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Abstract: The emergence of the COVID-19 pandemic in 2020 led to the implementation of legal
restrictions on individual activities, significantly impacting traffic and air pollution levels in urban
areas. This study employs a state-space intervention method to investigate the effects of three major
COVID-19 lockdowns in March 2020, November 2020, and January 2021 on London’s air quality.
Data were collected from 20 monitoring stations across London (central, ultra-low emission zone,
and greater London), with daily measurements of NOx, PM10, and PM2.5 for four years (January
2019–December 2022). Furthermore, the developed model was adjusted for seasonal effects, ambient
temperature, and relative humidity. This study found significant reductions in the NOx levels during
the first lockdown: 49% in central London, 33% in the ultra-low emission zone (ULEZ), and 37%
in greater London. Although reductions in NOx were also observed during the second and third
lockdowns, they were less than the first lockdown. In contrast, PM10 and PM2.5 increased by 12% and
1%, respectively, during the first lockdown, possibly due to higher residential energy consumption.
However, during the second lockdown, PM10 and PM2.5 levels decreased by 11% and 13%, respec-
tively, and remained unchanged during the third lockdown. These findings highlight the complex
dynamics of urban air quality and underscore the need for targeted interventions to address specific
pollution sources, particularly those related to road transport. The study provides valuable insights
into the effectiveness of lockdown measures and informs future air quality management strategies.

Keywords: COVID-19 lockdowns; air pollution; state-space modelling; fine particles

1. Introduction

Air pollution has emerged as a major concern for urban and suburban areas around the
world, having negative effects on both human health [1,2], anthropogenic ecosystems [3],
and climate [4]. In cities such as London, a major source of air pollution is road transport,
which produces nearly half of all nitrogen oxides (NOx) and particulate matter (PM10 and
PM2.5) into the air [5]. Air quality in London has improved in recent years as a result of
restrictive policies, such as ultra-low emission [6]. Despite this progress, air pollution levels
in London will continue to exceed WHO clean air guidelines in 2025 and 2030 [7].

The emergence of the COVID-19 pandemic in 2020 resulted in the introduction of legal
restrictions, known as lockdowns, on individual activities. Governments around the world
implemented extraordinary measures in 2020, including restrictions on road and air travel
and restricted human movement. These lockdowns encompassed the extensive cessation of
diverse activities, including limitations on the movement of vehicles, temporary cessation
of industrial and productive operations, closures of non-essential establishments, offices,
and educational institutions. The impacts of these lockdowns were examined by several
studies in different locations, such as China [8–11], Brazil [12], central Europe [13], and
India [14,15].

Some studies have compared the levels of atmospheric contaminants observed during
periods of lockdown to those recorded in the same year prior to or after the time of
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lockdown [16,17]. Other research examined the same time period three years prior to the
onset of the pandemic [18], also frequently confining their analysis to singular pollutants.

During the lockdown, numerous studies reported lower levels of particulate matter
(PM10 and PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), Sulphur dioxide (SO2),
and ozone (O3) when compared to pre-lockdown situations and/or prior years [18–21]. In
some other studies, however, the levels of PM2.5 (particularly secondary organic aerosols)
were reported to stay constant or increase as a result of volatile organic compounds
(VOCs) [22,23]. Furthermore, the concentrations of O3, which is a type of air pollution
formed as a result of chemical reactions, have often been seen to remain constant or even
rise [24]. This inconsistency can be attributed to variations in emission levels from specific
sources, the proximity of sources to air quality monitoring stations, prevailing meteorologi-
cal conditions, chemical reactions involving atmospheric oxidants, and the efficiency of
pollutant removal through atmospheric deposition.

Air pollutants are emitted from several sources, including factories, on-road vehicles,
ships, and airplanes, as well as from natural sources such as biomass burning, dust storms,
and seas. Lockdown measures greatly limited urban mobility in many areas, significantly
reducing transportation-related air pollution. The emission characteristics of traffic-related
pollutants depend on both the number of vehicles on the road and the composition of traffic,
including motorbikes, passenger cars, buses, utility vehicles, and heavy-duty trucks [25].

