have opened new avenues for enhancing the autonomy and operational efficiency
of WRSNs. This paper presents a comprehensive survey of the current state of the art in
on-demand energy provisioning for large-scale WRSNs, examining the latest developments
in energy harvesting, storage, and management strategies.

The significance of on-demand energy provisioning in WRSNs lies in its ability to
address the fundamental challenge in mitigating the finite energy resources of sensor nodes.
As emphasized by the authors in [1,2], the autonomy of energy-harvesting wireless sensor
nodes is pivotal for extending the network’s operational lifetime, reducing maintenance
costs, and enabling autonomous and sustainable deployment in remote and inaccessible
locations. The advent of energy-harvesting technologies, such as solar and kinetic energy
harvesting, has empowered sensor nodes to extract energy from the surrounding environ-
ment, diminishing their reliance on conventional power sources and enabling long-term
autonomy [2].

While the literature on energy harvesting and storage for WRSNs has seen significant
contributions, there exists a need for a comprehensive survey that consolidates the diverse
approaches, assesses their strengths and limitations, and identifies avenues for future
research. Motivated by the imperative to address the complexities of large-scale WRSNs,
this survey seeks to fill a critical gap in the literature. While various studies have explored
components of on-demand energy provisioning, a comprehensive survey that synthesizes
these contributions, assesses their efficacy, and identifies avenues for further research is
conspicuously absent. This paper addresses this gap by presenting a systematic survey of
on-demand energy provisioning in large-scale WRSNs, emphasizing the evolving landscape
of energy harvesting technologies, storage solutions, and energy management strategies.
This paper endeavors to bridge this gap by providing an in-depth examination of existing
on-demand energy provisioning schemes, shedding light on their strengths, limitations,
and potential improvements.

On-demand energy provisioning is a strategy that addresses energy depletion in
large-scale WRSNs by deploying mobile energy sources, such as wireless charging vehi-
cles (WCVs) or drones, to deliver energy to sensor nodes based on their real-time needs.
This method leverages advanced technologies such as machine learning, optimization
algorithms, and clustering to ensure energy-efficient routing, scheduling, and charging.
Wireless charging strategies for WRSNs are critical for maintaining the functionality of
sensor nodes, which are often deployed in remote or inaccessible areas. Two primary
approaches are on-demand (demand-driven) charging and periodic charging, each with dis-
tinct methodologies, benefits, and challenges. The theoretical research identifies charging
planning as a crucial problem and presents more difficulties and challenges for multiple
mobile chargers. The authors in [3] addressed a charging planning problem for multiple
chargers in WRSNs, proving its NP-hardness. They aimed to maximize the energy effi-
ciency of the charging process by optimizing the charging amounts and planning efficient
charging paths. Two charging strategies were identified in the literature, namely, demand-
driven charging strategies [4–8] and periodic charging strategies [9–12]. Demand-driven
and periodic charging strategies are two distinct approaches for managing energy con-
sumption and sensor recharging in WRSNs. Both strategies aim to optimize sensor energy
usage and maintain efficient network operations. The demand-driven charging strategy
recharges sensors based on their individual energy levels and operational needs, focusing
on providing energy only when necessary. This approach prevents sensors from deplet-
ing their energy completely and going offline. Some key aspects of this strategy include
the following:
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• Individualized recharging: sensors are charged on an as-needed basis, prioritizing those
with low energy or critical tasks.

• Real-time monitoring: sensors continuously track their energy levels and request recharg-
ing when energy falls below a defined threshold.

A key advantage of this method is its ability to keep sensors operational for as long as
possible, thereby preventing network downtime caused by drained batteries. Additionally,
it optimizes energy utilization and prolongs the overall network lifespan [13]. Conversely,
the periodic charging strategy involves recharging sensors at fixed intervals or scheduled
times, regardless of their individual energy levels or activity [12,14,15]. While this approach
simplifies scheduling and maintenance, it may result in energy wastage and network
downtime if sensor needs are not effectively addressed. Table 1 provides a summary
comparing demand-driven and periodic charging strategies.

Table 1. A comparative summary of demand-driven and periodic charging strategies [16,17].

Aspect Demand-Driven Charging Periodic Charging

Responsiveness Reactive to real-time energy demands. Follows fixed schedules, regardless of energy
levels.

Efficiency Focuses on nodes with critical needs, avoiding
waste.

May result in overcharging or delayed
recharging.

Scalability Faces challenges in large-scale networks. Easier to scale with predictable paths.

Complexity Requires advanced algorithms for scheduling
and routing. Simpler due to pre-determined paths.

Adaptability Adapts to dynamic network conditions. Limited adaptability to unexpected demands.

Energy Utilization More efficient due to priority-based charging. Risk of resource wastage from unnecessary
charging.

The authors in [18] conducted a comprehensive survey on mobile charging techniques
(MCTs) in WRSNs. They introduced the network model of a WRSN, as depicted in Figure 1,
and outlined the basic architectures of various wireless power transfer (WPT) techniques.
The study also discussed the fundamental design challenges associated with MCTs and
presented a taxonomy of mobile charging techniques based on key design attributes.
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In the subsequent sections, we delve into the recent developments in on-demand
energy provisioning in WRSNs, categorization and analysis of various energy harvesting
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sources, explore cutting-edge developments in energy storage technologies, and exam-
ine adaptive energy management strategies designed to optimize energy utilization in
large-scale WRSNs. Additionally, this paper critically evaluates the current opportunities
and challenges in the field, paving the way for future research directions. Through this
survey, we aim to provide a comprehensive resource for researchers, practitioners, and
policymakers engaged in the design and development of large-scale WRSNs, fostering a
deeper understanding of the current state of on-demand energy provisioning and inspiring
innovations that propel the sustainability of and effectiveness of wireless rechargeable
sensor networks.

The motivation behind this study was to explore recent advancements in on-demand
energy provisioning strategies, focusing on energy harvesting techniques, storage solu-
tions, and energy management strategies designed to address the dynamic and resource-
constrained nature of wireless rechargeable sensor networks (WRSNs). A comprehensive
review of state-of-the-art approaches and technologies is presented, with a focus on large-
scale WRSNs. This survey categorizes existing literature by energy sources, including solar,
kinetic, and ambient energy, and highlights advancements in energy storage technologies
such as supercapacitors and rechargeable batteries. Additionally, energy management tech-
niques that adaptively balance energy consumption and harvesting to optimize network
performance are examined.

In providing an extensive overview of existing solutions, this paper identifies key
challenges and opportunities in on-demand energy provisioning for large-scale WRSNs.
By synthesizing current research efforts, it aims to guide researchers and policymakers in
understanding the evolving landscape of on-demand energy provisioning. The insights
gained contribute to the development of sustainable and self-sufficient WRSNs, essential
for applications such as environmental monitoring, precision agriculture, and smart cities.

To the best of our knowledge, this is the first comprehensive review to critically evalu-
ate advancements in on-demand energy provisioning for large-scale WRSNs, emphasizing
energy management strategies, storage solutions, and future trends. The paper is structured
as follows: Section 2 provides an overview of recent developments in on-demand energy
provisioning in large-scale WRSNs, while Section 3 outlines the challenges of on-demand
wireless charging in WRSNs. Section 4 discusses energy management strategies, energy
harvesting techniques, and energy storage solutions in WRSNs. Section 5 explores future
trends and opportunities in on-demand wireless power transfer (WPT) for WRSNs, and
Section 6 concludes the paper.

2. Recent Developments in On-Demand Energy Provisioning in
Large-Scale WRSNs

This section presents an overview of recent developments in on-demand energy
provisioning in large-scale WRSNs. On-demand energy provisioning in large-scale wireless
rechargeable sensor networks (WRSNs) is a dynamic approach to ensuring that the energy
needs of distributed sensors are met efficiently through wireless power transfer (WPT).
This concept is especially vital for large-scale deployments where traditional methods
like battery replacements are impractical due to high costs, logistical challenges, and
environmental impact. In WRSNs, numerous sensor nodes are deployed over large areas to
monitor and report data. These nodes are often placed in hard-to-access locations, making
regular battery replacement or wired charging impossible. On-demand energy provisioning
allows energy to be supplied to these sensors wirelessly only when they need it, extending
the network’s lifetime and supporting sustainable operation. This approach is critical in
applications like environmental monitoring, military surveillance, and disaster response.
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Figure 2 depicts a typical on-demand single mobile charging scheme, while Figure 3
illustrates a typical on-demand multiple mobile charging model for WRSNs.
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On-demand charging involves dynamically responding to the energy needs of sensor
nodes. Charging requests are initiated based on real-time energy thresholds, ensuring
critical nodes are recharged as needed. Key features include the following:

• Dynamic nature: nodes or clusters request energy replenishment only when required.
• Energy thresholds: charging is triggered when energy falls below a predefined level,

preventing node failures.
• Priority-based scheduling: critical nodes (e.g., those with higher data traffic or strategic

locations) are prioritized for charging.
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The paper [19] addresses energy constraints in wireless sensor networks and proposes
three on-demand charging schemes including Pcharge, Bcharge, and Fcharge. The Pcharge
scheme employs a priority-based charging strategy, the Bcharge scheme utilizes a best-fit
approach, and the Fcharge scheme adopts the first-fit decreasing strategy. The schemes
are designed to optimize mobile charger capacity utilization and minimize tour length. By
employing multiple mobile chargers with limited capacities, the simulation results demon-
strate the effectiveness of the proposed approaches. The proposed schemes outperform
the state-of-the-art NJNP scheme, with Pcharge achieving the shortest tour length among
all evaluated approaches and significantly enhancing the capacity utilization of mobile
chargers (MCs). However, certain limitations remain. The limited capacity of MCs in
WRSNs poses challenges in meeting large-scale energy demands, and inefficient scheduling
of MCs can further hinder optimal performance. While the proposed schemes address some
of these issues, a single MC is insufficient for large-scale WRSNs, and existing research,
including the current work, still lacks a comprehensive focus on advanced MC scheduling
strategies to fully overcome these challenges. The paper [16] explores on-demand wireless
charging for sensor networks, focusing on mobile charging techniques that employ single
or multiple chargers to address energy constraints in wireless sensor networks (WSNs).
Mobile chargers operate by recharging sensors based on energy requests, and the study
delves into various on-demand wireless recharging schemes.

Key design issues affecting recharging efficiency and system performance are iden-
tified, with scalability and energy consumption optimization highlighted as critical chal-
lenges. However, the paper acknowledges several limitations, including the following:

• Scalability issues in on-demand recharging schemes;
• High energy consumption of mobile chargers;
• Prolonged recharging delays for sensor nodes.

These limitations underscore the need for further research to improve the scalability,
efficiency, and responsiveness of wireless recharging strategies in WSNs. The papers [20–22]
propose innovative on-demand wireless charging schemes for WRSNs, focusing on reducing
charging latency [23], increasing active nodes, and addressing energy constraints through
techniques like real-time scheduling, heap-based structures, and optimization algorithms.
They improve performance compared to existing methods but face common limitations,
including scalability challenges, inefficiencies in uneven charging requests, preemption issues,
and impracticality in large networks. Future work should focus on integrating multiple mobile
chargers [24–26], adaptive scheduling [13,27], and robust preemption strategies to enhance
efficiency and scalability.

