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Abstract 3 

Lipid metabolism is recognised as being central to growth, disease and health. Lipids, therefore, have an important place in 4 

current research on globally significant topics such as food security and biodiversity loss. However, answering questions in 5 

these important fields of research requires not only identification and measurement of lipids in a wider variety of sample 6 

types than ever before, but also hypothesis-driven analysis of the resulting ‘big data’. We present a novel pipeline that can 7 

collect data from a wide range of biological sample types, taking 1,000,000 lipid measurements per 384 well plate, and 8 

analyse the data systemically. We provide evidence of the power of the tool through proof-of-principle studies using edible 9 

fish (mackerel, bream, seabass) and colonies of Bombus terrestris. Bee colonies were found to be more like mini-ecosystems, 10 

and there was evidence for considerable changes in lipid metabolism in bees through key developmental stages.  This is the 11 

first report of either high throughput LCMS lipidomics or systemic analysis in individuals, colonies and ecosystems.  This 12 

novel approach provides new opportunities to analyse metabolic systems at different scales at a level of detail not previously 13 

feasible, to answer research questions about societally important topics. 14 
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Investigation of metabolic systems is a key part of studies into several globally important societal questions.  For example, 22 

biodiversity loss is more acute than ever, increasing the urgency of studies on its underlying mechanisms.  Studies on 23 

biodiversity loss involve investigating ecosystems, in which nutrients are passed between organisms.  A closely related and 24 

important topic is global food security, which requires sustainable food production, including rearing of both livestock and 25 

crops.  Sustainable food production requires a detailed understanding of health and metabolism within individual organisms 26 

as well as their environment and the interaction between the two.  A common theme between investigations of biodiversity 27 

loss and global food security is the need for systemic analyses within or between individuals.  Typically, investigating 28 

biological systems includes questions about how those systems behave when they are challenged and how they are controlled 29 

in response to both intrinsic and extrinsic factors. 30 

 31 

There has been an exponential expansion of genetics techniques and tools available for investigating how systems are 32 

controlled.  These have been used in a wide range of applications, including to improve the production of foods1-3 and to 33 

investigate climate change4-6 and have given an invaluable insight into those systems and how they are constructed.  34 

However, genetics approaches are not able to directly measure how that system will respond to environmental challenges 35 

such as an increase in temperature.  This will require more direct readouts of modifiable factors such as metabolites, i.e. the 36 

abundance and distribution of individual small molecules.  Such an approach will provide mechanistic insight into the 37 

phenotypic effect(s) observed. Recently, investigations of how lipid metabolism is controlled have been reported7-9.  These 38 

studies used systemic or network analyses to answer questions about how metabolism is controlled and challenged in the 39 

context of dietary challenges, either through general changes (e.g. a high fat diet) or individual nutrients (e.g. individual poly-40 

unsaturated fatty acids) 41 

 42 

Too answer questions about how metabolism is controlled or challenged in individual organisms or ecosystems, analysis of 43 

metabolites such as lipids is required from a range of sample types. This requires automation to make the scale of analyses 44 

feasible and subsequent wide-scale analysis in silico possible.  Lipids are a key focus in biology because they include molecules 45 

used to supply and store energy (triglycerides), and others with a structural role (e.g. phospholipids).  Furthermore, as all 46 

cells need energy and membranes, studies on lipid metabolism are important for all cells.  The study of lipid metabolism 47 

therefore provides a broad and detailed way to investigate the health and behaviour in biological systems from individual 48 

organisms to whole ecosystems, i.e. across a range of scales.   49 

 50 

Investigating lipid metabolism in ecosystems and individual organisms requires sample preparation techniques that cover the 51 

full range of sample types found in nature.  This is a relatively new challenge and represents an emerging need for 52 

technological advancement as most lipidomics pipelines are designed for human blood serum and so have not been optimised 53 

for a range of sample types required for complex biological systems.  Some ground work has been done on extending the 54 

range of tissue types in lipidomics studies10, 11, however none of these encompass diverse sample types such as plant material 55 

and insects.  56 

 57 

A second challenge that emerges from the need to investigate whole systems is the need to collect data from large numbers 58 

of samples in parallel.  For example, high throughput techniques have emerged recently in metabolomics, with several 59 

studies using thousands of samples12-15.  For these analyses, extractions need to be automated16 with the minimum of steps to 60 

prepare samples17.  These and other methods have been reviewed18-20 and even tested11, 21, 22.  Direct infusion mass 61 

spectrometry (DIMS) and semi-quantitative LCMS approaches have been reported for collecting lipidomics data.  DIMS is 62 

an excellent tool for collecting lipidomics data from large numbers of samples without chromatography, and has been used 63 

in several of the largest lipidomics studies done to date13, 14. DIMS is a sensitive method that trades number of variables 64 

measured for the speed of data collection. Semi-quantitative high throughput LCMS has also been reported23, measuring a 65 

greater number of lipids than DIMS, but requiring longer acquisition times per sample and with lower sensitivity.   66 

 67 

For systemic analyses, a comprehensive survey of lipids is required, along with efficient and effective identification.  Big and 68 

urgent societal questions on climate change and global food security require scope for network analysis as well as candidate 69 
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biomarker analysis and similar statistical tests.  This points to the need for measurement of as many lipids as possible in the 70 

system, and as consistently as possible.   71 

 72 

To meet the needs of systemic analysis of ecosystems and individual organisms, we suggest that three major advancements 73 

are required to construct a lipidomics pipeline suitable for the task.  First, the best extraction method for collecting the 74 

lipidome for high throughput LCMS in a 384 well plate format must be determined.  Second, a rapid and reliable way to 75 

process raw lipidomics data to give a signals sheet with all lipid variables ID-matched.  Third, a way to undertake network 76 

analysis in silico on the data acquired.  We have responded to these needs by constructing a pipeline for metabolomics-based 77 

analysis of both individual organisms and multi-organism systems (Fig. 1) and using it for proof-of-principle studies on big 78 

questions in ecosystem performance and the health of individual organisms.   79 

 80 

We successfully applied our approach as proof-of-concept studies that highlight how lipid-based systems biology can be 81 

applied to address specific questions and hypotheses in biodiversity loss and other societally important questions.  82 

 83 

 84 

Results and Discussion 85 

The construction of the lipidomics pipeline is described sequentially, starting after sample preparation with the selection of 86 

lipid extraction method, followed by data processing.  Acquisition of lipidomics data on a range of samples that describes 87 

both laboratory and ecosystem needs (Table S1). How lipidomics data can be used to answer timely and important questions 88 

about lipidomics is then shown through two example proof-of-principle studies. 89 

 90 

High throughput lipid extraction and data processing 91 

We investigated methods for lipid extraction to identify the one most suitable for high throughput lipidomics using 384w 92 

plates.  This was done in tandem with development of data processing in order that the latter served the former.  Three 93 

solvent systems established for extracting lipidomes were tested, along with a more environmentally sustainable alternative 94 

that is not currently in widespread use (ethyl acetate, EAT).  These solvent systems were the Bligh and Dyer24 (BAD), tert-95 

butylmethyl ether16 (TBM), dichloromethane-methanol-triethylammonium chloride10, 25 (3:1:0·002, DMT).  These four 96 

extraction methods were tested on nine different sample types (mouse brain, heart and liver, cows’ milk, whole Desmodesmus 97 

quadricauda, leaves from Eucalyptus perriniana, polyfloral pollen, whole Bombus terrestris, whole Saccharomyces cerevisae), with 98 

ten measurements of each stock.  Extracts from all extraction methods were run on the same 384w plate. The extraction 99 

performance measures used were (i) the number of variables found, (ii) the total signal and (iii) the coefficient of variation, 100 

i.e., a measure of how consistent the methods were.  The data were then processed using two processing methods before 101 

numerical analysis and determination of which extraction method performed best. 102 

 103 

Data from the extraction methods was initially processed using a conventional processing method26.  The number of signals 104 