London has a complex and dense transportation network; hence, the impact of reduced
traffic during lockdowns presents a unique opportunity to study changes in air quality. The
lockdown period provided an unplanned but valuable scenario to observe the effects of
drastic reductions in traffic and industrial activities on air pollution levels. Furthermore, un-
derstanding the specific changes in air quality due to lockdown measures can inform future
urban planning and public health policies. If certain reductions in pollutants are observed
during these periods, this may suggest potential strategies for reducing air pollution under
normal circumstances. This could include promoting remote work, increasing investments
in public transportation, and encouraging the use of cleaner vehicle technologies.

In this study, we used a state-space intervention method to explore the effects of
the multiple COVID-19 restrictions on London’s air quality. State-space modelling is an
advanced time series model which can investigate both temporal and spatial changes in
the air pollution levels (daily measurement at monitoring stations), and it can incorporate
several interventions (such as COVID-19 lockdowns) [6,26,27]. The state-space intervention
method is particularly advantageous for this kind of study because it can simultaneously
account for the time-varying nature of air pollution data and the multiple interventions (i.e.,
different stages of lockdown measures). It allows for a more comprehensive understanding
of the temporal dynamics and the impact of multiple factors on air quality. We used an
extensive dataset including daily air pollution measurements of four years (2019–2022) from
20 monitoring stations across London, which facilitated the investigation of distinct trends
and patterns in London’s air pollution levels over time and location. Meteorological data,
including ambient temperature and relative humidity, were also considered in this model.

While various studies have explored the effects of COVID-19 lockdowns on air pol-
lution using more traditional statistical approaches, such as regression analysis and the
difference-in-differences method, the state-space intervention method offers a unique and
advanced approach that has not yet been widely applied to this specific context in London.
By utilizing this method, our study aims to fill this gap and provide more detailed and
actionable insights into the impacts of lockdown measures on urban air quality. This
approach not only enhances our understanding of the immediate effects of COVID-19
restrictions but also contributes to the broader field of environmental health research by
demonstrating the utility of state-space models in analysing complex, real-world data.

2. Study Design

For this study, a total of 20 air quality monitoring stations across London (Figure 1)
were selected to analyse the impacts of COVID-19 lockdowns on air pollution. The air
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quality data were collected for a four-year period (2019–2022) to capture pre-lockdown,
lockdown, and post-lockdown phases from the London Air Quality Network (LAQN) [28].
This dataset includes daily measurements of key pollutants including NO2, PM10, and
PM2.5. The selected stations were strategically distributed to capture variations across
different areas with distinct traffic patterns and emission characteristics:
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Figure 1. Locations of the air pollution monitoring stations across London.

Central London: Five stations were located in central London, an area characterized
by high traffic density, significant commercial activity, and stringent emission regulations.
This area represents the core urban environment where the impact of lockdowns on traffic-
related emissions is expected to be most pronounced.

Ultra-low emission zone (ULEZ): Seven stations were situated outside central London
but within the ULEZ. The ULEZ is designed to reduce air pollution by encouraging the
use of cleaner vehicles. The stations in this zone help in understanding the effectiveness of
both the ULEZ policy and the additional impact of COVID-19 restrictions on air quality.

Greater London (LEZ): Eight stations were located in greater London, outside the
ultra-low emission zone (ULEZ). These areas typically have lower traffic density compared
to central London but still experience significant vehicular movement. Analysing data from
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these stations provides insights into the broader regional impact of lockdowns beyond the
more strictly regulated zones.

The selection of these 20 stations allows for a comprehensive analysis of air quality
across different urban and suburban environments. By comparing data from central
London, the ULEZ, and greater London, we can assess the spatial variability in the impacts
of lockdown measures.

The percentage of missing values (averaged over all stations) for the whole study
period was 6%, 15%, and 21% for NO2, PM10, and PM2.5, respectively. We implemented the
multiple imputation by chained equation (MICE) method [29] for imputing missing values.
The MICE method is a flexible and widely used method that allows for the imputation of
missing data by generating multiple plausible datasets and combining the results to account
for the uncertainty associated with the missing values. This approach helps to ensure that
our analyses remain accurate and unbiased, despite the presence of incomplete data.

In addition, meteorological data, including ambient temperature and relative humidity,
were extracted from London Heathrow airport.