Figure 4 shows an illustration of mobile charger scheduling in a WRSN scenario, while
Figure 5 shows a typical on-demand charging scheme in a WRSN scenario.

The model in Figure 4 illustrates the schedulability of a network comprising three
groups (g1, g2, g3) and five clusters (c1, c2, c3, c4, c5). Notably, clusters c3 and c4 may share
nodes. The model assumes that a total of N sensor nodes is distributed across various
groups and clusters within the network. A mobile charger (MC) is scheduled to recharge
energy-constrained sensor nodes based on their charging requests. The MC’s route begins
at the base station (BS), traverses designated anchor points (APs) and returns to the BS for
energy replenishment or battery replacement, preparing for the next recharging cycle. The
BS acts as the central controller, dynamically scheduling the MCs to provide on-demand
energy to the sensor nodes.
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The authors in [20] propose a novel on-demand charging scheduling scheme for
WRSNs that prioritizes scheduling using multiple network parameters and incorporates
real-time information to ensure fairness. It is designed for high-demand scenarios with
spatial and temporal constraints [28] and leverages multi-node charging [14] to reduce
delays. While effective, the scheme has limitations, including its reliance on a single
mobile charger, which is inadequate for large-scale networks, and increased delays in
time-critical applications. In [21], the authors introduce an on-demand charging scheme
for WRSNs using a heap-based energy replenishment approach. This scheme addresses
energy starvation in dynamic sensor node scenarios and reduces computational and storage
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overhead, improving scalability in large networks. It outperforms the existing Nearest-
Job-Next with Preemption (NJNP) scheme by reducing charging latency and increasing
the number of active nodes. However, it has limitations, such as its inability to adapt to
uneven charging requests, the risk of energy starvation due to untimely responses, and the
lack of support for preemption of wireless charging vehicles (WCVs).

The papers [29,30] address collaborative charging scheduling challenges in WRSN
by proposing a Temporal–Spatial Charging Scheduling Algorithm (TSCA) and a Game
Theoretical Collaborative Charging Scheduling (GTCCS) algorithm, respectively. The TSCA
tackles collaborative charging in WRSNs by optimizing spatial–temporal scheduling to
minimize dead nodes and maximize energy efficiency by computing feasible movement
solutions for wireless charging vehicles (WCVs) [31] through path planning and optimiza-
tion techniques [32]. It employs path planning and clustering techniques, outperforming
existing methods. In contrast, the GTCCS algorithm leverages game theory to resolve
charging conflicts among WCVs, treating them as players striving to maximize energy
efficiency. It also introduces dynamic thresholds and a sacrifice-charge mechanism to
reduce dead nodes and enhance energy management. However, the TSCA faces scalability
challenges in large networks.

The authors of [4,33] propose innovative approaches to enhance the energy efficiency
and network lifetime of WRSNs. While Nguyen et al. [4] propose an on-demand charging
algorithm using fuzzy logic and Q-learning to optimize charging time and location for
mobile chargers, thereby extending monitoring time by 6.8 times on average and improving
network lifetime by 1.9 times compared to Q-charging, Habibi et al. [33] introduce a
demand-based charging method using UAVs. This approach employs K-means clustering
to group sensors for efficient energy management and uses fuzzy logic to rank clusters
based on battery life and distance. Combined with a gradient-based optimization algorithm
for UAV routing, it extends network lifetime and reduces total energy consumption by
26%, travel distance by 17.2%, and travel delay by 25.4%, with optimal performance
achieved using four clusters. Both approaches significantly enhance WRSN performance
by improving energy efficiency and network lifetime. While fuzzy Q-charging focuses
on leveraging machine learning and logic-based optimization for mobile chargers, the
UAV-based method prioritizes efficient sensor clustering and UAV routing. Together,
these techniques highlight the potential for combining on-demand charging algorithms
with advanced clustering and routing methods to address key limitations, such as target
coverage, connectivity, and charging time constraints.

Figure 6 shows the network model of a typical on-demand charging scheme in
WRSNs utilizing fuzzy logic and Q-learning, while Figure 7 shows an overview of the
Q-learning environment, which presents a reinforcement learning model that is widely used
in decision-making.

Q-learning is a widely used reinforcement learning technique for decision-making.
Its core principle is to achieve specific goals by learning from past experiences. The stan-
dard Q-learning framework comprises four key components: an environment, one or
more agents, a state space (St), and an action space (At), as illustrated in Figure 7. The
Q-value represents the estimated effectiveness of an action in relation to the agent’s ob-
jective. Agents select actions based on a policy and the corresponding Q-values. After
executing an action, the agent updates its policy to better achieve its goal. Rt denotes the
reward received for performing action At in state St.
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2.1. “One-to-One” and “One-to-Many” On-Demand Charging Schemes in WRSNs

In WRSNs, mobile chargers provide flexibility and adaptability to network energy
management by wirelessly recharging energy-constrained sensor nodes. Two common
charging schemes have been identified in the literature: “One-to-One” and “One-to-Many”
wireless charging [23,34–41]. These schemes define how mobile chargers interact with
sensor nodes and also determine the efficiency and scalability of energy replenishment
within the network. In the “One-to-One” charging scheme, a single sensor is charged
by one mobile charger (MC) at a time. Each MC is dedicated to recharging a specific
sensor node, creating a direct and exclusive connection between the MC and the sensor.
In contrast, the “One-to-Many” charging scheme allows a single MC to recharge multiple
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sensor nodes simultaneously during a single operation. The advantages of “One-to-One”
charging scheme include the following [17]:

• Precise energy distribution: this scheme ensures that individual sensors receive the exact
amount of energy required, minimizing wastage.

• Individualized charging: sensors with varying energy needs are recharged based on
their specific requirements, ensuring optimal energy replenishment.

• High transfer efficiency: the direct proximity between the MC and sensor node ensures
efficient energy transfer and maximizes network uptime.

Despite its advantages, the “One-to-One” charging scheme faces several challenges,
particularly in scalability and cost-efficiency [34,36]. The limitations of this approach are
further highlighted in [17] and include the following:

• Higher hardware costs: Setting up dedicated charging for each sensor node is expen-
sive and infrastructure-intensive. If MCs are limited, some sensors may experience
delays in recharging. Compared to “One-to-Many” schemes, this approach incurs
significantly higher costs.

• Scalability challenges: in large-scale WRSNs, deploying a single MC for each sensor is
impractical, leading to potential bottlenecks and leaving many sensors energy-deprived.

• Navigation complexity: MCs must navigate efficiently to reach target nodes, which can
be challenging in dynamic environments.

• Management overhead: managing multiple MCs becomes increasingly complex as the net-
work scales, unlike the simpler management associated with the “One-to-Many” scheme.

To overcome these scalability and efficiency bottlenecks, the “One-to-Many” charging
scheme was proposed [34,36]. In this approach, a single MC recharges multiple sensor
nodes simultaneously via wireless energy transmission, also referred to as the multi-node
wireless energy charging scheme. The authors [36] proposed a single MC to replenish
multiple sensor nodes within the range of its energy transmission. This concept was
extended in [34], whereby two MCs were deployed to simultaneously recharge multiple
sensors, enhancing charging efficiency and scalability. Figure 8 illustrates an example
of a multi-node energy charging scheme utilizing two mobile chargers. As highlighted
in [34], the multi-node wireless energy charging scheme effectively addresses the challenges
of charging efficiency and scalability in large-scale WRSNs. Its advantages include the
following [17]:

• Cost-efficiency: fewer MCs are required to service multiple sensor nodes, optimizing
resource utilization and reducing infrastructure and hardware costs.

• Reduced charging time: the simultaneous charging of multiple nodes significantly
decreases the overall time needed for energy replenishment.

• Balanced energy distribution: excess energy from one sensor can be redistributed to
others, ensuring more equitable energy availability across the network.

• Stable energy supply: sensors receive consistent energy replenishment without requiring a
line-of-sight (LoS) connection, as long as they are within the MC’s transmission range.

However, using a mobile charger (MC) to simultaneously recharge multiple sensor
nodes in a WRSN introduces several challenges, primarily related to efficiency, scheduling,
and energy distribution. Key issues are highlighted in [17] and include the following:

• Efficient energy utilization: how to best allocate the MC’s limited energy to replenish
the most energy-deficient sensors, minimizing the risk of sensor failures.

• Optimizing movement energy consumption: how to plan the MC’s movements to reduce
energy consumption, assuming the MC has sufficient energy to recharge all sensors.
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These challenges involve critical trade-offs that require further exploration. Ad-
ditionally, charging scheduling poses unique difficulties due to spatial and temporal
constraints [18,20,23,42]. Other key trade-offs are highlighted in [17,34] and include
the following:

• Efficient scheduling of multiple MCs: ensuring all energy-constrained nodes are
replenished promptly while minimizing scheduling delays.

• Avoiding simultaneous charging conflicts: preventing a sensor node from being
recharged by multiple MCs simultaneously, as overcharging could damage the battery.

• Determining charging duration: deciding the optimal charging time at each location
to ensure all nodes within an MC’s transmission range are sufficiently charged.

The scalability of single mobile charging schemes remains a significant limitation, as
these schemes are suited only for small-scale networks. In large-scale networks, the limited
energy capacity of an MC renders this approach ineffective. While the “One-to-Many”
charging scheme improves efficiency, it also faces notable constraints as highlighted in [17],
which include the following:

• Energy imbalance: Ensuring equitable energy distribution is challenging. Sensors
with critical energy needs may receive insufficient replenishment if others consume
more power.

• Interference: charging multiple nodes in close proximity can result in interference,
reducing charging efficiency for some sensors.

• Energy inefficiency: some sensors may receive more energy than required, leading
to wastage.

• Reduced precision: the energy delivered to each sensor is less precise compared to the
“One-to-One” scheme, potentially compromising optimal replenishment.

Addressing these challenges is essential to enhance the scalability, efficiency, and
reliability of multi-node wireless energy charging in WRSNs.

To tackle the challenges of energy consumption and the limitations of the multi-node
charging approach in large-scale WRSNs with a single mobile element,
researchers [13,23,27,43,44] proposed leveraging multiple mobile elements (MMEs) for
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wireless charging. The paper [13] proposes a Deadline-Based Multiple Mobile Elements
(DB-MMEs) scheme for energy optimization in large-scale wireless rechargeable sensor
networks (LS-WRSNs). This approach utilizes multifunctional mobile charging vehicles
(MCVs) that integrate charging and data collection functionalities to enhance operational
efficiency, particularly for delay-intolerant applications. The method also explores optimal
energy allocation and MCV deployment strategies to address key challenges in wireless
charging and data collection. Figure 9 shows the architecture of the proposed model.
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One of the most challenging issues in the deployment of MCs is finding an efficient
charging schedule for MCs to replenish the sensors [20,22,45,46]. The absence of proper
scheduling evaluation in previous charging schemes for WRSNs reduces charging ef-
ficiency, ultimately resulting in sensor node exhaustion [47]. The paper [47] proposes
an Optimal Path Planning Charging (OPPC) scheme for on-demand charging architec-
tures. The scheme evaluates the schedulability of charging missions, making charging
schedules more predictable, while providing an optimal charging path to maximize effi-
ciency. To address the challenges of coordination and scheduling in multi-charger wireless
charging systems, the papers [27,48] propose the application of swarm intelligence tech-
niques for mobile wireless charging in large-scale networks. The studies explore critical
trade-offs in charging strategies and energy availability and introduce a node-partition al-
gorithm for efficiently scheduling multiple mobile chargers. The key contributions include
the following:

• Energy-efficient route planning and coordination: developing strategies to optimize
charger routes and improve coordination among multiple chargers.