(with a unique m/z and Rt, Fig. S1A) showed little difference between methods, unlike the total signal which did differ 105 

between methods (Fig. S1B).  Coefficients of variation (CV) of signal size were calculated for each variable in each method 106 

on each sample type (Table S2).  These showed that the BAD and DMT methods were similar, with slightly more variables 107 

having a CV below 20% and 15% for the DMT method.  This type of analysis provided some insight into the difference 108 

between methods, however this approach to processing LCMS data is incompatible with a systems analysis as the latter 109 

requires ID-matching for all variables and this approach identified secondary ions for more abundant signals.  To overcome 110 

these limits, we automated the matching of lipid IDs to lipidomics data using commercially-available software (AnalyzerPro® 111 

XD from SpectralWorks Ltd) with a comprehensive Target Library (TL) generated in-house.  The TL consisted of around 112 

7·5k triglycerides, ceramides and phospholipids and was used to assess extraction methods.   113 

 114 

ID-matched processed data were then used to assess the quality of the extraction procedures.  Fig. S2 shows the number of 115 

variables and total signal of ID-matched signals for each method.  These analyses show subtle differences between the total 116 

signal measured for each of the methods, with BAD and DMT being similar and DMT often but not always slightly higher 117 
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than BAD.  Student’s t-tests showed that DMT gave greater total signal for BRA, BTM, DQU, EuL, HEA and WHB (p 118 

0.015272, 0.001395, 2.63×10-6, 3.53×10-13, 4.94×10-6, 2.16×10-5, respectively) whereas BAD gave greater total signal for 119 

YEA (p 0.001856).  No difference in total signal was found between DMT and BAD for either LIV or PFH (p 0.352035, 120 

0.684561).  The total signal strength of extracts collected using EAT was higher than those of the TBM method, but not as 121 

high as BAD or DMT.   122 

 123 

Processing using a TL simplified and reduced the computing power needed to produce a signals sheet. This facilitated 124 

assessment of the consistency of the extraction procedures (CV).  The CV of the four methods calculated using only lipid 125 

variables, shows that the BAD and DMT methods performed similarly, with DMT giving 1-3% more lipid variables overall 126 

than the BAD (Table S3, ‘Sum’).  Here too, the EAT method was more consistent than the other three methods, and TBM 127 

was less consistent.  The impressively consistent performance of the EAT method is encouraging, however the total signal 128 

being less than for other methods suggested that this solvent was saturated.  Thus, of the methods tested, the DMT method 129 

performed best and was thus the one used.  These results answer the question of which of the extraction methods tested is 130 

the best for data collection of high throughput LCMS lipidomics collection across a range of sample types needed for analysis 131 

metabolic systems.   132 

 133 

Data Analysis 134 

The depth and breadth of lipidomics data collection made possible by this pipeline allowed us to determine the lipid 135 

composition of a variety of sample types from different phylla, including plants, algae, fish, mammals and insects (Table S1).  136 

Typically, analyses of data of this sort involves statistical tests, usually starting with a multi-variate analyses such as a 137 

principal component analysis (PCA).  This type of test reduces dimensionality and can be used to identify sub-groups of 138 

samples and also to identify which variables drive the difference between two or more groups.  Fig. 2A is a PCA of all 139 

samples run, showing insects, plants, algae, mouse, fish and even a human sample. These samples describe the range of 140 

sample types observed in studies of model laboratory organisms (mice) as well as of ecosystems.  The PCA showed that the 141 

lipidome differed between these organisms.  Plants overlapped entirely with algae but very little with animals of any kind.  142 

There was some similarity between the tissues of mice, bees, humans and fish, but as expected, they are generally distinct.  143 

PCAs also showed subgrouping within this, including between species of social bee (Bombus terrestris and Apis mellifera) and 144 

between storage conditions (Fig. 2B), feeding of Bombus terrestris (Fig. 2C), and plant tissues and algae (Fig. 2D).  This type of 145 

analysis therefore provides a way to distinguish samples by identifying the lipids that differ the most between them.  For 146 

example, this shows clearly that the dietary intake of lab-reared social bees was associated with contrasting lipid 147 

compositions in vivo (Fig. 2B).   148 

 149 

However, multi-variate analyses such as PCAs give very limited insight into the mechanism that drives the effect seen.  This 150 

provides a problem for system-level studies.  Interpreting lipidomics data from several different tissues within individual 151 

organisms using an MVA is limited in what it can explain about how the system is controlled, as any visible distinction relies 152 

on subgrouping of individual tissues in the different groups.  Similarly, ecology studies of landscapes that comprise several 153 

trophic levels requires a strong distinction between the molecular comparison of individual samples in order to see any 154 

difference between them. This type of analysis may therefore miss a range of sub-lethal differences between groups or 155 

locations ascribed to differences in dietary intake or nutrient availability form the landscape.  For example, an important 156 

question in ecology at present is how pollination services will respond to climate change and how they can be maintained in 157 

order to protect the biodiversity of flowering plants.  Thus the behaviour of both social and solitary bees with the rest of 158 

their environment and whether they visit a range of plants (generalist) or are more restricted (oligolectic), by preference or 159 

necessity, demands a more systemic approach than multi-variate analyses can give.  160 

 161 

Second, MVAs fail to exploit the relationships between the samples, i.e., the structure of the biological system from which 162 

they come.  Fig. 2E and F show tissues that describe the metabolic structure of edible fish and Bombus terrestris fed contrasting 163 

diets, respectively.  The difference between the groups can be seen, however what is accumulated where and thus how the 164 

system is controlled is not visible.    165 
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 166 

In order to understand how biological systems are controlled and what happens when they are stressed, the known 167 

connections between tissues or organisms must be exploited.  Including the spatial distribution in the analysis sorts the 168 

metabolite composition data and allows it to be plotted such that the parts of the system when the biggest changes are found 169 

can be identified (shown schematically in Fig. 2G).  We also judged that an approach that does not rely on controversial 170 

features such as p values associated with Students’ t-tests is also attractive.  We therefore updated and expanded a non-171 

statistical approach to network analysis for analysing metabolic systems, and present Lipid Traffic Analysis v3.0 (LTA).  This 172 

software plots the spatial distribution of variables according to their lipid type.  A-type variables are lipids found in all 173 

compartments (tissues/sample types) of a given group.  B-type lipids are variables found in pairs of adjacent compartments, 174 

for example in the liver and the serum in mammals or the brain and ocular cortex in bees.  U-type variables are found only 175 

in one compartment for a given group.  We also introduce N2-type variables that are for variables found in pairs of non-176 

adjacent groups.  The N2-type is useful for identifying variables that exist independently or imply the existence of 177 

unexpected connections in a network.   178 

 179 

Analysing lipid data in this way is useful because (i) it is a plot of lipid distribution that does not rely on probability or other 180 

metrics, (ii) the plots can be used to characterise the system and (iii) the analysis sifts out the most important variables and 181 

parts of the network, identifying how the control of the systems differ. This approach therefore avoids a reliance on 182 

probability and so the need for significance thresholds is avoided.  The combination of the data collection strategy we have 183 

developed and the network analysis, i.e. the full pipeline, was used for two sets of proof-of-principle experiments for 184 

globally important societal challenges. One was on rearing livestock (fish) and the other on protecting biodiversity through 185 

understanding a generalist pollinator (bumble bee).  These are two separate questions that require a similar approach and 186 

that this pipeline can be used to answer.   187 

 188 

First, a proof-of-principle traffic analysis on edible fish species from the same biome but different taxonomic orders 189 

(moroniforme and perciforme) was performed, and then with an Atlantic species of another order (scombiforme).  The LTA 190 

of Dicentrarchus labrax (seabass) against Sparus aurata (bream) showed that there is a surprising uniformity of the PCs found 191 

throughout the system in both species, with several phosphatidylcholines (PCs) found throughout the system in both species 192 