3. Methodology

State-space intervention statistical modelling is an advanced technique used to analyse
time series data, particularly when the objective is to understand the effects of specific
interventions or events over time. This method is grounded in state-space models, which
are characterized by their ability to handle complex temporal and spatial dependencies in
the data. We have selected the state-space intervention model due to its ability to effectively
handle time series data with abrupt changes, such as those caused by COVID-19 lockdowns.
This method is particularly suited to our data’s characteristics, as it captures the temporal
correlations and dynamic fluctuations in air pollution levels. Moreover, compared to other
statistical techniques, such as VARMA, the state-space model offers advantages in accuracy
and computational efficiency, making it a robust choice for analysing spatially distributed
data [30].

State-space models consist of two main components: the observation equation and
the state equation. The observation equation links the observed data to the unobserved
state variables, while the state equation describes the evolution of these state variables over
time. This framework is highly flexible, allowing for the incorporation of multiple sources
of variation and the modelling of dynamic systems.

In the context of intervention analysis, state-space models are particularly powerful.
The model can accommodate sudden changes or disruptions in the time series, such as
lockdowns. By including intervention variables in the model, it is possible to quantify the
impact of these interventions on the observed outcomes. For instance, in this study, state-
space models can assess how lockdown measures influenced pollution levels, adjusting for
other factors like meteorological conditions.

Moreover, state-space models can incorporate external covariates, making them suit-
able for complex real-world datasets. Their ability to capture both short-term fluctuations
and long-term trends allowed us to disentangle the effects of interventions from underlying
trends and seasonal patterns. This is achieved through the model’s latent state variables,
which can represent various underlying processes driving the observed data.

In this study, the state-space intervention method’s application provides several benefits:
Flexibility: It can incorporate various types of data, including meteorological variables,

which can affect air pollution levels.
Dynamic analysis: It accounts for changes over time and helps identify patterns and

trends that simpler models might miss.
Multiple interventions: It can model the effects of multiple interventions, such as

different phases of lockdowns, making it particularly suitable for studying the impacts of
COVID-19 restrictions.

In the following, different parts of this model are described, and the complete model
is presented at the end of this section.
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3.1. COVID-19 Related Lockdowns

The UK faced three major lockdowns in March 2020, November 2020, and January 2021,
and each had a set of rules and restrictions. In lockdown 1, announced on 23 March 2020,
people were asked to stay at home and just go outside for essential needs. These restrictions
were relaxed on 23 June 2020. The second national lockdown was announced on 5th Nov.
2020 and people were asked to work from home again and non-essential businesses were
closed. The second lockdown was eased on 15 December 2020. On 6 January 2021, England
entered the third national lockdown, which was released step by step, up to 12 April 2021.
Figure 2 indicates the timings of these lockdowns.
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If sz (z ≥ 1) is the time at which legal restriction z was introduced, ez (z ≥ 1) is the time
at which legal restriction z was rescinded, and Li represents the magnitude of the effect of
legal restriction z, then the representation of the constant proportional effect at time t of a
single legal restriction z that was in force during the interval (sz, ez] is as follows:

Lz(t) = (βz + αzt)× (Θ(t − sz) [1 − Θ(t − ez)]) (1)

where Θ(t) is the Heaviside step function to represent the interval of each lockdown:

Θ(t) =
{

0 (t ≤ 0)
1 (t > 0)

(2)

The first term in Equation (1), βz + αzt, represents the changes related to lockdown z
with a linear model (β is the constant of this model, and α is the slope). In fact, instead of
using one parameter that applies consistently over the lockdown interval, we used a linear
form. This approach allowed us to examine the dynamic impacts of each specific lockdown
on air pollution, tracking changes from the start to the end of the lockdown interval.

3.2. Seasonal Effects

To accommodate the seasonal variation in pollutant concentrations over the 12 calendar
months, the covariate vector δm with coefficients Mm was defined to represent the effects of
month m. This covariate is defined as follows:

δmt =

{
1 if time t is during calendar month m (1 ≤ m ≤ 12)
0 otherwise

(3)

3.3. Process Matrix

The process matrix, B, represented the relationship of air pollution measurements at
each monitoring station, k (1 ≤ k ≤ K), at time t, with the measurement at t − 1 (1 day lag)
at the same station, as well as corresponding measurements at other stations. In fact, this
matrix defined the spatio-serial relationship of pollutant concentrations as they developed
over time and location (monitoring station). The diagonal elements of this matrix were the
autoregressive coefficients with degree 1 (1 day lag) at each station; hence, they showed the
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concentration development over time. The off-diagonal elements were the first degree of
autoregressive coefficients at other stations; therefore, they represent the relationship of
concentrations over locations (monitoring stations).

