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Abstract: Electric vehicle (EV) battery technology is at the forefront of the shift towards sustainable
transportation. However, maximising the environmental and economic benefits of electric vehicles
depends on advances in battery life cycle management. This comprehensive review analyses trends,
techniques, and challenges across EV battery development, capacity prediction, and recycling, draw-
ing on a dataset of over 22,000 articles from four major databases. Using Dynamic Topic Modelling
(DTM), this study identifies key innovations and evolving research themes in battery-related tech-
nologies, capacity degradation factors, and recycling methods. The literature is structured into two
primary themes: (1) “Electric Vehicle Battery Technologies, Development & Trends” and (2) “Capacity
Prediction and Influencing Factors”. DTM revealed pivotal findings: advancements in lithium-ion
and solid-state batteries for higher energy density, improvements in recycling technologies to reduce
environmental impact, and the efficacy of machine learning-based models for real-time capacity
prediction. Gaps persist in scaling sustainable recycling methods, developing cost-effective man-
ufacturing processes, and creating standards for life cycle impact assessment. Future directions
emphasise multidisciplinary research on new battery chemistries, efficient end-of-life management,
and policy frameworks that support circular economy practices. This review serves as a resource
for stakeholders to address the critical technological and regulatory challenges that will shape the
sustainable future of electric vehicles.

Keywords: electric vehicle battery; dynamic topic modelling; literature review

1. Introduction

Electric vehicles (EVs) present a critical pathway to reducing the environmental im-
pacts associated with internal combustion engine (ICE) vehicles, which are substantial
contributors to global greenhouse gas (GHG) emissions and urban air pollution. In 2020,
transportation alone accounted for 36% of total CO2 emissions in the United States ac-
cording to the U.S. Energy Information Administration, highlighting the need for electric
mobility to meet climate targets and improve urban air quality. While EVs offer solutions by
eliminating tailpipe emissions, their long-term sustainability is closely tied to the life cycle
management of lithium-ion batteries, which are resource-intensive to produce and require
scarce materials like lithium, cobalt, and nickel. The extraction and processing of these
materials bring significant environmental and social challenges, from water depletion and
habitat destruction to labour issues, with projections indicating that lithium supply may
only meet half of the anticipated demand by 2030. Governments worldwide have enacted
regulations and incentives, and major automakers have pledged to phase out ICE vehicles,
accelerating EV adoption at a 54% compound annual growth rate from 2015 to 2020; these
data are from the U.S. Energy Information. Yet, scaling sustainable battery technology
remains challenging as batteries degrade over time, losing capacity and efficiency due
to factors like high charging rates and temperature extremes. High charging rates can
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accelerate the degradation of lithium-ion batteries by inducing stress on electrode materials,
leading to increased internal resistance and capacity loss. Similarly, exposure to extreme
temperatures affects electrochemical reactions within the battery; high temperatures can
enhance side reactions and accelerate ageing, while low temperatures reduce ionic con-
ductivity, impairing performance. This degradation not only diminishes EV performance,
manifesting as reduced driving range and power output, but also complicates recycling
due to the variable state of health (SOH) of spent batteries.

To address these challenges, advanced thermal management systems—such as liq-
uid cooling, phase-change materials, and air cooling—have been developed to maintain
optimal battery temperatures. Smart charging strategies, including controlled rates and
adaptive algorithms, help reduce stress during charging cycles. Innovations in materials
and chemistries, such as solid-state batteries and stable electrode designs, further enhance
tolerance to high charging rates and temperature fluctuations. While these measures
improve battery life and EV performance, persistent degradation highlights the need
for efficient recycling and secondary-use applications to mitigate environmental impacts.
Sustainable battery management is critical to realising the environmental benefits of EVs.

This literature review aims to map the evolution of EV battery-related technologies
and provide valuable insights for a wide range of stakeholders. While previous studies
have examined the technical and environmental aspects of EV battery technology, such as
the comparative benefits over ICE vehicles, recycling challenges, and battery degradation
methods, much of the existing literature remains fragmented. Ref. [1] indicates that EVs
provide substantial emissions savings, yet these benefits are heavily dependent on factors
like production emissions, energy grid composition, and recycling practices. However, criti-
cal gaps remain in understanding how advancements in battery health prediction, recycling
techniques, and life cycle optimisation can be integrated into a comprehensive, sustainable
framework. This review bridges these gaps by connecting technological developments
with practical, scalable solutions, contributing to a more holistic sustainability strategy for
EV batteries.

To structure the exploration of these complex issues, this review divides into two pri-
mary themes: (1) “Electric Vehicle Battery Technologies, Development & Trends” and
(2) “Capacity Prediction and Influencing Factors”. The first theme focuses on advance-
ments in battery materials, improvements in energy density, and the development of
sustainable recycling technologies, all of which are pivotal for the continued progress and
scaling of EV battery technology. The second theme addresses techniques for predicting
battery capacity and degradation over time, with an emphasis on data-driven methods like
machine learning models that improve real-time monitoring and optimise battery man-
agement. This structured thematic approach aligns with the evolving research landscape
and facilitates a comprehensive understanding of battery technology and its role in EV
sustainability.

This integrated approach naturally leads to the three primary research questions
driving this study: (1) What is the trend of battery-related technologies? (2) In line with
technology development, what are the techniques used in predicting the remaining capacity
of spent batteries? (3) What are the important elements that affect the remaining capacity?
By addressing these questions, this study seeks to deepen our understanding of EV battery
technology’s role in sustainability, providing a foundation for innovative solutions that
support the global transition to a low-carbon economy.

In the context of EV battery systems, individual battery cells are typically assembled
into modules and then integrated into packs to meet the power and energy requirements
of the vehicle. The design and management of these battery modules and packs are
crucial for ensuring safety, reliability, and performance. Innovations in battery module and
pack technology, such as thermal management, structural integrity, and intelligent control
systems, play a significant role in advancing EV technology. Therefore, understanding
developments in battery modules and packs is essential for comprehensively addressing
the challenges and opportunities in EV battery technology.
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The objectives of this study are threefold: First, to identify and analyse technologi-
cal trends driving advancements in EV batteries, particularly focusing on new materials,
design improvements, and manufacturing processes that enhance battery energy density,
safety, and sustainability. Second, to evaluate the effectiveness of existing capacity pre-
diction methodologies—such as machine learning models, Electrochemical Impedance
Spectroscopy, and data-driven approaches—and propose refinements that could improve
their accuracy and applicability in real-world scenarios. Third, to explore how technological
innovations in battery recycling and secondary use applications can be effectively imple-
mented to optimise battery life cycle management, thus contributing to a circular economy.

To achieve the research objectives, this study utilises Dynamic Topic Modelling to
capture technological trends in battery development, drawing on data from scientific
publications to identify key innovations and emerging research clusters. DTM enables both
the analysis of methodologies for predicting battery capacity and the identification of factors
influencing battery performance over time. This approach provides a comprehensive view
of macro-level trends in battery technology and micro-level insights into technical aspects
affecting battery health and sustainability. By integrating these analyses, the study seeks to
bridge the gap between theoretical research and practical applications, offering a holistic
perspective on EV battery life cycle management.

The remainder of this paper is organised as follows. Section 2 provides a descriptive
analysis of the reviewed dataset, outlining the research design and detailing the proposed
methodological framework and the implementation process of DTM analysis. In Section 3,
we dive into the results and conduct an in-depth review of the research themes and topics
from those results. Based on the findings in Section 3, we continue to expand those findings
with discussion, gaps, and future direction in Section 4. Section 5 concludes the work.

2. Materials and Methods
2.1. Methodology Framework

This section presents a refined methodology framework for conducting a systematic
literature review in Figure 1. The framework consists of seven key steps: (1) establishing
the research background to provide context and direction for the study, (2) defining precise
search terms and collecting relevant data using advanced search functions in Scopus,
Science Direct, EBSCOhost, and Web of Science, ensuring comprehensive coverage of
peer-reviewed literature, (3) data cleaning and data preparation, (4) a descriptive analysis is
presented to offer key insights and an overview of the subject area, (5) the feature reduction
for selecting the most relevant terms in the text data, aiding in clearer and more efficient
data analysis, (6) a DTM analysis is used to analyse and track how topics evolve over
time within a collection of documents, and (7) we synthesise findings in the discussion,
identifying gaps, and providing future research directions. This structured framework
ensures a thorough exploration of the research landscape, leading to meaningful insights
and recommendations.

2.2. Material Collection and Data Cleaning

The aim of this research is to explore trends in EV battery technologies, capacity
prediction methods, and influencing factors throughout the battery life cycle. Therefore,
two groups of keywords representing different aspects of the research were developed to
effectively capture the relevant literature:

• Battery technology keyword group: “electric vehicle”, “battery”, “EV”, “technology”,
“development”, “innovation”, “trend”.

• Battery capacity and influencing factors keyword group: “second-Life”, “battery life
cycle”, “remaining useful life”, “life cycle assessment”, “recycling”, “degradation”,
“predict”, “reuse”, “impact factor”, “battery health”.
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Figure 1. Methodology framework.

Search terms were formed by combining keywords from these two groups, ensuring a
comprehensive search strategy. Data were gathered from four well-established academic
databases, namely Scopus, Science Direct, Web of Science, and EBSCOhost, covering
peer-reviewed journal articles published in English. No restrictions were placed on the
publication year because we wanted to track down the development of EV or EV battery
from the beginning until the present. The dataset structures are not completely standardised
between the databases, so Python 3.12 was used for exacting relevant information among
all the datasets for standardisation purposes and aggregated into one main dataset.

This process involved the following steps. The process began with data acquisition,
where articles were sourced from four selected databases. Each database provided files in
various formats, including Excel (.xlsx), RIS (.ris), and CSV (.csv). These files were then
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examined to assess their formats and content structures. This step was essential because
each database presents information differently, necessitating customised parsing methods
for each format.

To ensure consistency and relevance across the aggregated data, seven key variables
common to all datasets were identified, shown as follows: Author, Title, Journal, Publication
Year, Abstract, Keywords, and DOI. These variables formed the foundation of the master
dataset, facilitating the integration of information from diverse sources.

Next, data processing was conducted using Python. Custom scripts were developed
to efficiently load and parse datasets, leveraging libraries such as pandas to handle the
varying file formats. These scripts extracted the identified key variables from each dataset,
accommodating complexities such as nested fields in RIS files and varying column headers
in CSV and Excel files. Extracted data were then standardised into a uniform format to
ensure compatibility across datasets.

Following standardisation, the data from all the databases were aggregated into a
single master dataset. Duplicate entries were identified and removed based on matching
DOIs and titles to ensure each article was uniquely represented. Finally, the aggregated
dataset underwent a thorough validation process. This included checking for completeness
and accuracy, addressing any missing values, and resolving inconsistencies to produce a
high-quality dataset ready for analysis.

