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a b s t r a c t

Spontaneous reactivation of brain activity from learning to a subsequent off-line period

has been implicated as a neural mechanism underlying memory consolidation. However,

similarities in brain activity may also emerge as a result of individual, trait-like charac-

teristics. Here, we introduced a novel approach for analyzing continuous electroenceph-

alography (EEG) data to investigate learning-induced changes as well as trait-like

characteristics in brain activity underlying memory consolidation. Thirty-one healthy

young adults performed a learning task, and their performance was retested after a short

(~1 h) delay. Consolidation of two distinct types of information (serial-order and proba-

bility) embedded in the task were tested to reveal similarities in functional networks that

uniquely predict the changes in the respective memory performance. EEG was recorded

during learning and pre- and post-learning rest periods. To investigate brain activity

associated with consolidation, we quantified similarities in EEG functional connectivity

between learning and pre-learning rest (baseline similarity) and learning and post-learning

rest (post-learning similarity). While comparable patterns of these two could indicate trait-

like similarities, changes from baseline to post-learning similarity could indicate learning-

induced changes, possibly spontaneous reactivation. Higher learning-induced changes in
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alpha frequency connectivity (8.5e9.5 Hz) were associated with better consolidation of

serial-order information, particularly for long-range connections across central and pari-

etal sites. The consolidation of probability information was associated with learning-

induced changes in delta frequency connectivity (2.5e3 Hz) specifically for more local,

short-range connections. Furthermore, there was a substantial overlap between the

baseline and post-learning similarities and their associations with consolidation perfor-

mance, suggesting robust (trait-like) differences in functional connectivity networks un-

derlying memory processes.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

What makes us remember? Successful long-term memory

performance depends on consolidation: a process that stabi-

lizes encoded memory representations (McGaugh, 2000). For

consolidation, the behavioral, cognitive, and neural states in

the first few hours following the learning episode are critical

(as shown predominantly in animal studies, McGaugh &

Izquierdo, 2000). In humans, one systems-level mechanism

occurring during this crucial time period is the reactivation of

the brain activity related to the learning episode (Hermans

et al., 2017; Peigneux et al., 2006; Tambini, Berners-Lee, &

Davachi, 2017). Further, the patterns of brain activity that

reappear during the off-line period following learning predict

memory consolidation (Rasch& Born, 2007). However, to what

extent this result reflects learning-induced changes or stable

individual characteristics present over resting and learning

periods remains unclear. Here, we aimed to fill this gap by

examining how learning-induced changes (possibly reac-

tivation) and trait-like individual characteristics of neural

patterns captured by electroencephalography (EEG) support

memory consolidation.

Post-learning reactivation (more specifically, replay) of

memory traces has been widely studied in rodents using

invasive neurophysiological techniques (Diba& Buzs�aki, 2007;

Foster & Wilson, 2006; Louie & Wilson, 2001; N�adasdy, Hirase,

Czurk�o, Csicsvari, & Buzs�aki, 1999; Skaggs & McNaughton,

1996; for a recent review, see Tingley & Peyrache, 2020).

However, translating the fine-scaled spatial and temporal

resolution of these invasive neurophysiological recordings to

non-invasive techniques used in human research is chal-

lenging. The first studies on spontaneous reactivation in

humans focused on sleep and used non-invasive neuro-

imaging techniques, such as positron emission tomography or

functional magnetic resonance imaging (fMRI, Maquet et al.,

2000; Peigneux et al., 2004). Due to the lower spatial and

especially temporal resolution compared to animal research,

reactivation in these human studies was defined differently,

by higher similarity of brain activity patterns during learning

and post-learning periods compared to pre-learning (for a

review, see Tambini & Davachi, 2019). For instance, using

fMRI, Peigneux et al. (2006) investigated the modulation of

brain activity during active wakefulness as a result of declar-

ative or procedural learning (which were tested in separate

sessions weeks apart). They examined changes in brain ac-

tivity from pre-learning to post-learning active wake periods,
immediately after learning and subsequently, following a

30 min rest. Their findings revealed distinct post-learning

changes in brain activity for declarative and procedural

learning. In the case of procedural memory, there was an

initial decrease in brain activity in learning-related areas (e.g.,

the motor cortex and the basal ganglia) that was followed by a

delayed increase, possibly indicating extended consolidation

processes. Notably, these changes in brain activity following

learning correlated with memory performance.

To capture the temporal information crucial for cognitive

processes (and demonstrated in animal studies), recent

studies applied neurophysiological techniques, such as mag-

netoencephalography (MEG) and electrocorticography (ECoG),

to study reactivation (or more specifically, replay) in humans

(Buch, Claudino, Quentin, B€onstrup,&Cohen, 2021; Liu, Dolan,

Kurth-Nelson, & Behrens, 2019; Michelmann, Staresina,

Bowman, & Hanslmayr, 2019; Vaz, Wittig, Inati, & Zaghloul,

2020; Wimmer, Liu, Vehar, Behrens, & Dolan, 2020). However,

scalp EEG studies of reactivation during post-learning awake

rest periods in humans are still scarce (Moisello et al., 2013;

Murphy, Stickgold, Parr, Callahan, &Wamsley, 2018). Moisello

et al. (2013) investigated changes in brain activity following a

declarative sequence learning task. Using event-related EEG

data, they identified learning-related spectral power changes

by comparing brain activity during the learning to that of a

non-learning control task. Declarative sequence learning was

associated with activity in the theta and alpha bands, over

frontal and right occipito-parietal areas. Comparing a short

(3 min) pre- and post-learning rest, they revealed a significant

change in alpha power following learning over a right occipito-

parietal area, partially overlapping with the area relevant for

learning. These changes in the resting EEG were correlated

with the task-related brain activity but not with the memory

performance. The lack of association between learning-

induced changes in resting brain activity and memory perfor-

mancemight be due to the short duration of the post-learning

rest (cf. Peigneux et al., 2006, demonstrating relevant changes

in brain activity over a 30 min rest period for procedural

learning) or because spectral power may not be a sensitive

measure of learning-induced changes (Fell, Ludowig, Rosburg,

Axmacher, & Elger, 2008).

The reason for the relative scarcity of EEG reactivation

studies could be that the precise cellular mechanisms that

contribute to specific features of EEG are largely unknown

(Cohen, 2017). Nevertheless, it is important to highlight that

reactivation should manifest at the level of scalp EEG signal

for several reasons. First, there is evidence of a direct

http://creativecommons.org/licenses/by-nc-nd/4.0/
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connection between the microscopic (single unit activity) and

macroscopic level (EEG, MEG, local field potential) of brain

dynamics (Jacobs, Kahana, Ekstrom, & Fried, 2007; Mazzoni,

Whittingstall, Brunel, Logothetis, & Panzeri, 2010;

Whittingstall & Logothetis, 2009). It has been shown that

coupling mechanisms in the EEG signal can provide infor-

mation regarding the spiking activity of neurons

(Whittingstall& Logothetis, 2009). Second and relatedly, this is

in line with the role of oscillations integrating anatomically

distributed processing and facilitating neuronal communica-

tion suggested by Buzs�aki and Draguhn (2004). It has been

suggested that phase synchronization is the mechanism

through which neural assemblies communicate with each

other to create the flexible and anatomically distant connec-

tions that underlie cognition (Fries, 2005, 2015; Womelsdorf

et al., 2007). Third, it has been shown that an experience-

specific pattern of firing correlations persists both in wake-

fulness or sleep following learning, therefore reactivation can

be observed on longer timescales (Hoffman & Mcnaughton,

2002; Kudrimoti, Barnes, & McNaughton, 1999; Tambini &

Davachi, 2013; Wilson & McNaughton, 1994). Lastly, animal

studies have shown that reactivation also occurs in the cere-

bral cortex (Peyrache, Khamassi, Benchenane, Wiener, &

Battaglia, 2009; Qin, McNaughton, Skaggs, & Barnes, 1997;

Ribeiro et al., 2004; Rothschild, Eban, & Frank, 2017), suggest-

ing that it can be studied with scalp EEG. These findings

highlight the plausibility of measuring reactivation via phase

synchronization in scalp EEG data in humans because reac-

tivation should manifest in changes in the neural coupling in

the cerebral cortex over longer time periods.

Phase synchronization in EEG has been shown to be

important for several cognitive mechanisms (Sauseng &

Klimesch, 2008; Varela, Lachaux, Rodriguez, & Martinerie,

2001), particularly for memory processes (Axmacher,

Mormann, Fern�andez, Elger, & Fell, 2006; Fell & Axmacher,

2011). Notably, phase synchronization in the medial tempo-

ral lobe was proven to be a superior predictor of memory

performance compared to other EEGmeasures, such as event-

related potential and spectral power measures (Fell et al.,

2008). It has also been shown that spontaneous replays in

humans coincide with specific cortical resting state networks

that are characterized by brain-wide phase synchronization

(Higgins et al., 2021). Thus, in the current study, we investi-

gated learning-induced changes by comparing functional

networks emerging fromphase synchronizationmeasured via

scalp EEG in healthy young adults. We followed a data-driven

approach and did not define frequency ranges or brain areas

of interest a priori. Rather, we aimed to reveal patterns in both

the frequency and topography of functional networks that

emerge both during learning and post-learning rest.

However, similarities in functional networks during

learning and subsequent rest do not exclusively emerge as a

function of reactivation (or other learning-induced changes);

they may occur due to trait-like individual characteristics in

brain activity. For instance, Smit, Stam, Posthuma, Boomsma,

and De Geus (2008) showed that individual differences in

resting state EEG functional connectivity are largely heredi-

tary. Furthermore, several studies using fMRI provided evi-

dence that resting state (intrinsic) connectivity predicts

memory performance (Touroutoglou, Andreano, Barrett, &
Dickerson, 2015; Wang, LaViolette, et al., 2010; Wang,

Negreira, et al., 2010; Wig et al., 2008). Moreover, substantial

intraindividual similarity between functional connectivity

networks during resting state and task has been observed

(Cole, Ito, Bassett, & Schultz, 2016; Satterthwaite, Xia, &

Bassett, 2018). Gratton et al. (2018), studying fMRI functional

networks, concluded that these networks are dominated by

stable individual factors rather than cognitive content.