• Optimization problem formulation: establishing the multi-charger recharge optimiza-
tion problem as NP-hard.

• Node-partition algorithm: designing an algorithm to efficiently schedule chargers
across the network.

• Performance evaluation: validating the proposed scheme through detailed simulations,
demonstrating its effectiveness.

Figure 10 depicts coordination and scheduling of a single MC, while Figure 11 illus-
trates coordination and scheduling of multiple MCs.
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In large-scale WRSN scenarios with extensive sensor-based data systems and nu-
merous sensor nodes, scheduling a single mobile charger (MC) for energy provisioning
becomes both challenging and inefficient. The time required for a single MC to traverse
the entire network leads to significant delays and the risk of energy depletion, resulting
in operational bottlenecks. To address these scalability issues, deploying multiple MCs is
more effective. However, this approach introduces additional challenges, such as increased
costs and network complexity [13]. Therefore, it is crucial to strike a balance between cost
and delay by implementing effective coordination and scheduling techniques that utilize
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optimal points (OPs) as shown in Figures 10 and 11 for energy provisioning, thus ensuring
stable and efficient network operations.

2.2. On-Demand Wireless Power Transfer (WPT) in WRSNs

This section presents a detailed discussion of on-demand WPT in wireless rechargeable
sensor networks (WRSNs). WRSNs are an integral part of modern technology, enabling
applications like environmental monitoring, disaster management, healthcare, smart cities,
and military surveillance. However, their functionality depends heavily on the energy
available to the sensor nodes. Traditional battery-powered sensors face energy depletion
over time, posing significant challenges to the network’s lifetime and operational efficiency.
Conventional power supply systems using cords and wires have become increasingly
obsolete due to their limitations in supporting large-scale deployment, utilization, and
mobility [49,50]. Battery replacements for such systems are also suboptimal, as batteries
have a short operational lifespan and impose cost and weight constraints on hardware.
Moreover, the operational costs associated with frequent battery charging or replacement
make these solutions impractical.

Recent advancements have introduced the use of electromagnetic (EM) waves for
wirelessly transferring power from a source (transmitter) to a destination (receiver), a break-
through known as wireless power transfer (WPT) technology. The paper [50] highlights
recent applications of WPT across various domains, including medical implants, unmanned
aerial vehicles (UAVs), mobile phones, wireless sensor networks (WSNs), electric vehicles,
and audio players. For an in-depth review of near-field WPT, refer to [50].

To overcome these limitations, on-demand WPT and energy harvesting (EH) have
emerged as critical solutions, enabling sustainable energy replenishment without manual
intervention. These approaches aim to maximize the operational lifetime of WRSNs,
ensuring efficient, uninterrupted, and scalable functionality. On-demand WPT involves
transferring energy wirelessly to sensor nodes as and when needed. The energy is delivered
through specialized wireless charging vehicles (WCVs) [46,47,51,52] or mobile charging
vehicles (MCVs) [13,23], which travel to sensor nodes to replenish their energy wirelessly
via electromagnetic induction, magnetic resonance, or microwave transmission. The core
principles of on-demand WPT include the following:

• Dynamic energy requests: nodes initiate charging requests when their battery levels
fall below a predefined threshold.

• Mobile charging vehicles (MCVs): equipped with wireless charging equipment
and a limited energy reservoir, MCVs navigate through the network to fulfill
charging requests.

• Charging scheduling and routing: algorithms prioritize which nodes to charge first,
optimize MCV routes, and ensure efficient energy utilization.

• Multi-node charging: advanced WPT techniques allow simultaneous charging of
multiple nearby nodes, reducing charging delays and MCV travel costs.

2.2.1. Classification of On-Demand WPT Technology for WRSNs

This section reviews classifications of on-demand WPT technology for WRSN scenar-
ios. On-demand WPT can be categorized into the following: radiative vs. non-radiative,
near-field vs. far-field, and charging frame-based classifications.

A. Radiative and Non-radiative Techniques

Wireless power transfer (WPT) technologies are broadly classified into two categories:
radiative and non-radiative techniques [49,53]. Radiative techniques utilize electromag-
netic (EM) waves, particularly radio frequency (RF) waves, to transfer power over longer
distances, while non-radiative techniques rely on methods such as inductive coupling
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and resonant coupling to transfer power over short distances, catering to a wide range of
appliances. Table 2 provides a classification of WPT technologies based on radiative and
non-radiative approaches for WRSN scenarios. Figure 12 depicts a classification of WPT
technology based on radiative and non-radiative techniques.
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B. Near-Field and Far-Field WPT Technologies

WPT technologies may also be classified as near-field and far-field WPT [50,54–56].
Near-field WPT is a technique that transfers power using magnetic or electric fields within a
distance shorter than the wavelength of the electromagnetic (EM) signal. It occurs when the
transfer distance is shorter than the wavelength of the EM signal. This technique typically
operates at resonant frequencies below 5 MHz and achieves a short transfer distance,
approximately 5 cm, delivering power to nearby devices. Examples include magnetic
inductive coupling [57–59], magnetic resonant coupling [60–62], capacitive coupling [63,64],
and magneto dynamic coupling [54]. Conversely, the far-field WPT technique uses EM
waves (such as microwaves, RF, or lasers) to transmit power over distances longer than the
wavelength of the EM signal. It involves transfer distances greater than the wavelength of
the EM signal, enabling power delivery to far-reaching or remote devices. Examples include
radio waves and microwaves [50,54,65]. Far-field RF energy transfer faces challenges such
as significant path loss, reducing power efficiency at the rectifying antenna (rectenna).
The paper [66] proposed optimizing propagation channels and rectenna subsystems to
improve RF energy transport. The paper [67] introduced the In-N-Out scheme, a flexible
far-field WPT system combining software and hardware, addressing the drawbacks of near-
field systems, such as reduced efficiency with smaller coils and limited flexibility. Their
system eliminates the need for cumbersome devices and enables the continuous charging of
medical implants deep within human tissue. The paper [54] highlights recent advancements
in WPT technology, including energy harvesting, millimeter-wave/THz rectennas, MIMO-
WPT, and near-field applications, emphasizing that inductive coupling remains the most
efficient approach, followed by radio wave-based WPT. The commercialization of near-field
WPT is more advanced, with public buses in Europe and China using wireless chargers at
20 kHz/85 kHz frequencies and 60–200 kW power. Additionally, Apple’s adoption of the
Qi standard in 2017 popularized cordless wireless phone chargers.

C. Classification based on Charging Frameworks

WRSNs rely on efficient WPT methods to maintain sensor operation in remote or
inaccessible environments. The charging frameworks for WPT in WRSNs can be classi-
fied into three main types: omni-directional [68,69], directional, and bi-directional WPT.
Each framework has distinct characteristics and applications based on the nature of the
deployment and the specific energy requirements. In directional WPT, RF energy signals
are transmitted directly toward the locations of power receivers, ensuring targeted energy
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delivery. In omnidirectional WPT, RF energy signals are broadcast to sensors for energy
harvesting, often using energy beamforming. This method is particularly useful when
sensor locations are indeterminate or uncontrollable. For example, the paper [70] applied
this approach in WSNs using wireless chargers and mobile robots to harvest RF energy
signals. In bidirectional WPT, power flows in both directions, meaning the transmitter
can also act as a receiver, and vice versa. This method enables simultaneous charging of
two sensor devices without compromising power transfer efficiency. Each WPT technique
has its strengths and limitations. Omni-directional WPT is flexible and easy to deploy but
inefficient. Directional WPT offers high efficiency but demands precise alignment and
specialized hardware. Bidirectional WPT provides flexibility in energy sharing but is best
suited for shorter ranges. Among non-radiative methods, inductive coupling is highly
efficient at short distances, while magnetic resonance extends the range but may experience
interference and slightly reduced efficiency.

Wireless charger networks (WCNs) have emerged as a promising solution leveraging
wireless power transfer (WPT) technology to extend network lifetimes and provide sustain-
able energy for future systems. WCNs facilitate energy transfer from wireless chargers to
rechargeable devices, where it is harvested by an energy-harvesting unit and stored to sup-
port operations such as sensing, mobility, and communication. This process is characterized
by three key models: the charging model, energy harvesting model, and energy consump-
tion model, which vary based on the WPT technology employed. A comprehensive survey
in [68] explores WCNs, detailing their architecture, charging models, and associated design
challenges. The authors classify WPT techniques into two broad categories: radiative and
non-radiative. Radiative techniques are further divided into omni-directional and direc-
tional methods, while non-radiative techniques include inductive coupling and magnetic
resonance coupling. Table 3 summarizes the charging frameworks for WPT in WRSNs.

Figure 13 illustrates the architecture of a WCN, depicting the fundamental components:
wireless chargers, rechargeable devices, and a base station (BS). It also demonstrates the
energy transmission pathway from chargers to rechargeable devices.
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Table 2. Classification of on-demand WPT based on radiative and non-radiative technologies [49,53,54,63–65].

Technique Category Field Method Efficiency Distance Power Applications Safety Future
Applications

Microwave Power
Transfer (MPT) Radiative Electromagnetic Microwave

beams
Medium to

high Long High

Space solar
power,

long-distance
energy transfer

Moderate
concerns

Space solar power,
remote military

bases

Laser-based
power transfer Radiative Optical Laser beams High Long High

Space commu-
nication, power

beaming

High
concerns

Long-range
wireless power

Radio frequency
(RF) Radiative Electromagnetic Ambient RF

waves Low Short to
medium Low

IoT devices,
small

electronics

Low
concerns

Ubiquitous IoT,
low-power

sensors

Inductive
coupling

Non-
radiative Magnetic Magnetic

induction High Short Medium

Consumer
electronics,

medical
devices

Low
concerns

Wireless charging
pads

Resonant
inductive
coupling

Non-
radiative Magnetic Magnetic

resonance
Medium to

high Medium Medium
EV charging,

industrial
applications

Low
concerns

EV charging,
industrial robots

Capacitive
coupling

Non-
radiative Electric Electric fields Low to

medium Short Low
Wearable

devices, small
sensors

Moderate
concerns

Biomedical
implants

Magnetic
resonant coupling

Non-
radiative Magnetic Magnetic

induction
Medium to

high Medium Medium

Medical
implants,
consumer
electronics

Moderate
concerns

Advanced
medical devices,

smart homes

Magnetic field
power transfer

Non-
radiative Magnetic Magnetic

resonance High Short Medium
Smartphones,

wearable
devices

Low
concerns

Integrated
consumer
electronics

Table 3. WPT-based charging frameworks for WRSN scenarios.