The initial number of articles collected from the four databases was 1980 for Web
of Science, 11,730 for Scopus, 14,824 for Science Direct, and 2755 for EBSCOhost. After
being aggregated into one main dataset, we excluded duplicate results, missing, invalid or
omitted values; the final dataset contained 22,982 articles.

2.3. Descriptive Analysis

The descriptive analysis of article distribution by year is shown in Figure 2, highlight-
ing a steady rise in publications on battery technology, EVs, and sustainability, reflecting
shifting research and industry priorities. Early studies (1970s–2000s) focused on founda-
tional battery science. From the 2000s, growth accelerated with lithium-ion advancements
and EV adoption, emphasising energy density and safety. A sharp increase (2010s–2020)
was driven by renewable energy policies and reduced battery costs, peaking in 2020–2025
with a focus on zero-emission vehicles, battery lifespan, and recycling. Future trends point
to solid-state batteries, fast charging, and second-life applications, with interdisciplinary
research integrating AI and life cycle assessments. This evolution underscores the value of
DTM in analysing emerging research themes.

Figure 3 shows the descriptive analysis of the top 20 journals in the dataset. Leading
publications like Renewable and Sustainable Energy Reviews and Journal of Energy Storage feature
over 1000 articles, emphasising sustainability in EV and battery research. Key journals such
as Journal of Power Sources and Energies focus on energy systems, while Energy Storage Materials
and Journal of Cleaner Production highlight material science and sustainable production.
World Electric Vehicle Journal specialises in EV research, and interdisciplinary journals like
IEEE Access and International Journal of Hydrogen Energy bridge engineering, hydrogen, and
alternative fuels. Emerging journals like Nano Energy reflect a shift towards advanced battery
technologies, guiding targeted reviews across sustainability and niche topics.

Figure 4 highlights publication trends across the top 20 journals, with Renewable
and Sustainable Energy Reviews and Journal of Energy Storage leading in renewable and
storage research. Journal of Power Sources maintains a steady presence with foundational
contributions to battery and EV technology, while Energy Storage Materials and World
Electric Vehicle Journal show recent growth, reflecting increased demand for specialised
research. Broad-impact journals like Applied Energy and Energies align with the global shift
to renewables, while interdisciplinary journals such as IEEE Access, International Journal of
Hydrogen Energy, and Journal of Cleaner Production bridge engineering and environmental
science. Emerging journals like Nano Energy focus on advanced materials, showcasing the
field’s dynamic evolution towards cutting-edge EV and battery solutions.
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2.4. Feature Reduction with TF-IDF

To manage the extensive dataset of 22,982 articles spanning from 1976 to 2025, we
applied Term Frequency-Inverse Document Frequency (TF-IDF) to streamline the data for
a more focused analysis. While a large dataset provides comprehensive insights, it also
introduces high noise levels, increases processing time, and complicates interpretation.
Initial analysis indicated the need for feature reduction to ensure clarity and focus.

TF-IDF is a numerical statistic used to reflect the importance of a word in a document
relative to a corpus. It combines two components:

• Term Frequency (TF): Measures how frequently a term appears in a document, indicat-
ing its importance within that document.

• Inverse Document Frequency (IDF): Assesses how unique or rare a term is across the
entire corpus, reducing the weight of common terms.

By multiplying TF and IDF, TF-IDF assigns higher scores to terms that are significant
in a document but less frequent across other documents. This helps in identifying key
terms that characterise the content, enabling us to assess the relevance of each article to
specific research themes.

Alternative techniques for feature extraction and text representation include meth-
ods such as Count Vectorizer, Bag of Words (BoW), and word embedding techniques like
Word2Vec and Continuous Bag of Words (CBOW). Count Vectoriser and BoW are simple
approaches that represent documents as term frequency matrices without considering the
importance or uniqueness of terms across the corpus. While these methods are straightfor-
ward and computationally efficient, they often produce sparse matrices and fail to capture
semantic relationships between words.

In contrast, word embedding techniques like Word2Vec and CBOW generate dense
vector representations of words by mapping them into a continuous vector space. These
methods capture semantic similarity between words and are highly effective for advanced
natural language processing tasks. However, they require significant computational re-
sources and a well-defined corpus for training, making them less practical at this ex-
ploratory stage.

Compared to these techniques, TF-IDF [2] strikes a balance by assigning importance
to terms that are both frequent within a document and distinctive across the corpus. This
approach provides a more focused representation of key terms without the complexity and
resource demands of word embeddings or the interpretability limitations of sparse vector
techniques. Its simplicity and computational efficiency make TF-IDF particularly suitable
for our initial feature reduction and dataset segmentation process.
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We also want to utilise this step to divide our research into two themes: (1) “Electric
Vehicle Battery Technologies, Development & Trend” to answer the first research question
and (2) “Electric Vehicle Battery Capacity Prediction: Influencing Factors” for the remaining
two questions. By setting a 0.9 threshold [3] and running TF-IDF for two themes, we
selected the top 10% of articles most relevant to each theme. This yielded two focused
datasets, each containing 2290 articles, enhancing the depth and clarity of our analysis.

2.5. Dynamic Topic Modelling (DTM)

DTM is a method that examines topic evolution within a body of literature over
time, making it particularly valuable for analysing fields experiencing rapid development.
Unlike static models, DTM captures shifts in word distributions across specified intervals,
revealing changes in research focus and emerging themes. This approach is well suited for
fields like EV battery technology, where trends evolve swiftly in response to advancements
and innovations.

In the context of this literature review on EV battery technologies and capacity predic-
tion, DTM effectively supports the research goals by uncovering temporal trends, analysing
evolving methodologies, and identifying influential factors affecting battery performance.
This aligns with the research questions, as it enables the tracking of technological shifts,
examination of prominent capacity prediction techniques, and identification of emerging
influences on battery longevity. By clustering the literature into topic–time groups, DTM
aids in selecting key articles, facilitating a deeper understanding of the field’s progress. We
ran two separated DTM models, one for each theme.

DTM requires the user to pre-define the number of k, which represents the number
of topics the model will try to identify and track over time. This is similar to traditional
topic models like LDA, where specifying k is essential to define the scope and granularity
of the topics.

To find the optimal number of k, ref. [4] proposed a coherence score, which becomes
one of the most popular methods to identify k in topic modelling. We used the Python
Gensim package. For each potential k value, the model calculates the coherence score,
which measures how well the words in each topic are semantically related. The k value
with the highest coherence score generally indicates the best model. The DTM model with
the k having the highest coherence score will be selected as the optimal number of topics for
the dataset. We trained DTM in a loop with k values from 2 to 52; according to [5], 50-loop
is the most reasonable value for k. Figures 5 and 6 are the results for Theme 1 and Theme 2.

We can see that the optimal k value for Theme 1 is 3 and Theme 2 is 6.
The procedure for DTM method has the following steps: (1) Abstracts cleaning and

preparation. (2) Identifying the optimal value of k using the coherence score. (3) Clustering
2290 abstracts using the DTM model and the optimal k for each time point (1976–2925)
which is the publication year in our dataset. (4) Visualising the top 30 keywords in each
topic in each time point using the pyLDAvis package in Python. (5) Labelling each topic for
every time point using the top 30 keywords. (6) Examining each topic’s label, identifying
the evolution of each topic and creating a new label for each evolution. (7) Combining the
evolution of each topic and creating one final evolution of the main theme.

This is the original DTM design for both Theme 1 and Theme 2. However, in step 5 of
Theme 2’s DTM analysis, we observed that all articles related to Theme 2 were classified
under a single topic (Topic 5) and spanned a narrow publication period from 2022 to
2024. With such a short timeframe, we were unable to observe or identify any meaningful
evolution. Therefore, we decided to reclassify these articles into distinct topics based on
their titles. This approach allowed us to identify various methods and techniques for
battery capacity prediction, as well as the influencing factors. Furthermore, our primary
goals in Theme 2 were to identify current methods for battery capacity prediction and
relevant influencing factors. So, this was justifiable for us to adapt to the situation and
make necessary adjustments.
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Figures 7 and 8 and Table 1 show the visualisation of all the topics in Theme 1 for the
years 1976 and 2024, respectively. Figures 9 and 10 and Table 2 present the visualisation
for Theme 2. We selected these 2 years out of 50 to present the beginning and the end of
Theme 1 so that we could see the difference.
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Table 1. Theme 1 top 30 salient and relevant keywords and frequency in 1976 and 2024.

Year Salient Words Topic 0 Topic 1 Topic 2

1976

Requirement
system
summary
included
known
short
thus
considering
prospect
presented
worth
background
evaluated
nearterm
longterm
many
experimental considered
based
future
candidate
research
little
model
energy
range
technology development
driving
simulation

Thus 0
short 0
considering 0 presented 0
worth 0
background 0 evaluated 0
nearterm 0
little 0
prospect 0
energy 0
system 0
range 0
model 0
technology 0 development 0
power 0
performance 0 parameter 0
driving 0
density 0
lithium 0
used 0
resource 0 requirement 0
cell 0
discussed 0
cost 0
time 0
new 0

Requirement 1.8
summary 0
included 0
known 0
energy 0
model 0
system 0
range 0
technology 0 development 0
performance 0
driving 0
power 0
parameter 0
used 0
density 0
cell 0
cost 0
resource 0
lithium 0
simulation 0
daily 0
new 0
application 0
day 0
process 0
develop 0
class 0
time 0
use 0

System 1.4
research 0
longterm 0 experimental 0
many 0
considered 0
based 0
future 0
candidate 0
little 0
energy 0
model 0
range 0
development 0
power 0
technology 0 performance 0
parameter 0
resources 0
driving 0
density 0
cost 0
used 0
daily 0
urban 0
cell 0
discussed 0
lithium 0
requirement 0
new 0

1976

Summary of Energy System
Requirements: Evaluating
Long-term and Near-term
Prospects for
Technology Development

Overview of Energy Resource
Parameters: Evaluating
Technology Requirements
and Performance

Understanding Energy
Resource Requirements: A
Focus on Performance
and Application

Systematic Approach to
Resource Requirements in
Energy Applications

2024

technology
power
energy
system
material
performance
cell
method
cost
using
different
storage
emission
model
analysis
result
fuel
recycling
environmental
application
impact
development
also
stability
use
current
research
potential
trend
capacity

Technology 460
power 220
system 140
material 90
performance 86
cell 80
energy 80
method 65
cost 45
storage 40
result 30
analysis 29
model 27
recycling 22
environmental 20
different 18
also 18
fuel 15
review 15
management 15
emission 15
study 15
development 15
new 12
based 12
paper 12
current 11
potential 11
application 11
impact 11

Energy 560
charging 410
system 325
study 300
development 290
model 265
research 240
management 185
future 175
paper 170
challenge 150
review 150
method 150
based 145
emission 140
strategy 135
trend 130
result 130
data 120
storage 118
proposed 115
analysis 115
lithiumion 115
state 115
application 115
efficiency 110
current 108
potential 105
demand 100

Energy 70
using 25
different 25
system 25
model 24
cost 22
emission 20
cell 15
performance 15
development 15
method 15
storage 12
analysis 9
fuel 9
result 9
research 9
application 6
charging 6
technology 6
impact 5
trend 5
power 5
paper 5
recycling 5
current 4
study 4
environmental 4
potential 4
also 4
review 4

2024

Technological Advances in
Power and Energy Systems:
Material Use, Emission
Reduction, and Recycling

Technological Developments
in Power Systems: Material
Performance, Recycling, and
Environmental Impact

Energy Systems
Development: Charging
Challenges, Emission
Strategies, and Future Trends

Energy Systems and
Emission Reduction: Cost,
Models, and Performance
Analysis
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Figure 10. Sematic keywords visualisation in Theme 2 in 2024 [6,7].
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Table 2. Theme 2 top 30 salient and relevant keywords and frequency in 1976 and 2024.