Despite the growing recognition of trait-like individual dif-

ferences in functional networks, human reactivation studies

have predominantly focused on learning-induced changes

alone and have not examined how trait-like individual dif-

ferences contribute to cognitive performance.

In our study, to disentangle learning-induced changes and

trait-like characteristics, we compared the similarity of func-

tional connectivity between learning and both pre- and post-

learning rest. If the similarity between learning and pre-

learning rest is comparable to the similarity between

learning and post-learning rest, the similarities likely emerge

due to trait-like individual characteristics in brain activity. In

contrast, higher similarity of learning and post-learning rest

compared to pre-learning rest is indicative of learning-

induced changes (possibly reactivation, as defined in fMRI

studies, see Tambini & Davachi, 2019). Nevertheless, changes

in functional networks from pre- to post-learning rest might

also emerge for instance as a function of time-of-day effects or

fatigue throughout an extended experimental protocol. To

ensure that the learning-induced changes in brain activity are

relevant formemory consolidation and thus potentially reflect

reactivation, we focused specifically on those functional

network similarities that were significantly associated with

memory performance.

We used a procedural memory task with an alternating

sequence that enabled us to present two types of regularities

(serial-order and probability) within the same visual infor-

mation stream (Nemeth, Janacsek, & Fiser, 2013). This design

has higher ecological validity because in real life we are usu-

ally exposed to different types of information simultaneously.

Studies have shown that learning serial-order and probability-

based (also referred to as rule-based and statistical) regular-

ities exhibit different characteristics at the behavioral and

neural levels (Conway, 2020; Howard, Jr. & Howard, 1997;

Maheu, Meyniel, & Dehaene, 2022; Nemeth et al., 2013;

Quentin et al., 2021; Simor et al., 2019; Tak�acs et al., 2021). At

the behavioral level, the acquisition of probability information

(also known as statistical learning) typically occurs inciden-

tally and relatively rapidly (K�obor et al., 2018; Simor et al.,

2019). Conversely, the acquisition of serial-order information

(also referred to as rule-based or sequence learning) can occur

both incidentally or intentionally, and it exhibits a slower,

gradual improvement over time (Horvath, Torok, Pesthy,

Nemeth, & Janacsek, 2021; Howard et al., 2004; Howard, Jr. &

Howard, 1997; K�obor et al., 2018; Simor et al., 2019; Szegedi-

Hallgat�o et al., 2017). On the neural level, statistical and

serial-order learning have different electrophysiological

characteristics, demonstrated by event-related potentials

during learning (K�obor et al., 2018; Tak�acs et al., 2021) and

neural oscillations during consolidation (Simor et al., 2019). As

a synthesis from studies investigating the neural correlates of

statistical and serial-order learning, Conway (2020) suggested

https://doi.org/10.1016/j.cortex.2024.07.008
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that statistical learning is based on experience-driven gradual

tuning of cortical networks that is instantiated over multiple,

hierarchically embedded networks, involving particularly the

sensory areas. In contrast, serial-order learning requires top-

down modulatory control mechanisms, therefore it exhibits

a greater reliance on the prefrontal cortex and related fronto-

parietal networks. Overall, examining the consolidation of

different types of information simultaneously enabled us to

reveal similarities in functional networks that uniquely pre-

dict the changes in the respective memory performance.

Importantly, procedural memory consolidation might take

one of two distinct forms: off-line improvement or stabiliza-

tion of memories (Robertson, Pascual-Leone, & Miall, 2004).

For certain types of procedural memory, particularly explicit

processes, extended periods of time or sleep might be neces-

sary for off-line improvements to occur (Robertson, Pascual-

Leone, & Press, 2004). In this study, given the relatively short

time for consolidation (~1 h) and based on previous findings

showing no off-line improvements for a consolidation period

of similar duration using similar tasks (Peigneux et al., 2006;

Simor et al., 2019), we expect the retention of statistical and

serial-order knowledge over the post-learning rest period,

potentially reflecting the stabilization of the acquired knowl-

edge. Notably, previous studies demonstrated that procedural

memory consolidation can be supported by 15e30 min (or

less) of wakeful rest (Humiston & Wamsley, 2018; Quentin et

al., 2021; Wang et al., 2021). Accordingly, spontaneous reac-

tivation has been proven to occur in these shorter post-

learning rest periods (similar to sleep) highlighting a possible

neural mechanism to support these relatively rapid consoli-

dation processes (for a review, see Wamsley, 2022). Thus, it is

plausible that our study captures early system consolidation

processes underlying the initial stabilization of procedural

memory for two separate processes, namely statistical and

serial-order learning.

In summary, the primary aim of the current study was to

investigate the learning-induced changes in EEG functional

connectivity that support procedural memory performance.

To capture learning-induced changes, we employed a novel

analysis technique, computing the Euclidean distance of

phase synchronization networks using continuous EEG data.

Secondly, we tested the specificity of these learning-induced

changes to the type of learning by using a procedural

learning task with two types of regularities. We hypothesized

that distinct neural networks support the simultaneous

memory consolidation of serial-order versus probability in-

formation. Lastly, we explored the stable functional connec-

tions emerging across learning and rest to examine trait-like

individual differences and their associations with memory

performance.
2. Materials and methods

2.1. Participants

Thirty-four participants (11 males, Mage ¼ 21.82 ± 2.11) with

normal or corrected-to-normal vision were included in the

study. Participants were selected from a pool of undergradu-

ate students from the E€otv€os Lor�and University in Budapest.
The selection procedure was based on the completion of an

online questionnaire assessing mental and physical health

status. Respondents reporting no current or prior chronic so-

matic, psychiatric, or neurological disorders or regular con-

sumption of drugs (other than contraceptives) were selected.

In addition, individuals reporting occurrences of any kind of

extreme life event (e.g., accident) during the last threemonths

thatmight have had an impact on theirmood, affect, and daily

rhythms were excluded.

Individuals falling asleep during the post-learning rest

(N ¼ 2) were excluded from the analyses. Furthermore, one

additional participant was excluded based on extreme

behavioral performance (more than 3 interquartile ranges

from the median in the average serial-order learning perfor-

mance during the learning period). Therefore, the final sample

consisted of 31 participants (9 males,Mage ¼ 21.81 ± 2.10). This

sample size was deemed sufficient to investigate learning-

induced changes and their associations with memory per-

formance based on prior studies: Previous EEG studies

demonstrated robust learning-induced changes with 13e21

participants (Moisello et al., 2013; Murphy et al., 2018) and

significant associations between EEG phase synchronization

and procedural memory performance with 28 participants

(T�oth et al., 2017). Data from twenty-six of these participants

were included in a previous publication (Simor et al., 2019). All

participants provided written informed consent before

enrollment and received course credits for taking part in the

experiment. The study was approved by the research ethics

committee of the E€otv€os Lor�and University, Budapest,

Hungary (201410) and was conducted in accordance with the

Declaration of Helsinki.

2.2. Task

Behavioral performance was measured by the cued version of

the Alternating Serial Reaction Time (ASRT) task (Fig. 1,

Nemeth et al., 2013), which has been shown to have good

reliability (Farkas, Krajcsi, Janacsek, & Nemeth, 2023). In this

task, a stimulus (picture of a dog's head or a penguin) appeared

in one of four horizontally arranged empty circles on the

screen, and participants had to respond by pressing the cor-

responding button of a response box. Stimuli were presented

until the participant responded, on a 1900 LCD screen at a

viewing distance of 100 cm. The response-to-stimulus interval

was set to 250msec (i.e., the stimulus appeared approximately

250 msec after the response for the preceding stimulus). Par-

ticipants were instructed to respond as fast and accurately as

they could.

The task was presented in blocks of 85 stimuli. A block

started with five random stimuli for practice purposes, fol-

lowed by an 8-element alternating sequence that was

repeated ten times. The alternating sequence was composed

of fixed sequence and random elements (e.g., 2-R-4-R-3-R-1-R,

where each number represents one of the four circles on the

screen and “R” represents a randomly selected circle out of the

four possible ones, Fig. 1B). Participants were informed about

the underlying structure, and their attentionwas drawn to the

alternation of sequence and random elements cued by

different visual cues. In our case, a picture of a dog always

corresponded to the fixed sequence elements, and a picture of

https://doi.org/10.1016/j.cortex.2024.07.008
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Fig. 1 e The cued version of the Alternating Serial Reaction Time (ASRT) task. A) The appearance of the task. In this task,

stimuli appeared on the screen in one of four empty circles and participants had to press button box keys corresponding to

the location of the stimuli. Stimuli were presented according to an alternating sequence with fixed and random elements.

Fixed elements were marked with a picture of a dog, whereas random ones with a picture of a penguin. The location of

stimuli during the sequence trials always followed a fixed sequence (e.g., 2-4-3-1 in the given example, where numbers

correspond to the four locations on the screen), therefore runs of three consecutive elements (triplets) that ended with

sequence elements occurred with high probability (pattern trials). Random trials included 1) trials that appeared in an order

that was identical to the sequence, therefore they constituted triplets with high probability (random high trials) and 2) any

other random trials that consequently occurred with low probability (random low trials). B) The same example stimuli

stream as in panel A is shown (expressed as numbers corresponding to the location of the stimuli), illustrating the sequence

structure and triplets constituting each trial type in the top table. The ‘observed’ position of the stimulus is depicted in bold

and in case of the random elements, the other possible but non-observed positions are faded. We determined for each

stimulus whether it was the last element of a pattern, random high (i.e., high probability triplets, marked with dark blue

color), or random low triplet (i.e., low probability triplet, marked with light blue color) in a sliding window manner. We

assessed serial-order learning (purple box in the bottom table) by comparing the responses to pattern trials (which are

always high probability triplets) with responses to random high probability trials. Statistical learning (green box in the

bottom table) was quantified as the difference between responses to those random elements that were the last elements of

a high probability triplet versus those that were the last of a low probability triplet. C) The design of the experiment. First,

participants were asked to rest with their eyes open and then closed for 6 min each (pre-learning rest). Then, after a short

practice, the learning period of the ASRT followed that consisted of 25 task blocks. To eliminate the fatigue effect and ensure

more accurate behavioral consolidation indices, we inserted a short break of 3 min before the testing period of the ASRT,

which consisted of five blocks. After the testing period, there was a 45 min rest period, when participants were sitting with

their eyes open and closed in 5 min turns (post-learning rest). Finally, there was a retesting period that comprised ten

c o r t e x 1 7 9 ( 2 0 2 4 ) 1 6 8e1 9 0172
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a penguin indicated random elements (Fig. 1A). Participants

were instructed to find the hidden sequence defined by the

dog to improve their performance. At the end of each block,

participants received feedback on their overall accuracy and

reaction time, completed a sequence report, and had a

10e20 sec rest before starting a new block. Sequence reports

consisted of the participants typing in the regularities of the

fixed elements (cued by the dog) they noticed using the same

response buttons they used during the task blocks. By the end

of the task, all participants reported the correct sequence. On

average, participants gained explicit knowledge of the

sequence after the fourth block (M ¼ 4.10, SD ¼ 5.95), and 84%

of participants reported the correct sequence during the first

five blocks.