References Classification Explanation Example Scenario Limitations

[71–75] Omni-directional

• RF energy is broadcast uniformly in all
directions, allowing energy harvesting
over a broader area.

• Characterized by its ability to charge
multiple devices simultaneously without
precise alignment.

In a densely deployed WRSN for
agricultural monitoring,
omni-directional WPT ensures that
multiple sensor nodes scattered across
the field receive energy without the
need for precise alignment.

Lower efficiency and energy
wastage due to non-targeted
power distribution.

[54,76–81] Directional

• RF energy is transmitted directly toward
the targeted device.

• Utilizes narrow beams to deliver energy,
enhancing efficiency and range.

In a coastal environmental monitoring
system, directional WPT can be used
to efficiently transfer energy to sensor
nodes positioned along a distant
shoreline, ensuring sustained
operation with minimal energy loss.

Requires precise alignment,
more complex deployment,
and safety concerns due to
concentrated energy.

[82–86] Bi-directional

• Allows energy transfer in both directions
between the charger and the sensor node.

• This framework supports two-way
communication for optimized
energy management.

In a smart city deployment,
bi-directional WPT can enable
adaptive energy transfer to mobile
sensor nodes that monitor traffic and
pollution levels.

Complexity in implementation,
requiring sophisticated
control systems.

2.2.2. Applications of On-Demand WPT in WRSNs

On-demand WPT has emerged as a transformative solution for addressing energy
constraints in WRSNs, enabling continuous operation and enhancing network reliabil-
ity. Conventional wireless sensor networks (WSNs) are inherently energy-constrained,
with limited operational lifetimes that require optimization to maximize network per-
formance. In contrast, WPT in WRSNs aims to achieve energy neutrality, enabling a
theoretically unlimited operational lifetime when deployed with a constant energy sup-
ply. This transformative capability has facilitated numerous practical applications of WPT
in WRSNs, including environmental monitoring, which includes air quality and water
monitoring [49]; healthcare applications, which include continuous patient health moni-
toring through wearable and implantable sensors [17]; smart agriculture, which includes
precision farming through real-time soil, crop, and environmental monitoring [48]; indus-
trial automation, which includes machinery and environmental monitoring in complex
or hazardous facilities [49]; disaster management, which includes sensor deployment in
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disaster-hit areas for hazard detection and rescue operations; safety, security, and military
applications, which include surveillance, battlefield monitoring, and security systems [56];
urban and smart city infrastructure, which includes traffic, pollution, and energy metering
in smart city systems; and Internet of Things (IoT) integration, which includes seamless
energy management across IoT-enabled devices and networks [87]. The authors in [49,53]
reviewed studies on WPT, covering its classifications, advantages, disadvantages, and
primary application domains. They highlighted recent advancements in WPT, including
resonance-based WPT, magnetic resonance coupling, beamforming, and high-power WPT.
These innovations have improved efficiency, convenience, and cost-effectiveness, driving
increased adoption of WPT in applications such as smartphones, smart homes, electric
vehicles, and wearable devices. A comprehensive study of the applications of WPT can be
found in [17,49,53]. Table 4 gives a comparative summary of On-demand WPT technologies
for WRSN scenarios. On-demand WPT technologies for WRSN scenarios offer various
strengths and weaknesses based on the specific application and environmental conditions.
Each WPT technology offers trade-offs between efficiency, range, and complexity, making
their selection dependent on specific WRSN deployment requirements and constraints.

Table 4. A comparative summary of on-demand WPT technology for WRSNs.

References WPT Technologies Strengths Weaknesses

[50,57,58,88–90]
Magnetic inductive

coupling

• Short energy-transfer distance
• It is simple and non-radiative
• High power transfer eff. (95%) at short-ranges
• Simple implementation
• Most widely used as charging pad for all phones

and electric toothbrushes

• The power transfer efficiency is drastically
reduced as the distance between Tx and Rx
widens apart

• Requires accurate alignment in charging
• Produces heating effect over metal
• Short charging distance
• Inappropriate for mobile use

[50,60,64,65] Magnetic resonant
coupling

• Long energy-transfer distance
• LoS is not needed
• High power transfer eff. using

omnidirectional antenna
• Unaffected by weather conditions
• Suitable for everyday use/mobile apps
• No alignment is required in the charging direction
• Multiple devices can be charged concurrently on

different power

• Low transfer power for consumer devices
• Low efficiency due to axial mismatch btw

receiver and transmitter coils
• Not applicable for long-range charging
• Axial mismatch b/w transmitter and receiver

and interference
• Efficiency decreases as distance increases
• Complex implementation

[65,91–93] Microwave Power Transfer
(MPT)

• LoS is needed to transfer energy through EM
radiation successfully

• Radio frequency (RF) waves are used to recharge
the battery

• Have large charging coverage

• Requires a clear line-of-sight b/w Tx and Rx
• Weather and physical objects can obstruct the

LoS b/w Tx and Rx and prevent the transfer
of power

• Suffers from propagation loss due to long
distance transmission

• RF exposure can cause health impairments
• Power transfer is difficult at longer distances

with a highly directional antenna

[94–96] RF-energy transfer

• Can be used to achieve far-field WPT in
inaccessible environments

• Can reduce the energy consumption in smart
buildings and can achieve RF to DC conversion
efficiency

• Energy is provided to many receivers at the
same time

• Low RF energy transfer efficiency
• RF power transfer efficiency diminishes over

increasing distance
• Required sophisticated tracking mechanism
• Sensitive to obstructions
• Raises strong safety concerns

3. Challenges of On-Demand Wireless Charging in WRSNs
This section presents a study of the challenges of on-demand wireless charging in

WRNSs. Recent research focuses on improving charging efficiency, optimizing MCV routes
using AI and machine learning, and developing lightweight protocols that enable fast and
reliable communication. Multi-MCV systems and cooperative energy sharing between
nodes are other emerging solutions to address scalability issues. On-demand energy provi-
sioning in WRSNs opens up possibilities for sustainable and autonomous operations in
areas where human intervention is minimal, such as remote environmental monitoring,
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smart agriculture, and urban infrastructure management. An energy management system
utilizing particle swarm optimization (PSO) is proposed in [97]. This system leverages
minimum and threshold energy levels to guide the charging process, improving network
performance while maintaining lower complexity compared to previous approaches. How-
ever, this scheme faces several challenges, including the following:

• Energy consumption variations: differences in energy usage among sensor nodes increase
travel distances for mobile chargers, while unnecessary visits to energy-sufficient
nodes waste time and resources.

• Scheduling complexity: coordinating charging in large-scale networks is inherently
complex, further compounded by limited computing resources, which restrict the
ability to develop optimal charging schedules.

• Dynamic energy consumption: fluctuating energy demands make it challenging to create
efficient charging paths and adapt to the network’s evolving needs.

The authors of [26,41,98,99] propose a schedulability evaluation mechanism for partial-
charging scheduling in WRSNs. They introduce a Partial Charging Scheme (PCS) tai-
lored for on-demand charging and compare its efficiency against traditional full-charging
schemes. The study includes testbed experiments to validate the proposed approach,
demonstrating that partial charging offers significant advantages over full charging. Re-
sults show that the PCS outperforms previous algorithms in efficiency and feasibility.
Unlike full charging, which degrades efficiency and reduces network lifetime, partial
charging enhances performance and extends the operational lifespan of the network [27].

The authors of [16,97,100,101] investigate critical research challenges in wireless
recharging, focusing on architectural and mathematical models for on-demand recharging
in wireless sensor networks (WSNs). It highlights key limitations in existing schemes,
including scalability issues and high energy consumption. To address these challenges, the
paper explores design considerations and performance metrics for recharging strategies,
emphasizing the need for the following:

• Efficient charging delay management: minimizing delays to ensure timely energy replenishment.
• Optimization of mobile charger energy usage: enhancing efficiency in energy consumption

during recharging operations.
• Scalability in dense deployments: ensuring effective performance in large-scale, densely

populated networks.

The studies underscore the importance of developing solutions that address these
limitations to improve the feasibility and performance of on-demand wireless recharging
schemes. Table 5 summarizes the challenges of on-demand wireless recharging for WRSNs
as outlined in studies [16,22,102–108].

Table 5. Challenges of on-demand wireless charging in WRSNs.

Techniques Advantages Challenges

• Clustering-based approaches: nodes are
grouped to reduce charging trips.

• Efficient resource utilization: chargers are
deployed only when and where needed,
avoiding unnecessary energy use.

• Scalability: managing large-scale networks can
lead to increased charging delays, complexity of
scheduling and routing, leading
computational overhead.

• Machine learning models: techniques like fuzzy
logic and Q-learning optimize
charging schedules.

• Improved network lifetime: prevents critical
nodes from failing while focusing on
high-priority energy demands.

• Real-time decision-making: requires fast,
efficient algorithms to handle complex
scheduling problems.

• Collaborative strategies: multiple mobile
chargers (MCVs or drones) coordinate charging
tasks to minimize delays and
improve efficiency.

• Flexibility: adaptable to dynamic network
conditions, such as uneven energy
consumption or node failures.

• Path optimization complexity: mobile
chargers must minimize travel distance while
meeting energy demands but determining the
shortest and most efficient path is
computationally challenging, especially in
dynamic or dense networks.
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Table 5. Cont.

Techniques Advantages Challenges

• Heuristic and metaheuristic approaches:
Genetic algorithms (GAs), particle swarm
optimization (PSO), and ant colony
optimization (ACO).

• Energy efficiency: Chargers only operate when
required, reducing unnecessary energy
expenditure. Prioritization ensures critical
nodes receive energy, avoiding
network partitioning.

• Energy consumption of chargers: MCs expend
significant energy while traveling between
nodes, potentially limiting their operational
range and effectiveness.

• Machine learning and reinforcement learning:
deep reinforcement learning (DRL) and
predictive models.

• Enhanced network lifetime: focuses on
maintaining operational nodes, prolonging the
overall functionality of the network.

• Real-time decision-making: requires rapid
computation of scheduling and routing
decisions, which may become impractical in
high-demand scenarios.

• Energy-aware clustering: clusters nodes
dynamically based on energy consumption
rates and geographic proximity, ensuring
priority charging for critical clusters.

• Scalability with machine learning: advanced
algorithms enable efficient management of
larger networks with high energy demands.

• Uneven energy demand: nodes with
disproportionately high energy consumption
can monopolize the charger’s resources, leaving
other nodes at risk.

• Collaborative multi-charger systems: multiple
chargers work together to divide charging tasks,
reducing response time and
improving scalability.

• Reduced node downtime: rapid response to
low-energy nodes minimizes the chances of
sensor failures.

• Hardware limitations: the energy storage
capacity and recharging speed of mobile
chargers can restrict the number of nodes that
can be serviced in a single tour.