Year Salient Words Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

1976

little
system
thus
requirement
nearterm
experimental
evaluated
candidate
summary
prospect
based
longterm
considering
short
presented
research
background
many
worth
known
future
considered
included
model
performance
development
energy
driving
range
power

candidate
summary
prospect
based
requirement
model
energy
development
system
cell
resource
power
technology
data
range
driving
performance
research
lithium
measurement
various
pattern
simple
restriction
made
discussed
using
new
cost
two

thus
system
model
energy
performance
development
power
range
technology
cell
assess
resource
lithium
used
restriction
differential
new
measurement
various
simplified
based
driving
city
storage
internal
number
two
aim
coupled
progress

longterm
research
system
considering
presented
short
energy
model
development
performance
technology
resource
power
range
driving
requirement
data
cell
measurement
made
result
used
occurrence
evaluated
developed
survey
propulsion
requires
lithium
granularity

little
model
performance
development
energy
driving
technology
cell
system
range
lithium
requirement
resource
set
measurement
used
power
made
restriction
discussed
storage
behaviour
application
research
data
environment
estimate
result
simple
control

nearterm
experimental
evaluated
requirement
energy
model
development
cell
technology
used
performance
driving
system
range
data
use
lithium
regard
resource
simple
restriction
propulsion
two
costefficient
set
developed
power
limit
efficient
survey

background
many
worth
known
future
included
considered
little
model
energy
cell
technology
resource
performance
range
system
requirement
made
driving
data
used
survey
lithium
research
development
today
internal
application
geological
efficient

1976

Experimental
Approaches
for Short- and
Long-Term
Battery
System
Requirements

Requirement-
Based
Development
and
Performance
Models for
Lithium
Battery
Systems

Energy and
Performance
Models for
Lithium
Battery
Systems in
Various
Driving
Conditions

Long-Term
System
Development
and
Performance
Evaluation in
Lithium-
Based Energy
Models

Small-Scale
Model
Performance
and Energy
Resource
Estimation for
Lithium-
Based
Systems

Near-Term
Experimental
Evaluation of
Cost-Efficient
Lithium-
Based Energy
Models

Background
and Future
Considera-
tions for
Lithium-
Based Energy
Models and
Performance
Requirements

2024

energy
charging
system
study
model
power
prediction
technology
storage
capacity
paper
method
proposed
result
cost
emission
performance
analysis
recycling
development
adoption
factor
potential
grid
policy
also
review
management
thermal

Energy 660
storage 75
power 40
paper 35
technology 33
analysis 31
factor 25
cost 23
result 20
system 20
using 19
however 18
study 217.5
strategy 17
research 16
high 15.5
fuel 15
cell 14.5
state 14
performance
13.5
degradation
12
used 12
management
12
application 12
capacity 12
material 12
based 12
current 12
different 12

Paper 35
performance
20
system 19
power 18
technology 18
study 15
result 15
cost 12
management
12
energy 12
application 12
factor 10
research 9
analysis 9
prediction 9
development
9
also 9
method 9
recycling 8
state 8
data 8
strategy 8
based 8
carbon 8
cell 8
lithiumion 8
using 8
capacity 8
emission 8

Charging 560
study 320
power 80
cost 50
factor 40
development
36
based 34
technology 20
energy 20
emission 19
paper 17
using 15
result 15
data 15
demand 15
grid 15
also 15
capacity 15
storage 13
station 11
cell 11
performance
11
efficiency 11
material 9
research 9
current 9
time 9
system 9
fuel 9

Technology 20
power 19
performance
16
result 14
cell 12
model 12
cost 11
management
10
paper 10
system 10
based 10
capacity 10
research 9
different 9
factor 9
approach 9
lithiumion 9
data 8
challenge 8
prediction 8
analysis 8
range 8
also 7
potential 7
adoption 7
strategy 7
high 7
development
7
future 7

System 450
technology 70
result 50
power 50
paper 35
energy 25
emission 25
different 20
based 18
development
17
factor 16
method 16
research 16
analysis 16
cost 14
strategy 14
performance
14
data 12
time 12
thermal 12
using 11
also 10
study 9
review 9
grid 9
high 9
cell 9
management
9
cycle 9

Model 670
capacity 400
prediction 380
method 360
proposed 270
data 240
performance
200
result 180
life 165
based 155
degradation
150
algorithm 145
temperature
140
lithiumion 135
using 132
used 128
management
125
estimation 120
cycle 115
condition 110
different 105
soh 100
cell 95
health 90
factor 88
network 87
research 87
state 87
time 85
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Table 2. Cont.

Year Salient Words Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

2024

Energy
System
Analysis:
Predictive
Modelling
and
Performance
Evaluation for
Enhanced
Charging and
Storage
Solutions

Energy
Analysis:
Evaluating
Storage and
Power
Technologies
for Enhanced
System
Performance
and Cost-
Effectiveness

Energy
System
Performance:
A Comprehen-
sive Study on
Power
Technology,
Cost
Management,
and Carbon
Emission
Strategies

Charging
Infrastructure
Study:
Evaluating
Power, Cost
Factors, and
Emission
Impacts in
Energy
Storage
Development

Technology
Assessment
for Power and
Performance
in
Lithium-Ion
Cell Models:
Cost
Management
and Future
Challenges

Systematic
Evaluation of
Technology
and Power
Factors in
Energy
Research:
Analysing
Cost,
Performance,
and Emission
Strategies

Modelling
Capacity and
Performance
Prediction
Methods: A
Comprehen-
sive Analysis
of
Lithium-Ion
Systems and
Their
Degradation
Factors

2.6. Paper Selection for Content Discussion

To determine which articles are ideal for a deep-dive discussion after DTM, we used
the metric called “document topic distribution”, which is one of the direct results from
DTM. By focusing on High-Probability Documents per Topic, after DTM assigned topics
over time, we could identify articles that had high relevance scores within specific topics.
Articles with the highest probability for a given topic can offer rich details and unique
insights into that theme, making them suitable for an in-depth analysis. This method
allowed us to focus on core articles that best represent each evolving topic within the
research timeframe, ensuring they covered the essence of the identified trends. Based on
the DTM results, 150 articles were chosen for in-depth analysis in Theme 1 with k = 3, and
300 articles for Theme 2 with k = 6, which will be further explored in the upcoming section
on results and thematic review.

3. DTM Analysis, Results, and In-Depth Review of Research Themes and Topics
3.1. Theme 1: Electric Vehicle Battery Technologies: Development and Trends
3.1.1. Topic 1: Foundations and Early Innovations (1976–1985)

• Energy Resource Evaluation and Performance Optimisation (1976–1978)

During the late 1970s, research focused on evaluating energy resources and under-
standing the technological requirements for enhancing transportation efficiency. Studies
emphasised performance optimisation for internal combustion engines and explored sys-
tematic approaches to resource requirements in energy applications. The development of
daily density models for transportation systems aimed to improve range and efficiency,
laying the groundwork for future battery innovations. Ref. [8] presents short summaries of
most of the battery systems that can be considered for EVs. Many little-known systems are
included, some with little or no experimental background, and thus are worth considering
for future research. Electric vehicle battery requirements are postulated, and based on
these requirements the battery candidates are evaluated for their near-term and long-term
prospects. Being the first article on EV battery systems, this work plays a foundational role
in assessing various battery technologies for EVs. It explores early requirements and the
potential of different systems, setting the stage for future innovations in the field. Ref. [9]
introduces a model to estimate energy and power needs for EVs in different driving envi-
ronments. It compares EVs to internal combustion vehicles, analysing energy use and range
for various vehicle types using both lead–acid and high-performance batteries. Results
show that EVs can be efficient in urban settings but are less effective for inter-city travel,
where combustion engines perform better. The model also serves as a foundation for more
advanced simulations in the future.

• Development of Lead–Acid and Early Lithium Technologies (1979–1983)

The period from 1979 to 1983 witnessed significant advancements in lead–acid battery
development, particularly for telecommunications and component performance. Con-
currently, initial explorations into lithium technologies began, aiming to improve energy
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systems’ efficiency and performance. Efforts were made to enhance cell technology, reduce
density in battery systems, and implement practical design improvements to extend system
range. Ref. [10] discusses the future applications of battery energy storage in transport
and stationary settings, focusing on environmental benefits and advancements in battery
technologies. Motivated by the 1970s energy crisis, it examines existing battery chemistries
(lead–acid, nickel–cadmium) and emerging systems like sodium–sulphur and lithium-
based batteries. Findings suggest batteries are crucial for future energy storage, addressing
energy density and cost challenges. The paper provides foundational knowledge for un-
derstanding the role of batteries in reducing fossil fuel reliance and integrating renewable
energy. Ref. [11] examines improvements in lead–acid batteries for EVs through a systems
design approach. The EV-3000 battery demonstrated effective advancements in energy
density, power, and cycle life, highlighting that lead–acid batteries can still be viable for
near-term EV use, especially in cost-sensitive markets.

3.1.2. Advancements and Market Influences (1986–1995)

• Chemical System Innovations and Environmental Considerations (1986)

In 1986, research delved into nonaqueous chemical systems, addressing challenges
and fostering innovations in battery technology. Advancements in sodium-based energy
systems focused on development and application perspectives, signalling a shift towards
exploring alternative battery chemistries. Ref. [12] explores the challenges in developing
advanced traction batteries for EVs. It highlights the demanding specifications needed,
which slows progress in battery development. Many parameters are interdependent,
requiring compromises. Advanced batteries, including nonaqueous lithium and sodium
designs, are briefly described, with the author suggesting that these may ultimately be
ideal for EVs, though further work is needed.