There are six unique sequence permutations of the four

possible ASRT sequence elements (1,2,3,4, noting that the

starting element of a sequence does not matter as the

sequence is continuously presented). For each participant,

one of these six unique permutations was selected in a

pseudo-random manner, so that the six different sequences

were used equally often across participants.

The task consisted of a total of 42 blocks (Fig. 1C). The first

two blocks of the task served practice purposes to enable the

participants to get familiar with the stimuli and the response

box. During this practice period, all stimuli appeared

randomly. Participants then completed 25 blocks of the ASRT

task during the learning period. This was followed by a short

(3 min) break to minimize the fatigue effect that typically

emerges after extended practice (Rickard, Cai, Rieth, Jones, &

Ard, 2008; Rieth, Cai, McDevitt, & Mednick, 2010). After the

break, participants were tested on the ASRT task for five

additional blocks that constituted the testing period. Subse-

quently, participants spent an approximately 45 min long off-

line period resting. Finally, they completed ten additional

blocks of the ASRT task (retesting period). The learning period

lasted approximately 30min, the testing period 5min, and the

retesting period 10 min.

The alternating sequence of the ASRT task formed a

sequence structure in which some runs of three consecutive

elements (henceforth referred to as triplets) were more prob-

able than others. The more probable triplets were those that

formed the sequence (such as 2-X-4, 4-X-3, 3-X-1, and 1-X-2,

where X indicates any middle element of the triplet in the

above example sequence 2-R-4-R-3-R-1-R). In these triplets,

the first and third elements could either be a fixed sequence or

random stimuli (they constituted 62.5% of all trials). The less

probable triplets (e.g., the triplets 4-X-1, 4-X-2, or 4-X-4)

occurred less likely since the first and third elements could

only be random stimuli (each of these triplets occurred in

12.5% of all trials, altogether 37.5%). The former triplet types

were termed as high probability triplets, whereas the latter

types were termed as low probability triplets (Fig. 1B). As a

result of the ASRT sequence structure, the high probability

triplets were five times more predictable than the low proba-

bility ones on the level of individual triplets.
additional ASRT blocks. Behavioral consolidation indices were c

beginning of the retesting period and the testing period (five bl

learning rest, the learning period of the ASRT, and the post-lea
To calculate learning indices, each stimulus was catego-

rized as the third element of either a high or a low probability

triplet. Note that in this way, we determined the probability of

each triplet throughout the task in a sliding window manner

(i.e., one stimuluswas the last element of a triplet, but also the

middle and the first element of the consecutive triplets).

Moreover, trials were differentiated by whether the stimulus

belonged to the fixed sequence or random elements (i.e., dog

and penguin cues). Thus, the task consisted of three trial

types: (1) elements that belonged to the fixed sequence and

therefore appeared as the last element of a high probability

triplet, called pattern trials; (2) randomelements that appeared

as the last element of a high probability triplet, called random

high trials; and (3) any other random elements that conse-

quently appeared as the last element of a low probability

triplet, called random low trials (see the example in Fig. 1B).

To disentangle the two key learning processes underlying

the performance on the cued ASRT task, we differentiated

serial-order and statistical learning (Fig. 1B). Serial-order

learning was measured by the difference in reaction times

(RTs) between random high and pattern trials (that is, the

average RTs for random high trials minus the average RTs for

pattern trials so that a higher value corresponds to better

learning). These trials shared the same statistical properties

(both corresponded to the third element of high probability

triplets) but had different sequential properties (i.e., fixed

vs random element). Thus, greater serial-order learning was

determined as faster responses to pattern versus randomhigh

trials. Statistical learning was measured by the difference in

RTs between random low and random high trials (that is, the

average RTs for random low trials minus the average RTs for

randomhigh trials so that a higher value corresponds to better

learning). These trials shared the same sequential properties

(both were random) but differed in statistical properties (i.e.,

they corresponded to the third element of a high or a low

probability triplet). Thus, greater statistical learning was

determined as faster responses to random high compared to

random low trials. In sum, serial-order learning quantified the

acquisition of the deterministic rule of the sequential pattern,

whereas statistical learning captured purely probability-based

learning (Maheu et al., 2022; Nemeth et al., 2013).

2.3. Experimental design

On the day of the experiment, participants arrived at the

laboratory at 10.00 AM. First, an EEG cap with 64 electrodes

was fitted by two assistants with impedances set under 10 kU.

Then, participants were asked to rest with their eyes open and

then closed for 6 min each as a baseline EEG recording (pre-

learning rest, Fig. 1C). Testing with the task started around

11.30 AM and took place in a quiet room equipped with a

computer screen, a response box and an EEG recording device.

After listening to the instructions, participants completed two

blocks of the ASRT task with only random stimuli to get

familiar with the stimuli and the response box. This was
alculated as the difference in the performance between the

ocks of each). EEG activity was measured during the pre-

rning rest.
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followed by the learning period of the cued ASRT task. To

eliminate the effect of fatigue that may have built up during

performing the task for about 25 min (Rickard et al., 2008;

Rieth et al., 2010) and therefore to ensure more accurate

behavioral measures, a short break of 3 min was introduced

during which the EEG impedances were reset under 10 kU.

After this short delay, the testing period of the ASRT followed.

After the testing period, participants completed a ~45min rest

period, during which they sat in a dimly lit room, facing to-

ward an empty wall (post-learning rest). During this rest period,

to prevent participants from falling asleep, they were

instructed to open and close their eyes periodically (approxi-

mately every 5 min). Furthermore, their EEG activity was

monitored online, and at signs of sleepiness (alpha disap-

pearance and theta increase) participants were instructed to

open their eyes and/or make movements. After this resting

period, impedances were again reset under 10 kU. Finally, a

retesting period of the ASRT task followed. Behavioral consoli-

dation indices were calculated as the difference in perfor-

mance between the beginning of the retesting period and the

testing period. EEG activity was measured during the pre-

learning rest, the learning period of the ASRT task and the

post-learning rest.

2.4. EEG recording

EEG activity was measured using a 64-channel recording

system (BrainAmp amplifier and BrainVision Recorder soft-

ware, BrainProducts GmbH, Gilching, Germany). The Ag/AgCl

sintered ring electrodes were mounted in an electrode cap

(EasyCap GmbH, Herrsching, Germany) on the scalp according

to the 10% equidistant system. During acquisition, electrodes

were referenced to a scalp electrode placed between the Fz

and Cz electrodes (FCz). Horizontal and vertical eye move-

ments were monitored by two EOG channels. Further, three

EMG electrodeswere placed on the chin and one ECG electrode

on the chest to record muscle and cardiac activity respec-

tively. All electrode contact impedances were kept below

10 kU. EEG data were recorded at a sampling rate of 500 Hz,

and band-pass filtered between .3 and 70 Hz.

2.5. Data analysis

2.5.1. Behavioral data
For the analysis of the cued ASRT, we followed procedures

outlined in previous studies (Howard, Jr. & Howard, 1997;

Nemeth et al., 2013; Simor et al., 2019; Song, Howard, &

Howard, 2007). These statistical analyses were carried out

with the Statistical Package for the Social Sciences Version 22

(IBM SPSS Statistics). First, the blocks of the task were

collapsed into epochs of five blocks to facilitate data pro-

cessing and to increase statistical power. The first epoch

contained blocks 1e5, the second epoch contained blocks

6e10, etc. We calculated median reaction times (RTs) for cor-

rect responses only, separately for pattern, random high and

random low trials, and for each epoch. Two kinds of low

probability triplets were eliminated: repetitions of a single

element (e.g., 2-2-2, 3-3-3) and triplets beginning and ending

with the same element (e.g., 2-1-2, 3-4-3) as individuals often

show pre-existing response tendencies to such triplets
(Howard et al., 2004). Thus, we eliminated these triplets to

ensure that differences between high versus low probability

triplets emerged due to learning and not because of pre-

existing response tendencies.

Overall performance trajectory. To evaluate performance

changes in RTs due to learning throughout the entire task, we

conducted a repeated-measures analysis of variance (ANOVA)

on RTs with EPOCH (1e8) and TRIAL TYPE (pattern, random

high, random low) as within-subject factors. Greenhouse-

Geisser epsilon (e) correction (Greenhouse & Geisser, 1959)

was used to adjust for a lack of sphericity when necessary.

Post-hoc comparisons were performed using Fisher's LSD test.

Then, we computed a serial-order and a statistical learning

score for each epoch. The serial-order learning score was

calculated as the RTs for random high trials minus the RTs for

pattern trials. The statistical learning score was calculated as

the RTs for random low trials minus the RTs for random high

trials. In both cases, higher learning scores indicated better

learning.

Consolidation. To examine off-line changes occurring be-

tween the testing and retesting periods, we used a repeated-

measures ANOVA on the learning scores, with EPOCH (6e7,

the only epoch of the testing period and the first epoch of the

retesting period) and LEARNING TYPE (serial-order learning,

statistical learning) aswithin-subject factors. For the ANOVAs,

original df values and corrected p values (if applicable) are re-

ported togetherwith partial eta-squared (h2
p) as themeasure of

effect size. Next, to be able to identify associations between

brain activity patterns and memory performance, we

computed consolidation indices: off-line changes in serial-

order and statistical learning were defined as the difference

between the learning scores at the beginning of the retesting

period (epoch 7)minus the learning scores in the testing period

(epoch6; Fig. 1C).Apositive value indicatedan improvement in

learning performance during the off-line period. For all sub-

sequent analyses between brain activity and memory perfor-

mance, we used these consolidation indices.