• Mobile charging path optimization:
dynamic path replanning and
spatial–temporal algorithms.

• Flexibility and adaptability: adapts to
changing network conditions, such as uneven
energy consumption or node failures.

• Coverage and connectivity constraints: focus
on charging critical nodes might lead to neglect
of connectivity requirements, impacting data
transmission reliability.

• Support for dynamic networks: handles mobile
or dynamic sensor nodes by continuously
reevaluating energy needs and paths.

• Integration with existing networks:
implementing on-demand systems in
pre-existing WRSNs might require significant
infrastructure changes.

3.1. Design Challenges of Wireless Mobile Charging Techniques in WRSNs

Mobile charging techniques in WRSNs involve the deployment of mobile chargers or
vehicles that traverse through the network to recharge sensors. While these techniques offer
advantages like flexibility and adaptability, they also come with certain design challenges
that need to be addressed for effective implementation [17]. Thus, designing wireless
mobile charging techniques for WRSNs using mobile chargers involves several challenges
that need to be addressed to ensure efficient and effective energy replenishment for sensor
nodes. This section presents some of the key design challenges associated with mobile
charging techniques in WRSNs. Table 6 presents a survey of design issues associated with
on-demand energy replenishment strategies for WRSNs. The survey explores critical chal-
lenges and considerations for optimizing mobile energy replenishment. Key design issues
include charging path optimization, scheduling and coordination, energy efficiency, scalability,
communication overhead, and cost and complexity. This survey highlights the importance of
integrated strategies that address these issues, promoting efficient and sustainable energy
management in WRSNs. It is instructive to note that efficient methods that jointly solve
these challenges are generally lacking in the literature. Thus, this research is conducted with
the aim of contributing to the solutions of some of the design issues associated with wireless
mobile charging in a large-scale WRSNs. Addressing these design challenges is crucial to
developing robust and efficient wireless mobile charging techniques for WRSN scenarios.
Solutions should consider the specific requirements of the WRSNs, the characteristics of
the sensor nodes, and the operational dynamics of the network.
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Table 6. A survey of design issues associated with on-demand mobile charging techniques in WRSNs.

References Design Challenges Explanation

[109–111] • Optimal route planning

• One of the primary challenges is to determine the optimal routes for the mobile
chargers. Efficient route planning is crucial to ensure that MCs can cover a
maximum number of sensors in the network while minimizing travel time and
energy consumption.

[110,112,113]

• Charger mobility and navigation:

✓ Path planning
✓ Obstacle avoidance

• Designing efficient algorithms for MCs to navigate through the network and
reach sensor nodes in need of charging.

• Ensuring that MCs can navigate around obstacles and barriers without
compromising their effectiveness.

[114–116]

• Energy transfer efficiency:

✓ Wireless charging range
✓ Charging rate

• Defining the effective charging range between the MC and the sensor nodes to
achieve optimal energy transfer efficiency is a challenge.

• Determining the rate at which energy can be transferred wirelessly to maximize
charging speed while avoiding overheating.

• The MCs themselves require energy to operate. Balancing the energy
consumption of the MCs with the energy they provide to sensors is a challenge.

[29,110,117–119]

• MC deployment and scheduling:

✓ Charger density
✓ Charger scheduling
✓ Collision avoidance

• Coordinating the scheduling of mobile charging operations is complex.
Determining when and where to deploy MCs to provide sufficient energy to
sensors without causing disruptions to the network’s operations requires careful
planning. Deciding the number and deployment locations of MCs to ensure
adequate coverage and minimize delays.

• Developing strategies for coordinating the movements of multiple MCs to avoid
collisions and congestion is a big challenge. incorporating collision avoidance
mechanisms is essential to prevent disruptions and accidents.

[18,120,121]

• Coverage and capacity

✓ Charging coverage and efficiency
✓ Energy distribution

• Ensuring adequate coverage of the entire network and having sufficient capacity
to charge multiple sensors simultaneously are challenges. The design should
accommodate different charging requirements across sensors.

[22,43,122,123]

• Dynamic network changes:

✓ Node mobility
✓ Charger replenishment

• WRSNs are dynamic environments where sensors can move, fail, or be added or
removed. Mobile charging techniques must be adaptable to these changes to
ensure that sensors are effectively charged despite the network’s fluctuations.

• Addressing challenges posed by dynamic node movements, which can affect the
accuracy of node location prediction and MC navigation.

• Ensuring that MCs themselves have sufficient energy to perform charging
operations and navigate the network.

[109,117,124]

• Charging infrastructure:

✓ Charging time
✓ Charger localization
✓ Location prediction

• Predicting the optimal charging time and locations for sensors is a challenge.
Factors such as sensor energy levels, mobility patterns and traffic conditions need
to be considered to make accurate predictions.

• Implementing accurate localization techniques to determine the positions of both
the MCs and the sensor nodes is a challenge.

• Designing the infrastructure required for wireless charging, including charging
stations, power management, and comm protocols.

[122]
• Energy consumption trade-offs:

✓ Charging overhead
• Evaluating the energy consumption required for MC’s navigation and wireless

charging operations compared to the energy gained by sensor nodes.

[18,117,124] • Communication and coordination
• Effective communication and coordination among the MCs and with the network

infrastructure are crucial. Overcoming this challenge and ensuring seamless
coordination are design priorities.

[49,124]

• Security and privacy:

✓ Authentication
✓ Data privacy

• Implementing authentication mechanisms to prevent unauthorized MCs from
accessing the network.

• Ensuring that sensitive data, such as charging schedules and energy levels remain
secure during wireless charging operations.

[125,126]

• Energy distribution and allocation:

✓ Fair energy distribution
✓ Prioritization

• Developing algorithms to ensure equitable energy distribution among sensor
nodes during group charging (one-to-many scheme).

• Defining criteria for prioritizing sensor nodes based on their energy levels,
criticality, or operational requirements.
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Table 6. Cont.

References Design Challenges Explanation

[42,118,124] • Minimum number of MCs • Determining the minimum number of MCs to keep the network perpetually
operational is an N-P hard problem.

[22,117,124,127]

• Space–time scheduling:

✓ Traveling path
✓ Charging time

• The movement of MCs is usually constrained by both space and time. For
instance, in a mission-critical scenario, the MC must accomplish each charging
task within a given deadline. The following are some of the trade-offs that need to
be addressed. (1) How to determine the travelling path of the MCs; (2) How to
find the charging time of the sensors; (3) How to find the speed of the MCs.

• Constructing the travelling path and determining the optimal trajectory of the
MCs is a challenge.

• The naïve idea is to allocate an identical charging time to all the sensors following
a full or partial charging policy. However, in real-time scenarios, the charging
time of sensors differs from each other due to their non-deterministic energy
consumption rates. In addition, since energy consumption of the sensor nodes is
proportional to the distance between the sensors and the MCs, charging time will
increase as the distance increases and WPT efficiency decreases.

3.2. Security Challenges in WRSNs

WRSNs are inherently more susceptible to security threats compared to the traditional
wireless sensor network (WSNs) due to the open nature of their transmission medium.
This increased vulnerability arises due to the additional complexity introduced by WPT
mechanisms and the dynamic nature of energy provisioning in WRSNs. This vulnerability
becomes even more critical in large-scale deployments where the stakes of compromised
data or operations are significantly higher. As WRSNs are utilized across diverse applica-
tions, ensuring data confidentiality is vital to secure communication between sensor devices
within the network and between sensors and the sink node [128]. Furthermore, it is essen-
tial to verify transmitted information to ensure that adversaries have not compromised the
transmission channel.

A range of security threats can affect WRSN applications, including spoofing attacks,
denial of service (DoS), node subversion, sinkhole attacks, jamming, and Sybil attacks,
among others. Comprehensive studies on the security threats, challenges, and issues in
WRSNs are available in the literature [17,49,68,129–132]. The need for mobility, sustainabil-
ity, and large-scale distribution of sensor devices has rendered conventional power cords
obsolete as they fail to meet these demands. Additionally, battery replenishment is often
infeasible and incurs significant costs. This has led to the emergence of energy harvesting
(EH) and wireless power transfer (WPT) technologies. However, the adoption of RF-based
WPT technologies for powering cyber-physical systems (CPSs) introduces its own set of
challenges. A major challenge of RF-based WPT is ensuring the security of data transmitted
over the network. The free-space nature of WPT communication makes it vulnerable to
adversaries who can interfere with the charging operation, potentially stealing sensitive
information or exposing the system to safety and security vulnerabilities. CPSs, defined
as smart systems integrating cyber technologies with physical components [133,134] face
unique security challenges. Key challenges for CPSs are discussed by Leitao et al. [134],
while Radanliev et al. [133] propose security measures tailored to these systems. To address
CPS vulnerabilities, the authors advocate for anti-malicious and anti-tamper system engi-
neering, along with the development of unique security solutions that address gaps not
covered by traditional IT approaches. These measures are critical for ensuring the safe and
reliable operation of CPSs in the context of WPT networks.

Key factors contributing to the susceptibility of WRSNs to security threats are further
highlighted in [129,132,135,136] and include the following:

• Open nature of communication and power transfer: Like WSNs, WRSNs rely on wire-
less communication, making them vulnerable to traditional security threats such as
eavesdropping, spoofing, and denial of service (DoS). WPT introduces a new channel
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for adversaries to exploit. For example, an attacker could intercept or manipulate the
charging process, potentially leading to unauthorized energy harvesting, charging
disruptions, or data breaches.

• Dependency on wireless power transfer (WPT): The open space used for WPT can
be intercepted by malicious actors to harvest energy illegitimately or disrupt power
delivery to legitimate sensors. Adversaries can deliberately force WRSNs to use their
limited energy reserves, compromising both data transmission and system stability.

• Cyber-physical system (CPS) integration: WRSNs, as part of cyber-physical systems,
integrate with physical components (e.g., actuators, environmental sensors). This
introduces vulnerabilities not only in the communication layer but also in the physical
domain, where adversaries can tamper with or destroy nodes. Many WRSNs are used
in time-sensitive applications. Attackers exploiting timing vulnerabilities can cause
delays or failures in critical processes, leading to cascading system disruptions.

• Security threats unique to WRSNs: Battery exhaustion attacks pose a significant
threat to WRSNs, as malicious entities target nodes with excessive energy requests,
forcing them to remain active and prematurely depleting their energy reserves. Ad-
versaries may also spoof energy requests, diverting critical resources away from
legitimate nodes, leading to system inefficiencies or even node failure. Further-
more, WPT channels can unintentionally reveal sensitive information, such as the
network’s energy topology, the locations of critical nodes, or the routes of mobile
charging vehicles (MCVs), providing adversaries with valuable insights to launch
strategic attacks.

• Increased complexity of network management: WRSNs dynamically adapt to varying
energy demands, requiring frequent communication for energy requests. This creates
opportunities for adversaries to exploit vulnerabilities by injecting malicious data,
launching man-in-the-middle (MITM) attacks, or overwhelming the system with false
energy requests, such as energy-depletion attacks. Additionally, the network’s reliance
on nodes to report their energy status makes it vulnerable to false data injection, which
can result in inefficient energy allocation and potential system disruptions.

