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Abstract
Purpose  Twin-screw wet granulation (TSWG) is a manufacturing process that offers several advantages for the processing 
of water-insoluble active pharmaceutical ingredients (APIs) and has been used for increasing the solubility and dissolution 
rates. Here we introduce a novel TSWG approach with reduced downstream processing steps by using non-volatile solvents 
as granulating binders.
Methods  Herein, TSWG was carried out using Transcutol a non-volatile protic solvent as a granulating binder and disso-
lution enhancer of ibuprofen (IBU) blends with cellulose polymer grades (Pharmacoat® 603, Affinisol™, and AQOAT®).
Results  The physicochemical characterisation of the produced granules showed excellent powder flow and the complete 
transformation of IBU into the amorphous state. Dissolution studies presented immediate release rates for all IBU formula-
tions due to the high drug-polymer miscibility and the Transcutol solubilising capacity.
Conclusions  Overall, the study demonstrated an innovative approach for the development of extruded granules by processing 
water-insoluble APIs with non-volatile solvents for enhanced dissolution rates at high drug loadings.

Keywords  immediate release · non-volatile solvents · solubility enhancement · twin-screw wet granulation

Introduction

Twin screw granulation (TSG) is a process that aims to 
enlarge the particle size of powder blends usually compris-
ing of an active pharmaceutical ingredient and polymer 

[1–3] in a continuous manner. As a result, it increases 
powder flowability, content uniformity, bulk density and 
porosity. TSG offers several advantages such as fewer or no 
scale-up steps, continuous productions at higher throughput, 
rapid technical transfer, less space requirement, cost-effec-
tiveness, and improved manufacturing efficiency [4–6]. The 
applicability of TSG is widely recognised due to its major 
advantages for the continuous production of granules. Con-
tinuous granulation lines such as ConSigma and MODOCS 
for powder-to-tablet manufacturing have been investigated 
in depth on several occasions [7–14]. Regulatory bodies 
such as the U.S. Food and Drug Administration (FDA) and 
European Medicines Agency (EMA) are also encouraging 
the shift from conventional batch processing to continuous 
processing owing to its increased technical understanding of 
the processing during development [15]. Twin-screw granu-
lation was first introduced for pharmaceutical research by 
Gamlen and Eardley in 1986 where a Raker Perkins MP50 
(Multipurpose) granulator was used to produce paracetamol-
based extruded granules with high drug loading [16].

The TSG flexibility allows for wet or melt granulation 
processing with the addition of a liquid (e.g., water, organic 
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solvent) binder solution and the subsequent removal of the 
solvent or by using a molten binder (e.g., waxes, PEGs, 
lipids) [17–21]. The latter method counteracts the pitfalls of 
wet TSG, such as processing moisture-sensitive APIs, while 
facilitates faster processing times and lower energy con-
sumption due to the omitted drying step [22–24]. Indeed, in 
wet-TSG, the selection of the binder liquid, binder amount, 
and liquid-to-solid ratio (L/S), among other critical material 
parameters, play a key role in the quality of the obtained 
granules [25–27]. Furthermore, the drying process must be 
carefully carried out to remove any residual solvents, which 
is usually conducted under elevated temperatures [28]. In 
melt-TSG, the binders are typically low melting point hydro-
philic polymers, as the granulation process takes place near 
or just above their melting point to ensure that the binder is 
the only melted material [2, 29, 30].

Despite the numerous TSG studies, there are only a few 
related to increasing dissolution rates of water-insoluble 
APIs [25, 31–33], as in most cases, sustained release for-
mulations are obtained [34–36]. Maniruzzaman et al. (2021) 
used TSG processing by introducing inorganic aluminometa-
cilisates or dicalcium phosphate combined with hydrophilic 
polymers for enhanced dissolution of non-steroidal anti-
inflammatory [33]. The granulation process was optimized 
by employing a Quality by Design approach, and parameters 
such as, inorganic/polymer ratio, L/S ratio and the binder 
amount were investigated. The use of inorganic excipients 
resulted in the formation of free-flowing powders with low 
loss of drying percentages, narrow particle size distribu-
tion, and increased dissolution rates of Ibuprofen (IBU). 
The selection of water or EtOH as the binder solution did 
not affect the granule quality and especially the IBU dis-
solution rates.