• Impact of Advanced Technologies and Market Dynamics (1988–1991)

Between 1988 and 1991, evaluations of advanced lithium technologies highlighted
their impact on EV performance and cost. Studies assessed the performance and cost
factors of advanced energy systems for urban EVs, considering market implications. The
development of advanced nuclear power systems and a major utility programme in Europe
emphasised clean energy initiatives and environmental sustainability. Ref. [13] discusses
the impact of political events, like the Gulf Crisis and Clean Air Act amendments, on
energy technologies and EV adoption. It highlights how socio-political pressures have
driven innovation in EVs, providing historical context for the evolution of energy solutions,
though lacking in detailed technological analysis.

• Emergence of Hybrid Power Systems and Material Advancements (1992–1995)

From 1992 to 1995, the introduction of hybrid lead–acid cell technology for urban safety
marked a significant milestone. The automotive industry recognised the need for a new
environmental programme, leading to advancements in motor technology. Innovations
included synchronous systems and hybrid energy solutions, enhancing infrastructure
efficiency and reducing environmental impact. Developments in platinum-based energy
systems and advanced separator technologies improved efficiency and traction in hybrid
technologies. Ref. [14] discusses MARVEL, which is an interactive microcomputer software
developed to analyse battery, heat engine, and hybrid vehicle systems, focusing on least-life-
cycle-cost analysis. It models interrelationships between battery parameters while avoiding
premature specifications. MARVEL includes default data for various vehicles, driving
profiles, and battery technologies, and can analyse electric, heat engine, or hybrid vehicles.
The software is written in PL/I for IBM-compatible microcomputers. Ref. [15] explores the
feasibility of lead–acid batteries for EVs and compares them to alternatives like PEM fuel
cells and nickel–metal hydride batteries, in light of the California ZEV mandate. It finds that
lead–acid batteries are cost-effective but limited by energy density, whereas fuel cells show
promise for higher efficiency. The study provides insights into policy-driven development
and highlights the early challenges in battery evolution for zero-emission vehicles.
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3.1.3. Emergence of Hybrid and Fuel Cell Technologies (1996–2005)

• Addressing Performance Challenges in Lead–Acid Batteries (1996–1997)

Efforts to address performance challenges in lead–acid applications led to the develop-
ment of additives that enhanced battery efficacy. The creation of lithium alloy technologies
improved charge efficiency in automobiles, contributing to the advancement of zero-
emission vehicles. Ref. [16] develops scalable lithium polymer batteries for EVs, with cell
capacities up to 40 Ah. Using a cost-effective extrusion process, the batteries showed consis-
tent performance and energy densities between 100 and 175 Wh/kg. While promising, the
study lacks long-term data for larger cells and an economic analysis for mass production,
contributing insights into scalable production and EV battery viability. These innovations
were crucial in promoting sustainable transportation and reducing environmental pollu-
tants. The main challenge is the lack of extensive real-world application data for the Zebra
battery system. While the studies provide a thorough theoretical exploration of material
synthesis and the electrochemical structure, the findings are largely limited to lab-scale
production and simulations. This gap in real-world testing presents a significant barrier
to validating the technology for broader commercial adoption and understanding its true
performance under practical conditions. Ref. [17] reviews the advancements in the Zebra
(sodium–nickel chloride) battery for EVs, focusing on the beta-alumina ceramic electrolyte
critical for performance and safety. The Zebra battery, or sodium–nickel chloride battery, is
a high-temperature energy storage system that uses a beta-alumina ceramic electrolyte to
transport sodium ions between a liquid sodium negative electrode and a nickel chloride
positive electrode. During charging, sodium ions move through the electrolyte, forming
liquid sodium at the negative electrode while nickel chloride converts to nickel metal.
This process is reversed during discharge, releasing energy. Operating at around 300 ◦C,
the molten state of the electrodes enhances ionic conductivity and efficiency. The Zebra
battery offers high energy and power densities, making it ideal for electric vehicles. Unlike
lithium-ion batteries, it avoids handling hazardous metallic sodium during assembly, as
sodium is formed electrochemically during initial charging. It features intrinsic safety
mechanisms, including overcharge protection, and relies on abundant, recyclable materials
like salt and nickel, simplifying recycling and reducing environmental impact. Its dura-
bility and efficiency at high temperatures make it a robust and environmentally friendly
choice. Ref. [18] assesses the readiness of advanced batteries for EV commercialisation
under the California ZEV mandate. It projects nickel–metal hydride and lithium-ion as
leading technologies and outlines a seven-stage commercialisation process. Though based
on 1996 data, it provides key insights into battery commercialisation and the impact of
regulations on EV technology.

• Development of High-Performance Hybrid Systems (1998–2001)

Between 1998 and 2001, research focused on enhancing the energy system range
through new technologies. The power and development of high-performance hybrid en-
ergy systems were explored, with advances in lithium and nickel–metal hydride (NiMH)
technologies. Enhancements in power and charging performance in hybrid lithium poly-
mer storage systems were achieved, emphasising cost-effective solutions for hybrid EVs
(HEVs). Ref. [19] details advancements in NiMH batteries for EVs and HEVs, focusing
on performance improvement and cost reduction. Three battery iterations (GM01, GM02,
GM03) were developed, achieving specific energy up to 95 Wh/kg. The study emphasises
enhanced manufacturability but lacks real-world performance data and discussion on
large-scale production challenges. Ref. [20] reviews advancements in Ni-MH batteries,
focusing on material improvements and their use in EVs like the Toyota RAV4 EV. It high-
lights increased energy density and better performance but mainly focuses on Japanese
developments and lacks a cost comparison with lithium-ion batteries.

• Integration and Fuel Technology Advancements (2002–2005)

The importance of integration in hybrid automobile technology development was
emphasised during this period. Cost-effective fuel technologies were developed to advance
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hybrid and fuel cell vehicle designs. Optimising fuel cell performance and autonomy in
hydrogen packs enhanced electric vehicle technology, contributing to the broader adoption
of sustainable energy solutions. Ref. [21] reviews advancements in EV batteries, focusing on
improved energy management, durability, and cost reduction. Key developments include
better integrated circuits, enhanced nickel–metal hydride and lithium-ion batteries, and
advanced thermal management. These advancements aim to make EVs more competitive
with gasoline vehicles by extending battery life and improving efficiency. Ref. [22] presents
a BMS to optimise the NiMH battery performance, safety, and life cycle in EVs. Key features
include real-time state-of-charge (SOC) calculation, thermal management, and diagnostics,
improving battery durability and safety.

3.1.4. Focus on Efficiency and Environmental Impact (2006–2015)

• Advancements in Hydrogen Fuel Cells and Emission Reduction (2006–2007)

Significant advancements in hydrogen fuel cell technology occurred between 2006 and
2007, focusing on performance enhancements and economic implications. The development
of hybrid power systems with applications in fuel and energy sectors contributed to efforts
in reducing emissions and promoting environmental sustainability. Ref. [23] examines
China’s efforts to balance automotive growth with environmental goals by adopting cleaner
technologies, such as hybrids and hydrogen vehicles. Government initiatives are high-
lighted as crucial, though challenges like high costs and infrastructure remain. The paper
offers a policy-focused view on cleaner vehicle adoption, relevant for understanding regu-
latory impacts on EV technology advancement. Ref. [24] presents a hybrid electric airport
vehicle powered by hydrogen fuel cells and batteries, extending operational time beyond
6 h. The fuel cells supply base power while batteries handle peak demands, improving
efficiency and reducing emissions. The study highlights the potential of hydrogen-battery
hybrids but lacks an analysis of economic feasibility and scalability. Ref. [25] reviews
advancements in Li-ion batteries for EVs, focusing on improving energy density, safety,
and thermal management. Key developments include new anode materials like silicon
composites, improved cathode chemistries, and enhanced cooling systems. While the
study provides insights into material and thermal advancements, it lacks cost analysis and
experimental performance data. These findings are crucial for understanding Li-ion battery
technology trends, predicting battery performance, and assessing secondary use in electric
vehicle applications.

• Power and Performance Optimisation in Hybrid Technology (2008–2010)

From 2008 to 2010, key developments in hybrid technology aimed at enhancing fuel
efficiency and power management. Innovations included advancements in energy systems
and driving modes, improving the overall performance of hybrid vehicles. Ref. [26] explores
system-level reliability in hybrid EVs (HEVs) and the trade-offs between fuel economy and
reliability. It finds that HEVs, particularly parallel architectures, have lower reliability than
ICE vehicles due to added complexity but can achieve partial functionality through graceful
degradation. The study highlights the need to balance fuel efficiency with reliability in HEV
design, encouraging manufacturers to consider partial reliability as a strategy to enhance
vehicle performance under failure conditions. Ref. [27] explores key design aspects and
technological hurdles in PHEV development. It emphasises optimising battery capacity,
control strategies based on state-of-charge (SOC), and integrating efficient components like
lithium-ion batteries. The study highlights the importance of scalable, efficient systems,
and government incentives for advancing PHEV adoption. While the paper provides
a comprehensive theoretical overview, it lacks empirical validation, suggesting future
research should focus on real-world testing of these design considerations.

• Energy and Power Systems Evaluation (2011–2015)

Evaluations of energy and power systems in hybrid and EVs were conducted to as-
sess the impacts on range, cost, and efficiency. Cost management and emission reduction
strategies were implemented in high-efficiency hybrid energy systems. Studies explored
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alternative fuels in urban transportation and conducted cycle and emission analyses to
advance hybrid technology. Ref. [28] explores the use of nanostructured anode and cath-
ode materials to improve the power density in lithium-ion batteries while maintaining
high energy density. Key findings include enhanced performance using nanostructured
graphene, silicon, and LiFePO4 materials. The study emphasises that nanostructuring can
make lithium-ion batteries more suitable for EVs by bridging the gap between energy and
power densities. However, it lacks discussion on scalability and cost, suggesting future
research should address commercial production challenges. Ref. [29] assesses the economic
viability of V2G and B2G applications for EV batteries. V2G has potential in high-value
grid services but faces cost barriers, while B2G’s appeal is limited by uncertainties around
residual value. Profitability remains marginal without subsidies. The study provides
insights into secondary battery use, emphasising the need for cost reductions or favourable
policies for economic viability. Ref. [30] evaluates advanced rechargeable batteries (LIB, LIP,
ZEBRA, Ni–Cd) based on energy, environmental, economic, and technical metrics. LIBs
stand out for their energy density and cost-effectiveness, making them ideal for portable
electronics and EVs. LIP batteries also show potential but require improvements, while
ZEBRA batteries are limited by higher costs. The study emphasises life cycle efficiency
and environmental impacts but lacks extensive recycling and end-of-life analysis. Ref. [31]
evaluates different vehicle technologies (petrol, diesel, HEVs, BEVs, PHEVs) using life
cycle assessment (LCA) and Total Cost of Ownership (TCO). BEVs and PHEVs have the
lowest environmental impact, but high purchase cost leads to a higher TCO compared to
conventional vehicles. The study highlights the trade-off between environmental perfor-
mance and cost, suggesting incentives may be needed for BEV adoption. This integrated
environmental and financial analysis informs policymaking and supports the transition to
cleaner vehicle technologies.