3.4. State-Space Model

In the state-space model used for London air quality, the observed time series vector yt
was a measurement of the atmospheric concentration of pollutants (observation vector) and
the state time series vector xt was the corresponding vector of the atmospheric concentration
of pollutants. Daily observations of ambient temperature and relative humidity were
extracted from London Heathrow airport located in west London, provided by the National
Centres for Environmental Information [31]. These meteorological measurements were
applied with spatial uniformity over the study area. The meteorological variables including
temperature, T, and humidity, h, were added to the model as covariates with coefficients γ
and χ, respectively. Hence, the air quality state-space model was defined as follows:

yt = xt + εt

xt = Bxt−1 +
3
∑

z=1
Lz +

12
∑

m=1
Mmδmt + γTt + χht + wt

(4)

where εt and wt are uncorrelated white noise representing the observation (process) error.

4. Results
4.1. Seasonal Effects (M) and Meteorological Factors

Parameter M represents the monthly effects on London’s air quality, which was
supposed to remain unaffected by COVID-19 lockdowns. The parameter values are plotted
in Figure 3 for NOx, PM10, and PM2.5. From these results, the variations of air pollution
concentrations over calendar months are small, with a greater reduction from March to
October.
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For meteorological factors, we found a negative association between NO2, PM2.5,
and PM10 and ambient temperature: for every 1 ◦C increase in temperature, NO2 levels
decreased by approximately 1 µg/m3, while PM2.5 and PM10 concentrations decreased by
around 1.5 µg/m3 each. In contrast, relative humidity showed a positive association with
these pollutants. For every 10% increase in relative humidity, concentrations of NO2, PM2.5,
and PM10 increased by approximately 1.5 µg/m3, 6 µg/m3, and 4 µg/m3, respectively.
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4.2. COVID-19 Lockdowns Effects on London’s Air Pollution

We estimated the slope, α, and intercept, β, for lockdowns 1, 2, and 3 (L1, L2, and L3).
Table 1 shows these results for NOx, PM10, and PM2.5, in central London (CL), the ultra-low
emission zone (ULEZ), and greater London (GL), separately.

Table 1. Intercept (β) and slope (α) of parameters L1, L2, and L3, for NOx, PM10, and PM2.5, in central
London (CL), the ultra-low emission zone (ULEZ), and greater London (GL).

Pollutant Zone
Lockdown 1 (L1) Lockdown 2 (L2) Lockdown 3 (L3)

β1 α1 β2 α2 β3 α3

NOx

CL −48.11 5.36 −19.12 −4.21 −48.23 17.14

LEZ −43.51 5.39 8.21 −30.2 −21.91 9.14

GL −48.78 5.44 −13.41 −1.42 −26.5 14.47

average −46.80 5.40 −8.11 −11.94 −32.21 13.58

PM10

CL −6.22 1.16 15.15 −8.44 −16.34 8.90

LEZ −4.13 0.80 13.63 −7.69 −15.37 9.56

GL −5.92 1.32 9.49 −5.61 −18.94 11.24

average −5.42 1.09 12.76 −7.25 −16.88 9.90

PM2.5

CL −4.35 1.20 12.89 −13.15 −23.70 13.28

LEZ −6.20 1.48 15.84 −8.21 −6.84 5.94

GL −4.51 0.72 9.13 −4.56

average −5.02 1.13 12.62 −8.64 −15.27 9.61

Parameter L1 had a negative intercept in all three zones of London for NOx, PM10, and
PM2.5 (on average, −46.80, −5.42, and 5.02, respectively). This means lockdown 1 resulted
in a sudden decrease in levels of air pollution; however, the estimated slope (α) for this
lockdown was positive, which means that after the sudden decrease in the beginning of
lockdown, air pollution gradually increased (with average slope = 5.44, 1.09 and 1.13 for
NOx, PM10 and PM2.5, respectively) until the end of lockdown.