Steffens and Wagner (2020) exploited melt-TSG for the 
dissolution of carbamazepine formulated with three dif-
ferent water-soluble polymers: polyethylene glycol 6000 
(PEG 6000), Kolliphor® P407, and Soluplus® (polyvinyl 
caprolactam-polyvinyl acetate-polyethylene glycol graft 
copolymer) [31]. Interestingly, the CBZ loading varied 
from 80–90%, while the effect of polymer content varying 
from 10–20%, and the granulation temperature were found 
to have a significant impact on the produced granules. The 
higher processing temperatures resulted in the formation of 
CBZ type II and better dissolution rates were observed at 
low granulation temperatures. The dissolution rates were 
affected by the amount and nature of polymer, with PEG 
showing the highest dissolution rates followed by Poloxamer 
407 and Soluplus. Similarly, a melt granulation process used 
by Forster and Lebo (2021) was used to increase dissolution 
rates of IBU through coprocessing with Glyceryl distearate 
(Precirol ATO 5®) which is known for its taste masking and 
enhanced dissolution properties [37]. A Design of Experi-
ments (DoE) approach led to high drug-loaded granules with 

fast dissolution rates, depending on the particle size of the 
obtained granules. The IBU amounts varied from 20–40%, 
but the processing temperature was found to be the control-
ling factor of the granule particle size and hence the dis-
solution rates.

Sarabu et al. (2021) introduced a combined process based 
on previous studies where Gelucire® 48/16 and Neusilin® 
US2 acted as the solubilizer and porous surface adsorbent 
for Fenofibrate, a poorly water-soluble drug (logP 5.2) [32]. 
Screening studies showed a liner relationship for the solubil-
ity of Fenofibrate in the presence of Gelucire® 48/16. When 
formulation was co-processed with Gelucire and Neusilin, 
it was found that higher amounts of the latter resulted in 
decreased dissolution rates but improved storage stability. 
In contrast, higher Gelucire® 48/16 amounts showed even 
slower dissolution rates and tablets with a hard matrix.

Nevertheless, TSG is not fully exploited for the increase 
of dissolution rates of water insoluble APIs [38, 39]. The 
selection of appropriate powder excipients is restricted 
mostly to model hydrophilic polymers and drugs in order to 
simplify the TSG and identify optimal processing settings.

In this work we introduce a novel approach that utilises 
non-volatile solvents (or surfactants), with high solubilising 
capacity of water insoluble APIs, as granulating liquids co-
processed with polymers that are highly miscible with the 
drug(s). The selected polymers served as drug carriers due 
to their high drug-polymer miscibility (Δδ) which was less 
than 7 [40, 41]. A major advantage is that the technology 
offers less processing steps, as there is no need for drying 
processing (e.g., fluidize bed), making it cost-effective. Most 
importantly, it can be effectively used as a continuous TSWG 
platform for the solubility enhancement of water insoluble 
APIs. For the purposes of this study, IBU was granulated 
with cellulose derivatives using TSWG where a non-volatile 
solvent is introduced both as liquid binder and solubility 
enhancer.

Materials and Methods

Materials

Ibuprofen (IBU) was purchased from Farmasino Pharma-
ceuticals Co. Ltd. (Jiangsu, China). Pharmaceutical grade 
hydroxypropyl methylcellulose (METHOCEL K4M) was 
kindly donated by COLORCON (Dartford, Uk). Hydroxy-
propyl methylcellulose (Pharmacoat 603, Hypromellose 
2910) and hypromellose acetate succinate (AQOAT- AS-
LMP) were donated by Shin-Etsu (Tokyo, Japan) respec-
tively. Caprylocaproyl macrogol-8 glyceride (Labrasol), 
Highly purified diethylene glycol monoethyl ether (Trans-
cutol HP), Glycerol monocaprylocaprate (type I) (Labra-
fac WL1349) and Oleoyl macrogol-6 glyceride (Labrafil M 
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1944 CS) were kindly donated by Gattefosse (Saint-Priest, 
France). Tween 80 was purchased from Sigma-Aldrich (Gill-
ingham, UK). The HPLC solvents were analytical grade and 
purchased from Fisher Chemicals (UK).