3.1.5. Sustainability and Material Efficiency (2016–2025)

• Technological Advancements and Emission Challenges (2016–2019)

Advancements in energy technologies concentrated on fuel utilisation and power sys-
tems, addressing emission challenges through innovative solutions. Emphasis was placed
on technological development and performance analysis for cost efficiency, paving the way
for more sustainable battery technologies. Ref. [32] compares the costs of managing peak
electricity demand using traditional technologies, such as gas turbines and hydroelectric
storage, with newer solutions like battery storage and vehicle-to-grid (V2G) systems. It
finds that battery storage is more cost-effective for managing short peak periods under an
hour, while traditional power plants and hydro storage are more economical for longer
durations. V2G technology proves more efficient in low-voltage power grids, particularly
for short-duration peak loads of up to 1–2 h. Despite traditional power stations being
generally cost-effective, battery storage and V2G can be advantageous in locations lacking
natural gas infrastructure or where environmental regulations restrict fossil fuel use. The
study recommends government support for R&D, reducing battery costs, and establishing
favourable regulations to promote the adoption of battery storage and V2G technologies.

In the late 2010s to early 2020s, significant progress has been made in the design
and optimisation of battery modules and packs for EVs. The focus has shifted towards
improving energy density at the pack level, enhancing thermal management systems,
and integrating advanced battery management systems (BMSs) to monitor and control
individual cells within modules.

Researchers have developed new module designs that reduce the weight and volume
of battery packs while increasing their energy density. This is achieved by optimising the
arrangement of cells within modules and improving the structural components to provide
better mechanical stability and safety. For instance, the development of cell-to-pack and
cell-to-chassis technologies eliminates intermediate modules, directly integrating cells into
the vehicle structure, thereby increasing volumetric efficiency.
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Thermal management at the module and pack level has also seen advancements.
Efficient cooling systems are critical to prevent overheating, which can lead to capacity
loss and safety risks. Innovations include liquid cooling systems that circulate coolant
through channels within the battery pack, phase-change materials that absorb excess heat,
and advanced thermal interface materials that improve heat dissipation between cells
and modules.

Moreover, the integration of intelligent BMSs at the module and pack level allows
for real-time monitoring of cell voltages, temperatures, and states of charge. This ensures
balanced charging and discharging among cells, prolonging battery life and improving
performance. Machine learning algorithms are increasingly used within BMSs to predict
potential failures and optimise energy use.

The development of modular battery packs also facilitates easier assembly, mainte-
nance, and recycling. Standardized modules can be replaced or upgraded without needing
to replace the entire pack, reducing costs and environmental impact. Modular designs also
support second-life applications, where retired EV batteries can be repurposed for energy
storage systems.

These advancements in battery module and pack technologies are crucial for enhancing
the overall efficiency, safety, and sustainability of EVs, aligning with the industry’s goals
towards a more sustainable future.

• Lithium-Ion Technologies and Recycling Methods (2020–2023)

From 2020 to 2023, focus shifted to energy systems incorporating lithium-ion cell
technologies. Emission reduction strategies and recycling methods were implemented to
address environmental concerns and material scarcity. Evaluations of charging methods
and performance trends in lithium-ion technologies were conducted to enhance efficiency.
Ref. [33] presents an optimised liquid cooling thermal management system (BTM) for cylin-
drical lithium-ion batteries. Using COMSOL simulations, the study found that a staggered
cooling channel configuration improves temperature control, reducing risks of thermal run-
away. The model shows potential for enhancing battery safety in EVs, although real-world
testing is recommended. Ref. [34] evaluates different machine learning models—linear
regression, neural network, and modified support vector machine (M-SVM)—to predict the
SOH of lithium-ion batteries in EVs. The M-SVM model showed superior performance in
predicting battery SOH, indicating lower errors compared to the other methods. The study
highlights the effectiveness of M-SVM in battery management systems for real-time health
monitoring, though further research is needed to validate results across diverse datasets
and conditions. Ref. [35] reviews battery thermal management (BTM) strategies for EVs,
including active, passive, hybrid systems, and deep learning methods. It highlights hybrid
cooling as the most efficient approach but notes its complexity and cost. Deep learning
methods show promise for optimising BTM through real-time adjustments, enhancing bat-
tery longevity. The study suggests a shift towards smarter, adaptive BTM systems, though
more experimental validation is needed to confirm the findings in real-world conditions.

Recycling batteries is vital for protecting the environment and conserving resources.
Discarded batteries contain toxic substances like heavy metals and electrolytes, which, if
mishandled, could lead to serious environmental harm. At the same time, these batteries are
a rich source of valuable materials such as lithium, cobalt, nickel, and manganese—essential
for manufacturing new batteries yet finite and subject to supply chain vulnerabilities.
Recycling these materials not only reduces reliance on raw resource extraction but also
promotes a sustainable circular economy for the EV industry.

Conventional recycling approaches primarily utilise pyrometallurgy and hydrometal-
lurgy. Pyrometallurgy involves high-temperature processes to recover metals like cobalt,
nickel, and copper, but lithium is often lost during processing. While this method is
well established and robust, it is energy-intensive and generates significant emissions. In
contrast, hydrometallurgy uses chemical solutions to extract a broader range of metals,
including lithium, with lower energy demands. However, this approach involves intri-
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cate steps and generates chemical waste, raising concerns about economic feasibility and
environmental impact.

To overcome the limitations of traditional methods, cutting-edge recycling technolo-
gies have been developed. Direct recycling focuses on reclaiming and restoring intact
electrode materials, reducing energy use and costs but facing challenges related to stan-
dardisation and quality assurance. Mechanochemical methods activate materials mechani-
cally for easier leaching, minimising energy consumption yet struggling with scalability.
Bioleaching employs microorganisms to extract metals, offering an eco-friendly alternative,
though the process is slower. Electrochemical recycling uses electric currents to recover
high-purity metals but demands substantial energy and specialised equipment.

Innovations in the field continue to improve recycling processes. Automation and
robotics enhance the safety and efficiency of battery disassembly, cutting labour costs and
reducing exposure to hazardous materials. Advanced sorting technologies, such as infrared
spectroscopy and X-ray fluorescence, refine material recovery. Additionally, second-life
applications extend the utility of batteries before recycling, using them for less demanding
purposes like energy storage systems.

• Emission Reduction and Optimisation (2024–2025)

The emphasis on emission reduction continued into 2024 and 2025, with cost, model,
and performance analyses conducted to optimise lithium-ion energy systems. Enhance-
ments in charging, heat management, and emission reduction techniques were imple-
mented, preparing the industry for future challenges and promoting sustainability. Ref. [36]
develops a physics-based model to evaluate energy losses and use-phase carbon emissions
of EV batteries. It highlights how factors like regional GHG intensity and temperature
impact emissions, with the thermal management system being a major contributor. The
study underscores the significance of considering operational conditions for sustainable
battery use, offering insights into improving battery efficiency and carbon management in
diverse climates. The model provides a valuable tool for evaluating emissions but requires
real-world validation.

• Digital Twins of Physical Batteries (2022–2025)

The concept of digital twins has gained traction as a transformative technology in the
realm of electric vehicle battery systems. A digital twin is a virtual replica of a physical
battery, designed to mirror its real-time performance, health, and operating conditions
through continuous data exchange. This technology leverages advanced sensors, Internet
of Things (IoT) frameworks, and machine learning algorithms to create a dynamic digital
model that evolves alongside its physical counterpart.

In the context of batteries, digital twins offer unprecedented insights into performance
optimisation and life cycle management. By continuously monitoring variables such as
temperature, state of charge, voltage, and capacity fade, digital twins provide real-time
diagnostics and predictive analytics. This enables early detection of potential failures,
improved safety measures, and precise estimation of remaining useful life. Furthermore,
digital twins facilitate the optimisation of charging and discharging cycles, contributing to
enhanced efficiency and prolonged battery lifespan.

Another critical application of digital twins lies in accelerating the development of
advanced battery technologies. Virtual simulations conducted through digital twins reduce
the need for physical testing, thereby shortening development timelines and lowering costs.
Additionally, the integration of digital twins with real-world operational data can inform
the design of next-generation battery systems, ensuring they are tailored to specific use
cases and environmental conditions.

The adoption of digital twins also aligns with the principles of sustainability and
circular economy. By enabling accurate end-of-life predictions and optimising second-life
applications, digital twins support effective resource utilisation and reduce waste. As the
electric vehicle industry continues to evolve, the integration of digital twins into battery
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systems represents a forward-looking approach that combines technological innovation
with environmental responsibility.

3.2. Theme 2: Electric Vehicle Battery Capacity Prediction: Influencing Factors
3.2.1. Topic 1: Machine Learning Model for Battery Capacity Prediction

This theme focuses on using machine learning techniques to predict battery capacity
and state of health in EVs. Methods like neural networks and ensemble models help
capture complex battery degradation patterns, improving prediction accuracy and enabling
real-time monitoring to optimise battery performance and lifespan.

Ref. [37] presents a novel hybrid approach for improving the accuracy and efficiency
of SOH estimation in lithium-ion batteries. The authors combine Empirical Mode Decom-
position (EMD), Gated Recurrent Unit (GRU) neural networks, Random Forest (RF), and
the Variance Contribution Ratio (VCR) to develop an effective model for battery health
prediction. Using the NASA PCoE Li-ion battery dataset, the model outperforms traditional
methods with prediction errors below 4%, making a notable contribution to advancing
battery capacity prediction and health management for EVs. Ref. [38] introduces a hybrid
deep neural network (HDNN) for battery capacity estimation in EVs, using real-world
data from 40 electric buses. The HDNN, combining convolutional and fully connected
networks, achieved a MAPE of 2.79%, outperforming traditional methods, and is suitable
for real-time battery management. The study significantly improves accuracy and robust-
ness in battery health estimation. Ref. [39] reviews deep learning methods for predicting
the remaining useful life (RUL) of energy storage systems like lithium-ion batteries. It
finds that models like LSTM, GRU, CNN, and autoencoders, particularly in hybrid forms,
outperform traditional methods in accuracy and efficiency. These techniques can enhance
battery management by adapting to degradation over time, but further validation under
real-world conditions is needed, along with improvements in generalisability and com-
putational efficiency. Ref. [40] presents a hybrid deep learning model for predicting the
RUL of lithium-ion batteries. The model combines domain knowledge-based features with
features learned by a neural network, using a one-dimensional convolutional neural net-
work (1D-CNN) and a fully connected network enhanced by a snapshot ensemble strategy.
Trained on data from 124 commercial lithium-ion battery cells, the model outperformed
traditional methods like SVR, GRU-RNN, and CNN-LSTM, achieving better accuracy and
generalizability. This approach improves early RUL prediction, contributing to efficient
EV battery management. Ref. [41] proposes a hybrid neural network combining 1D CNN
and BiLSTM to improve the prediction accuracy of lithium-ion battery RUL. Tested on
NASA’s battery datasets, the model outperformed traditional methods like RNN and LSTM
by achieving lower prediction errors. The hybrid approach enhances feature extraction
and time-series analysis, making it more accurate and reliable for battery management,
though further testing on diverse datasets is needed. Ref. [42] presents an optimised hybrid
neural network using CNN and Bi-LSTM, improved with the Sparrow Search Algorithm
(SSA), to predict the SOH of lithium-ion batteries. Their model, tested on NASA battery
data, showed high accuracy with prediction errors under 0.7%, outperforming traditional
models. This approach enhances SOH prediction for EV batteries, making it suitable for
battery management, though more testing on different battery types is needed.