2.5.2. EEG data
Preprocessing and further analysis (Fig. 2A) of the EEG data

were performed in MATLAB (version R2017b, The Mathworks,

Inc, Natick, MA) using the EEGLAB (14_0_0b version, Delorme

& Makeig, 2004) and the Fieldtrip (Oostenveld, Fries, Maris, &

Schoffelen, 2011) toolboxes. The following steps were

executed for EEG data recorded during the pre-learning rest,

the learning period of the ASRT and the post-learning rest.

First, non-EEG channels (two mastoids, two EOG, one ECG,

and three EMG channels) were excluded, therefore all pre-

processing steps and analyses were completed on the

remaining 56 EEG channels (referenced to the FCz channel).

Next, data were off-line band-pass filtered (.5e45 Hz) using

Hamming windowed finite-impulse-response filter. Then,

high amplitude artifacts (body movements, sweating, and

temporary electrode malfunction) and the periods between

the blocks of the task during the learning period were visually

rejected. Subsequently, to identify (horizontal and vertical)

eye-movement artifacts, we ran the extended infomax algo-

rithm of independent component analysis (Lee, Girolami, &

Sejnowski, 1999) via EEGLAB (option: runica, ‘extended’). ICA

components constituting eye-movement artifacts were
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Fig. 2 e Steps of the analysis of EEG data. A) Following preprocessing (filtering, manual rejection of large body movements,

ICA removal of eye movements and optionally channel interpolation), connectivity matrices were calculated from the raw

EEG data for the pre-learning rest, the learning period of the ASRT and the post-learning rest, resulting in 3D connectivity

matrices for these three periods with channel pairs, frequency bins and participants as dimensions. B) Comparing two

connectivity matrices at a time (learning and post-learning rest or learning and pre-learning rest), we computed the

similarity of functional connectivity during these different periods (henceforth referred to as Post-learning and Baseline

similarity, respectively) for frequency bins between 1 and 31 Hz. We calculated the Euclidean distance between all channel

pairs for each frequency bin. Then, we normalized these values to shift the scale to the range of 0e1 and subtracted them

from 1 to indicate similarity rather than distance, with higher values indicating greater similarity. Finally, we smoothed

these similarity values, applying a moving average filter with a span of 3. Then, we performed correlation analyses between

the consolidation indices and these Post-learning and Baseline similarity values for frequency bins, which could reveal

trait-like associations between behavior and similarity of neural patterns. To reveal learning-induced changes (possibly

reactivation) in similarity, we subtracted the Baseline similarity values from the Post-learning similarity values, with larger

values indicating greater similarity between the learning period and post-learning rest than between the learning period

and pre-learning rest. We identified frequency ranges of interest for further analysis based on the correlations that these

similarity difference values showed with the consolidation indices for consecutive frequency bins. C) As a second step, we

computed Euclidean distance between the identified frequency bins of the learning and post-learning rest connectivity

matrices, which we transformed again to similarity values by normalization and subtraction from 1. This resulted in Post-

learning similarity values for each channel pair within the frequency ranges of interest. Finally, we contrasted these Post-

learning similarity values for channel pairs with behavior to investigate the topographical patterns of the associations

revealed in the frequency domain. With the steps outlined in B) and C), we aimed to differentiate trait-like (light green box)

and learning-induced (light orange box) associations between memory consolidation and the similarity of functional

connectivity across different periods (see main text for details).
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removed via visual inspection of their time series, topo-

graphical distribution and frequency contents. Amaximum of

six independent components (out of 56 components produced

by the algorithm) per participant were removed. Finally, if

needed, bad channels were interpolated for a maximum of

four bad channels per participant.

After artifact rejection, non-overlapping epochs of

2000 msec duration were extracted from the continuous EEG
recording. This data segmentation yielded M ¼ 319.77,

SD ¼ 33.30, M ¼ 707.94, SD ¼ 67.43, M ¼ 988.74, SD ¼ 269.92

epochs for the pre-learning rest, learning, and post-learning

rest, respectively. Due to more body movement artifacts

during the post-learning rest, proportionally more data from

this period had to be removed. Note that the EEG during the

learning period was segmented regardless of the onsets of

stimuli (i.e., epochs had random timing relative to trials) and
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during the resting states, it was segmented regardless of eyes

open or closed periods. To compute power spectral density,

Hann taper was first applied to the two-second long, artifact-

free EEG segments. Then, for each participant and channel,

power spectral density was computed for each .5 Hz fre-

quency bin between 1 and 31 Hz with the Fast Fourier

Transform (FFT) algorithm as implemented in Fieldtrip.

Functional connectivity was calculated between all chan-

nel pairs by measuring phase synchronization using the

Weighted Phase Lag Index (WPLI) as implemented in Fieldtrip

(ft_connectivityanalysis function, ‘wpli’ option). Phase Lag

Index (PLI) was introduced by Stam, Nolte, and Daffertshofer

(2007), and it reflects the consistency by which one signal is

phase leading or phase lagging with respect to another signal.

PLI has been shown to be sensitive in detecting dynamic

changes of phase relationships between different brain areas

and to be insensitive to the effect of volume conduction (effect

of common sources of the EEG signal), as well as to be (largely)

independent of the reference electrode (Stam et al., 2007). PLI

attenuates the volume conduction effect by disregarding

phase lags of zero or p (as these phase differences suggest two

electrodes are picking up signal from the same source). The

WPLI is a modified version of PLI that weights phase angle

differences around .5 and 1.5 p more than those around zero

and p, which makes the method more robust against volume

conduction (Vinck, Oostenveld, Van Wingerden, Battaglia, &

Pennartz, 2011). Note that the Fieldtrip function results in

WPLI values between �1 and 1, with both �1 and 1 indicating

higher synchronization. As WPLI is a non-directed functional

connectivity measure, we used the absolute WPLI values as

the measure of the strength of the interaction. Thus, the final

WPLI values in our analyses fall between 0 and 1, with higher

values indicating stronger synchronization.

The mentioned steps resulted in three 3D connectivity

matrices, separately for the pre-learning rest, the learning

period of theASRT task and thepost-learning rest (Fig. 2A). The

dimensions in these matrices were channel pairs, frequency

bins andparticipants. Tomeasure similarity between the brain

activity recorded at different periods, we calculated Euclidean

distance between these connectivity matrices (Fig. 2BC).

2.5.3. Associations between behavior and similarity in EEG
functional connectivity across different periods
To reveal associations between the behavioral indices of

consolidation and brain activity, we first computed similarity

between functional connectivity measured during the

learning period and the pre-learning rest, and the learning

period and the post-learning rest separately (henceforth

referred to as Baseline and Post-learning similarity, respectively).

We computed two types of similarity: 1) for frequency (Fig. 2B)

and 2) for channel pairs (Fig. 2C). As a data-driven approach,

we identified frequencies associated with the behavioral

indices of consolidation first. Then, we explored relevant

topographical patterns in the identified frequency ranges

based on the channel pair similarity.

Frequency of learning-induced changes. To reveal possible

reactivation of neural patterns after learning, we aimed to find

frequencies 1) where the Post-learning similarity is different

from the Baseline similarity, presumably reflecting learning-

induced changes, and 2) where this similarity difference is
linked to memory performance. We calculated the Baseline

and Post-learning similarity values for frequency bins from 1

to 31 Hz as follows: We computed Euclidean distance between

all channel pair connectivity values of the learning period and

the pre-and post-learning rest respectively, separately for

each participant and frequency bin. The formula of the

Euclidean distance for frequency bins is:

dsf ðA;BÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1540
c¼1

�
Ascf � Bscf

�2
vuut

where A and B denote the studied two connectivity matrices

and the index variables s, c and f indicate participant, channel

pair and frequency bin, respectively.

Then, we transformed these distance values into similarity

values by unity-based normalization (linear transformation to

shift the scale to the range of 0e1 using the minimum and the

maximum values of the data to define the range) and sub-

tracted these values from 1. As a final step, we smoothed this

data over the frequency dimension using a moving average

filter with a span of 3. In this way, we obtained a similarity

value for each participant and each frequency bin, separately

for Baseline and Post-learning similarity (Fig. 2B). The simi-

larity values fell between 0 and 1, where higher values indi-

cated greater similarity. We then calculated the Learning-

induced similarity change values by subtracting the Baseline

similarity values from the Post-learning similarity values,

where higher values indicated greater similarity between

learning and post-learning rest compared to learning and pre-

learning rest. These Learning-induced similarity change

values reflected the changes in the resting state functional

connectivity values that appear after the learning episode

compared to the pre-learning resting state. Finally, to detect

associations with behavioral measures, we computed

Spearman correlations between the Learning-induced simi-

larity change values and the two consolidation indices

(consolidation of serial-order and statistical knowledge) for

each frequency bin (Fig. 2B). We identified candidate oscilla-

tory frequencies based on clusters of neighboring frequency

bins showing similar, significant associations with the same

consolidation index.

Controlling for multiple comparisons. To account for the

problem of multiple comparisons, we ran a nonparametric

cluster-based permutation correction for the correlations be-

tween the consolidation indices and the Learning-induced

similarity change values (Cohen, 2014). Our aim was to find

neighboring frequency bins (frequency ranges) that showed

similar associations between behavior and brain activity,

indicating plausible oscillatory activity relevant for consoli-

dation. The emergence of clusters of frequency bins that

display similar associations can indicate true effects. Thus, we

accounted for themultiple comparison problem on the cluster

level. We created test statistics under the null hypothesis of

no association by randomly shuffling the behavioral index for

1000 iterations and calculating correlations between these

shuffled behavioral measure and the original Learning-

induced similarity change values. We then created clusters

for the cluster-based correction by thresholding the original

and the iteration maps by a p-value of .025 based on the

standardized Z-values of null-hypothesis test statistics (pre-
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cluster threshold) and using the Matlab function ‘bwconn-

comp’ to identify clusters in each thresholded map. This

yielded a distribution of the largest pre-cluster suprathreshold

clusters that can be expected under the null hypothesis. As a

final step, we compared the suprathreshold clusters in the

original statistical values to the 95 percentile (for an alpha

level of .05 corresponding to statistical significance) of the

distribution of the largest clusters under the null hypothesis.