Continuous Twin‑Screw Granulation

The IBU-polymer powder blends were placed in a Turbula 
TF2 mixer (Basel, Switzerland) for 10 min to ensure homo-
geneous mixing. For the continuous TSWG, each formu-
lation was processed using a Eurolab 16mm twin-screw 
extruder (Thermo Fisher Scientific, Germany) and powders 
were fed with a DD Flexwall®18 feeder (Brabender Tech-
nology, Germany), while the solubilizer was pumped with a 
Watson-Marlow Ltd. (Cornwall, UK) peristaltic pump. The 
barrel temperature profile was set at 50 °C for all barrel 
zones and screw speed was maintained at 50 rpm for all 
the batches. The formulations are shown in Table I. The 
extruded granules were further milled using a cutting mill 
Retsch SM 100 (Haan, Germany) using a 250 μm sieve.

Thermal Analysis

The physical state of the bulk drug and the extruded granules 
were examined by differential scanning calorimetry (DSC). 
A DSC Mettler-Toledo 823e (Greifensee, Switzerland) 
was used to determine the melting point (Tm) and melting 
enthalpy (ΔH) of bulk IBU, physical mixtures, and extruded 
formulations. 2–5 mg of samples were placed in sealed alu-
minium pans with pierced lids. One single heating run from 
10–220 °C was performed to analyse the thermal character-
istics of bulk components, physical mixtures and extruded 
granules under a dry nitrogen atmosphere.

Powder X‑ray Diffraction (XRPD)

XRPD was used to determine the solid-state of the bulk 
substance in the extrudate formulations. All formula-
tions, including bulk IBU, physical mixtures and extruded 
granules were evaluated using Bruker D8 Advance in 
theta – theta mode, Cu anode at 40 kV and 40 Ma, par-
allel beam Goebel mirror,0.2 mm exit slit, LynxEYE 

position-sensitive detector with 3° opening and LynxIris 
at 6.5 mm, sample rotation at 15 RPM. The samples were 
scanned from 2 to 40° 2 theta with a step size of 0.02° 
2-theta and a counting time of 0.2 s per step;176 channels 
active on the PSD making a total counting time of 35.2s 
per step.

Particle Size Morphology and Distribution

SEM was used to examine the surface morphology of the 
twin-screw extrudates. Τhe samples were mounted on an 
aluminium stub using double-sided adhesive carbon type 
and placed in a low humidity chamber prior to analysis. 
Samples were sputter-coated with gold, and microscopy 
was performed using a Cambridge Instruments Stereo-
Scan S360 (UK), SEM operating at an accelerating volt-
age of 20 kV.

The particle size distribution of the milled extruded 
granules of all formulations was measured by Laser Light 
Scattering technique with a dry powder sample disper-
sion accessory (Scirocco 2000). During the laser diffrac-
tion measurement, particles are passed through a focused 
laser beam. These particles scatter light at an angle that is 
inversely proportional to their size. The angular intensity 
of the scattered light is then measured by a series of pho-
tosensitive detectors. The number and positioning of these 
detectors in the Mastersizer 2000 have been optimized to 
achieve maximum resolution across a broad range of sizes.

Compressibility Index Measurement

Flowability of untreated and granulated samples was also 
examined from Carr’s Index (CI) [42] was determined 
using a tap density meter (Qualtech, Manchester UK) 
at 1250 taps (616 US Pharmacopeia), bulk density and 
tapped density of powders). The CI was calculated from 
the bulk and tapped densities. Tapped density was deter-
mined by tapping the samples into a measuring cylinder 
using a tapping machine. The CI was calculated according 
to the following equation.

Table I   Formulation 
Compositions for TSWG 
Processing of IBU Blends

Formulation IBU (%, w/w) K4M (%, w/w) AQOAT (%, 
w/w)

PHAR603 (%, 
w/w)

Transcutol 
(%, w/w)

F1 40 55.0 5.0
F2 40 55.0 5.0
F3 40 55.0 5.0
F4 40 50.0 10.0
F5 40 50.0 10.0
F6 40 50.0 10.0
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CI =

[

(Tapped density − Bulk density)∕Tapped density
]

× 100

In vitro Drug Release Study

In vitro Drug Dissolution

In vitro drug release studies were carried out in 900 ml of pH 
7.2 phosphate buffer medium acid for 2 h using a Varian 705 
DS dissolution paddle apparatus (Varian Inc. North Caro-
lina, US) at 50 rpm and 37 °C ± 0.5 °C. For the purposes of 
the study the milled granules were added directly in the dis-
solution baths. The granule amounts used for dissolution was 
500mg for all formulations. At predetermined time intervals, 
samples were withdrawn for HPLC assay. All dissolution 
studies were performed in triplicates.