The effects of lockdown 2 on air pollution were different for NOx compared to PM10
and PM2.5: while the intercept was negative for NOx (−8.11), this value was positive
for PM10 and PM2.5 (12.78 and 12.62, respectively). That means that at the beginning
of lockdown 2, NOx levels were reduced, but PM10 and PM2.5 levels were increased.
However, the slope of changes was negative in all three pollutant types (average α = −11.94,
−7.25, and −8.86, for NOx, PM10, and PM2.5, respectively), which means the levels of all
three pollutant types were lower at the end of this lockdown, compared to the start of
this lockdown.

Trends during lockdown 3 were similar to lockdown 1: there was a negative intercept
and positive slope for all pollutant types. For NOx, the intercept in lockdown 3 was 30%
lower than lockdown 1, and the slope was 2.5 times higher in L3 compared to L1. That
means that during the third lockdown, NOx levels were reduced at the start (but not as
much as lockdown 1), but then increased with a greater slope compared to lockdown 1. For
PM10 and PM2.5, the slopes in L3 were nine times higher than the corresponding value in
L1. The intercept for these pollutants in L3 were also three times higher than in L1. Again,
this means that the changes in the PM10 and PM2.5 levels during the third lockdown were
more rapid than the first lockdown.

These results highlight the varying impacts of different lockdown phases on air pollu-
tion levels in London. The initial reductions in pollution during each lockdown demon-
strate the effectiveness of reduced human activity in lowering emissions. However, the
subsequent increases, particularly during L1 and L3, suggest that other factors, such as
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changes in industrial activity or increased localized pollution sources, might have influ-
enced these trends.

Lockdown 2’s unique pattern, with initial increases in PM10 and PM2.5, could be
attributed to specific local activities. One reason could be attributed to the chemical
reactions in the atmosphere that can lead to the formation of secondary pollutants. For
instance, NOx can react with other compounds to form secondary particulate matter (PM2.5).
During lockdown 2, changes in precursor emissions could have favoured the formation
of secondary PM2.5, leading to higher levels despite a decrease in NOx. Furthermore, the
increased use of household products, cleaning agents, and other VOC-emitting activities
during the lockdown could contribute to the formation of secondary organic aerosols, a
component of PM2.5.

The estimated intercept and slope of changes during lockdowns can be converted
to a percentage of changes in the levels of air pollution during each lockdown. Figure 4
shows changes in percentages for NOx, PM10, and PM2.5, in central London, the ULEZ, and
greater London during all three lockdowns.
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The percentage changes in air pollution levels across the three zones provide further
insights. Central London (CL) experienced the most significant reductions in NOx, with
an average decrease of 36% across the three lockdowns. This reflects the high initial traffic
density and the substantial impact of reduced vehicular movement in the city centre. In
contrast, PM10 and PM2.5 levels in CL showed slight increases of 4% and 1%, respectively,
likely due to sources such as construction activities and secondary formation processes that
were less affected by the lockdowns.

In the ULEZ, NOx levels decreased by 21%, while the increases in PM10 and PM2.5
were less pronounced compared to central London. This suggests that the existing emission
controls in the ULEZ mitigated some of the potential increases in particulate matter. The
effectiveness of stringent vehicle emission policies is evident, even during the unusual
circumstances of the lockdowns.

Greater London (GL) showed the smallest reduction in NOx levels (19%) and modest
increases in PM10 and PM2.5. The suburban and less densely populated nature of this area
likely contributed to these more subdued changes, highlighting the importance of targeted
interventions in areas with higher baseline pollution levels.

These findings have important implications for future air quality management and
policy-making processes. The effectiveness of the ULEZ in mitigating increases in partic-
ulate matter highlights the value of stringent emission controls. Additionally, the results
suggest that policies promoting remote work, cleaner vehicle technologies, and better man-
agement of construction activities could have lasting positive impacts on urban air quality.
Overall, the varying impacts of the three lockdowns on air pollution levels underscore
the complex interplay between different sources of pollution and the influence of exter-
nal factors such as human behaviour. The significant reductions in NOx across all zones
demonstrate the immediate benefits of reduced vehicular and industrial activities, while
the increases in particulate matter levels in some areas suggest the need for comprehensive
strategies addressing all pollution sources.

The results of this study, which highlight the impact of COVID-19 lockdowns on
air pollution levels in London, are consistent with findings from several other countries,
albeit with some variations attributable to regional differences in industrial activities, urban
density, and local environmental policies.

