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ABSTRACT: In this letter, we disclose the anodic oxidation of oxamic acids
in the presence of Et3N·3HF as a practical, scalable, and robust method to
rapidly access carbamoyl fluorides from readily available and stable
precursors. The simplicity of this method also led us to develop the first
flow electrochemical preparation of carbamoyl fluorides, demonstrating
scale-up feasibility as a proof of concept.

■ INTRODUCTION
Fluorine has long held a special place in many areas of
chemistry as a result of its ability to impart or enhance
remarkable physical and chemical properties to a molecule
when present in its framework.1−7 Carbamoyl fluorides have
attracted much attention for their use as insecticides and
esterase inhibitors.8−10 In addition, because carbamoyl
fluorides exhibit greater stability and selectivity than carbamoyl
chlorides, they represent exceptional building blocks in the
synthesis of hydrazines,11 isocyanates,12 carbamates, thiocarba-
mates, ureas,13 and amides.8−10,13,14 Unfortunately, their
synthesis can remain a challenge (Figure 1).15,16 The primary
preparation method is to treat a carbamoyl chloride with
nucleophilic sources of fluoride.17,18 While this method seems
straightforward, it still requires the preparation of the highly
reactive and often unstable chloride analogue, which is usually
produced using expensive and highly toxic phosgene
derivatives.19,20 The past decade has seen a rapid increase in
the development of novel methods for preparing carbamoyl
fluorides, confirming the growing interest of the synthetic
community in this fluorinated motif.21−24 However, most use
impractical conditions, often combined with highly air- and
water-sensitive, toxic, hazardous, and expensive reagents, such
as carbonyl difluoride,13,25−28 carbon disulfide,29 highly
reactive and unstable carbamoyl chlorides,28 or explosive
diethylaminosulfur trifluoride (DAST)-type reagents.30,31

Some other methods need expensive Ag salts,32 significant
excess of reagents leading to time-consuming chromatographic
purifications,33,34 or high temperatures.35 Although some early
work has yielded the desired products in single-step reactions,
using DAST and silver salts presents a significant challenge to
scale up the reaction, especially under process-friendly

conditions.13,25−28 There is an urgent need to develop a
novel, practical, sustainable, inexpensive, and milder way to
access carbamoyl fluorides rapidly. Herein, we disclose an
unprecedented practical and robust anodic synthesis of
carbamoyl fluorides from readily available stable oxamic acids
in the presence of a fluoride salt.

■ RESULTS AND DISCUSSION

Optimization

On the basis of our previous experience with the anodic
oxidation of oxamic acids,36 we started our investigations with
electrolysis substrate 1a in CH2Cl2 using 2 equiv of the mild
and less corrosive fluorinating reagent Et3N·3HF,37,38 at a
current density of 8.9 mA cm−2. We used carbon graphite (Cgr)
as the anode as a result of its low cost and ability to perform
multiple electron transfers. For the cathode, we chose a
platinum foil electrode, known to have a low hydrogen
overpotential, favoring the benign reduction of protons. To our
delight, desired carbamoyl fluoride 2a was obtained with a
yield of 95% under these conditions. The reaction parameters
were then further investigated (Table 1).
Each optimization experiment was followed by high-

performance liquid chromatography−mass spectrometry
(HPLC−MS) until complete consumption of starting oxamic
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acid, which in most cases occurred after 2.5−3.0 F mol−1,
revealing a highly efficient anodic oxidation with average
faradaic yields ranging from 66 to 80%. As expected, the
electrode material proved to be an important factor (entries
1−4 for the cathode and entries 5 and 6 for the anode). While
the use of carbon graphite as a cathode, which has a higher
hydrogen overpotential, did not affect the yield of the reaction
(entry 2), the use of less noble metals with low hydrogen
overpotentials, such as Ni and stainless steel, not only
performed as well as a platinum cathode but also gave very
clean transformations without significant byproducts (entries 3
and 4). Therefore, cheap and readily available stainless steel

was chosen as the cathodic material. Carbon graphite was
superior to platinum for the anode (entries 5 and 6). In terms
of solvents, CH2Cl2 was shown to be better than MeCN
(entries 5, 7, and 8), probably as a result of the formation of
tighter ion pairs, which facilitate the addition of fluoride. With
regard to the nature of the fluoride source (entries 6−9),
surprisingly, even weaker nucleophilic fluorides, such as KF/
18-Crown-6 or CsF, led to the formation of desired carbamoyl
fluoride, albeit in modest yields along with numerous
byproducts. While Bu4N·H2F3 was found to be as efficient as
Et3N·3HF in achieving the desired fluorination (entry 9), the
tetrabutylammonium salt led to the formation of significant
amounts of tributylamine via cathodic Hofmann elimination,
contaminating final carbamoyl fluoride. Interestingly, the use of
tetramethylammonium fluoride (TMAF), a better nucleophilic
fluoride donor than Et3N·3HF as a result of the lack of
hydrogen bonding, did not result in any improvement.
TMAF is poorly soluble in CH2Cl2 and did not provide the