HPLC Analysis

The release of IBU was determined by using HPLC, Agilent 
Technologies system 1200 series. A HYCHROME S50DS2-
4889 (5 μm × 150 mm x 4mm) column was used for the 
HPLC analysis of IBU. The wavelength was set at 214 nm. 
The mobile phase consisted of acetonitrile/water/phosphoric 
acid (65/35/0.2 v/v) and the flow rate was maintained at 
1.5 ml/min and the retention time was 2–3 min (Gryckze et 
al., 2011; US Pharmacopeia, 2015). A calibration curve was 
prepared with concentrations varying from 10 μg/ml to 50 
μg/ml and 20 μl injection volume.

Results and Discussion

Solubility Screening

The major objective of the study was to introduce the use 
of non-volatile solvents or surfactants as granulating liquids 
by combining their solubilization capacity for IBU. A great 
advantage of this approach is the absence of typical volatile 
solvents (e.g., ethanol) or water, which would result in less 
downstream processing and hence faster production times 
with high throughput. It is well known that existing continu-
ous granulation lines, such as ConSigma and MODCOS, 
include a drying step (e.g., fluidized bed), which is time-con-
suming [43, 44]. Furthermore, the non-volatile solubilizer/
surfactant will not only facilitate the granulation process but 
also enhance the API dissolution rates and potentially the 
bioavailability [45]. A key step of the proposed technology 
is the determination of API solubility in a range of solvents 
and surfactants that will later be selected as the granulating 
liquid. As shown in Table II, several water-dispersible sur-
factants and solvents were investigated for their solubilizing 
capacity on IBU.

The experimental findings were similar to those found 
in literature [46] with Tween 80 < Labrasol < Transcutol 
showing increased IBU solubility in an ascending order. 
Transcutol is a powerful liquid solubiliser comprising of 
purified diethylene glycol monoethyl ether with low vis-
cosity (20 cP) at ambient temperature. Hence, Transcutol 
was selected as the granulating liquid for all processed 
formulations.

Twin Screw Granulation

For the purposes of the TSG process, a range of hydrophilic 
cellulose derivatives were selected as polymeric carriers. 
These polymers have been previously used for the devel-
opment of extruded amorphous dispersions and exhibit 
while present excellent milling effectiveness, rendering 
them suitable candidates for TSG [47–49]. The effect of the 
granulating liquid on the particle size distribution and API 
dissolution rates was investigated by varying the L/S ratio 
from 0.05 to 0.1. A successful granulating process should 
result in small fractions of fines where high L/S ratios have 
shown higher fractions of larger agglomerates (> 100μm). 
The screw configuration consisted of two kneading zones 
with 12 elements each at 30/60° staggered angles for higher 
energy intensive mixing. The use of kneading elements has 
been found to induce better particle agglomeration due to 
the increase of shear and compressive forces on the wet-
ted blends [7]. Preliminary studies with conveying elements 
with different screw pitch were not satisfactory (data not 
shown). For this particular screw configuration, the feed rate 
was adjusted at 500 g/h in order to achieve higher torque 
within the extruder barrel. The measured torque varied from 
18–20 Nm and 22–25 Nm for the 5–10% granulating liquid, 
respectively.

At first, granulation was conducted at ambient tempera-
ture but a large proportion of IBU still remained crystalline 
in the obtained granules. To further increase IBU amoprhic-
ity it was decided to increase the barrel temperatures at the 
kneading zones but keep them below the drug’s melting 
point. Thus, for all kneading zones the temperature was 
adjusted to 50 °C.