In China, several studies reported significant reductions in NOx, PM2.5, and PM10
during lockdown periods. For instance, Zhao et al. [11] observed a reduction in NO2
by up to 60% in major cities, which is more pronounced compared to the reduction in
NOx observed in central London during the first lockdown. The more stringent lockdown
measures and higher initial pollution levels in China likely contributed to these more
significant reductions. Similarly, in India, Mahato et al. [14] reported a substantial decline
in NO2 levels (up to 70%) in Delhi during the lockdown, which is again higher than the
reductions seen in London. However, similar to London, PM2.5 levels in some regions
did not decline as significantly, and in some cases, even increased, which is attributed to
continued biomass burning and other non-vehicular sources.

In contrast, in central Europe, Polednik [13] reported more modest reductions in NOx
(around 30%) and less significant changes in particulate matter levels during the lockdowns.
This is closer to the changes observed in London, particularly in the ultra-low emission
zone (ULEZ) and greater London areas, where the reductions were less drastic due to
existing emission controls and the less severe lockdown measures compared to those in
China and India. In Brazil, particularly in the state of São Paulo, Cirqueira et al. [12] found
a heterogeneous impact on air quality, with some areas showing reductions in NOx similar
to those in London, while others exhibited little to no change. The variability was linked
to differing levels of adherence to lockdown measures and the continued operation of
industrial activities in some areas. Further supporting these findings, Begou et al. [32]
investigated the impact of lockdowns on air quality in western Macedonia, Greece. They
observed variability in pollutant concentrations, with NO2 reductions comparable to those
seen in London. However, like in other regions, the changes in particulate matter were
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less consistent, emphasizing the influence of local meteorological conditions and varying
sources of pollution.

While this study provides valuable insights into the impacts of lockdowns on air
quality, there are several limitations to consider. First, the analysis relied on data from
20 monitoring stations, which, while comprehensive, may not fully capture the micro-level
variations in air quality across different urban environments. Additionally, the model
assumed uniform meteorological conditions across London, which may oversimplify the
complex interactions between local weather patterns and pollutant dispersion. The study
also primarily focused on the immediate effects of lockdowns, potentially overlooking
longer-term changes in air pollution sources, such as shifts in traffic patterns post-lockdown.
Moreover, the use of a state-space model, though advanced, might not account for all con-
founding factors, such as unmeasured economic activities or non-traffic-related pollution
sources, that could have influenced the observed outcomes.

For future research, expanding the spatial scope of the study to include more monitor-
ing stations and incorporating high-resolution meteorological data could provide a more
detailed understanding of pollution dynamics. Additionally, future work could explore the
long-term impacts of altered traffic patterns post-COVID-19 and assess the effectiveness of
different public health policies aimed at reducing air pollution. Integrating more sophisti-
cated models that can account for nonlinear relationships and additional variables, such
as socio-economic factors or public transport usage, could also improve the robustness
of the findings. Finally, comparative studies across different cities with similar lockdown
measures could help generalise the results and provide broader policy implications.

5. Conclusions

This study employs a state-space intervention model to investigate the impact of the
COVID-19 lockdowns on air pollution levels in London, focusing on NOx, PM10, and PM2.5.
Our findings reveal that the first lockdown had the most significant impact, with substantial
reductions in NOx levels across central London, the ULEZ, and greater London. However,
this lockdown also saw increases in PM10, and PM2.5, likely due to higher residential energy
consumption. The subsequent lockdowns, while still effective in reducing NOx, showed
less pronounced effects and more variable impacts on particulate matter concentrations.

The state-space model’s ability to account for seasonal variations, ambient temperature,
and relative humidity allowed for a nuanced understanding of these dynamics. The results
underscore the importance of targeted interventions to address specific pollution sources,
particularly those related to road transport. They also highlight the complex interplay
between different pollutants and the varying impacts of lockdown measures over time.

This research contributes valuable insights into the effectiveness of lockdown measures
on urban air quality and suggests that similar strategies, such as promoting remote work
and cleaner vehicle technologies, could be effective in managing air pollution in non-crisis
periods. The application of state-space modelling in this context demonstrates its utility in
environmental health research, providing a robust framework for analysing the temporal
and spatial impacts of significant interventions.
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