necessary conductivity for the electrolysis to proceed (entry
10). At the same time, only 19% yield was obtained in MeCN,
together with many unidentified byproducts (entry 11). The
effect of current density on the course of the reaction was also
investigated. On the one hand, a lower current density of 4.45
mA cm−2 led to similarly excellent yields (entry 12) but
surprisingly required a longer electrolysis time as a result of a
lower faradaic efficiency. On the other hand, a higher current
density of 13.35 mA cm−2 resulted in lower yields (entry 13).
Using a significant excess of Et3N·3HF was detrimental to the
reaction (entry 14). Finally, the ideal amount of Et3N·3HF was
found to be 1.5 equiv (entries 15 and 16).
Substrate Scope

With the optimal reaction conditions in hand, the scope and
limitations of the novel fluorination reaction were investigated,
focusing on motifs that may be relevant to medicinal chemistry
applications. The main results are summarized in Scheme 1.
The oxamic acid precursors were all readily prepared from
corresponding secondary amine, often without the need for
chromatographic purification (see the Supporting Informa-
tion). Notably, the reaction is compatible with a wide range of
functional groups, including alkenes (2c and 2d) and internal
and terminal alkynes (2e and 2z), in acceptable yields.
Unfortunately, highly activated and redox-active alkenes, such
as the nortriptyline drug derivative 1s, gave only modest yields
of the desired fluorinated compound 2s with unidentified
byproducts. Electrolysis of the biologically active tetrahydroi-

Figure 1. Syntheses and uses of carbamoyl fluorides.

Table 1. Optimization Resultsa

entry + − F− source equiv F mol−1 yield (%)b

1 Cgr Pt Et3N·3HF 2 3 95
2 Cgr Cgr Et3N·3HF 2 2.5 89
3 Cgr Ni Et3N·3HF 2 2 94
4 Cgr SS Et3N·3HF 2 2.5 96
5c Cgr SS Et3N·3HF 2 2 60
6d Pt SS Et3N·3HF 2 2 0
7c Cgr Pt CsF 2 2.5 32
8c Cgr Pt KF and 18-Crown-6 5.5 4 67
9 Cgr Pt Bu4N·H2F3 1 3 97
10 Cgr SS TMAF 1.5 2.5
11b Cgr SS TMAF 1.5 2.5 19
12e Cgr SS Et3N·3HF 1.5 2.5 96
13f Cgr SS Et3N·3HF 1.5 2 93
14 Cgr Pt Et3N·3HF 3 3 69
15 Cgr Pt Et3N·3HF 2 3.5 92
16 Cgr SS Et3N·3HF 1 3 82
aConditions: Unless otherwise stated, the solvent is CH2Cl2 with 0.4
mmol of oxamic acid and current density = 8.9 mA cm−2. b1H nuclear
magnetic resonance (NMR) yield was calculated from the NMR ratio
product and bromoform used as an internal standard, with MeCN as
the solvent. cMeCN as the solvent. dNo conversion of starting
material was observed. eCurrent density = 4.45 mA cm−2. fCurrent
density = 13.35 mA cm−2.
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soquinoline−oxamic derivatives gave excellent yields of up to
87% of carbamoyl fluorides (2g−2i) highlighting the efficency
of the method.27,39−41 The novel methodology was shown to
be compatible with both aliphatic and aromatic halides (2h, 2i,
and 2k), providing the desired products in 60−87% yields.
Spiro-type compounds, used in medicinal chemistry for their
three-dimensional (3D) properties, were compatible with the
electrolytic conditions, providing compounds 2w and 2x in 60
and 70% yields, respectively.42 Furthermore, the successful
preparation of compound 2j in 72% yield confirms the
compatibility of cyclopropanes, which are redox-active
moieties, with the electrolytic conditions. Numerous other
functional groups, such as esters (2o),34 sulfones (2p),
tetrahydropyrans (THPs, 2r), trifluoromethyls (2t), nitriles
(2u), and amides (2y), were compatible and led to the
formation of functionalized carbamoyl fluorides in average to
excellent yields. Interestingly, Et3N·3HF is close to neutral and,
therefore, did not deprotect the Boc carbamates,38 allowing for
the formation of compound 2q in 62% yield. Lower yields of
carbamoyl fluorides were obtained with aniline derivatives. For
example, 2l and 2m were obtained in only 23 and 10%,
respectively. However, when an electron-rich methoxy group
was present on the aromatic ring, compound 2n was obtained
in 80%, highlighting the importance of the availability of the
nitrogen lone pair in the formation of the N-centered cation
(IV; Figure 2). For all reported transformations, the pure