Topography of learning-induced changes. To reveal topo-

graphical patterns in the functional connections in the iden-

tified frequency ranges of interest, we computed similarity

values for channel pairs (Fig. 2C). The frequency ranges of

interest were identified based on the correlations between the

behavioral consolidation indices and the Learning-induced

similarity change values (see the ‘Frequency of learning-

induced changes’ paragraph above). For these frequency

ranges of interest, we calculated the Euclidean distance be-

tween all relevant frequency bin connectivity values in the

learning period and the post-learning rest, for each partici-

pant and channel pair separately. The formula of the

Euclidean distance for channel pairs is:

dscðA;BÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xf

f¼x

�
Ascf � Bscf

�2
vuut

where A and B denote the studied two connectivity matrices

and the index variables s, c and f indicate participant, channel

pair and frequency bin, respectively. As there are multiple

frequency ranges where we compute the distance for the

channel pairs, x denotes the lowest frequency in each of these

frequency ranges.

Again, to yield similarity values, we used unity-based

normalization and subtracted the Euclidean distance values

from 1. To obtain the topography of functional connections

relevant tomemory consolidationwithin the frequency ranges

of interest,we computed Spearman correlations separately for

each channel pair similarity value and the two consolidation

indices. Note that for these channel pair correlations, we used

the Post-learning similarity rather than the Learning-induced

similarity change values because we computed the channel

pair similarity only in the frequency ranges where this change

has been accounted for. Also, as our aim was to identify

topographical patterns in functional connections (rather than

identifying specific connections more reliably), we did not

correct formultiple comparisons in these correlation analyses.

For the same purpose, we differentiated positive and negative

correlations in all analyses that targeted the exploration of

topographical patterns in relevant functional connections.

Patterns in topography. To identify patterns in the topog-

raphy of functional connections in the relevant frequency

ranges, we first aimed to investigate how the range of the

connections (short- or long-range) is associated with consoli-

dation performance. We analyzed the associations between

the distances of the electrodes in the channel pairs and the

correlation coefficients that were obtained between the Post-

learning similarity values of those respective channel pairs

and the consolidation indices. Importantly, we investigated

these associations separately for the consolidation of serial-

order versus statistical knowledge, for those respective fre-

quency ranges where they showed significant associations
with the EEG similarity values. To include all (positive and

negative) associations in this analysis, we used the absolute

values of the correlation coefficients. To test whether the dis-

tances between the electrodes in the channel pairs were

associated with the strength of their correlation with the

consolidation performance, we computed Spearman correla-

tions. Next, we aimed to investigate whether differences in

associations due to distance are present both for positive and

negative correlations. Therefore, we differentiated between

positive and negative correlations and computed Spearman

correlations again separately for serial-order and statistical

consolidation in the relevant frequency ranges identified in the

previous analyses.

Separating the mixed resting state to eyes open and eyes

closed periods. To control for potential confounding factors as

a result of analyzing a mixed resting state (e.g., varying pro-

portions of eyes closed and eyes open periods in the pre- and

post-learning rest), we separated the resting state data into

eyes open and eyes closed only periods. These eyes open and

eyes closed periods were preprocessed and Baseline and Post-

learning similarity as well as the Learning-induced similarity

changes were computed for each of these conditions as

described in section ‘2.5.2. EEG data’ and Fig. 2. Note that these

separately preprocessed eyes open and eyes closed periods

might include slightly different time periods compared to the

mixed resting state. Next, the same correlation analyses be-

tween Learning-induced similarity changes in the frequency

domain measured during eyes open and eyes closed resting

state only and the consolidation measures were conducted as

described in the ‘Frequency of learning-induced changes’

paragraph of the ‘2.5.3. Associations between behavior and

similarity in EEG functional connectivity across different

periods’ section. Finally, in the identified frequency ranges of

interest, the same correlation analyses were computed be-

tween the Post-learning similarity values for channel pairs and

consolidation measures as described in the ‘Topography of

learning-induced changes’ paragraph of the ‘2.5.3.

Associations between behavior and similarity in EEG

functional connectivity across different periods’ section.

Trait-like similarity. Finally, to contrast trait-like and

learning-induced similarities, we compared the Baseline and

the Post-learning similarity values (rather than their differ-

ence, the Learning-induced similarity change values) for fre-

quency bins and their associations with behavioral indices of

consolidation. If the Baseline and Post-learning similarity

values and their associations with memory consolidation are

comparable, the similarities likely emerge due to trait-like

characteristics in brain activity. This is in contrast with

higher Post-learning than Baseline similarity values that are

indicative of learning-induced changes. We computed

Spearman correlations (similar to the correlations described

in the ‘Frequency of learning-induced changes’ paragraph of

the ‘2.5.3. Associations between behavior and similarity in EEG

functional connectivity across different periods’ section) be-

tween the consolidation indices and the Baseline and Post-

learning similarity values respectively for the frequency bins

between 1 and 31 Hz. For these analyses, we again ran a

nonparametric cluster-based permutation correction

(described in the ‘Controlling for multiple comparisons’

paragraph of the ‘2.5.3. Associations between behavior and
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similarity in EEG functional connectivity across different

periods’ section). Finally, to compare the strength of the cor-

relations for each frequency bin separately for serial-order

and statistical consolidation that the Baseline and Post-

learning similarities exhibited with the consolidation

indices, we transformed the correlations to Z-scores using

Fisher's r-to-Z formula (DeCoster, 2007).

Controlling for the influence of functional connectivity of a

specific period. It is possible that the correlations emerging

between the similarity/learning-induced similarity change

values for frequency bins and the consolidation indices were

dominated by the functional connectivity of one of the periods

of learning or pre-/post-learning rest. To exclude this possi-

bility, we again computed Spearman correlations between the

consolidation indices and the functional connectivity mea-

sures averaged for the frequency bins between 1 and 31 Hz

separately for the pre-learning rest, learning and post-

learning rest. For these analyses, we again ran a nonpara-

metric cluster-based permutation correction (described in the

‘Controlling for multiple comparisons’ paragraph of the ‘2.5.3.

Associations between behavior and similarity in EEG

functional connectivity across different periods’ section).
3. Results

3.1. Behavioral data

3.1.1. Overall performance trajectory
To evaluate performance changes in RTs due to learning

throughout the entire task, we conducted a repeated-

measures ANOVA on RTs with EPOCH (1e8) and TRIAL TYPE
Fig. 3 e Performance in the ASRT task. A) Performance during t

(epochs 7e8) periods. Median reaction times (RTs) across partic

symbols), random high (medium blue line with rhombus symb

trials in each epoch. Error bars denote the standard error of the

high trials indicates serial-order learning (purple shading). The

indicates statistical learning (green shading). B) Off-line change

knowledge (green). Off-line changes were calculated as the learn

The plot shows the rotated probability density of these indices,

data between the first and third quartiles, and the white circles
(pattern, random high, random low) as within-subject factors.

This ANOVA showed that irrespective of trial type, RTs

significantly decreased across epochs (main effect of EPOCH:

F7,210 ¼ 80.748, p < .0001, hp
2 ¼ .73), indicating increasingly

faster RTs due to practice (Fig. 3A). Furthermore, participants

showed significant serial-order and statistical learning (main

effect of TRIAL TYPE: F2,60 ¼ 25.065, p < .0001, hp
2 ¼ .45): they

responded faster to pattern compared to random high trials

(p < .0001), and faster to random high compared to random

low trials (p < .0001). The EPOCH� TRIAL TYPE interactionwas

also significant (F14,420 ¼ 4.689, p ¼ .003, hp
2 ¼ .14), indicating

different learning trajectories for the three trial types (see

Fig. 3A). Although participants became faster for all trial types

with practice, responses to pattern trials showed greater gains

in comparison to both random high and random low trials:

average RTs of pattern trials decreased from 355.65 to

253.98 msec (p < .0001), of random high trials from 376.95 to

320.52msec (p< .0001), and of random low trials from392.07 to

349.87 msec (p < .0001). The speed-up in responses to pattern

trials was significantly larger than that to random high trials

(t30¼ 2.72, p¼ .011), indicating increasing serial-order learning

as the task progressed. The speed-up in responses to random

high compared to random low trials was also significantly

larger (t30 ¼ 2.07, p ¼ .047), indicating increasing statistical

learning as the task progressed.

3.1.2. Consolidation of serial-order and statistical knowledge
To evaluate the changes in the memory performance during

the off-line period that followed the learning, we computed

learning scores for serial-order and statistical knowledge

separately (for details see the ‘2.5.1. Behavioral data’ section).

Then, we conducted a repeated-measures ANOVA on the
he learning (epochs 1e5), testing (epoch 6) and retesting

ipants are shown for pattern (dark blue line with square

ols), and random low (light blue line with circle symbols)

mean (SEM). The difference of RTs for pattern and random

difference in RTs for random high and random low trials

s in serial-order knowledge (purple) and statistical

ing scores of epoch 7 minus the learning scores of epoch 6.

the dots indicate individual data points, the bars represent

within the bars show the medians.
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learning scores, with EPOCH (6e7, the only epoch of the

testing period and the first epoch of the retesting period) and

LEARNING TYPE (serial-order learning, statistical learning) as

within-subject factors. This ANOVA showed that participants

exhibited overall higher scores in serial-order than in statis-

tical knowledge (main effect of LEARNING TYPE: F1,30 ¼ 6.284,

p ¼ .018, hp
2 ¼ .17). However, learning scores (regardless of

learning type) were stable from the testing period to the first

retesting epoch (main effect of EPOCH: F1,30 ¼ .064, p ¼ .802,

hp
2 ¼ .002). Furthermore, the off-line changes (consolidation)

of serial-order and statistical knowledge did not appear to be

different (EPOCH � LEARNING TYPE interaction: F1,30 ¼ 1.356,

p ¼ .253, hp
2 ¼ .043), suggesting retention of both types of

knowledge in the off-line period. For further analyses, we

computed consolidation indices separately for serial-order

and statistical knowledge (see ‘2.5.1. Behavioral data’ sec-

tion). Notably, the variance of the consolidation indices

appeared to be sufficient for subsequent analyses investi-

gating associations between brain activity and memory

consolidation performance (Fig. 3B).