Table II   IBU Solubility in Various Solvents/Surfactants at 25 °C

Solubilizer/surfactant IBU solubility (mg/g)

Tween 80 260 ± 1.2
Labrasol 280 ± 1.5
Labrafac WL1349 101 ± 0.5
Transcutol 398 ± 1.1
Labrafil M 1944 CS 92 ± 0.5
Capryol 90 70 ± 0.2
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Effect of L/S Ratio on Particle Morphology 
and Distribution

The particle size and shape can influence important physical 
properties, manufacturing processability, and quality attributes, 
particularly dissolution rate and bioavailability of pharmaceuti-
cal ingredients. This depends on processing settings but also 
the nature of the polymeric carrier and its effect on the granule 
formation. As there were significant particle size differences of 
the “as made” granules produced by extrusion, we used a cutter 
mill and passed the extruded granules through a 250 μm mesh 
which reduced the particle size inconsistences.

SEM analysis was used to observe the surface morphol-
ogy of the produced granules at the end of the milling pro-
cess. As shown in Fig. 1, bulk IBU appears in the form of 
large elongated prismatic. However, it is evident that the 
morphology of the primary IBU particles has been changed 
during granulation. For all processed formulations, the gran-
ules appear to have a uniform size with irregular shape.

The particle size distribution was analysed by laser dif-
fraction in order to identify the effect of polymers and the 
amount of granulating liquid. From Figs. 2 and 3, it can be 
seen that for Pharma 603 slighter larger granules (d50, 180 
μm) with around 10% fines were observed at both transutol 
L/S ratios. The increase of the granulating liquid resulted 
in even larger granules (d50, 220 μm) and an increase of 
the 125–500 μm fractions by 11%.

To the contrary, K4M and AQOAT presented similar 
behaviour by forming larger granules towards the 125–500 
μm fractions, particularly between 250–500 μm, when 
Transcutol increased at 10%. Hence, the higher L/S ratio 
led to reduced fines and larger particle sizes for K4M (d50, 
260 μm) and AQOAT (d50, 280 μm). Overall, the suitable 
particle size fractions for tableting remained consistent and 
above 100 μm. By increasing Transcutol amount the granule 
growth increased due to efficient particle coalescence which 
minimised the content of ungranulated powder blends.

One of the TSG advantages is the improvement of the 
flowability and compactibility especially of APIs with poor 
flow. The flowability of bulk IBU is extremely poor due to 
its high cohesiveness, as it can be observed from the Carr’s 
Index (CI) in Table III.

According to Carr’s Index, a value between 5–15%, 
12–16%, 18–21%, and 23–28% indicates excellent, good, 
fair, and poor flow properties of the powder, respec-
tively[25]. The estimated CI values of the extruded gran-
ules are significantly lower than those of the bulk IBU, 
indicating excellent to good flowability. It can also be seen 
that granules prepared with 10% granulating liquid dem-
onstrated lower CI values due to their larger particle size 
and the lower content of fines for each batch. Nevertheless, 
the TSG process appeared to be successful without caus-
ing any issues during downstream processing (milling). 
This is related to the selection of suitable polymers, the 

Fig. 1   SEM images of bulk and 
extruded formulations: a Bulk 
Ibuprofen, b IBU/K4M/Transc-
utol, c IBU/ΑQΟΑΤ/Transcutol, 
d IBU/Pharma 603/Transcutol 
granules
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granulating liquid, optimization of the critical processing 
parameters, and screw configuration [50].

X‑ray Powder Diffraction (XRPD)

XRPD analysis was carried out for all batches includ-
ing bulk IBU in order to identify the crystalline state of 

the granulated materials. As shown in Fig. 4, the XRPD 
pattern of IBU presented distant intensity peaks due to 
its crystalline structure at 2θ angles of 6.18°, 12.29°, 
16.81°,17.75°, 18.82°, 19.15°, 20.26°, 22.13°, 24.31°, 
24.62°, and 25.15°. Further analysis showed that IBU-
polymer physical mixtures presented identical peaks at 
a lower intensity (Fig. S1, supplementary) indicating no 
alteration of IBU crystallinity.

However, Fig. 4 shows that IBU was transformed to a 
fully amorphous state in the extruded granules, as evi-
denced by the observed halo in the obtained diffracto-
grams. The high shear mixing between the bulk drug and 
polymers during granulation resulted in the formation of 
amorphous IBU. It should be noted that TSWG process 
was conducted at a low processing temperature below 
the melting point of IBU or the glass transition of the 
polymer carriers.