(A-type lipids, Fig. 3A).  However, there is no general pattern of PCs throughout the network between D. labrax and S. 193 

aurata, and only a modest overlap (J) between the two species.  This suggests that lipid metabolism has evolved differently in 194 

the two taxonomic orders.  Importantly, the Traffic Analysis of triglycerides between D. labrax and S. aurata also showed 195 

that there are over 200 triglycerides found throughout each species (Fig. 3B), something that is also observed in S. scombrus 196 

(mackerel, Fig. S3).   197 

 198 

These analyses show that there is a remarkable complexity in the lipid metabolism of edible fish in general and hints that for 199 

these fish to be healthy, the fatty acid profile of their dietary intake may also need to be very rich.  This type of analysis 200 

therefore offers ways to manage the transition to eliminating the use of wild fish in farmed fish feeds without negatively 201 

affecting farmed fish growth or nutritional profile27.  Determining the precise dietary intake even of humans is notoriously 202 

difficult28 and thus that of a wild or farmed animal is yet more challenging.  Gaining a greater understanding of the specific 203 

lipid requirements for farmed fish for optimum growth is critical for the aquaculture industry as it moves towards reducing 204 

its economically and environmentally costly reliance upon fishmeal and fish oil29, 30.   205 

 206 

Systemic analysis of a colony or mini-ecosystem of individuals is useful in studies related to biodiversity loss as it can tell us 207 

about the relationships between individuals.  For example, pollinating insects such as bees provide an important service to 208 

plant-based habitats that are themselves a system.  However, the living arrangements of bees also has a well-defined 209 

structure that represents a system.  There is also scope for analysis of individual organisms.  A proof-of-principle study in a 210 

commercially available species of bumble bee (Bombus terrestris) was done both within the queens and the whole colonies of 211 

which they were part.  The colonies (n = 1 per group) were fed honeybee-collected pollen from Fagopyrum esculentum 212 

(buckwheat) or Helianthus annuus (sunflower).   213 
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 214 

The Traffic Analysis of lipids within the queens showed that for triglycerides, a diet of pollen from Fagopyrum esculentum was 215 

associated with a greater number of triglycerides throughout the system (Fig. S4A).  However, the traffic analysis of 216 

phosphatidylcholine suggested a more mixed picture (Fig. S4B) and those of both phosphatidylinositol and 217 

phosphatidylglycerol (Fig. S4C, D) suggest that the distribution of these lipids is more complicated than simply more or 218 

fewer variables.  These analyses suggest that the control of lipid metabolism changes according to dietary intake and that this 219 

differs between triglycerides (energy storage and distribution) and phospholipids (cellular structure).  This has potentially 220 

far-reaching consequences as it means that feeding in bees may have short- and long-term consequences on the individual 221 

bees.  This raises questions about whether the effects are similar at colony level for social insects.   222 

 223 

Traffic analysis showed a simpler picture for the colony than within the queens (Fig. 4), with a greater number of variables 224 

throughout for TG and PC in the colony fed pollen from Fagopyrum esculentum than that fed pollen from Helianthus annuus.  225 

This is reflected in the traffic analyses of PG and PI (Fig. S5).  This therefore also shows that there are considerable diet-226 

driven effects on the control of metabolism at colony level.  These bee colonies also showed at least two fundamental 227 

features.  First, both the phosphatidylcholine and triglyceride traffic showed that lipid composition of pupae, newly-emerged 228 

drones and week-old drones are similar, however the lipid composition of larvae is rather different to that of pupae 229 

whichever diet was fed.  This suggested that there are considerable changes in lipid metabolism late in the larval 230 

development of bumble bees.  Second, we see many more variables in 1d old frass and 7d old frass than in fresh frass.  This 231 

suggests that new lipids are being made in the frass after it is produced.  As several new phosphatidylcholines are found, we 232 

suggest that a eukaryotic species is probably responsible for this change in lipid composition, presumably a fungus.  Bumble 233 

bee colonies may therefore represent a micro-ecosystem rather than simply a colony of one organism.  Together with other 234 

evidence31, this suggests that fungi play an important role in colony development of bumble bees.  Taken together, the 235 

evidence that dietary intake influences the control of lipid metabolism in colonies and individuals contextualises concerns 236 

about global challenges such as agricultural intensification and climate-change-driven that can dramatically influence the 237 

nutrient landscape for bees.  It suggests that changes to nutrient availability caused by biodiversity loss will have effects on 238 

the health of colonies of generalist pollinator bee species.  This indicates that supporting pollination services is a key 239 

component of halting biodiversity loss.   240 

 241 

The systemic analysis of both individuals such as fish, bees and an ecosystem has myriad applications for several timely 242 

questions in addition to understanding biodiversity loss and global food security.  Lipid Traffic Analysis has already been used 243 

in medical research, on type 2 diabetes32 and gestational diabetes7, 33 and feeding of essential nutrients9.  Studies of obesity 244 

and associated factors also require analysis of whole organisms and thus will rely on network analyses.  Similarly, conditions 245 

such as cancer and infectious disease are system-wide and thus understanding of these diseases using systemic analyses can be 246 

part of an hypothesis-driven investigation of the progress of the disease and interventions to halt it.  To date, much of the 247 

work on obesity, cancer, metabolic disease and infection has focused on lipid signatures of the conditions34-36 or on 248 

genetics37-39.   249 

 250 

 251 

Conclusion  252 

This study establishes and demonstrates the capabilities of a lipidomics pipeline that can measure the concentration of 253 

thousands of lipids in large numbers of samples, 1,000,000 per 384w plate, and then perform network analyses on the 254 

processed data.  This novel approach represents a substantial advance in our ability to carry out the systemic metabolic 255 

analysis of individual organisms, colonies and even ecosystems. Thorough and objective testing of lipid extraction methods 256 

was used to identify the best method for resolution and consistency. These advances relied upon the development of end-to-257 

end methods for sample preparation and lipidomics data collection of a wide variety of tissue types—everything from leaf to 258 

liver—promptly and precisely.  This enabled new insights in the proof-of-principle studies done that show that triglyceride 259 

metabolism was more varied and complicated in edible fish than expected, and that colonies of bees represented mini-260 

ecosystems rather than simply groups of co-habiting individuals. The study of bee colonies also found that there is 261 
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considerable development of lipid metabolism through the development of the bees.  The advances in breadth and capacity 262 

in lipidomics that this pipeline offers provides the necessary infrastructure to answer key questions about how metabolic 263 

systems are controlled and what happens when they are challenged.  This technology has immediate application in research 264 

into metabolic disease, nutrition, sustainable farming and biodiversity loss, amongst others.   265 

 266 

 267 

Experimental 268 

We report a pipeline for the systemic analysis of ecosystems and individuals using metabolomics.  It consists of five steps 269 

(i) sample preparation, (ii) metabolite/lipid extraction, (iii) data collection, (iv) processing and (v) data analysis (Fig. 1).  270 

The advances that represent the development of unique steps—for which there are currently no similar approaches—are 271 

reported in Methods. Analogous methods for extracting lipids from biological samples exist, as do different ways to process 272 

metabolomics data.  We therefore investigated which was best and report those tests in the Results section. Proof-of-273 

principle studies, in which the pipeline is used to investigate current questions, are also reported in Results. 274 

 275 

1. Sample preparation 276 

We sought a method that could be applied across a wide range of sample types, makes the lipid fraction chemically accessible 277 

and produces a pipettable solution and preserves the lipid fraction of the sample.  We based our approach on a prototype 278 

developed for mammalian tissues in which the sample was dispersed in a buffer 10, 40.  This approach involved homogenising 279 

the samples in an aqueous medium comprising guanidine and thiourea, known as GCTU.  This buffer is valuable because it 280 

suppresses lipase activity and bacterial growth, dismantles cellular structures at a molecular level without damaging lipids 281 

and support preparation of a pipettable solution.  However, adaptation to cover the format of all the samples types that 282 

describe an ecosystem was required.  283 

 284 

Leaf material and insect samples have not previously been used in large-scale lipidomics studies and presented unique 285 

challenges.  Leaves and whole bees were made more brittle and partly preserved by being freeze-dried. Leaves were sliced 286 

to shorten the fibres (<5 mm) or crushed when dry, before being soaked in the buffer (2-6h).  The dry samples were then 287 

homogenised using a robust laboratory homogeniser (steel macerator).  Bees required some blunt mechanical disruption 288 

immediately before mechanical homogenisation to break the head casing, and thoracic and abdominal exoskeleton.  The 289 

constituent tissues of bees (brain, gut, hypopharyngeal gland, thoracic muscle, frass) and earlier developmental stages 290 