3.2. EEG data

Both spectral power and functional connectivity analyses

showed higher synchrony in the alpha frequency in the pre-

and post-learning rest periods compared to the learning

period (Fig. 4).

3.3. Associations between behavior and similarity in
EEG functional connectivity across different periods

3.3.1. Frequency-wise similarity analysis
We computed similarity between the functional connectivity

of the learning period and pre-learning rest (Baseline simi-

larity) and the learning period and post-learning rest (Post-

learning similarity) for frequencies 1e31 Hz (see Fig. 2 and
Fig. 4 e A) Example of spectral power in one channel (Pz) and B

Weighted Phase Lag Index (WPLI) for frequency bins between 1

(purple), and post-learning rest (red) periods. The solid lines indi

indicate SEM.
section ‘2.5.3. Associations between behavior and similarity in

EEG functional connectivity across different periods’). These

Baseline and Post-learning similarity values computed for

frequency bins exhibited similar patterns (Fig. 5A): They both

showed on average high similarity (closer to the maximum

value of 1) and a steep fall in similarity in the alpha frequency

range. This drop in the similarities in the alpha frequency is

expected, given the marked differences between alpha syn-

chronization (both in spectral power and phase synchroni-

zation, Fig. 4) during learning and the pre-/post-learning

resting states. To reveal changes in the resting state func-

tional connectivity values that appear after the learning

episode, we calculated Learning-induced similarity change

values (the difference between the Baseline and Post-learning

similarities, see also Fig. 2B). While the mean of the Learning-

induced similarity change values across participants were

around 0 for all frequencies, the individual differences (Fig. 5B)

enabled us to compute correlations between the behavioral

indices of memory consolidation and these Learning-induced

change values. As we aimed to reveal associations between

memory consolidation and brain activity, we focused on

similarities that correlated with behavior, not the emergence

of similarities per se.

3.3.2. Frequency of learning-induced changes
To identify the oscillatory frequencies where the Learning-

induced similarity change values were associated with the

behavioral indices of consolidation, we computed correlation

coefficients (Fig. 6A). Consolidation of serial-order knowledge

showed a significant positive correlation with the Learning-

induced similarity change in the alpha frequency range (for

the 8.5e9.5 Hz bins, all rs > .43, Fig. 6B). In contrast, consoli-

dation of statistical knowledge was positively associated with

the Learning-induced similarity change in the delta frequency

(for the 2.5 and 3 Hz bins, all rs > .42, Fig. 6C). The sizes of these

clusters did not exceed the cluster threshold based on the
) mean connectivity (across all channels) measured by the

and 31 Hz for the pre-learning rest (gray), ASRT learning

cate themean across participants and the shaded error bars
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Fig. 5 e A) Similarity between connectivity matrices of the learning period and the pre-learning rest (Baseline similarity),

and the learning period and the post-learning rest (Post-learning similarity) for frequency bins. Baseline and Post-learning

similarity exhibited similar patterns. The solid lines indicate the mean and the shaded error bars indicate the SEM for

Baseline (orange) and Post-learning (burgundy) similarity. B) Learning-induced similarity change was calculated as the Post-

learning similarity values minus Baseline similarity values, with larger values indicating greater similarity between the

learning period and post-learning rest than between the learning period and pre-learning rest. Thinner gray lines represent

each participant, while the thicker black line indicates the mean averaged across all participants.

Fig. 6 e A) Correlation (Spearman Rho) between the behavioral indices of consolidation and the Learning-induced similarity

change values (the difference between the Baseline and Post-learning similarity). Purple and green lines indicate

associations with serial-order and statistical consolidation, respectively. The shading denotes the significant (p < .05,

uncorrected) correlations. B) Positive correlation between the Learning-induced similarity change value at 9 Hz and the

consolidation of serial-order knowledge. C) Positive correlation between the Learning-induced similarity change value at

3 Hz and the consolidation of statistical knowledge. On B) and C), the dots represent individual data points for each

participant and the lines are linear trendlines.
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permutation testing (with the threshold being 5 frequency

bins for both serial-order and statistical consolidation).

Nevertheless, the original significance levels (p¼ .015, .010 and

.016 for serial-order consolidation at the frequency bins of 8.5,

9 and 9.5, and p ¼ .020 and .098 for statistical consolidation at

the frequency bins of 2.5 and 3) and the similar associations

between neighboring frequency bins suggest that these clus-

ters may be interpreted as meaningful. Specifically, these re-

sults suggest that themore similar the functional connections

between the learning period and post-learning rest were
compared to the learning period and the pre-learning rest in

the alpha and delta frequencies, the better the consolidation

was for serial-order and statistical knowledge, respectively.

3.3.3. Topography of learning-induced changes
Next, we aimed to reveal patterns in the topography of func-

tional connections that were present both during learning and

post-learning rest and could indicate reactivation (see Fig. 2C

and section ‘2.5.3. Associations between behavior and

similarity in EEG functional connectivity across different
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periods’). We computed channel pair similarities within the

frequency ranges where the Learning-induced similarity

change values showed significant associations with the

consolidation indices (alpha and delta). As we showed that

higher Post-learning similarity compared to Baseline similar-

ity in these frequency ranges is positively associated with

memory consolidation, it is conceivable that Post-learning

channel pair similarities in these frequency ranges are indic-

ative of learning-induced changes (possibly spontaneous

reactivation). To find channel pairs where the similarity is

associated with the consolidation indices, we computed cor-

relations: 1) correlation between channel pair similarity in the

alpha frequency range (8.5e9.5 Hz) and the consolidation of

serial-order knowledge, and 2) correlation between channel

pair similarity in the delta frequency range (2.5e3 Hz) and the

consolidation of statistical knowledge. Consolidation of serial-

order knowledge showed significant positive correlationswith

channel pair similarity in the alpha frequency range over the

whole brain, particularly at centro-parietal channel pairs

(Fig. 7A). In contrast, the consolidation of statistical knowl-

edge mainly exhibited significant negative correlations with

channel pair similarity in the delta frequency over the whole

brain, particularly over posterior and lateral sites (Fig. 7B).

3.3.4. Patterns in topography
Next, we aimed to explore patterns in the correlations be-

tween channel pair similarities and memory consolidation.

More specifically, we tested whether the strength of the as-

sociations between the channel pair similarities and the

consolidation indices vary as a function of the topographical

distance of the functional connections (i.e., short vs long range

connections). Importantly, we investigated these associations

separately for the consolidation of serial-order and statistical

knowledge, for the respective frequency ranges where they

showed significant associations with the similarity values.

Note that we included all correlation coefficients in subse-

quent analyses, not only the significant ones depicted in

Fig. 7A and B.

The correlation coefficients between serial-order consoli-

dation and the channel pair similarity values in the alpha

frequency range showed a significant positive correlationwith

the distance of the electrodes in the channel pairs (r ¼ .22,

p < .001) indicating that longer range connections in the alpha

frequency were more relevant for the consolidation of serial-

order knowledge. When considering the direction of correla-

tions (positive or negative correlation coefficients), we found

that only the positive correlations were significantly associ-

ated with the distance of the electrodes (r ¼ .22, p < .001,

negative correlations: r ¼ �.08, p ¼ .324). Thus, the stronger

associations between the consolidation of serial-order

knowledge and longer range connections in the alpha fre-

quency were led by positive correlation coefficients (Fig. 7C).

The correlation coefficients between statistical consolida-

tion and the channel pair similarity values in the delta fre-

quency range exhibited a significant negative correlation with

the distance of the electrodes in the channel pairs (r ¼ �.09,

p < .001) indicating that shorter range connections in the delta

frequency were more relevant for the consolidation of statis-

tical knowledge. When considering the direction of correla-

tions (positive or negative correlation coefficients), we found
that only negative correlations were significantly associated

with the distance of the electrodes (r ¼ .16, p < .001, positive

correlations: r ¼ .02, p ¼ .724). Thus, the stronger associations

between the consolidation of statistical knowledge and

shorter range connections in the delta frequency were led by

negative correlation coefficients (Fig. 7D).

3.3.5. Separating the mixed resting state into eyes open and
eyes closed periods
The eyes open and eyes closed resting states displayed

different synchronization patterns (as indicated by WPLI)

pronounced especially in the alpha frequency range, where

the average connectivity was greater for both pre- and post-

learning rest for the eyes closed compared to the eyes open

periods (Fig. S1A and B). Accordingly, Baseline and Post-

learning similarities also presented differently, albeit a gen-

eral drop in similarities in the alpha frequency was observed

both in the case of eyes open and eyes closed resting periods

(Fig. S1C and D). Importantly, the variance in the Learning-

induced similarity change values across participants was

sufficient to compute correlations with the behavioral indices

of memory consolidation for both eyes open and eyes closed

rest periods (Fig. S1E and F).

To test whether the eyes open and closed rest periods

separately exhibit similar associations with the behavioral

indices of consolidation as the mixed resting state, we first

computed correlation coefficients between these Learning-

induced similarity change values and the consolidation

indices. Similar to the results with the mixed resting state,

the consolidation of serial-order knowledge showed a sig-

nificant positive correlation with the Learning-induced sim-

ilarity change in the alpha frequency range (for the

8.5e9.5 Hz bins) for the eyes closed resting periods (Fig. 8A).

Again, the size of this cluster did not exceed the cluster

threshold based on the permutation testing (with the

threshold being 5 frequency bins). In contrast, consolidation

of statistical knowledge was positively although not signifi-

cantly associated with the Learning-induced similarity

change in the delta frequency (for the 2.5 and 3 Hz bins) in the

eyes open resting periods (Fig. 8B).