• Mobility of charging vehicles and routing vulnerabilities: Mobile charging vehicles
(MCVs) or drones play a crucial role in WRSNs, but they also present significant
security risks. If an adversary gains control of an MCV, they can disrupt the entire
energy provisioning process, disable sensor nodes, or steal sensitive data. Moreover,
predictable routes or schedules used by MCVs can be exploited, enabling targeted
attacks that compromise the network’s stability and efficiency.

In summary, while WRSNs offer significant advantages over traditional WSNs, their
reliance on WPT, integration with mobility systems, and dynamic energy management make
them inherently more susceptible to security threats. Addressing these vulnerabilities re-
quires a holistic approach that combines traditional WSN security measures with specialized
protections for the energy provisioning and physical components unique to WRSNs.

3.3. Charging Conflicts Due to Improper Coordination

In WRSNs, efficient energy provisioning is critical for maintaining uninterrupted
network functionality. Improper coordination in the charging process can lead to charging
conflicts, which negatively affect the system’s performance and reliability. These conflicts
typically arise due to overlapping charging demands, limited energy resources, inadequate
scheduling, or communication breakdowns between network components.

In environments with multiple energy transmitters and receivers, malicious or greedy
energy receivers can disrupt the energy replenishment process. A fully charged malicious
receiver might falsely report high RF values, causing transmitters to reduce or cease power
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transmission, depriving nearby nodes of energy. Additionally, such receivers can inject
malicious feedback to undermine transmission efficiency. Greedy receivers may repeatedly
send charging requests to monopolize resources, starving neighboring nodes of energy.
This issue is exacerbated when transmitters use directional antennas, further concentrating
energy on dishonest nodes and worsening network imbalance.

Charging conflicts in WRSNs, stemming from improper coordination, pose a sig-
nificant challenge to efficient energy provisioning. By implementing robust scheduling,
real-time communication protocols, and adaptive management strategies, these conflicts
can be minimized, ensuring the stability, efficiency, and longevity of the network.

4. Energy Management Strategies in WRSNs
This section presents a survey of energy management strategies in WRSNs. Effective

energy management is critical to the operation of WRSNs, as these networks rely on con-
strained energy resources for continuous functioning. Managing energy efficiently ensures
prolonged network lifespan, reduced downtime, and enhanced reliability. Major energy
management strategies include energy harvesting, energy scheduling, energy allocation,
and energy optimization, each tailored to address the unique challenges of WRSNs. Effec-
tive energy management is crucial for optimizing the performance of on-demand energy
provisioning schemes in WRSNs. Key energy management strategies also include the
following [13,55,97,137]:

• Clustering and grouping: Nodes are grouped into clusters based on their energy levels,
locations, or tasks. Techniques like K-means clustering improve charging efficiency
and reduce travel delays.

• Energy-efficient routing: advanced routing algorithms minimize the travel distance of
WCVs and avoid unnecessary energy consumption.

• Dynamic prioritization: nodes with critical energy levels or higher importance
(e.g., nodes covering essential targets) are prioritized for charging.

• Multi-WCV coordination: synchronizing the actions of multiple WCVs ensures balanced
energy distribution and minimizes conflicts.

• Integration with energy harvesting: combining on-demand charging with ambient en-
ergy harvesting reduces dependence on external charging, creating a hybrid energy
provisioning model.

WRSNs frequently utilize energy harvesting technologies to replenish sensor nodes
and ensure sustainable operation. Energy harvesting can be broadly categorized into
ambient energy harvesting and on-demand wireless power transfer (WPT). In ambient
energy harvesting, nodes capture energy from naturally available sources, such as solar,
thermal, or kinetic energy, to complement WPT systems. This reduces reliance on external
chargers and enables continuous operation in resource-constrained environments. On
the other hand, in on-demand WPT, energy is delivered directly to nodes using WPT
technologies such as RF-based methods or magnetic resonance coupling. This approach
allows for targeted energy replenishment of nodes with critical energy needs.

4.1. Energy Harvesting Strategies in WRSNs

Energy harvesting techniques, sometimes referred to as ambient resource techniques,
generate energy sources that power the sensor network, supporting uninterrupted func-
tionality. Examples of energy harvesting schemes in WRSNs include solar, wind, thermal,
mechanical, and RF-based sources [138,139]. The fundamental goal is to convert energy from
one form to another that can be utilized to power electronic devices effectively.

By leveraging these diverse energy harvesting approaches, WRSNs can enhance their
energy sustainability, reduce operational dependency on external infrastructure, and expand
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their applicability to a variety of scenarios. The authors in [138] discussed four renewable
energy harvesting strategies namely solar, wind, mechanical, and thermal. They presented an
architecture of the renewable energy harvesting schemes as shown in Figure 14.
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4.1.1. Solar-Based Energy Harvesting and Management Strategy

This is one of the most efficient and widely adopted methods for powering WRSNs. It
utilizes sunlight, a renewable and abundant energy source, to generate electricity, ensuring
the sustainable operation of sensor nodes. This approach is particularly well-suited for
outdoor deployments in applications such as environmental monitoring, smart agriculture,
and disaster response [138,140]. A practical example of the effectiveness of a solar energy-
based harvesting and management strategy can be observed in urban smart lighting
systems. In this scenario, a smart city deploys solar-powered sensor nodes to manage
streetlights based on ambient light levels and pedestrian traffic. During the day, these
nodes harvest solar energy and store it in energy storage systems, ensuring sufficient power
for streetlights at night. Energy management circuits optimize usage by activating lights
only when needed, significantly reducing energy waste. This approach highlights both
reliability and sustainability, allowing the system to operate autonomously while reducing
the city’s reliance on grid power. A comprehensive survey of solar energy harvesting is
presented in [141]. Figure 15 shows the basic internal block diagram of a solar energy
harvesting model.
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4.1.2. Wind-Based Energy Harvesting and Management Strategy

This is an effective solution for powering WRSNs, particularly in environments where
consistent wind flow is available, such as coastal regions, plains, or elevated terrains. This
approach leverages wind turbines or micro wind generators to convert kinetic energy from
wind into electrical energy, supporting sustainable operation and reducing dependence
on traditional power sources. Wind energy is a form of kinetic energy derived from
the movement of large air masses. It is influenced by solar energy, as factors such as
temperature, air density, and pressure interact to drive wind patterns. Approximately 2%
of all solar radiation reaching the Earth’s surface is converted into the kinetic energy of
atmospheric movement [138]. Wind energy is widely used for electricity generation and is
considered one of the fastest-growing renewable energy sources [142]. A practical example
of the effectiveness of a wind energy-based harvesting and management strategy can be
found in remote environmental monitoring along coastal areas. Sensor nodes are deployed
along the coastline to track environmental parameters such as wind speed, temperature,
and humidity. These nodes are powered by wind energy harvested through micro-turbines,
taking advantage of the consistent coastal winds. Energy sharing mechanisms enable
nodes with surplus power to distribute excess energy to neighboring nodes, ensuring a
balanced energy supply. This strategy offers a sustainable solution in areas where solar
energy is unreliable due to frequent overcast conditions, while the energy sharing capability
enhances the resilience and reliability of the network.

In the context of wind-powered sensor nodes, the system consists of three primary
components namely an energy harvester that incorporates a wind turbine coupled with
an electrical generator to capture and convert wind energy into electricity, a power man-
agement unit that regulates and optimizes the harvested energy for efficient use, and a
wind turbine generator that converts the mechanical energy from the turbine into electrical
energy for powering sensor nodes [143]. This setup enables sensor networks to leverage
wind as a sustainable energy source for continuous operation in various applications.
Figure 16 shows a typical wind energy-based harvesting model that can be exploited for
WRSN applications.
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Charging scheduling mechanism: In the context of wind-powered sensor nodes, charg-
ing is typically scheduled based on the availability of wind energy, the energy demands of
the sensor nodes, and the capacity of the energy storage system. The energy harvesting
monitoring system continuously monitors wind speed and energy generation. The energy
harvester (wind turbine coupled with an electrical generator) captures wind energy, con-
verting it into electrical power. The power management unit (PMU) plays a crucial role in
regulating and optimizing the use of harvested energy. It assesses the current energy levels
of the sensor nodes and prioritizes charging based on real-time needs. Nodes with critical
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energy levels or higher importance in the network (e.g., those managing crucial data) are
prioritized. Depending on wind conditions, the PMU adapts the charging schedule. In
times of high wind energy availability, excess energy is stored in batteries or superca-
pacitors, ensuring availability during low-wind periods. Conversely, during low wind
conditions, stored energy is utilized to maintain network operation.

Wind turbine’s role: In scenarios where the wind turbine is solely dedicated to serving
wireless sensor networks (WSNs), it is optimized specifically for powering the nodes.
The entire energy harvested is allocated for the network’s operational needs, ensuring
continuous monitoring and data transmission. In some setups, the wind turbine may
serve multiple purposes, such as powering other local applications (e.g., lighting, small
appliances) alongside the WSNs. In such cases, the PMU must balance and allocate energy
between the different uses, potentially prioritizing critical operations like sensor network
maintenance during periods of limited wind energy.

This flexible and adaptive charging scheduling ensures the sustainability and relia-
bility of wind-powered WRSNs, making them suitable for remote and environmentally
sensitive applications.

4.1.3. RF-Based Energy Harvesting and Management Strategy

Radio frequency (RF)-based energy harvesting is a promising method for powering
WRSNs. It involves capturing electromagnetic waves from ambient or dedicated RF sources
and converting them into electrical energy for sensor operation. This technology is particu-
larly advantageous in urban areas and environments with high RF signal density, where
ambient RF energy is abundant [17]. RF-based energy harvesting leverages electromagnetic
waves to generate electrical energy, providing a viable power solution for WRSNs. This
method captures energy from ambient or dedicated RF sources, such as Wi-Fi routers,
cellular towers, or RF transmitters, and converts it into usable power for sensor nodes [49].
RF-based energy harvesting (EH) captures and converts ambient RF signals into usable elec-
trical energy using rectifying antennas (rectennas). These antennas harvest electromagnetic
(EM) signals from sources like mobile phones, TV broadcasts, and radio stations, generating
DC voltage. The harvested energy can be stored in batteries or directly power low-energy
devices. A practical example of the effectiveness of an RF-based energy harvesting and
management strategy is seen in smart agriculture for crop monitoring. IoT sensors are
deployed across a large agricultural field to track soil moisture, temperature, and crop
health. In this approach, RF energy is harvested from dedicated transmitters strategically
placed around the field. AI-driven energy allocation prioritizes energy distribution based
on node criticality and real-time monitoring needs. This strategy ensures the continuous
operation of essential sensors, providing accurate data for efficient water and resource
management, ultimately improving crop yields and agricultural productivity.