3.2.2. Topic 2: Hybrid Models, Transfer Learning, and Data-Driven Method for Battery
Capacity Prediction

This topic includes discussed hybrid models combining data-driven methods for
battery capacity.

Ref. [43] develops a hybrid machine learning model called N-CatBoost to estimate the
SOH of lithium-ion batteries using real-world data from the EVs. By combining CatBoost
and NGBoost algorithms, their model provides accurate SOH predictions with uncertainty
estimates. Tested on data from 15 EVs over a year, it achieved high accuracy with a MAPE
of 0.817%, outperforming other machine learning methods. This approach improves battery
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health estimation in practical EV applications but requires further validation with more
diverse data. Ref. [44] proposes a data-driven method for estimating LiFePO4 battery
capacity using cloud-based charging data from EVs. By combining linear regression for
slow-charging data and a neural network for fast-charging data, their approach achieved
high accuracy with data from 85 vehicles over one year. This method enhances battery
management by improving capacity estimation in real-world conditions, supporting better
battery life for EVs. Ref. [45] develops a model for estimating the health of lithium-ion
batteries in EVs, using real-world data like driving mileage and seasonal temperature. They
applied advanced algorithms (VFFRLS and EPF) to achieve accurate capacity estimation,
keeping errors within ±1.2%. This approach improves battery management under real-
world conditions, although broader testing is needed for general use. Ref. [46] develops
a voltage prediction method for lithium-ion batteries using sparse data. By using a self-
attention network with transfer learning and a new SEE loss function, they achieved a
mean error below 0.5%, outperforming traditional models. This approach improves battery
monitoring in EVs, making battery management more accurate and efficient, but needs
further testing in varied conditions.

Ref. [47] develops DLPformer, a hybrid model for predicting the state of charge in
EVs, using linear trend analysis and transformer-based machine learning. By integrating
battery and vehicle data, the model improves prediction accuracy compared to traditional
methods. It shows promising results for better battery management, but further testing
under different conditions is needed for broader use. Ref. [48] proposes a hybrid model that
combines physics-based and data-driven methods to predict Li-ion battery degradation.
Using a sequence-to-sequence deep learning approach, the model accurately predicts
battery capacity using just 20% of early-cycle data, achieving a MAPE of less than 2.5%.
This approach offers an efficient solution for early prediction, though more validation
under varied conditions is needed. Ref. [49] proposes a battery capacity estimation method
combining an equivalent circuit model with quantile regression (QR) to address low-
quality, inconsistent real-world data from EVs. By using QR to manage outliers and refine
capacity estimation, the model achieved errors within 3.2%, significantly outperforming
ordinary least squares (OLS) regression. This approach is effective for improving battery
capacity estimation in practical, large-scale applications, though further validation in varied
temperature conditions is needed.

Ref. [50] develops a hybrid transfer learning method for predicting lithium-ion battery
capacity. By combining EEMD, SVR, and BiLSTM-AM, the approach captures both local
and long-term degradation features, achieving high accuracy with errors between 0.6% and
6.96%. The method outperformed traditional models and is suitable for battery manage-
ment systems, though further validation on diverse batteries is recommended. Ref. [51]
develops an LSTM-based model to estimate lithium-ion battery health using incremental
capacity analysis and transfer learning. This approach achieved high prediction accuracy,
with an error under 2%, and adapted well to different battery conditions, providing a
reliable solution for improving battery management systems in EVs.

3.2.3. Topic 3: Advanced Signal Processing and Feature Extraction Techniques

This theme includes articles utilising advanced signal processing methods, such as
incremental capacity analysis, differential voltage analysis, and wavelet transforms, to
extract meaningful features for capacity prediction.

The evolution of battery capacity prediction models has been significantly influenced
by advanced signal processing and feature extraction methods. These techniques allow
researchers to distil meaningful information from raw battery data, enhancing the accuracy
of capacity and state-of-health (SOH) predictions. A crucial aspect of this progression is
rooted in foundational electrochemical methods developed over the past decades, such as
Electrochemical Impedance Spectroscopy (EIS), Linear Sweep Voltammetry (LSV), Cyclic
Voltammetry (CV), and controlled charging/discharging protocols. These methods have
provided essential data for developing and validating battery behaviour models.
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Electrochemical Impedance Spectroscopy (EIS), which gained prominence in the 1980s,
has been instrumental in probing internal battery processes. By applying an alternating cur-
rent over a range of frequencies and measuring the resulting impedance, EIS offers insights
into charge transfer resistance, double-layer capacitance, and diffusion phenomena within
electrode materials. This technique enables the modelling of complex electrochemical
dynamics, contributing to more accurate simulations of battery behaviour.

Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV), fundamental since
the mid-20th century but widely adopted in battery research during the 1970s and 1980s, in-
volve sweeping the electrode potential and recording the current response. These methods
reveal information about redox reactions, reaction kinetics, and material stability. Data from
CV and LSV have been crucial for identifying suitable electrode materials and understand-
ing their behaviour under different conditions, feeding directly into physics-based models.

Controlled charging and discharging experiments have long been central to battery
testing. Standardized cycling protocols provide consistent datasets for evaluating per-
formance metrics like energy density, power density, cycle life, and efficiency. These
experiments have historically offered empirical data essential for both developing models
and validating simulations.

Building upon these foundational methods, recent studies have employed advanced
signal processing and feature extraction techniques to enhance capacity prediction models.
Ref. [52] develops a hybrid model combining Discrete Wavelet Transform (DWT) and an
improved semi-empirical (ISE) ageing model to predict the RUL of lithium-ion batteries.
Their model outperformed others like Particle Filter and LSTM, offering high accuracy
with minimal data. This approach provides reliable early RUL predictions to optimise
maintenance. Ref. [53] presents a practical SoH estimation method for LiFePO4 batteries
using Gaussian mixture regression (GMR) combined with incremental capacity (IC) analysis.
This approach, validated through ageing tests, outperformed traditional methods like linear
regression and neural networks in accuracy, achieving MAE and RMSE below 1%. The
GMR-based method is suitable for EV battery management, offering high adaptability
and low computational complexity. Future research should explore its applicability under
dynamic charging conditions and for different battery types. Ref. [54] proposes a SOH
prediction method for lithium-ion batteries using wavelet-convolutional neural regression
networks (CNRNs) with Electrochemical Impedance Spectroscopy (EIS) frequency profiles.
This method, validated with Eunicell LR2032 cells under various temperatures, improved
SOH prediction accuracy by using wavelet decomposition for feature extraction in both
time and frequency domains. Hybrid models like CNRN-GPR further boosted prediction
performance. The study suggests expanding the dataset for more battery types and real-
world testing to confirm robustness, making it relevant for battery health monitoring in EVs
and energy storage systems. Ref. [55] proposes a method for estimating lithium-ion battery
state-of-health (SOH) using incremental energy analysis (IEA) and a Bayesian-transformer
model. The model achieved high accuracy, outperforming traditional methods like LSTM
and SVR. This approach effectively enhances SOH prediction, supporting improved battery
management and extended life cycle.

These advanced techniques address challenges in capacity prediction by capturing
complex degradation patterns and intrinsic electrochemical behaviours not apparent from
raw data alone. By leveraging insights from EIS, CV, and ICA, models become more accu-
rate and interpretable. Furthermore, these methods enhance the generalizability of models
across different battery chemistries and operating conditions. Focusing on fundamental
electrochemical features allows for adaptability without extensive retraining, which is
crucial for practical applications in EVs with varying battery designs and usage patterns.

3.2.4. Topic 4: Impact of Temperature and Thermal Effects on Battery Capacity

This topic focuses on how temperature influences battery capacity and the methodolo-
gies developed to predict and manage thermal effects.
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Temperature plays a pivotal role in the performance and longevity of lithium-ion
batteries by significantly influencing their internal chemical reactions and, consequently,
their capacity. At elevated temperatures, the kinetics of electrochemical reactions are
enhanced, leading to increased ion mobility and reduced internal resistance. This can
temporarily boost the battery’s capacity and power output. However, prolonged exposure
to high temperatures accelerates degradation processes such as electrolyte decomposition,
growth of the solid electrolyte interphase (SEI) layer, and structural damage to electrode
materials. These degradation mechanisms result in capacity fade, reduced cycle life, and
can pose safety risks due to potential thermal runaway scenarios.

Conversely, at low temperatures, the electrochemical reaction rates decrease, causing
increased internal resistance and reduced ionic conductivity. This leads to diminished
battery capacity and poor power performance. Low temperatures can also induce lithium
plating on the anode during charging, which not only decreases capacity but also increases
the risk of internal short circuits due to dendrite formation. Understanding and managing
these temperature effects are crucial for optimising battery performance and ensuring
safety in EVs.

To address these challenges, various methodologies have been developed to predict
and manage thermal effects in lithium-ion batteries. For instance, Ref. [56] proposed a
model to estimate the internal temperature and state-of-charge (SOC) of lithium-ion batter-
ies using a fractional-order thermoelectric approach. This method achieved high accuracy,
with errors of 0.5% for SOC and 0.3 ◦C for temperature. It improves battery safety and man-
agement for electric vehicles, though further testing is needed for real-world use. Ref. [57]
used ANN models to predict lithium-ion battery performance with direct oil cooling. The
ANN_LM-Tan model showed high accuracy, predicting temperature within ±0.97% and
voltage within ±4.81%. This method improves cooling system design for Evs. Ref. [58]
developed ANN models (BP-NN, RBF-NN, Elman-NN) to predict lithium-ion battery
temperatures under metal foam cooling. The Elman-NN model outperformed others in
adaptability and speed, suggesting ANN as an efficient alternative to CFD for battery
thermal management. Experimental validation is needed for real-world use. Ref. [59]
used an ANN, specifically the Elman-NN model, to predict battery cell temperatures with
a refrigerant direct cooling system (RDC-TMS). The Elman-NN showed high accuracy
and RDC-TMS outperformed other cooling methods. This model improves battery cool-
ing in electric vehicles, but future studies should test it under dynamic conditions and
fast charging.