Exploring the topographic patterns of these associations,

the Post-learning similarity values for channel-pairs in the

alpha frequency range showed similar significant positive

correlations with serial-order consolidation over the whole

brain, particularly at centro-parietal channel pairs in the eyes

closed periods as in the mixed resting state (Fig. S2A). Post-

learning similarity values for channel-pairs in the delta fre-

quency range also showed similar significant negative corre-

lations with statistical consolidation over the whole brain,

particularly over posterior and lateral sites in the eyes open

periods as in the mixed resting state (Fig. S2B).

These results indicate that the findings using the mixed

resting state are not a result of artifacts caused by EEG non-

stationarity or varying proportions of eyes open and eyes

closed periods, as the same associations were present when

taking eyes open only or eyes closed only periods of the

resting states. The results also highlight that the association

between serial-order consolidation and Learning-induced

changes in the alpha frequency is driven by the eyes closed

rest periods, whereas the association between statistical
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Fig. 7 e A) Topography of significant correlations between the consolidation of serial-order knowledge and Post-learning

similarity for channel pairs in the (8.5e9.5 Hz) alpha frequency range. B) Topography of significant correlations between the

consolidation of statistical knowledge and Post-learning similarity for channel pairs in the (2.5e3 Hz) delta frequency range.

In the upper panel, significant (p < .05, uncorrected) positive and negative correlations are shown. In the lower panel, for

each channel, the number of significant correlations in which the given channel appears is shown separately for positive

and negative associations. CeD) Strength of the correlations between the Post-learning channel pair similarity values and

the behavioral indices of consolidation as a function of the distance between the electrodes (Euclidean distance of the

Cartesian coordinates of the electrodes) of the channel pairs. C) For the consolidation of serial-order knowledge (purple),

associations with the Post-learning similarity values in the alpha frequency range are shown. D) For the consolidation of

statistical knowledge (green), associations with the Post-learning similarity values in the delta frequency range are shown.

Linear trendlines for the distance of the electrodes in the channel pairs and the correlation strength of the similarities of

those channel pairs with the consolidation indices of serial-order (C) and statistical (D) knowledge are shown, separately for

positive (lighter color) and negative (darker color) correlations. The dots indicate individual correlation coefficients for each

channel pair. Serial-order consolidation exhibited a stronger positive association with longer-range connections, whereas

statistical consolidation exhibited a stronger negative association with shorter range connections. Note that this analysis is

conducted using all correlation coefficients, not only the significant ones depicted in A & B.
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Fig. 8 e Correlation coefficients (Spearman Rhos) between the behavioral indices of consolidation and the Learning-induced

similarity change values (difference between the Baseline and Post-learning similarity) for eyes closed A) and eyes open B)

periods. Purple and green lines indicate associations with serial-order and statistical consolidation, respectively. The

shading denotes the significant (p < .05, uncorrected) correlations.
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consolidation and Learning-induced changes in the delta

frequency was stronger in the eyes open rest periods.

3.3.6. Trait-like associations between behavior and similarity
in EEG functional connectivity across different periods
To disentangle learning-induced versus trait-like similarities,

we compared Baseline and Post-learning similarity for fre-

quency bins and their associations with the consolidation

indices. If the Baseline similarity (that is, the similarity of

functional connectivity during learning and pre-learning rest)

and its relation to memory consolidation is comparable to

Post-learning similarity (that is, the similarity of functional

connectivity during learning and post-learning rest), the

resemblance may have emerged from stable individual char-

acteristics in brain activity. Fig. 5A shows similar patterns for

Baseline and Post-learning similarity computed for frequency

bins. To compare the associations of Baseline and Post-
Fig. 9 e Correlation coefficients (Spearman Rhos) of Baseline (or

consolidation indices of serial-order (A) and statistical (B) know

of serial-order and statistical knowledge were similar over the

shading denotes significant (p < .05, uncorrected) correlations.
learning similarity, we conducted the same correlation ana-

lyses with the consolidation indices for these similarity values

as we computed for the Learning-induced similarity change

values in the ‘Frequency of learning-induced changes’ para-

graph of section ‘2.5.3. Associations between behavior and

similarity in EEG functional connectivity across different

periods’. The consolidation of serial-order knowledge

showed a significant positive correlation in the alpha fre-

quency range (for the 9.5e10.5 Hz bins) with Post-learning

similarity (Fig. 9A). Similar to the results of the Learning-

induced similarity change values, the size of this cluster did

not exceed the cluster threshold (7 frequency bins) based on

the permutation testing. The pattern of the associations of the

consolidation of serial-order knowledge with the Baseline and

the Post-learning similarity measures was similar, however,

the effects were weaker and not significant for the Baseline

similarity in the alpha frequency range (Fig. 9A). The
ange) and Post-learning (burgundy) similarity and the

ledge. The patterns of the associations of the consolidation

Baseline and the Post-learning similarity measures. The
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statistical comparison of the correlations between serial-

order consolidation and the Baseline and Post-learning simi-

larity values revealed significant differences in the alpha fre-

quency range (9 Hz: Z¼ 2.23, p¼ .025, 9.5 Hz: Z¼ 2.20, p¼ .028).

The remaining 59 correlations (out of 61) of the consolidation

of serial-order knowledge were not significantly different for

the Baseline and Post-learning similarity values (all ps > .07).

The consolidation of statistical knowledge showed a signifi-

cant negative correlation in the delta frequency range

(2.5e3 Hz) with the Baseline similarity values (Fig. 9B). Similar

to the results of the Learning-induced similarity change

values, the sizes of the clusters in this analysis did not exceed

the cluster threshold (7 frequency bins) based on the permu-

tation testing. Again, the pattern of the associations of the

consolidation of statistical knowledge with the Baseline and

the Post-learning similarity measures was similar, however,

the effects were weaker and not significant for the Post-

learning similarity in the delta frequency range (Fig. 9B). The

statistical comparison of the correlations between statistical

consolidation and the Baseline and Post-learning similarity

values did not reveal significant differences in the delta fre-

quency range (1e4 Hz, all ps > .15), however significantly

different correlations emerged in the lower alpha frequency

range (7.5e9.5 Hz, all ps < .05). The remaining 56 correlations

(out of 61) between statistical consolidation and the Baseline

and Post-learning similarity values were not significantly

different (all ps > .07). The similar pattern of the Baseline and

Post-learning similarity per se (Fig. 5) and the similar patterns

of their associations with the consolidation indices (Fig. 9)

suggest that trait-like associations exist between the brain

activity during different periods and memory consolidation.

Besides the trait-like associations, these analyses also

unraveled the dynamics of the associations of the Learning-

induced similarity changes in more detail: The positive cor-

relation between the Learning-induced similarity change

values and memory consolidation (Fig. 6) occurred for

different reasons in alpha and delta frequency. In the alpha

frequency, both the Baseline and the Post-learning similarity

values showed positive correlations with the consolidation of

serial-order knowledge, however, it was stronger for the Post-

learning similarity. In contrast, in the delta frequency, both

the Baseline and the Post-learning similarity values showed

negative correlations with the consolidation of statistical
Fig. 10 e Correlation coefficients (Spearman Rhos) between beh

connectivity measured as the Weighted Phase Lag Index (WPLI

and post-learning resting state (right). Purple and green lines in

and statistical knowledge, respectively. The shading denotes si
knowledge, however, it was weaker for the Post-learning

similarity.

3.3.7. Controlling for the influence of functional connectivity
of a specific period
Importantly, the associations between the consolidation

indices and similarity/learning-induced similarity change

values were not led by the functional connectivity of the

learning (or pre- or post-learning rest) period, as the correla-

tion of the consolidation indices with these functional con-

nectivity values showed different patterns from the

similarity/learning-induced similarity change values (Fig. 10

cf. Fig. 6A, Fig. 9). The sizes of the clusters emerging from

the correlations with these connectivity matrices did not

reach the threshold (5, 7 and 6 frequency bins for Pre-learning

rest, Learning and Post-learning rest connectivity, respec-

tively, both for serial-order and statistical consolidation)

based on the permutation testing.
4. Discussion

Our results showed that higher similarity in functional con-

nectivity patterns between learning and post-learning rest

compared to pre-learning rest (termed Learning-induced

similarity change) in the alpha frequency range (8.5e9.5 Hz)

is predictive of the consolidation of serial-order knowledge. At

the same time, Learning-induced similarity change in thedelta

frequency range (2.5e3 Hz) was positively associated with the

consolidation of statistical (probability-based) knowledge. The

topographical analyses within these frequency ranges high-

lighted the involvement of long-range centro-parietal con-

nections in the consolidation of serial-order knowledge and

shorter-range connections in the consolidation of statistical

knowledge.

Beyond these learning-induced changes, we also compared

the similaritymatrices themselves and their associationswith

memory consolidation to explore trait-like similarities. Simi-

larities in functional connectivity of learning and post-

learning rest (Post-learning similarity) and learning and pre-

learning rest (Baseline similarity) exhibited similar patterns,

and showed comparable associations with the consolidation

indices, indicating the existence of trait-like resemblance.
avioral indices of consolidation and EEG functional

) during pre-learning resting state (left), learning (middle)

dicate associations with the consolidation of serial-order

gnificant (p < .05, uncorrected) correlations.
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Furthermore, these comparisons shed light on two different

dynamics underlying the positive correlations between the

Learning-induced similarity change values and the consoli-

dation indices: In case of serial-order knowledge, better

consolidation was associated with the strengthening of a

positive correlation (beneficial effect) between the similarity

values and the consolidation index from Baseline to Post-

learning similarity, whereas in case of statistical knowledge,

better consolidation was associated with the weakening of a

negative correlation (detrimental effect).