(larvae, pupae, newly emerged adults) behaved similarly to mammalian tissues (Mus musculus; brain, liver, adipose, heart, 291 

Homo sapiens; whole blood).  Fish tissues (from Dicentrarchus labrax, Scomber scombrus and Sparus aurata; belly, gut, back, heart, 292 

tail, gill, head, cheek, skin, liver) also behaved in the same way. The amount of buffer used varied according to the amount 293 

of lipid in the sample, with fattier/more lipidic samples needing to be more dilute (see Table S1).   294 

 295 

 296 

2. Lipid Extraction and data collection 297 

A small number of lipid extraction methods have been reported for parallel or high throughput lipidomics application. 298 

However, although some objective tests of the performance of these methods have been done for medium throughput 299 

applications, and within other studies 11, 21, 22, no thorough performance review of lipid extraction has been done for large, 300 

high throughput studies or pipelines.  We tested four lipid extraction methods and chose an extraction based on quantitative 301 

measures of performance, i.e. the number of variables, the total signal strength and the consistency of the method (see 302 

Results).  303 

 304 

In order that data from large numbers of samples can be collected in one batch, both for testing extractions and for 305 

continued use in a pipeline, extractions must be carried out in parallel.  Parallel extractions were carried out in this study 306 

using a 96-channel pipette mounted onto a movable platform (Integra Viaflo, ~£15k). This allows preparation of 384w 307 

microplates for data collection. 308 

 309 
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Data collection poses a particular challenge in investigating whole systems as it requires large numbers of samples to be 310 

handled in parallel.  High throughput techniques have emerged relatively recently in metabolomics, with several studies 311 

reporting thousands of samples per batch 12-15.  For these analyses, extractions need to be automated 16 with the minimum of 312 

steps to prepare samples 17.  These and other methods have been reviewed 18-20 and even tested 11, 21, 22.  Liquid 313 

Chromatography Mass Spectrometry (LCMS) was chosen for this pipeline because it is the optimum approach to separate 314 

and measure the large number of lipids present in biological samples (only an order of magnitude less than that of proteins 315 
41).  Recent advances in autosampler hardware mean that 384w microplates can now be used in commercially-available 316 

LCMS set-ups. 317 

 318 

3. Data analysis 319 

The typical approach to analysing big data at present is to use statistical tests and visualisations such as a principal component 320 

analysis (PCA).  Fig. 2A is a PCA of a variety of sample types from different phylla, including plants, algae, fish, mammals 321 

and insects (Table S1). Principal Component or other ordinal analyses can be used to identify both sub-groups of samples and 322 

the variables drive the difference between two or more groups.  However, this and other current methods can be limited for 323 

systemic analysis.  Fig. 2B shows a PCA for the dissected tissues from queen bumble bees fed one of two different diets and 324 

Fig. 2C shows the dissected tissues from three species of fish. It is difficult to see how diet or taxonomy drive differences in 325 

the lipid metabolism of the two systems from ordinal analyses.  The same problem is visible more acutely when lipidomics 326 

data from bees from two colonies fed different pollens are plotted (Fig. 2D), as the different parts of the system and the 327 

relationship between them are not clear. Our solution to this problem is to use a method for analysing the data that exploits 328 

the known connectivity between the different samples, such as the passing of nutrients between tissues within an organism 329 

or between trophic levels in an ecosystem.  330 

 331 

Previously, we developed the concept of molecular Traffic Analysis and built software in R.  Lipid Traffic Analysis (LTA) 332 

v1.0 and 2.3 were focused on spatial analyses within individuals 8, 9, 33, 42.  In order to be able to do systemic or network 333 

analysis suitable for colonies and ecosystems as well as individuals, we built LTA v3.0 in Python 334 

(https://pypi.org/project/lipidta/).  This has additional features that are useful for complex networks (vide infra).  The 335 

principle of Traffic Analysis in the context of metabolomics is based on the principle of lipid types. A-type variables are 336 

lipids found in all compartments (tissues/sample types) of a given phenotype group.  B-type lipids are variables found in 337 

pairs of adjacent compartments, for example in the liver and the serum in mammals or the brain and ocular cortex in bees.  338 

U-type variables are found only in one compartment for a given group.  We introduce N2-type variables that are for 339 

variables found in pairs of non-adjacent groups.  The N2-type is useful for identifying variables that exist independently or 340 

imply the existence of unexpected connections in a network, something that is useful in complex networks or networks that 341 

have not been fully explored. These lipid types are represented on a Traffic Analysis diagram alongside statistics to inform 342 

interpretation of the numbers. Jaccard-Tanimoto coefficients (JTCs, J) are used to show the overlap between the identities 343 

of the variables and associated p values were used as a non-parametric measure of the probability that the dissimilarity 344 

occurred by random chance (they are not the same as the p values used in t-tests).   345 

 346 

We mapped the connectivity of samples in the proof-of-principle tests using their known metabolic connections (see 347 

Results). How these metabolites are distributed through two different systems shows how the two differ and thus the way 348 

they are controlled differs.  This is the principal information output of a Traffic Analysis.  We ran two proof-of-principle 349 

experiments, one was to understand how the control of biological systems differed between species (fish, Fig. 3) and 350 

colonies of Bombus terrestris fed different diets (Fig. 4).  351 

 352 

4. Experimental information 353 

Materials, animals, consumables and chemicals.  Solvents and fine chemicals were purchased from SigmaAldrich 354 

(Gillingham, Dorset, UK) and not purified further. Purified lipids were purchased from Avanti Polar lipids Inc. (Alabaster, 355 

Alabama, US).  Plasticware was bought from Sarstedt (Darmstadt, Germany), ThermoFisher (Breda, NL), Fisher Scientific 356 

(Herfordshire, UK).  Yeast strains were purchased from EUROSCARF (Oberursel, Germany). YPD medium was purchased 357 
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from Formedium Ltd (Norfolk, UK).  Human serum was purchased from SigmaAldrich (Gillingham, Dorset, UK).  Mice 358 

were purchased from Harlan Laboratories Ltd (Alconbury, Cambridgeshire, UK) or Charles River Laboratories (UK).  This 359 

research conformed to the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012 following ethical review 360 

by the University of Cambridge Animal Welfare and Ethical Review Body (AWERB). Unless otherwise indicated, mice 361 

were housed 3–5 per-cage in a temperature-controlled room (21 °C) with a 12 h light/dark cycle, with ‘lights on’ 362 

corresponding to 0600. The animals had ad libitum access to food and water. Standard chow diet was purchased from Safe 363 

diets (DS-105). Plant samples were purchased locally (Osterley Garden Centre, UK; PM Flowers, Kew, UK) or collected 364 

from the living collections at RBG Kew. 365 

Stock solutions.   366 

1. GCTU.  Guanidine (6 M guanidinium chloride) and thiourea (1·5 M) were dissolved in deionised H2O together and 367 

stored at room temperature out of direct sunlight. 368 

2. DMT.  Dichloromethane (3 parts), methanol (1 part) and triethylammonium chloride (500 mg/L) were mixed and 369 

stored at room temperature out of direct sunlight. 370 

3. Internal standards.  The mixture of deuterated Internal Standards used in high throughput LCMS (Table S4) 371 

4. XMI-AF.  A mixture of xylene, methanol and isopropanol, 1:2:4, doped with 0·1% ammonium formate.  The 372 

ammonium formate was constructed from stock solutions of ammonia (33%, aq.) and formic acid (100%, d = 1·2g/cm3). 373 