The process involves three main components, namely, antennas, used to capture
RF signals across specific frequencies; rectifiers (rectennas), which convert the alternat-
ing current (AC) RF signal into direct current (DC); and energy storage and manage-
ment, used to store harvested energy in batteries or supercapacitors and regulate its
distribution [17]. Among various EH mechanisms, RF-based EH has emerged as a promis-
ing alternative despite its low power density [144,145]. This is due to the ubiquity of RF
energy signals, which enable the harvesting of sufficient energy to power numerous sensor
devices. Consequently, RF energy harvesters are a viable energy source for WRSN appli-
cations. A detailed review is provided in [145,146]. RF-based EH is particularly suitable
for low-power applications [147]. Figure 17 presents the circuit diagram of an RF energy
harvesting system, highlighting its key components.
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There are two models for RF power harvesting and communication with other sensor
nodes: single-radio and dual-radio systems [139]. In the dual-radio model, one radio
receives RF signals for energy harvesting, while the other handles communication. In the
single-radio model, a single radio performs both functions, simplifying the harvesting and
communication software.

A key limitation of RF power sources is the rapid signal attenuation with distance,
resulting in very low power levels for harvesting [148]. Other limitations of RF include
low power density [146], interference risks [49], and regulatory restrictions [145]. However,
the growing presence of wireless communication and broadcasting infrastructure (e.g.,
analog/digital TV, AM/FM radio, and Wi-Fi networks) is steadily increasing ambient RF
energy density, particularly in urban areas [95].

RF-based energy harvesting has several advantages over solar, thermal, and wind-
based sources, particularly its wide availability indoors [139]. Additional benefits include
on-demand power delivery, where dedicated RF transmitters can target specific nodes
for energy replenishment, and seamless integration in environments with limited natural
energy sources such as solar or wind [146]. Potential applications include smart homes [95],
smart cities [17], health monitoring [145], remote sensing [66], and environmental monitor-
ing (e.g., pollution and agriculture) [144,145].

In summary, RF-based EH is a promising technique for sustaining WRSNs in energy-
constrained environments. While it faces challenges like low power density and regulatory
limits, recent advancements are steadily improving its practicality. By complementing
other harvesting methods, RF-based systems can enhance the resilience and autonomy of
WRSNs in diverse applications.

Table 7 shows a summary of the energy harvesting strategies in WRSNs.

4.2. Energy Storage Techniques in WRSNs

Energy storage is a critical aspect of WRSNs, as the lifetime, efficiency, and reliability
of these networks depend heavily on the energy storage capabilities of individual sensor
nodes. Efficient energy storage systems ensure that nodes can perform their tasks, maintain
connectivity, and participate in the network’s charging protocols without frequent failures.
This discussion outlines the key considerations, challenges, and advancements related
to energy storage in WRSNs. Sensor nodes typically rely on rechargeable batteries such
as lithium-ion (Li-ion) or lithium-polymer (Li-Po) due to their high energy density, long
cycle life, and reliability. Supercapacitors are also being explored for their rapid charging
capabilities and durability. The energy storage capacity of a node’s battery must be sufficient
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to support its sensing, communication, and computational tasks, while accommodating
irregular charging intervals.

Table 7. Energy harvesting strategies in WRSNs.

Technique Energy
Source Power Density Advantages Challenges Applications Recent Advancements

Solar energy
harvesting
[140,149–151]

Sunlight 15 mW/cm2

• Renewable and
abundant

• High efficiency
• Low operational

cost

• Weather and
time-dependent

• Requires energy
storage

• Reduced
efficiency in
shaded areas

• Environmental
monitoring

• Smart
agriculture

• disaster
response

• High efficiency
PV cells

• Flexible and
light weight
panels

• Self-cleaning
technologies

Wind energy-based
harvesting
[139,143]

Wind
motion or
air flow

28.5 mW/cm2

• Renewable
• Works at night
• Complements

solar energy

• Highly
dependent on
wind
availability

• Maintenance of
moving parts

• Noise and
integration
issues

• Costal
monitoring

• Remote
environmental
sensors

• Smart cities

• Micro wind
turbines

• Aerodynamic
turbine designs

• Hybrid
solar-wind
systems

Mechanical
energy-based
harvesting
[138,152,153]

Vibrations,
structural
movement

250 µW/cm3

• Utilizes ambient
vibrations

• Compact and
scalable

• Limited to
vibration-prone
environments

• Low energy
output per node

• Structural health
monitoring

• Industrial
equipment
monitoring

• Piezoelectric
materials

• Wideband
energy harvester

Thermal
energy-based
harvesting
[138,139]

Temperature
or heat 15 mW/cm2

• Ideal for
temperature-
variable
environments

• Continuous
source

• Requires
substantial
temperature
differences

• Low energy
conversion
efficiency

• Industrial
processes

• Building
management

• Space and
deep-sea
exploration

• Thermoelectric
materials with
high Seebeck
coefficient

• Improved heat
dissipation
designs

RF-based energy
harvesting
[139]

Ambient
RF signals

12 nW/cm2

0.2 mW/cm2

• Ubiquitous in
urban areas

• Supports
on-demand
WPT

• Limited energy
density

• Interference
with RF
communication

• Requires precise
alignment

• Urban IoT
devices

• Smart homes
• Medical

implants

• Beamforming
and directional
antennas

• High
efficiency-RF
rectifiers

• Adaptive
frequency
harvesting

Energy storage refers to technologies that convert energy from a form that is difficult to
store (e.g., electrical energy) into a storable form (e.g., chemical energy) and later reconvert
it into a directly usable form [139]. Various energy storage technologies differ in terms
of capacity, power, and charge/discharge rates, with the choice depending on application
requirements. For environmental monitoring, energy storage units must meet specific criteria,
including compact size, adequate capacity, and minimal environmental impact. In RF energy
harvesting systems, supercapacitors and rechargeable batteries are commonly used to store
harvested energy, enabling extended operation of wireless sensor nodes [145,148]. Energy
storage in sensor nodes is typically classified into two categories [139,148]: (1) supercapacitors,
which excel in quick charge/discharge cycles and high cycling efficiency, and (2) rechargeable
batteries, known for their higher energy density and longer energy storage capabilities.
Selecting an energy storage mechanism involves balancing factors such as lifespan, cycling
efficiency, charging/discharging speed, energy density (size), and material density (weight),
depending on the application [154].

4.2.1. Advancements in Energy Storage Technologies

Energy storage technologies have advanced significantly in response to the growing
demand for efficient, durable, and high-performance solutions in applications such as
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WRSNs, electric vehicles, renewable energy systems, and consumer electronics. Among
these advancements, rechargeable batteries and supercapacitors stand out as two key areas of
innovation [139,145,154]. These technologies have undergone significant development to
address limitations related to energy density, charging speed, durability, and scalability.

A. Rechargeable Batteries

Rechargeable batteries store energy via reversible chemical reactions. They are widely
used in WRSNs due to their high energy density, ability to supply consistent power, and
compatibility with wireless charging technologies. Batteries can be classified as primary
(non-rechargeable) or secondary (rechargeable) [139,154]. Primary batteries offer advan-
tages such as higher capacity and better temperature stability, but their main drawback is
the need for periodic maintenance and replacement once they reach the end of their life.
In contrast, secondary batteries are rechargeable but are limited by their cycling capacity,
which determines the number of charge/discharge cycles. As their capacity decreases
over time, they eventually need to be replaced when they can no longer meet application
requirements [154].

Batteries serve as an alternative to supercapacitors for energy storage and can also
function as rechargeable power supplies in energy harvesting circuits. Various types of
batteries are available, including nickel–cadmium (NiCd), sealed lead acid (SLA), nickel-
metal hydride (NiMH), lithium (Li), and lithium-ion (Li-ion). Lithium and lithium alloy
batteries are particularly advantageous due to their higher efficiency compared to other
types [145,146,154]. The equivalent model of a battery is typically represented as a series
connection of an ideal voltage source and internal resistance [155].

When used as a load in energy harvesting circuits, the charging efficiency of a bat-
tery depends on the charging current, with an optimal current that maximizes charging
efficiency [145]. While batteries offer higher energy density than supercapacitors and con-
ventional capacitors, they have lower power density and shorter lifespans. To address some
of these limitations, a new energy storage device called a “supercapattery” has recently
been developed [145]. A supercapattery is a hybrid energy storage device that combines
the properties of supercapacitors and batteries, aiming to leverage the strengths of both
technologies. It integrates the high energy density of batteries with the high power density
and long cycle life of supercapacitors [156].

B. Supercapacitors

Addressing the limitations of rechargeable batteries, such as cycling capacity and
lifespan, has led to the development of battery-free nodes that eliminate the need for
frequent battery replacement. Supercapacitors have gained significant interest in energy
harvesting systems as either replacements for or supplements to batteries to overcome their
limitations [154,157]. Supercapacitors, also known as ultracapacitors or electrochemical
capacitors, are energy storage devices that store energy through electrostatic charge separa-
tion, rather than chemical reactions as in traditional batteries. This fundamental difference
provides them with unique advantages in terms of rapid charging and high durability.
Supercapacitors are distinguished by their high-power density compared to batteries and
conventional capacitors.

Supercapacitors, a type of electrochemical double-layer capacitor, offer high energy
storage capacity with greater power density than batteries and higher energy density
than conventional capacitors. These characteristics position them between conventional
capacitors and rechargeable batteries. Their fast charging, excellent discharge performance,
and long lifespan make them ideal for storing harvested energy [154,158].

Unlike batteries, supercapacitors operate based on an electrochemical mechanism
that allows them to quickly store large amounts of energy. While their energy density is
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lower than that of batteries, it is significantly higher than that of conventional capacitors,
and they exhibit superior charging efficiency, enabling faster charging [154]. Compared
to rechargeable batteries, supercapacitors offer several advantages for energy harvesting
sensor nodes [139,145,154], including the following:

• Extremely long lifespans (over one million charge–discharge cycles);
• High charging and discharging efficiency;
• Broad operating temperature ranges;
• Minimal aging and degradation over time;
• Eco-friendlier material composition.

Recent advancements have improved the energy density of supercapacitors to lev-
els comparable to rechargeable batteries, making them practical for energy storage
applications [154]. However, they cannot directly replace batteries without considering
their distinct charging and discharging characteristics. Supercapacitors differ from batteries
in several major ways, including the following [154,159]:

• Lower energy density: while improving, their energy density remains less than that of
batteries, necessitating careful capacitance optimization to store sufficient energy.

• High self-discharge rates: they can lose 60% of their charge per month or 11% per
day [159], which may reduce operational efficiency during extended periods of low
ambient energy availability.

• Fast discharge: once fully charged, they discharge at much higher rates than traditional
batteries, which can be problematic for sustaining loads over long durations during
energy shortages [160].

To fully utilize supercapacitors in energy harvesting systems, addressing self-discharge
and optimizing energy storage capacity are critical.