Fig. 2   Particle size distribution 
of IBU/Pharma 603 (blue bars), 
IBU/K4M (orange bars) and 
IBU/AQOAT (grey bars) at 5% 
Transcutol

Fig. 3   Particle size distribution 
of IBU/Pharma 603 (blue bars), 
IBU/K4M (orange bars) and 
IBU/AQOAT (grey bars) at 10% 
Transcutol

Table III   Carr’s Index of 
Bulk IBU and Granulated 
Formulations

Formulation Carr’s Index

Bulk IBU 29.7
F1 12.7
F2 15.0
F3 10.5
F4 9.9
F5 6.6
F6 5.0
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Differential Scanning Calorimetry (DSC)

DSC carried out to further investigate the IBU physical 
state in the extruded granules in comparison to the bulk 
substance and physical blends. As shown in Fig. S2 (sup-
plementary material) the IBU melting endotherms shifted 
at lower temperatures due to the interactions with polymers. 
This is a strong indication of the drug-polymer miscibility 

as IBU is a well known plasticiser for a range of polymers. 
It can also be seen that the shifts of melting endotherms 
vary depending on the degree of miscibility which increases 
in an ascending order for AQOAT (61.70  °C) < K4M 
(53.77 °C) < PHARM603 (27.64 °C).

However, in Fig. 5 the thermograms of the extruded gran-
ules showed the absence of any melting endotherms related 
to IBU melting point. However, it was not also possible to 

Fig. 4   X-ray diffractograms of 
extruded IBU granules with 
PHARM604, HMPC-K4M and 
AQOAT

Fig. 5   DSC thermograms of 
extruded IBU granules with 
PHARM604, HMPC-K4M and 
AQOAT
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detect the new Tg for each amorphous dispersions due to the 
high IBU-polymer miscibility. The DSC findings were in 
good agreement with the X-ray analysis suggesting that the 
TSWG process resulted in the formation of amorphous IBU 
granules. This was attributed to the solubilising capacity of 
transcutol for IBU and the high IBU-polymer miscibility.

In vitro Dissolution Studies

The in vitro dissolution studies of extruded granules were 
carried out in alkaline media (pH 7.2) to investigate the 
effect of the formulation composition and the granulation 
process. At pH 7.2, the solubility increased significantly 
with the addition of polymer and solubilizer. From Fig. 6, 
it can be observed that for all formulations, IBU presented 
immediate release within the first 10 min, varying from 76 
– 98%. The granules with 10% transcutol showed faster dis-
solution rates (93–98%), while those with 5% transcutol was 
slightly lower (63–90%). Among the three polymers, K4M 
and PHARM603 showed the fastest dissolution rates, while 

AQOAT rates were slower. The dissolution performance 
can be explained by the higher IBU miscibility for the three 
polymers, as was also shown in the DSC thermograms.

The improved dissolution profiles of granules containing 
the poorly water-soluble drug IBU are attributed to improved 
wettability with granulation and larger surface area of the 
granules compared to the bulk API. In addition, the effect 
of transcutol played a key role due to its high solubilizing 
capacity for IBU. It is worth mentioning that the extruded 
granules demonstrated the same dissolution profiles when 
using biorelevant media (pH 7.2) that we conducted for fur-
ther investigation (data not shown).

Conclusions

In this study, TSWG was employed for producing IBU gran-
ules with miscible polymers for enhanced dissolution rates. 
IBU was effectively granulated with PHARM603, K4M, 

Fig. 6   IBU dissolution pro-
files from extruded granules 
of PHARM603, K4M and 
AQOAT. a with 5 of transcutol; 
b with 10% of transcutol
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and AQOAT at high loadings in the presence of transcutol, 
which acted both as a granulation binder and solubility 
enhancer. The granulation process was optimized to pro-
duce amorphous IBU with enhanced dissolution rates. This 
novel approach not only facilitates enhanced dissolution 
rates of water-insoluble APIs but also significantly reduces 
the downstream processing of TSWG, thereby shortening 
processing times as the granule drying step is not required. 
In addition, it could be used as platform technology for the 
optimization and continuous manufacturing of a wide range 
of water-insoluble drugs.
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