 374 

Maintenance of animals and algae. 375 

Mus musculus.  All mouse procedures were conducted in accordance with the UK Home Office Animal (Scientific 376 

Procedures) Act 1986 Amendment Regulations 2012 following ethical review by the Aston University or University of 377 

Cambridge Animal Welfare and Ethical Review Body (AWERB). Mice were housed in specific-pathogen-free facilities with 378 

12 h light and 12 h dark cycles. All mice were studied under fed conditions and at 24°C.  C57BL/6 mice from which heart, 379 

liver and adipose tissues were taken were fed a chow diet and maintained at Aston University’s biomedical research facility.  380 

C57BL/6J mice from which brain, heart, adipose, liver, stomach, spleen, lung, skin and small intestine were taken were fed 381 

a chow diet and maintained at the University of Cambridge’s animal facility at the Cambridge Biomedical campus.   382 

 383 

Apis mellifera—Frames of capped female brood were removed from three queen-right colonies of Apis mellifera, from an 384 

outdoor apiary at the John Krebbs Field Station, University of Oxford in 2021. Brood frames were suspended in a ventilated 385 

box inside a climate chamber at 34°C and 60 % relative humidity. Newly emerged bees were brushed off the frame each day 386 

and collected.  387 

 388 

Bombus terrestris—Commercial bumble bees for the colony feeding experiment were purchased from Agralan (Swindon, 389 

Wilts., UK) and kept in colonies in a laboratory incubator at the Insectary at RBG Kew (2022), and held at 28°C and 60% 390 

humidity, fed a diet of irradiated, honeybee-collected pollen of either Fagopyrum esculentum (Buckwheat) or Helianthus annuus 391 

(sunflower) origin (Betterbee, Greenwich, US) and sucrose water (1:1 w/v).  Bees fed chestnut, poppy or a combination of 392 

these pollens were purchased from Agralan Growers (Wiltshire, UK) and reared in a laboratory incubator at the Wytham 393 

research station (Oxford, UK), being held at 22-27°C and 35-40% humidity.  394 

 395 

All algae were cultivated in glass photobioreactors in liquid media at continuous light to OD750 of 1.5, harvested by 396 

centrifugation, frozen at –80°C and freez-dried.   397 

Desmodesmus quadricauda (Turpin) Brébisson (strain Greifswald/15), Culture Collection of Autotrophic Organisms Institute 398 

of Botany, Czechia.  Starting cultures were inoculated into SS medium, and cultivated at 30°C, 750 µmol photons m−2 s −1, 399 

2% v/v CO2 43.   400 

Chlamydomonas reinhardtii wild type 21gr (CC-1690) Chlamydomonas Resource Center at the University of Minnesota, St. 401 

Paul, MN, USA.  Starting cultures were inoculated into HS medium, and cultivated at 30°C, 500 µmol photons m−2 s −1, 402 

2% v/v CO2 44.   403 
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Galdieria sulphuraria (Galdieri) Merola, 002, Algal Collection of the University “Federico II” of Naples, Italy. Starting 404 

cultures were inoculated into Galdieria medium, pH 3, and cultivated at 40°C, 500 µmol  photons m−2 s −1, 2% v/v CO2 45.  405 

Hibberdia magna K-1175, Norwegian Culture Collection of Algae, Norway. Starting cultures were inoculated into WC 406 

medium, and cultivated at 20°C, 150 µmol  photons m−2 s −1, 1% v/v CO2 
46. 407 

 408 

 409 

Sample preparation. 410 

Mammalian tissues. Tissues were prepared as previously described10.  Briefly, the relevant tissue/organ was stored 411 

at -80 °C and homogenised immediately in the presence of GCTU (see Table S1 for ratio) using a hand-held homogeniser 412 

(Tissue Tearor, 14mm head, <2 min) and the resulting homogenate stored (-80 °C) until lipid extraction.  Samples from 413 

>10 mice were pooled to prepare the pooled stocks of adipose, heart, brain and liver.  Individual mouse tissues used were 414 

from one individual that had been fed a chow diet.  Human plasma and whole blood were used as supplied. 415 

 416 

Insect tissues.  417 

Apis mellifera  418 

Newly emerged bees (Apis mellifera) were collected and dissected before they ingested any external feed (<6h). Bees were 419 

pinned to a cork mat, on ice, before prompt dissection of the brain, HPG, gut, eye and optical lobe, and fat body.  The 420 

resulting tissues stored briefly on wet ice until completion of all animals’ dissection, whereupon all samples were stored 421 

at -80 °C until they were homogenised.  Frozen samples were covered in GCTU (see Table S1 for ratio) before being 422 

homogenised (Tissue Tearor, 4 mm head, low/medium power, 1-2 min).  The resulting homogenates were stored (-80 °C) 423 

until lipid extraction.  Aged samples were stored at -80°C except for a period of one week where they were refrigerated 424 

(5°C).   425 

 426 

Bombus terrestris 427 

Queens from the B. terrestris colonies were collected from the colony as it was being dismantled, and dissected.  Animals 428 

were culled (-20°C) and pinned to a cork or neoprene mat before prompt dissection of the brain, ovaries, thoracic muscle, 429 

crop, mid-gut, hindgut, venom gland, eye and ocular cortex, and fat body.  The resulting tissues stored briefly on wet ice 430 

until completion of all animals’ dissection, whereupon all samples were stored at -80 °C until they were homogenised.  431 

Frozen samples were covered in GCTU (see Table S1 for ratio) before being homogenised (Tissue Tearor, 9 mm head, 432 

low/medium power, 1-2 min).  The resulting homogenates were stored (-80 °C) until lipid extraction.   433 

 434 

Fish.  Fresh, whole, healthy, individual examples of fish were used.  Dicentrarchus labrax and Sparus aurata were acquired 435 

from Mediterranean farm waters. Scomber scombrus were Atlantic wild-caught off the cost of Spain.  All fish were landed at 436 

Grimsby. Salmo salar were farmed in Scotland in Loch Duart.  All fish were transported to the dissection centre (Cambridge) 437 

at -80°C.  For dissection, the fish were thawed to 2°C and dissected rapidly in a refrigerated room (2°C) and the tissues and 438 

whole blood frozen at -20°C before being frozen and stored at -80 °C.   439 

 440 

Whole yeast (Saccharomyces cerevisiae).  The diploid homozygous deletion strain erg3Δ/erg3Δ (EUROSCARF accession 441 

number Y32667) and the isogenic control strain BY4743 were cultured (1 L, 30°C, YPD medium, orbital shaking) for three 442 

days to reach the stationary phase.  The cultures were centrifuged (720 g, 5 min) and the medium discarded.  The pelleted 443 

yeast cells were transferred to a Falcon tube (50 mL) and resuspended in GCTU (5 mL) before being flash-frozen (liquid 444 

nitrogen), freeze-dried and stored (-80 °C, 24 months).  The solid was dispersed in water (double-distilled, 10 mL), frozen 445 

(-80 °C) and freeze-dried again.  446 

 447 

Plant tissues.  Various tissues from a phylogenetically varied set of four terrestrial plants was used (Table S1).  Sap was 448 

collected from stems by application of pressure (hand) on obliquely-cut sections of stem. Resulting liquid was diluted 449 

(GCTU, 50 μL) and stored (-80°C) until extraction.  Leaves, petals and mature capsules were sliced or diced using a razor 450 

blade to give fibres that were typically <5 mm long, before being covered in water (ddH2O, 5-10 mL), frozen (-80 °C for 451 
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storage, then -166 °C) and freeze-dried.  The freeze-dried samples were all covered in GCTU (typically 10× v/v, see Table 452 

S1) left to stand (2-6 h) and then homogenised (14 mm head, full power, 1-2 min).  The homogenates were stored (-20°C) 453 

before being used. Pollen samples were dispersed in GCTU (25:1 v/w).   454 

 455 

Preparation of tissues for high throughput extraction of the lipidome. 456 

 457 

Quality Control samples. QC samples were used to assess whether signal strength correlated with concentration.  Thus a 458 

range of sample types was combined randomly into two QC stocks.  Tissues homogenised in GCTU from Mus musculus 459 