Temperature significantly affects lithium-ion battery capacity by influencing internal
chemical reactions. High temperatures can temporarily enhance performance but accelerate
degradation, while low temperatures reduce capacity and pose safety risks. Advanced
modelling techniques, such as fractional-order thermoelectric models and ANN-based
predictive models, offer promising solutions for managing thermal effects and optimising
battery performance in EVs. Ongoing research and experimental validation are essential to
translate these methodologies into practical, real-world applications.

3.2.5. Topic 5: State-of-Charge (SOC) Estimation Methods

This theme focuses on articles that develop and improve SOC estimation methods, es-
sential for accurate capacity prediction. Ref. [60] introduced an Interacting Multiple Model
(IMM) method to estimate SOC and SOH in lithium-ion batteries, effectively addressing
temperature and ageing effects, with an SOC error margin around 2%. Future testing
could apply this to various battery types. Ref. [61] utilises neural networks to predict the
SOC-OCV relationship, achieving higher accuracy and lower complexity than traditional
methods, which could enhance battery management system reliability under dynamic con-
ditions. Ref. [62] introduces a passive equalisation strategy designed to improve efficiency
and extend the battery life of lithium-ion battery packs. The strategy operates by using
resistive components to dissipate excess energy from cells with a higher state of charge,
thereby balancing the charge levels across all cells in the pack. This process reduces the
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disparities in cell voltages and capacities, preventing overcharging and deep discharging of
individual cells. By maintaining balanced charge levels, the strategy enhances overall per-
formance and prolongs the lifespan of the battery pack. Compared to traditional methods,
this passive equalisation approach is simpler and more cost-effective, making it suitable for
electric vehicle applications. While initial results are promising, further real-world testing
is recommended to fully validate its effectiveness in practical scenarios.

3.2.6. Topic 6: Factors Influencing Battery Degradation and Capacity Loss

This topic explores factors significantly impacting lithium-ion battery (LIB) degra-
dation in EVs, including operating conditions, SOC range, and charging patterns, all
contributing to battery lifespan and performance. Key influences on degradation are tem-
perature, depth of discharge (DoD), SOC, charging rates, chemical mechanisms, and also
charging mode. Temperature plays a crucial role; high temperatures accelerate reactions like
solid electrolyte interphase (SEI) growth and electrolyte oxidation, while low temperatures
increase internal resistance, risking issues like lithium plating. DoD directly affects mechan-
ical and thermal stress: deeper discharges lead to structural changes, while a moderate DoD
around 50% is optimal to reduce wear. SOC levels also impact degradation, with high SOC
accelerating wear through increased chemical reactivity and low SOC increasing internal
resistance. Maintaining SOC in an optimal range during cycling and storage is beneficial
for longevity. Charging rates, or C-rates, further influence battery health: high rates induce
thermal and mechanical stress, causing SEI growth, lithium plating, and capacity loss,
while lower rates are preferable to reduce wear. Chemical degradation mechanisms like SEI
growth, loss of lithium inventory (LLI), loss of active materials (LAM), and electrolyte loss
also contribute to gradual capacity fade. SEI layer growth reduces capacity by consuming
lithium ions, while LAM results from structural damage that limits the available reaction
mass. Additional factors affecting LIB health include cycling frequency, user behaviour,
vehicle weight, infrastructure, and environmental conditions, such as climate and road
types, which impact battery load and stress. For example, aggressive driving and heavy use
of auxiliary systems may reduce battery life, and infrastructure aspects like charging station
types and electricity mix can influence efficiency. Considering these varied factors is crucial
for effective battery management, and strategies such as thermal management, optimised
charging practices, moderate driving, and energy management systems collectively extend
battery lifespan and enhance EV sustainability.

Ref. [63] developed a lithium-ion battery degradation model for EVs, incorporating
time-varying temperatures and charge cycles, which outperformed traditional models with
a prediction error of 2.34% compared to 11.18%. This model, optimised with Particle Swarm
Optimisation, underscores the impact of temperature fluctuations on battery capacity and
suggests incorporating these factors in degradation models for better battery management.
Ref. [64] proposes a degradation model using MEEMD, MIV, and Bi-LSTM, achieving high
accuracy (MAE of 0.0143) by using capacity, voltage, current, and temperature data. This
study identifies key degradation factors, emphasising the roles of internal parameters and
operating conditions, such as high and fluctuating temperatures and frequent charging
cycles. Ref. [65] reviews life cycle impacts, noting that battery degradation is influenced
by production impacts of materials like cobalt, lithium, and nickel, as well as temperature
fluctuations and charging patterns during use. Efficient recycling and second-life applica-
tions were also found to reduce degradation and environmental impact. Additional studies
like [66,67] advanced degradation prediction methods by using partial charging segments
for multi-type batteries, deep reinforcement learning for multi-formulation Li-ion batteries,
respectively. These diverse approaches reflect ongoing efforts to enhance degradation
predictions and improve the sustainability and performance of lithium-ion batteries in Evs.

The charging modes of EVs significantly influence the performance and longevity
of lithium-ion batteries, particularly affecting the state of charge and state of health. The
two primary charging methods—direct current (DC) fast charging and alternating current
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(AC) charging—impart distinct impacts on battery dynamics due to their operational
characteristics.

DC Fast Charging and Its Impact on SOC and SOH: DC fast charging is characterised
by high voltage and current levels, enabling rapid replenishment of the battery’s SOC. This
method is advantageous for reducing charging time; however, it introduces considerable
thermal and electrochemical stresses on the battery cells. High charging currents accel-
erate side reactions, most notably lithium plating on the anode surface—a phenomenon
where lithium ions deposit as metallic lithium rather than intercalating into the anode
material [68,69]. Lithium plating is an irreversible process that diminishes the availability
of active lithium ions, leading to capacity loss and degradation of the SOH. Moreover,
lithium plating poses safety risks due to the potential formation of dendrites, which can
penetrate the separator and cause internal short circuits, leading to thermal runaway [68].

Elevated temperatures during DC fast charging exacerbate the growth of the solid
electrolyte interphase (SEI) layer and accelerate electrolyte decomposition. The thickening
of the SEI layer increases internal resistance and contributes to further capacity fade and
reduced cycle life [69,70]. Additionally, the uneven lithium-ion distribution and localised
heating can cause mechanical stresses within the electrode materials, leading to structural
degradation over time [69].

AC Charging and Its Effects on Battery Health: In contrast, AC charging operates at
lower power levels and provides a more controlled and uniform charging process. This
mode minimises thermal and electrochemical stresses, thereby preserving the structural
integrity of electrode materials and maintaining the SOH over extended usage [68,70]. The
slower charging rate associated with AC charging allows for uniform lithium-ion intercala-
tion within the electrode materials, reducing the likelihood of lithium plating and other
degradation mechanisms [70]. Consequently, batteries charged using AC methods tend to
exhibit longer cycle life and more stable performance over time. However, the extended
charging duration may impact practicality for users requiring rapid energy replenishment.

Mitigation Strategies and Advanced Charging Protocols: To harness the benefits of DC
fast charging while mitigating its adverse effects on the SOH, advanced charging protocols
and battery management strategies have been proposed. Tailored charging protocols such
as multistage constant current charging (MSCC) and pulse charging techniques aim to
reduce thermal and structural stresses by dynamically adjusting charging currents [69].
These methods promote uniform lithium-ion distribution and reduce heat generation, thus
preserving the SOH without significantly compromising the charging speed.

The integration of adaptive algorithms and advanced battery management systems
(BMS) enables real-time monitoring and control of charging conditions, optimising the
balance between charging efficiency and battery longevity [70,71]. Deep learning method-
ologies and machine learning models have shown promise in enhancing SOC and SOH
estimation accuracy, allowing for predictive adjustments to charging protocols based on
operational data [71,72]. These data-driven approaches facilitate the development of adap-
tive charging strategies that respond to the battery’s condition and external factors, such as
temperature and usage patterns.

Moreover, preheating strategies at low ambient temperatures have been suggested to
minimise lithium plating risks during fast charging by improving the kinetics of lithium
intercalation [68]. Innovations in converter topologies, such as bidirectional and quasi-Z-
source converters, further enhance charging system efficiency by optimising power flow
and reducing voltage stress on battery cells [69].

4. Discussion, Gaps, and Future Direction
4.1. Theme 1: Electric Vehicle Battery Technologies: Development and Trends
4.1.1. Discussion

The initial stages of EV battery development centred on foundational innovations with
lead–acid and early lithium technologies. Research during 1976–1985 laid the groundwork
by evaluating energy resources and optimising performance for internal combustion en-
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gines and early EVs. The introduction of lead–acid batteries and explorations into lithium
technologies marked significant milestones, setting the stage for future advancements.

Between 1986 and 1995, there was a shift towards chemical system innovations and
addressing environmental considerations. The development of hybrid power systems
and material advancements reflected a growing awareness of the need for cleaner energy
solutions. The automotive industry’s recognition of an environmental programme led to
innovations that enhanced infrastructure efficiency and reduced environmental impact.

The period from 1996 to 2005 witnessed the emergence of hybrid and fuel cell technolo-
gies, focusing on addressing performance challenges and integrating new power systems.
Advancements in lithium and nickel–metal hydride (NiMH) technologies improved power
and charging performance, making hybrid EVs (HEVs) more viable and cost-effective.

From 2006 to 2015, the focus intensified on efficiency and environmental impact.
Significant advancements in hydrogen fuel cells and efforts to reduce emissions highlighted
the industry’s commitment to sustainability. Evaluations of energy and power systems
during this time contributed to optimising hybrid and EVs, enhancing their range, cost-
efficiency, and overall performance.

The most recent phase, from 2016 to 2025, emphasises sustainability and material
efficiency. Technological advancements aim at emission challenges, with a particular focus
on lithium-ion technologies and recycling methods. Efforts to incorporate recycling address
environmental concerns and material scarcity, ensuring the sustainable use of resources.
Enhancements in charging methods, heat management, and emission reduction techniques
prepare the industry for future challenges.

Advances in battery modules and packs have greatly improved EV performance
and safety. Innovations in thermal management and battery management systems have
increased energy density and reliability at the system level. Integrated designs like cell-to-
pack configurations have simplified manufacturing and made better use of space. These
developments tackle practical challenges in vehicle integration, highlighting the importance
of viewing the battery system as a whole rather than just individual cells.