Supercapacitors are categorized into three types based on their energy storage mech-
anisms: electrochemical double-layer capacitors (EDLCs), pseudo-supercapacitors, and hybrid
supercapacitors [139,154,159,161]. Each type can be constructed from a variety of materials,
which influence their specific properties. A comprehensive summary of these material
types, their impact on specific capacitance, and detailed information about each super-
capacitor type is provided by the authors in [161]. EDLCs (ultracapacitors) operate on
electrochemical principles, storing electric charge between electrodes with high surface
area and thin electrolytic dielectrics. Their maximum operating voltage is limited by the
breakdown properties of the dielectric material, with a safety margin incorporated into
the rated voltage to prevent electrolyte decomposition and short circuits [148]. EDLCs
are the most widely used and commercially dominant supercapacitors due to their lower
cost compared to other types. They offer good durability, energy density, and cycling
stability, enduring millions of charge/discharge cycles [159,161]. Pseudo-supercapacitors,
also known as Faradaic Supercapacitors, operate via fast and reversible redox reactions,
making their principle of operation more similar to that of batteries than capacitors. They
achieve greater energy density and capacitance (10–100 times higher than EDLCs). How-
ever, they have drawbacks such as lower power density, reduced cycling stability, lower
charging efficiency, slower discharge rates, and faster component degradation compared to
EDLCs [159–163]. Hybrid supercapacitors are the most recent innovation in supercapacitor
technology by combining components of both EDLCs and pseudo-supercapacitors. This
design enables higher energy density, power density, cycling efficiency, and voltage, along
with the ability to deliver higher currents than other supercapacitor types. Structurally and
operationally, they resemble lithium-ion batteries but with higher power density and lower
energy density, while retaining the general benefits of capacitors [159,161].
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4.2.2. Collaborative Benefits of Rechargeable Batteries and Supercapacitors in WRSNs

In WRSNs, the collaboration between rechargeable batteries and supercapacitors offers
a powerful energy storage solution that enhances the system’s efficiency, longevity, and
adaptability to varying power demands. This hybrid energy storage system leverages the
strengths of both components to address the inherent limitations of each, ensuring optimal
energy management in resource-constrained and dynamic environments. The combination
allows supercapacitors to handle short-term, high-power demands, reducing the strain on
batteries and preventing deep discharges. This leads to more efficient energy usage and
less energy wastage. By offloading peak power demands to supercapacitors, batteries are
subjected to fewer charge/discharge cycles and can operate within a more stable range. This
reduces wear and tear, significantly extending the operational life of the batteries. In terms
of scalability and adaptability, this combination is particularly useful in large-scale WRSNs
where energy demands can vary widely. The hybrid system can adapt to diverse power
requirements across different nodes, enhancing the overall scalability and resilience of the
network. In summary, the collaboration of rechargeable batteries with supercapacitors in
WRSNs provides a balanced and efficient energy storage solution, addressing both short-
term and long-term energy needs while improving the overall reliability and longevity of
the network. Table 8 provides a summary of the comparative advantages of supercapacitors
and rechargeable batteries.

Table 8. Comparative advantages of supercapacitors and rechargeable batteries.

Reference Feature Supercapacitors Rechargeable Batteries

[156,162] Energy density Low–moderate High
[155,161] Power density Very high Moderate
[162,163] Cycle life Over 1,000,000 cycles Typically, 500–3000 cycles
[158,159] Charging speed Seconds Minutes
[139,154] Cost Higher per energy unit Lower per energy unit
[145,154] Durability Excellent (low degradation) Moderate to good (degrades over time)
[139,145,154,159] Applications High-power, short-duration needs Long-duration, steady power needs

5. Future Trends and Opportunities in On-Demand WPT for WRSNs
On-demand energy provisioning in large-scale wireless rechargeable sensor networks

(WRSNs) is a dynamic approach to ensuring that the energy needs of distributed sensors
are met efficiently through wireless power transfer (WPT). This concept is especially
vital for large-scale deployments where traditional methods like battery replacements
are impractical due to high costs, logistical challenges, and environmental impact. The
evolving demands of WRSNs necessitate innovations in on-demand WPT technologies.
These advancements aim to enhance efficiency, scalability, security, and sustainability to
address challenges such as dynamic energy requirements, security vulnerabilities, and
the limitations of existing technologies. Future advancements in WPT technologies and
AI-driven management algorithms are expected to increase the efficiency and feasibility
of large-scale WRSNs, enabling broader adoption across industries. Below are some key
future trends:

• Advanced energy harvesting and transmission techniques: This involves adopting
multi-modal energy harvesting and advanced WPT technologies. By integrating
various energy harvesting modalities, such as RF, solar, and kinetic, energy availability
can be enhanced while reducing reliance on a single power source. Hybrid systems
enable nodes to harvest ambient energy alongside on-demand power, fostering a more
sustainable energy ecosystem. Emerging WPT technologies, including laser-based and
millimeter-wave power transfer, offer improved efficiency and extended transmission
ranges compared to traditional RF and inductive methods. Additionally, magnetic
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resonant coupling with optimized alignment mechanisms enhances mid-range energy
transfer while minimizing power loss [164,165].

• Intelligent charging management: This approach leverages AI-driven energy alloca-
tion and decentralized coordination protocols. Artificial intelligence and machine
learning algorithms can predict energy demands, optimize charging schedules, and
dynamically prioritize nodes based on real-time network needs. Predictive analytics
further minimizes charging latency and maximizes resource utilization. Meanwhile,
decentralized energy management using blockchain [166] or distributed ledger tech-
nology [167] provides secure, tamper-proof coordination between charging devices
and sensor nodes. Autonomous, self-organizing protocols eliminate dependence on
central controllers, improving scalability and enhancing network robustness.

• Enhanced security mechanisms: This approach focuses on securing WPT channels and
implementing trust and reputation systems. Cryptographic solutions and robust com-
munication protocols safeguard WPT channels from threats such as eavesdropping,
spoofing, and energy theft [17,49,168]. Anti-tampering technologies further protect
energy transmitters and receivers from physical and cyber-attacks. Additionally, trust-
based frameworks can evaluate the behavior of energy receivers, mitigating risks like
false reporting and energy monopolization by malicious or greedy nodes.

• Energy-aware network architectures: This approach emphasizes energy-aware net-
work architectures, incorporating energy-optimal node deployment and inter-node
energy sharing. Adaptive node placement strategies can minimize energy consump-
tion while maximizing WPT efficiency [169]. Deploying relay nodes or energy hubs
strategically extends WPT coverage and reduces power loss. Additionally, peer-to-
peer energy sharing via short-range WPT enables nodes to distribute surplus energy,
decreasing reliance on central transmitters and improving network resilience.

• Integration with next-generation technologies: This approach focuses on integration
with next-generation technologies, including IoT and 6G networks. The convergence of
WRSNs with IoT will require WPT solutions that support high-density, heterogeneous
devices with diverse energy needs. Edge computing in IoT-enabled WRSNs can further
reduce the energy overhead associated with data processing and communication [170].
Additionally, advanced wireless networks like 6G will provide ultra-reliable, low-
latency WPT communication, enabling real-time energy management for WRSNs.
These networks will also enhance the precision of mobile charging vehicle (MCV)
navigation and facilitate dynamic power adjustments for improved efficiency.

• Environmental and economic sustainability: This approach prioritizes environmen-
tal and economic sustainability through green energy integration and cost-effective
WPT solutions. Utilizing renewable energy sources, such as solar-powered charging
stations for MCVs [171], can significantly reduce the environmental impact of WRSNs.
Additionally, designing energy-efficient WPT devices with minimized electromagnetic
interference supports eco-friendly objectives. Developing affordable WPT infrastruc-
ture and devices will further enhance accessibility, enabling diverse applications such
as smart agriculture and disaster response.

• Application-specific customizations: This approach emphasizes application-specific
customizations, catering to mission-critical applications and high-mobility environ-
ments. WPT technologies designed for mission-critical scenarios, such as healthcare
monitoring and military surveillance [49,138,172] will prioritize reliability, robust se-
curity, and minimal downtime. In high-mobility settings like transportation and smart
cities, advancements in mobile charging vehicles (MCVs), including autonomous
navigation and obstacle avoidance, will enhance WPT efficiency and ensure seamless
energy delivery.



Energies 2025, 18, 358 34 of 42

• Multi-charger optimization: develop algorithms for collaborative charging among
multiple MCs to reduce delays and improve scalability.

• Hybrid approaches: combine on-demand and periodic strategies to balance real-time
responsiveness and predictable energy management.

• Energy harvesting integration: supplement wireless charging with renewable energy
sources like solar panels on nodes to reduce dependency on MCs.

• Hierarchical scheduling models: implement hierarchical frameworks that divide net-
works into smaller clusters, each managed by local MCs to reduce scheduling complexity.

• Dynamic clustering techniques: use adaptive clustering algorithms that evolve with
network conditions to ensure efficient grouping of nodes.

• Intelligent algorithms: employ AI-driven optimization to improve decision-making
under dynamic and resource-constrained conditions.

The future of on-demand WPT for WRSNs lies in the convergence of advanced tech-
nologies, sustainable practices, and intelligent management systems. By addressing current
limitations and leveraging innovations like AI, blockchain, and next-generation wireless
networks, WPT can revolutionize energy provisioning in WRSNs, making them more
efficient, scalable, and adaptable to a wide range of applications. In summary, on-demand
energy provisioning in large-scale WRSNs is a transformative approach that enables sus-
tainable, flexible, and cost-effective sensor network operation through intelligent, wireless
energy delivery systems. The ongoing development of more sophisticated WPT, routing
algorithms, and energy management protocols will further optimize this technology’s
implementation. By addressing the challenges of scalability, optimization complexity, and
resource limitations, on-demand wireless charging can evolve into a robust and adaptable
solution for energy management in WRSNs.

6. Conclusions
This paper has presented a comprehensive review of on-demand energy provisioning

strategies for large-scale wireless rechargeable sensor networks (WRSNs), encompassing
energy harvesting techniques, storage solutions, and energy management strategies. These
approaches are crucial to addressing the dynamic and resource-constrained nature of
WRSNs, ensuring their viability for a range of applications such as environmental monitor-
ing, precision agriculture, and smart cities. Our analysis has highlighted advancements
in energy harvesting technologies, including solar, kinetic, and ambient sources, as well
as innovations in energy storage devices like supercapacitors and rechargeable batteries.
These solutions provide essential building blocks for creating sustainable and self-sufficient
WRSNs. Furthermore, this review has emphasized adaptive energy management strategies
that balance energy consumption and harvesting, optimizing network performance under
varying operational conditions. Despite these advancements, this study has identified
several challenges, including the efficiency of wireless charging in dynamic environments,
the limitations of existing energy storage technologies, and the need for improved energy
management techniques. Addressing these challenges is critical for unlocking the full
potential of WRSNs. This review has also identified opportunities for future research, such
as the development of hybrid energy storage devices like supercapatteries, more efficient
energy transfer protocols, and intelligent algorithms for real-time energy optimization. By
synthesizing current research efforts, this paper has aimed to provide valuable insights
for researchers and policymakers, fostering innovation and progress in on-demand energy
provisioning for WRSNs. The findings lay the groundwork for future advancements that
will enable robust, sustainable, and scalable WRSNs capable of meeting the demands of
emerging applications.
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