(brain, adipose, liver), Bees (whole, adult, pupa and larva, wax, frass), plant (mixed pollen, leaf, algae) were combined.  460 

These were injected into the plate at 25, 50 or 100% (7·5, 15 or 30 µL). Three technical replicated of each concentration 461 

were injected onto each 96w plate.  Each QC stock was used at least once on each 384w plate, with both run on all 96w 462 

plates where possible.  463 

 464 

High throughput extraction of the lipidome. Extractions were carried out as closely as possible to the original 465 

instructions for each method (BAD24, DMT10, TBM16), with adjustments being made only for high throughput sample 466 

handling.  Before use on lipid experiments, the autosampler and chromatography system were tested using a stock of polar 467 

metabolites (proline, leucine, theobromine and catechin).  Testing showed the CV of all four of these metabolites was <3%, 468 

and that of catechin 1·1% (96 samples).  This indicated that the hardware was remarkably consistent and thus well placed for 469 

larger-scale data acquisition of more difficult metabolites such as lipids.   470 

 471 

BAD—Liquid homogenates of tissue preparations were injected into the appropriate well of a 96-well extraction plate 472 

(glass-coated, SureSTART™ WebSeal™, 2·0 mL/well; volumes of homogenate shown in Table S1) along with appropriate 473 

blanks and QCs, followed by internal standards (mixture of internal standards in methanol/xylene/isopropanol, 150 μL, see 474 

Table S4), water (500 μL), and chloroform (500 μL), using a 96-channel pipette (VIAFLO 96/384, Integra Biosciences, 475 

Berkshire, UK). The mixture was agitated (96-channel pipette) before being centrifuged (3·2k × g, 2 min). A portion of the 476 

organic solution (20 μL) was transferred to a high-throughput plate (384-well, glass-coated, SureSTART™ WebSeal™ 477 

Plate+) before being dried (N2 (g)).   478 

 479 

DMT— Liquid homogenates of tissue preparations were injected into the appropriate well of a 96-well extraction plate 480 

(glass-coated, SureSTART™ WebSeal™, 2·0 mL/well; volumes of homogenate shown in Table S1) along with appropriate 481 

blanks and QCs, followed by internal standards (mixture of internal standards in methanol/xylene/isopropanol, 150 μL, see 482 

Table S4), water (500 μL) and DMT (500 μL) using a 96-channel pipette (VIAFLO 96/384, Integra Biosciences, Berkshire, 483 

UK) and GripTips (300 µL, Green choice). The mixture was agitated thoroughly (96-channel pipette) before being 484 

centrifuged (3·2k × g, 2 min). A portion of the organic solution (20 μL) was transferred to a high-throughput plate (384-485 

well, glass-coated, SureSTART™ WebSeal™ Plate+) before being dried (N2 (g)).  486 

 487 

TBM— Liquid homogenates of tissue preparations were injected into the appropriate well of a 96-well extraction plate 488 

(glass-coated, SureSTART™ WebSeal™, 2·0 mL/well; volumes of homogenate shown in Table S1) along with appropriate 489 

blanks and QCs, followed by internal standards (mixture of internal standards in methanol/xylene/isopropanol, 150 μL, see 490 

Table S4), water (500 μL) and TBME (500 µL).   The mixture was centrifuged (3·2k × g, 2 min).  A portion of the organic 491 

solution (20 µL) was transferred to a high throughput plate (384-well, glass-coated, SureSTART™ WebSeal™ Plate+) 492 

before being dried (N2 (g)).   493 

 494 

EAT— This procedure is novel to the present study, using ethyl acetate saturated with triethylammonium chloride 495 

(<500 mg/L), referred to as EAT.  Liquid homogenates of tissue preparations were injected into the appropriate well of a 496 

96-well extraction plate (glass-coated, SureSTART™ WebSeal™, 2·0 mL/well; volumes of homogenate shown in Table 497 

S1) along with appropriate blanks and QCs, followed by internal standards (mixture of internal standards in 498 

methanol/xylene/isopropanol, 150 μL, see Table S4), water (500 μL) and EAT (500 μL) using a 96-channel pipette 499 
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(VIAFLO 96/384, Integra Biosciences, Berkshire, UK). The mixture was agitated thoroughly (96-channel pipette) before 500 

being centrifuged (3·2k × g, 2 min). A portion of the organic solution (20 μL) was transferred to a high-throughput plate 501 

(384-well, glass-coated, SureSTART™ WebSeal™ Plate+) before being dried (N2 (g)).  502 

 503 

Once extracts from all four of the 96-well plates had been placed in the 384 well plate (glass-coated, SureSTART™ 504 

WebSeal™ Plate+), the dried films were re-dissolved (XMI-AF, 80 μL/well) and the plate was heat-sealed with aluminium 505 

foil (AB-0757, Fisher Scientific) and queued immediately, with the first injection within 5 min.  The extractions were timed 506 

so that the instrument was available immediately after the completion of extractions.   507 

 508 

Liquid Chromatography Mass Spectrometry.  All LCMS was carried out using a Thermo Scientific Vanquish LC 509 

system with a quaternary pump, equipped with a ThermoScientific Hypersil GOLD LCMS C18 column (50 × 2·1 mm, 510 

particle size 1·9 μm) and a Thermo Scientific Orbitrap Fusion® MS with an H-ESI ioniser.  Eluents were acetonitrile (LCMS 511 

grade); water (deionised, ammonium formate 0·1% v/v added fresh, prepared from ammonia and formic acid and pipetted 512 

by volume); isopropanol (LCMS grade).  The chromatographic method is shown in Table 1. Once collected, the *.raw data 513 

files were stored, backed up and data processing begun. Mass spectrometric data were collected in positive ionisation mode 514 

at a resolution of 120000 (m/z 200) with the H-ESI spray voltage set to 2·86 kV, nitrogen gas flows of 45 (sheath), 5 515 

(auxiliary) and 1 (sweep) arbitrary units, and ion transfer tube and vaporizer temperatures of 300°C and 350°C. The AGC 516 

was set to Standard (Full Scan 1,000,000 and SIM/PRM 200,000) with a maximum ion injection time of 200 ms.  The mass 517 

acquisition window was m/z 480-1100, the low mass being set to measure the fluoranthene cation (m/z 202·077) used for 518 

internal mass calibration. 519 

 520 

Data processing (unmatched IDs).  All LCMS *.raw files generated were converted into *.mzXML files using 521 

Proteowizard(Chambers) (3.0.23). Converted data files were processed using the CAMERA package using R (v3.6.0), with 522 

peak picking performed using a “centwave” method that allows for the deconvolution of closely eluting or slightly 523 

overlapping signals26. Metabolite features were then defined as any peak with an average intensity at least 5 times higher in 524 

analytical samples relative to the abundance seen in the extraction blanks. All signals that passed were present in ≥90% of 525 

samples in at least 1 sample type. 526 

 527 

Data processing (matched IDs).  AnalyzerPro® XD (SpectralWorks, Ltd) was used for processing data.  A Target 528 

Library (*.swix) was constructed from a generated m/z and lipid ID list, with known samples and Internal standards used to 529 

determine retention times (Rt). All LCMS data *.raw files were uploaded to the software and processed (Mass range 400-530 

1200 Da; Rt window 0·5-18·5 min; Area threshold 100k; Detection width 0·25 min; Mass accuracy 3 d.p.).  The signals 531 

(matched and unmatched) were recorded in a CSV file that was subsequently used for quality checks.  Variables with an 532 

average signal strength >3× that of the same signal/Rt in the blank samples were regarded as passing the s/n test.  QC 533 

samples were used to assess whether the signal strength correlated with the concentration, i.e. the correlation between 534 

0·25×, 0·5× and 1·0× QCs against 25, 50 and 100% was calculated separately for the two QC stocks.  QC stock 1 535 

consisted of mixtures of freeze-dried leaf, pollen and whole bees, whereas QC stock 2 consisted of brain heart and liver 536 

homogenates from Mus musculus, and belly, skin, heart and liver from Dicentrarchus labrax. 537 