4.1.2. Gaps

Despite considerable progress, several critical gaps remain. Scaling advanced technolo-
gies like solid-state and lithium–sulphur batteries for mass production is challenging, with
economic viability and quality maintenance requiring further research. Comprehensive
life cycle environmental impact assessments of new battery materials are lacking, making
it difficult to ensure true sustainability. The absence of standardised testing protocols
hinders reliable comparisons of performance and safety across emerging technologies.
High production costs for advanced batteries limit accessibility, highlighting the need for
cost-reduction innovations. Recycling methods for new chemistries remain underdevel-
oped, emphasising the importance of sustainable end-of-life solutions as EV adoption
grows. Integrating EVs into current energy grids, particularly with vehicle-to-grid (V2G)
capabilities, presents infrastructure challenges, especially in managing peak loads. Extreme
temperature conditions degrade battery performance, necessitating advanced thermal man-
agement systems. Additionally, reliance on scarce or ethically contentious materials, like
cobalt, raises sustainability and social responsibility concerns. Although the advancements
in battery modules and packs, optimising battery modules and packs still faces challenges.
Significant hurdles include thermal runaway within packs, mechanical stresses during op-
eration, and difficulties in scaling up production. The lack of standardisation in designs can
hinder interoperability and raise manufacturing costs. Additionally, integrating advanced
battery management systems brings up issues related to data processing and cybersecurity.

4.1.3. Future Directions

To address existing gaps, several future directions are recommended. Scalable manu-
facturing processes should be developed to enable economical mass production of advanced
batteries without sacrificing quality. Comprehensive life cycle analyses are necessary to
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understand and mitigate environmental impacts throughout battery lifespans. Industry-
wide standards for testing and evaluating batteries would ensure reliable assessments of
performance and safety. Cost-reduction efforts should focus on alternative materials and
production techniques to broaden accessibility. Advances in recycling technologies are
essential to recover valuable materials and reduce environmental harm, while improved
thermal management systems can optimise battery performance under varying conditions.
Expanding infrastructure, including charging stations and smart grid technologies, is key
to supporting the growing EV market and enabling vehicle-to-grid (V2G) capabilities.
Research into abundant, ethically sourced materials can reduce dependence on scarce
resources, and interdisciplinary collaboration among industry, academia, and government
will further accelerate innovation, knowledge sharing, and policy development. Improving
battery module and pack design is crucial for safer, better-performing, and more man-
ufacturable EV batteries. Future research should focus on advanced thermal insulation
materials, structural designs that reduce mechanical stress, and standardised architectures
to streamline production and recycling. Using intelligent battery management systems
with real-time data can optimise performance and extend battery life. Collaboration among
researchers, manufacturers, and policymakers is essential to tackle these challenges and
promote sustainable EV battery systems.

4.2. Theme 2: Electric Vehicle Battery Capacity Prediction: Influencing Factors
4.2.1. Discussion

The comprehensive review of the current literature on electric vehicle (EV) battery
capacity prediction reveals significant advancements driven primarily by the integration
of machine learning (ML) and data-driven methodologies. The predominant focus across
studies is the development and refinement of ML models, including neural networks,
ensemble methods, and hybrid approaches, to accurately predict battery capacity and SOH.
For instance, Ref. [37] demonstrated that combining Empirical Mode Decomposition (EMD)
with Gated Recurrent Unit (GRU) neural networks and Random Forest (RF) significantly
enhances SOH estimation accuracy, achieving prediction errors below 4%. Similarly, Gao
et al. (2023) [41] and Zhou et al. (2024) [42] showcased hybrid neural networks incorpo-
rating convolutional neural networks (CNNs) and bidirectional long short-term memory
(BiLSTM) units, further reducing prediction errors and improving reliability.

Hybrid models that merge data-driven techniques with physics-based approaches
have emerged as robust solutions for capacity prediction. Xu et al. (2023) [48] and Chou
et al. (2023) [50] highlighted the efficacy of combining empirical models with deep learning
frameworks, enabling accurate degradation trajectory predictions using limited early
cycle data. These hybrid methodologies address data scarcity issues and enhance model
generalizability across diverse battery types and operational conditions.

Advanced signal processing and feature extraction techniques have also played a piv-
otal role in improving prediction accuracy. Techniques such as Discrete Wavelet Transform
(DWT), incremental capacity (IC) analysis, and Electrochemical Impedance Spectroscopy
(EIS) have been effectively utilised to extract meaningful features from battery performance
data. Ref. [52] and Al-Hiyali et al. (2024) [54] demonstrated that integrating these signal
processing methods with machine learning models significantly enhances the fidelity of
remaining useful life (RUL) predictions, achieving errors below 1%.

Temperature and thermal effects have been identified as critical factors influencing bat-
tery degradation. Studies [56,57] developed accurate models for estimating internal battery
temperatures and predicting thermal performance under various cooling strategies. Effec-
tive thermal management is essential not only for preventing thermal runaway but also for
prolonging battery lifespan by mitigating temperature-induced degradation mechanisms.

SOC estimation remains a cornerstone for accurate capacity prediction. Advanced
SOC estimation methods, such as the Interacting Multiple Model (IMM) employed by
Wu et al. (2022) [60], have shown high accuracy in decoupling temperature and ageing
effects, maintaining SOC estimation errors around 2%. Precise SOC estimation is crucial for
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optimising battery management systems, ensuring optimal performance, and extending
battery life.

Moreover, the identification and analysis of factors influencing battery degradation—such
as operating conditions, SOC range, charging patterns, and mechanical stresses—underscore
the multifaceted nature of battery capacity loss. Ref. [63] emphasised the substantial impact
of temperature fluctuations, depth of discharge (DoD), and charging rates on battery health,
advocating for comprehensive models that incorporate these variables to enhance prediction
accuracy and battery life cycle sustainability.

The reliability and accuracy of battery behaviour models depend on data quality and
advanced analytical techniques. Recent advancements in data acquisition and analytical
methods have significantly improved model capabilities, enabling precise predictions of
battery performance.

Modern EVs, equipped with advanced battery management systems (BMSs), collect
high-resolution data on parameters like voltage, current, and temperature under diverse
conditions. These detailed data enhance the understanding of battery behaviour, capturing
transient events and subtle degradation patterns. The rise in connected devices and IoT has
also expanded large-scale datasets, allowing manufacturers and fleet operators to aggregate
data from thousands of vehicles. These comprehensive datasets improve model robustness
and generalizability.

On the analytical side, machine learning, particularly deep learning architectures
like CNNs, RNNs, and LSTMs, efficiently process large datasets and capture nonlinear
relationships in battery systems. Hybrid models combining data-driven methods with
physics-based principles further enhance predictions by balancing accuracy and inter-
pretability. Advanced feature extraction techniques, such as incremental capacity analysis
(ICA) and differential voltage analysis (DVA), provide key battery health indicators, im-
proving model inputs and predictions.

These advancements have significantly increased the reliability of battery models,
reducing uncertainty and supporting better decision-making. Accurate models optimise
battery usage, maintenance, and failure prevention, enhancing EV safety, efficiency, and
lifespan. They also build consumer and manufacturer confidence in EV battery perfor-
mance and durability, promoting electric mobility adoption and enabling better energy
management for sustainable systems.

4.2.2. Gaps

Despite notable progress in EV battery capacity prediction, several key research gaps
remain. Limited real-world validation restricts model robustness, as many models rely
on controlled datasets with minimal validation across diverse EV types and conditions.
Most studies focus on specific lithium-ion chemistries, limiting generalisation across battery
types and configurations. Models also often omit important operational factors such as user
behaviour and environmental conditions, leading to incomplete degradation predictions.
High computational demands of advanced models hinder real-time application, under-
scoring the need for optimisation. Current models struggle with long-term degradation
forecasting across a battery’s life cycle, especially under varying conditions. Privacy and
security concerns in data-driven models require further exploration, with federated learning
offering potential but underexplored solutions. Additionally, limited integration of materials
science, chemistry, and engineering insights restricts a holistic understanding of degradation,
suggesting a need for multidisciplinary approaches to improve model accuracy.

4.2.3. Future Suggestions

To address these gaps and advance EV battery capacity prediction, future research
should focus on several key areas. Enhanced data collection through partnerships with
manufacturers and fleet operators can provide diverse, real-world operational data to im-
prove model accuracy. Developing universal models that adapt across battery chemistries,
using techniques like transfer and federated learning, will ensure broader applicability
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while maintaining data privacy. Models should also integrate varied operational factors,
such as user behaviour and environmental conditions, to capture comprehensive degra-
dation patterns. Optimising models for real-time deployment through computational
techniques will support practical battery management applications. Long-term studies on
battery performance under diverse conditions will refine predictions for capacity loss, while
multidisciplinary research incorporating materials science and engineering can deepen
understanding of degradation. Integrating thermal management in degradation models
can further enhance safety and battery lifespan. Emerging machine learning techniques,
including reinforcement learning and explainable AI, may improve performance and
transparency. Testing models across a range of climates and driving conditions will en-
sure scalability, while data from recycling and second-life applications will support more
sustainable battery management and life cycle practices.

5. Conclusions

This research has provided a thorough exploration of the trends shaping battery
technology, which is foundational to the future of electric vehicles (EVs). By using a
hybrid methodology that combines DTM and content analysis, this study identifies major
advancements in battery materials, design, and manufacturing, highlighting innovations
such as solid-state and lithium–sulphur batteries as well as improvements in lithium-
ion chemistries. These advancements address critical EV challenges, including energy
density, safety, and sustainability, while targeting limitations in range, charging time, and
safety—key factors for the widespread adoption of EVs. By analysing these emerging
technologies, this study offers essential insights into how battery development aligns with
EV industry needs.

Additionally, the study evaluates methodologies for predicting remaining battery
capacity, revealing a strong trend towards machine learning and data-driven approaches
to improve prediction accuracy. Techniques such as deep learning, transfer learning, and
advanced signal processing are gaining prominence in real-time battery health monitoring,
allowing for more accurate and timely capacity assessments. These data-centric method-
ologies support more effective battery management systems, potentially extending battery
lifespans and ensuring that EVs remain reliable and efficient over time. Such advancements
in capacity prediction contribute to optimising EV performance and addressing concerns
surrounding battery reliability and life cycle costs.

This literature review also delves into factors impacting battery capacity degradation,
identifying key influences such as temperature extremes, depth of discharge, state of
charge, charging rates, and overall operating conditions. Managing these factors is crucial
for maintaining battery health and lifespan, and the study emphasises the role of advanced
battery management systems, thermal regulation, and optimised charging protocols in
achieving sustainable life cycle practices. These insights are timely and relevant, not only to
researchers but also to policymakers and industry leaders who are tasked with establishing
standards and creating supportive frameworks for sustainable EV growth. By integrating
perspectives from materials science, engineering, and environmental policy, this study
bridges essential knowledge gaps in battery life cycle management.

In conclusion, this research presents a comprehensive analysis of battery technol-
ogy developments, methodologies for capacity prediction, and factors affecting battery
degradation, directly addressing the core research questions. The findings hold signif-
icant implications for the EV sector’s role in achieving sustainability goals. As the EV
industry continues to evolve, aligning battery advancements with environmental targets is
imperative. This research underscores the need for ongoing innovation, interdisciplinary
collaboration, and life cycle-focused approaches to ensure that EVs fulfil their environmen-
tal potential, contributing to the broader goals of carbon neutrality and a resilient energy
future for generations to come.
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