Our results suggest that learning-induced changes in alpha

synchronization are associated with the consolidation of

serial-order (but not probability) information (Fig. 6). How did

alpha synchronization change over the different periods and

what part of these changes were relevant for memory

consolidation? Concerning the former, alpha synchronization

was higher during both resting states than during learning and

was higher during post-learning rest than during the pre-

learning rest (Fig. 4). Similar to our study, Murphy et al. (2018)

showed higher synchrony (albeit measured by spectral power

rather than phase synchronization) in alpha frequency during

post-learning rest compared to pre-learning rest. Importantly,

this was only true when there was a learning episode involved

between the two resting states (notwhen other cognitive tasks

were completed). Concerning the relevant changes in alpha

synchronization, the beneficial (higher) similarity between

learning and post-learning rest could occur due to a smaller

increase in (and thus relatively lower) alpha synchronization

during post-learning rest (as alpha synchronization is lower

during learning than the resting state periods, see Fig. 4B). In

accordance with this, the correlation of the functional con-

nectivity of learning and post-learning rest with memory

consolidation showed that higher connectivity in the alpha

frequency of post-learning rest negatively correlates with the

consolidation of serial-order knowledge (Fig. 10). Thus, the

associations with the similarity (Fig. 6) are most likely led by

relatively lower alpha synchronization during the post-

learning rest. This is in line with the study of Brokaw et al.

(2016), which showed that greater alpha synchronization

(again indexed by spectral power rather than phase synchro-

nization) during rest following a declarative learning task was

negatively correlated with subsequent recall performance. In

other words, higher alpha synchronization was detrimental

during the post-learning rest period for memory retention.

Altogether, these results suggest that alpha synchronization

increases after learning, but individuals showing a smaller

increase in alpha synchronization have better memory

consolidation.

Importantly, similarity in functional networks can occur

not only due to generally higher or lower synchronization but

also dynamics in synchronization that are present during

different periods. The functional role of the alpha rhythm [i.e.,

excitatory (Palva & Palva, 2007) or inhibitory (Jensen &

Mazaheri, 2010; Klimesch, Sauseng, & Hanslmayr, 2007)]

seems to depend on phase dynamics (Palva & Palva, 2011),

firing modes (Peterson & Voytek, 2017) and behavioral states

(Alamia & VanRullen, 2019). Thus, similarity in alpha syn-

chronization during learning and subsequent resting state

could reflect reactivated or maintained brain dynamics in
some of these additional factors (e.g., phase dynamics, firing

modes).

Why learning-induced changes relevant for the consoli-

dation of serial-order information were found in alpha fre-

quency? Von Stein and Sarnthein (2000) suggested that the

longer the range of the cortical connections, the slower the

oscillatory frequency is through which they synchronize; that

is, alpha as a relatively slow oscillation has been proposed to

have a large-scale integrative function. Based on the tasks that

involve higher alpha synchronization (e.g., mental imagery,

working memory, resting state), they suggested that greater

alpha synchronization reflects internal mental activity and

may be responsible for top-down cognitive processes. Top-

down here refers to the flow of information processing: For

top-down processes, the sensory processing is influenced by

higher-order cognition, i.e., it is model-dependent/

hypothesis-driven, whereas for bottom-up processes, sen-

sory processing is driven by the stimuli, i.e., it ismodel-free. In

support of the role of alpha in top-down processing, it has

been shown that alpha propagates from higher- to lower-

order cortex and from cortex to thalamus (Halgren et al.,

2019), providing a circuit for top-down processes. Our results

are in line with the findings that show the role of alpha in top-

down processes as we demonstrated that synchronization in

alpha frequency is important for serial-order memory

consolidation, which in our study was a top-down, attention-

demanding process, whereas it did not show association with

statistical learning, which is a bottom-up, stimulus-driven

process (Nemeth et al., 2013). The topographical distribution

of relevant phase synchronization in alpha frequency (Fig. 7)

is also consistent with the integrative/top-down function of

alpha oscillation in serial-order memory consolidation: Based

on the channel pair similarity correlations in alpha frequency,

our results indicate that long-range, centro-parietal connec-

tions are important for this type ofmemory. This is also in line

with previous studies investigating the neural background of

serial-order learning that seems to at least partially rely on

fronto-parietal networks (Doyon et al., 2009; Sakai et al., 1998).

In contrast to the consolidation of serial-order knowledge,

the consolidation of statistical knowledge showed associa-

tions with the learning-induced changes in the delta fre-

quency range. However, this change was a weakening

detrimental effect, i.e., decreasing adverse association be-

tween the consolidation of statistical knowledge and simi-

larity from Baseline to Post-learning similarity. Why learning-

induced changes relevant for the consolidation of probability

information were found in delta frequency? Delta oscillation

during cognitive tasks has been proposed to play a role in

inhibiting interferences that may affect task performance

(Harmony, 2013). Together with the topography of connec-

tions that correlated (negatively) with statistical learning, this

suggests that the inhibition of the left, in particular parietal

sites is beneficial for statistical memory. This is in line with

studies showing that the right hemisphere is important for

statistical learning (Janacsek, Ambrus, Paulus, Antal, &

Nemeth, 2015; Roser, Fiser, Aslin, & Gazzaniga, 2011; Shaqiri

& Anderson, 2013).

The learning-induced changes assessed in our study could

emerge partly due to reactivation. However, the definition of
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reactivation should be understood broadly in our study, as the

similarities discussed here could occur as a result of reac-

tivation of the memory traces per se, the reactivation of the

overall learning experience, or the reactivation of the cogni-

tive set in general during the learning episode.

Lastly, our results draw attention to the great overlap of

active functional networks during a task and preceding/sub-

sequent resting states. This inherent overlap has practical and

theoretical implications. On the practical level, a larger sam-

ple sizemight be necessary to study learning-induced changes

as the differences in functional networks from pre- to post-

learning rest are small compared to the overall similarities.

On the theoretical level, similarities during different behav-

ioral states have been largely neglected in previous studies

investigating reactivation (as reactivation is traditionally

defined by the unique overlap between the learning and the

post-learning off-line period). However, the functional brain

networks that are present during other behavioral states

might also be important for memory consolidation. We argue

that not only reoccurring, but also stable, trait-like brain net-

works are important for cognitive performance, particularly

for memory consolidation. For example, studies have shown

that there is little difference between functional connectivity

networks during resting state and a task measured via fMRI

(Cole et al., 2016; Satterthwaite et al., 2018). Gratton et al. (2018)

concluded that functional networks are dominated by stable

individual factors, not cognitive content. Our results are in

line with these fMRI results and demonstrate that these trait-

like, stable networks can also be captured by EEG and support

memory consolidation.

While our results alone cannot reveal the precise mecha-

nism through which stable functional networks contribute to

cognitive performance, we speculate that a possible mecha-

nism could be the existence of preparatory networks in the

brain that can be recruited during a cognitive task. This ‘pre-

activation’ mechanism could be the functional network

analog of a similar phenomenon: the preplay (Dragoi &

Tonegawa, 2011, 2013; Silva, Feng, & Foster, 2015). In the

case of a preplay, a specific sequential neuronal firing that is

revealed during learning and subsequently during replay oc-

curs before the learning episode itself. Dragoi and Tonegawa

(2011) proposed that the role of preplay is to facilitate future

learning by providing neural sequences naturally present in

the neural network to be utilized during a learning experience

to store new memory traces. Similarly, in the case of func-

tional connectivity, ‘preactivation’ could manifest as a pre-

existing functional network that would serve as a building

block for functional networks to emerge during learning and

that could subsequently be strengthened by reactivation (or

other consolidation mechanisms). Nevertheless, further

studies are warranted to reveal whether such supportive

preparatory networks exist.

4.1. Limitations

The sizes of the clusters that we revealed in the frequency-

wise comparisons did not reach the threshold computed by

permutation testing. This implies that these clusters could

have occurred by chance. It is important to note, however,

that our method to reach that threshold is more conservative,
as we compared the distribution of the largest cluster sizes

occurring under the null hypothesis in opposition to the dis-

tribution of all cluster sizes occurring. Furthermore, we cor-

rected only for the size of the clusters, not considering the

effect sizes in those clusters which could further influence the

results. Lastly, we set the pre-cluster threshold to a standard

value (rather than fitting it arbitrarily to our data), which is

important as the value of the pre-cluster threshold strongly

influences the results of this correction. Therefore, the infer-

ence from our results should take into account the conser-

vative parameters used in our analyses. We argue that the

natural clustering in our data and the large effect sizes

(especially for brain-behavior correlations) observed in the

original comparisons provided sufficient evidence to interpret

our results as meaningful. Nevertheless, our results should be

treated with caution until further replication.

Another limitation of our study is that the post-learning

rest is necessarily different from the pre-learning rest as it

occurs later in time. Differences in brain activity from pre- to

post-learning rest may be influenced by factors such as fa-

tigue, sleepiness, relaxation, or time-of-day effects. However,

our results are primarily based on the associations between

brain activity andmemory performance, and it is unlikely that

these factors account for such correlations, even if they do

affect brain activity.

Finally, our results in the alpha frequency could be influ-

enced by participants falling asleep during our long post-

learning period. Falling asleep diminishes alpha synchroni-

zation which seemed beneficial according to our results as

well as sleep could benefit memory consolidation. We believe,

however, that this could not be the case, as two experienced

sleep-scorers verified participants staying awake during the

post-learning rest. The two participants who did enter Stage 1

sleep were excluded from the analyses. Nevertheless, we

cannot rule out the effects of local or microsleeps (Hung et al.,

2013; Vyazovskiy et al., 2011).

4.2. Conclusions

Our results show that learning-induced changes in resting

functional networks after learning differentially predict

memory consolidation of serial-order and probability infor-

mation acquired simultaneously: Learning-induced changes

in alpha synchronization were associated with the consoli-

dation of serial-order, whereas learning-induced changes in

delta synchronization were associated with the consolidation

of probability information. Long-range functional connections

in the alpha frequency seem to be important for the consoli-

dation of serial-order knowledge, potentially due to the

involvement of top-down processes in this type of learning,

requiring the synchronization of distant brain areas. In

contrast, consolidation of statistical (probability-based)

knowledge seems to rely on local synchronization, potentially

due to the involvement of bottom-up, stimulus-driven pro-

cesses that are less dependent on long-range synchronization.

Finally, patterns of similarities between learning and pre- and

post-learning rest (and their associations with consolidation

performance) showed great overlap. This implies that in par-

allel with reoccurring brain dynamics, pre-existing or main-

tained networks are also important for cognitive performance,
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particularly for memory consolidation. Lastly, our study pro-

vided a framework for studying memory consolidation in its

complexity, incorporating the simultaneous consolidation of

different information as well as the influence of learning-

induced changes and stable characteristics of brain activity.
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