 538 

All signals for which the correlation was found to be >0·75 for at least one of the QC stocks used was regarded as passing 539 

the QC test.  3,198 variables passed both tests, across all samples.  540 

 541 

Traffic Analysis.  Traffic Analyses were carried out using v3.0 of the LTA software, updated from v2.37, 9, 33 for this study 542 

and is available as open source software from GitHub (https://pypi.org/project/lipidta/). The analyses in this study was 543 

based on known maps of the metabolic systems studied. Statistics are provided to aid interpretation of Traffic Analysis 544 

diagrams.  Jaccard-Tanimoto coefficients (JTCs, J) and associated p values were used as a non-parametric measure of the 545 

distinctions between lipid variables associated with phenotype(s). These were used to calculate the overlap between the 546 

https://pypi.org/project/lipidta/
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identities of the variables and the probability that this occurred by random chance, respectively. Variables were regarded as 547 

present in a given group if they had a signal strength >0 in ≥66% of samples that group.  548 

 549 

Software.  Microsoft Office 365 Excel was used for handling spreadsheets, data processing and signal sheet preparation and 550 

storage (*.xlsx format).  Figures were drawn in Powerpoint or Origin 2018.  LCMS data were proceed using R (v3.6.0) or 551 

AnalyzerPro® XD (SpectralWorks Ltd).   552 

 553 

 554 

Data and code availability  555 

The raw data, as *.raw files, for all the samples run in this study are available from The Knowledge Network for 556 

Biocomplexity (https://knb.ecoinformatics.org/view/doi:10.5063/F15B00XJ), with the DOI 10.5063/F15B00XJ.  The 557 

processed mass spectrometry data can be found in the SI and from the communicating authors.  The code for LTA v3.0 is 558 

publicly available through https://pypi.org/project/lipidta/.   559 

 560 
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Figures 669 

 670 
Fig. 1.  The pipeline for high throughput data collection of LCMS data from large numbers of biological samples.  Samples collected 671 

from the field are stored at -80°C (freeze-dried if needed), then (1) homogenised, (2) the lipids extracted, (3) profiled using LCMS, 672 

(4) the data extracted and processed to give a signals sheet with metadata, and then (5) analysed. 673 

 674 

 675 

 676 

 677 

 678 
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 679 
Fig. 2.  Principal Component Analyses of biological samples, drawn from plants, fish, mammals, yeast, bacteria and insects.  Panel A, 680 

Samples of the nine different groups; B, whole Bombus terrestris, fed one of three pollen diets; C, Plant and algal tissues; D, Apis 681 

mellifera and Bombus terrestris tissues; E, Tissues samples from edible fish; F, Tissue samples from queen bees (Bombus terrestris) 682 

fed either mono-floral pollen from either Fagopyrum tataricum (buckwheat) or Helianthus annuus (sunflower) plants; G, schematic 683 

representation of the exploitation of the known connections between tissues to undertake a Traffic Analysis.  95% confidence 684 

intervals are shown with ellipses of the same hue as the associated sample points.  Data were log10-transformed (panel A) or signal 685 

corrected (panels B-F).      686 
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 687 

 688 

 689 
Fig. 3.  Switch Analyses (SA) of lipid pathways in Dicentrarchus labrax (seabass, D. lax) and Sparus aurata (bream, S. aur.). Panel A, Biological 690 

network; B, Switch Analysis of phosphatidylcholine; C, Switch Analysis of triglycerides. The pie chart in the top left shows the number of ubiquitous 691 

lipid variables for that network, for each phenotype (A-type variables). Pie charts on arrows represent variables found in the two adjacent 692 

compartments (B-type variables). Smaller pie charts represent isolated variables (U-type). J represents the Jaccard-Tanimoto coefficient for the 693 

comparison, with accompanying p value, as a measure of the similarity between the variables identified in the two phenotypes for each comparison. 694 

The p value shown represents the probability that the difference between the lists of variables for the two phenotypes occurred by random chance. 695 

TGs include all adducts of whole TGs and the DGs arising from in-source fragmentation of TGs during data collection.   696 
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 697 
 698 

 699 
 700 

 701 
Fig. 4.  Switch analyses of phospholipid and triglyceride variables in Bombus terrestris colonies fed either Fagopyrum tataricum 702 

(FAG) or Helianthus annuus (HEL) pollen.  Panel A, Biological network; B, Switch Analysis of Triglycerides; C, Switch Analysis of 703 

Phosphatidylcholines.  The pie chart in the top left shows the number of ubiquitous lipid variables for that network, for each 704 

phenotype (A-type variables).  Pie charts on the arrows represent variables found in the two adjacent compartments (B-type 705 

variables).  Smaller pie charts represent isolated variables (U-type).  J represents the Jaccard-Tanimoto coefficient for the 706 

comparison, with accompanying p value, as a measure of the similarity between the variables identified in the two phenotypes for 707 

each comparison.  The p value shown represents the probability that the difference between the lists of variables for the two 708 

phenotypes occurred by random chance. 709 

 710 

  711 
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Main Tables 712 

 713 

Chromatographic method for phospholipid/triglyceride extracts 

Time (min) Acetonitrile Water* Isopropanol 

0 15 40 45 

2 15 32.5 52.5 

2.1 15 25 60 

6 15 20 65 

12 15 17 68 

12.1 15 40 45 

15 15 40 45 

Table 1. Chromatographic method for analytical separation of lipids and triglycerides for high throughput lipidomics. *Ammonium formate (0·1%) was 714 

added fresh to water shortly before use.   715 

 716 

 717 

 718 

719 
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Supplementary Figures  720 

 721 

         722 
 723 

Fig. S1.  The performance of four lipid extraction methods on nine sample types.  Panel A, the total number of variables of 724 

unmatched m/z signals found for four extractions across nine sample types, that passed background and QC checks.  Panel B, the 725 

total signal of all unmatched m/z signals found for four extractions across nine sample types, that passed background and QC 726 

checks.  Samples were drawn from stock materials (see methods).  BAD, Bligh & Dyer extraction applied to high throughput 727 

extraction1; DMT, dichloromethane-methanol-triethylammonium chloride2; EAT, ethyl acetate with triethylammonium chloride; 728 

TBM, tert-butylmethylether extraction, as described by Matyash et al.3.  BRA, pooled brains from Mus musculus; BTM, milk from Bos 729 

taurus; DQU, whole pooled Desmodesmus quadricauda; EuL, leaves from Eucalyptus perriniana; HEA, pooled hearts from Mus 730 

musculus; LIV, pooled livers from Mus musculus; PFH, polyfloral pollen; WHB, whole Bombus terrestris, pooled; YEA, Saccharomyces 731 

cerevisiae BY 4743. Error bars represent standard deviation based on 10 mesaurements. 732 

 733 

  734 
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         735 
 736 

Fig. S2.  The performance of four lipid extraction methods on nine sample types, processed using a target library.  Panel A, the total 737 

number of variables of matched m/z signals found for four extractions across nine sample types, that passed background and QC 738 

checks.  Panel B¸ the total signal of all matched m/z signals found for four extractions across nine sample types, that passed 739 

background and QC checks.  Samples were drawn from stock materials (see methods).  BAD, Bligh & Dyer extraction (high 740 

throughput extraction)1; DMT, dichloromethane-methanol-triethylammonium chloride2; EAT, ethyl acetate with triethylammonium 741 

chloride; TBM, tert-butylmethylether extraction, as described by Matyash et al.3.  BRA, pooled brains from Mus musculus; BTM, milk 742 

from Bos taurus; DQU, whole pooled Desmodesmus quadricauda; EuL, leaves from Eucalyptus perriniana; HEA, pooled hearts from 743 

Mus musculus; LIV, pooled livers from Mus musculus; PFH, polyfloral pollen; WHB, whole Bombus terrestris, pooled; YEA, 744 

Saccharomyces cerevisiae BY 4743. 745 

 746 

  747 
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 748 
 749 

Fig. S3.  A switch analysis of triglycerides in Dicentrarchus labrax (seabass) against Sparus aurata (bream) and Scomber scombrus 750 

(mackerel).  The pie chart in the top left shows the number of ubiquitous lipid variables for that network, for each phenotype (A-751 

type variables).  Pie charts on arrows represent variables found in the two adjacent compartments (B-type variables).  Smaller pie 752 

charts represent isolated variables (U-type).  J represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying 753 

p value, as a measure of the similarity between the variables identified in the two phenotypes for each comparison.  The p value 754 

shown represents the probability that the difference between the lists of variables for the two phenotypes occurred by random 755 

chance.  TGs include all adducts of whole TGs and the DGs arising from in-source fragmentation of TGs during data collection.   756 

  757 
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 758 
 759 
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 761 

 762 

 763 

 764 

Fig. S4.  Switch analyses of phospholipid and triglyceride variables in Queen Bombus terrestris bees fed either Fagopyrum tataricum 765 

(FAG) or Helianthus annuus (HEL) pollen.  Panel A, Switch Analysis of triglycerides; B, Switch Analysis of phosphatidylcholines; C, 766 

Switch Analysis of phosphatidylinositols; D, Switch Analysis of phosphatidylglycerols.  The pie chart in the top right shows the 767 

number of ubiquitous lipid variables for that network, for each phenotype (A-type variables).  Larger pie charts (on the arrows) 768 

represent variables found in the two adjacent compartments (B-type variables).  Smaller pie charts represent isolated variables (U-769 

type).  J represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying p value, as a measure of the similarity 770 

between the variables identified in the two phenotypes for each comparison.  The p value shown represents the probability that the 771 

difference between the lists of variables for the two phenotypes occurred by random chance. 772 

  773 
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 774 

 775 

 776 
Fig. S5.  Switch analyses of phospholipid and triglyceride variables in Bombus terrestris colonies fed either Fagopyrum tataricum 777 

(FAG) or Helianthus annuus (HEL) pollen.  Panel A, Phosphatidylinositols; B, Phosphatidylglycerols.  The pie chart in the top right 778 

shows the number of ubiquitous lipid variables for that network, for each phenotype (A-type variables).  Larger pie charts (on the 779 

arrows) represent variables found in the two adjacent compartments (B-type variables).  Smaller pie charts represent isolated 780 

variables (U-type).  J represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying p value, as a measure of 781 

the similarity between the variables identified in the two phenotypes for each comparison.  The p value shown represents the 782 

probability that the difference between the lists of variables for the two phenotypes occurred by random chance. 783 

 784 

  785 
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TABLES 786 

 787 

<<see excel spreadsheet, attached>> 788 

 789 

Table S1. Sample list and preparation of tissues used in the present study. The purpose of the ratio is to give a chemically and 790 

biologically stable, pipettable solution in which 1-5 µg of lipid can be transferred in 5-60 µL liquid.  1Ratio of GCTU to fresh weight 791 

(=1). This is provided as a guide, tissues with more/less fatty material may need different ratios of buffer to sample; 2Material added 792 

to 1 mL of GCTU dispersion; 3samples were freeze-dried before mechanical disruption/dispersion with a hand-held homogeniser, see 793 

instructions; 4Samples stored at 5°C for a week before homogenisation.  Pooled stocks used in the present study represent 794 

homogenates from at least 10 individuals.  Pollen not marked as fresh was collected by bees. 795 

  796 
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CV 

D. quad. 

(whole) 

Eucalyptus 

per. (leaf) 

Polyfloral 

pollen 

Bombus 

terrestris 

(whole) 

Saccharomyce

s cerevisiae 

(whole) 

Mus musculus 

(brain) 

Mus musculus 

(heart) 

Mus musculus 

(liver) 

Bos taurus 

(milk) 

Sum 

30%           

BAD 328 306 753 493 270 509 603 594 242 4098 

DMT 293 239 653 450 341 535 570 381 349 3811 

EAT 383 437 751 581 279 616 757 449 374 4627 

TBM 70 152 811 257 193 288 319 480 177 2747 

20%          
 

BAD 69 109 278 146 85 162 206 208 88 1351 

DMT 54 51 314 167 111 236 227 87 136 1383 

EAT 120 190 341 205 89 250 228 92 154 1669 

TBM 9 36 398 48 46 57 61 131 33 819 

15%          
 

BAD 12 41 121 44 25 48 67 69 32 459 

DMT 8 13 172 71 33 108 96 18 41 560 

EAT 32 76 184 97 33 120 60 19 63 684 

TBM 1 8 225 23 25 25 15 36 8 366 

 797 

Table S2.  The number of variables with a coefficient of variation below three thresholds. Signals are unmatched m/z signals of 798 

isolates of four extractions across nine sample types that passed background and QC checks.  Samples drawn from stock materials 799 

(see methods).  BAD, Bligh & Dyer extraction applied to high throughput extraction1; DMT, dichloromethane-methanol-800 

triethylammonium chloride2; EAT, ethyl acetate with triethylammonium chloride; TBM, tert-butylmethylether extraction3.   801 

  802 
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CV 

D. quad. 

(whole) 

Eucalyptus 

per. (leaf) 

Polyfloral 

pollen 

Bombus 

terrestris 

(whole) 

Saccharomyce

s cerevisiae 

(whole) 

Mus musculus 

(brain) 

Mus musculus 

(heart) 

Mus musculus 

(liver) 

Bos taurus 

(milk) 

Sum 

30%           

BAD 90 82 90 178 153 125 144 142 80 1084 

DMT 96 78 105 193 126 133 91 172 120 1114 

EAT 114 107 89 193 144 132 117 157 123 1176 

TBM 20 31 74 185 108 74 103 67 44 706 

20%          
 

BAD 51 56 63 117 104 93 98 107 58 747 

DMT 57 44 73 138 88 103 46 120 88 757 

EAT 87 78 67 155 116 103 72 118 88 884 

TBM 9 17 58 142 54 49 75 34 33 471 

15%          
 

BAD 2 17 16 35 25 23 35 28 22 203 

DMT 5 4 24 40 37 40 6 31 30 217 

EAT 25 22 5 54 30 33 57 14 23 263 

TBM 1 5 26 56 4 5 22 8 3 130 

 803 

Table S3.  The number of variables with a coefficient of variation below three thresholds. Signals are Lipid-ID matched m/z signals 804 

of isolates of four extractions across nine sample types that passed background and QC checks.  Samples drawn from stock 805 

materials (see methods).  BAD, Bligh & Dyer extraction applied to high throughput extraction1; DMT, dichloromethane-methanol-806 

triethylammonium chloride2; EAT, ethyl acetate with triethylammonium chloride; TBM, tert-butylmethylether extraction3.   807 

 808 

 809 

  810 
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  Lipid Expected 

mass 

(mg) 

Concentration 

(nM) 

m/z  

(+ve 

ionis. 

Mode, 

+H+) 

m/z  

(+ve 

ionis. 

Mode, 

+NH4+) 

m/z  

(+ve 

ionis. 

Mode, 

+Na+) 

1 LPC 1 1.889 529.3989 - 551.3811 

2 SM 1 1.361 734.7684 - 756.7506 

3 PE 10 13.356 748.7241 - 770.7067 

4 PS 10 12.615 792.7140 - 814.6965 

5 PI 1 1.204 830.5767 847.6030 852.5583 

6 PC 10 11.641 859.06 - 881.0383 

7 TG(light) 1 1.232 - 771.7224 776.6774 

8 TG(heavy) 1 1.327 - 829.7979 834.7527 

9 DGDG* 10 13.268 949.6827 966.7093 971.6647 

10 MGDG* 10 13.268 759.5986 776.6252 781.5806 

 811 

Table S4. The Internal Standards used.  Standards were labelled with at least 6 deuterium atoms and used without purification. *Not 812 

deuterated.  813 

 814 