product was obtained in most cases without chromatographic
purification.
On the rare occasions when the product required further

purification, rapid filtration through a silica pad proved

Scheme 1. Substrate Scopee

aObtained using a 13.35 mA cm−2 current density. bObtained using 2 equiv of Et3N·3HF. cObtained using 3 F mol−1. dPurified through a silica
pad. eConditions: oxamic acid (0.4 mmol), Et3N·3HF (0.6 mmol, 1.5 equiv), CH2Cl2 (5 mL), electrodes: carbon graphite (anode)/stainless-steel
(cathode), 8.9 mA cm−2, and 2.5 F mol−1.

Figure 2. Proposed reaction mechanism.
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sufficient to avoid the need for a detrimental flash chromato-
graphic separation. In fact, we found that purification by
standard column chromatography methods to obtain pure
carbamoyl fluoride dramatically reduced its isolated yield.
Scale-up of the Anodic Fluorination

As mentioned in the Introduction, to our knowledge, the large-
scale synthesis of carbamoyl fluorides remains a challenge.
Therefore, as a proof of concept, we investigated whether the
developed anodic oxidation could be transferred to flow
electrochemistry to establish a continuous manufacturing
process of carbamoyl fluoride using mild, safe, and inexpensive
reagents (Scheme 2). Flow chemistry has proven to be a
particularly successful method for rapidly scaling up electro-
organic reactions.43 The smaller interelectrode gap in a flow
system compared to a batch process allows for a lower ohmic
drop and better mass transfer, which usually leads to better
performance. Focusing on the fluorination of compound 1a,
we started our flow optimization study (Table 2) using similar
conditions (i.e., a current density of 8.9 mA cm−2) to the batch
reactions, resulting in the use of a flow rate of 0.5 mL min−1 to
achieve the transfer of 2.5 F mol−1. Simply pumping a mixture
of starting material and Et3N·3HF in CH2Cl2 into the
electrochemical cell yielded 80% of desired carbamoyl fluoride
(entry 1). Decreasing the current density to 5.6 mA cm−2 and
using a 0.31 mL min−1 flow rate led to an identical result
(entry 2). Additional decreases of the current density to 2.8
and 1.4 mA cm−2 (with flow rates of 9.28 and 18.56 mL min−1,
respectively) provided an increased yield of 95% (entries 3 and
4). Notably, these conditions allowed for a greater amount of
product to be produced in a shorter time than in the previous
batch process (Table 2), as shown by the respective space−
time yields of the processes: 60 g h−1 L−1 versus 11 g h−1 L−1,
providing further evidence of the benefits of flow chemistry.
However, it should be noted that a lower current density
would also induce a lower flow rate and a longer residence
time, thus suppressing one of the benefits of this flow process.

Finally, we performed the anodic oxidation on a 1.0 g scale
to show that our fluorination could withstand the change in
scale without adverse effects (see the Supporting Information).
As a result of the slower conversion observed on a large scale,
the current density of the reaction was increased to 13.4 mA
cm−2, and pure carbamoyl fluoride was obtained in 98% yield

after passing 3.5 F mol−1, demonstrating that scale-up in batch
and flow processes is feasible.
Plausible Mechanism

On the basis of our previous work,36,44 a plausible mechanism
for the electrochemical transformation is shown in Figure 2.
Cyclic voltammetric experiments have confirmed that a
chemically irreversible EC-type (electrochemical event fol-
lowed by a chemical event) anodic oxidation of oxamic acid (I)
occurs at Epa= 1.54 V versus Fc+/Fc in CH2Cl2 (see Figure S1
of the Supporting Information), leading to the formation of the
unstable carboxyl radical (II), which rapidly loses carbon
dioxide to give the acyl radical (III). A rapid second electron
transfer then occurs to form the highly electrophilic cationic
isocyanate derivative (IV), which is finally captured by
nucleophilic fluoride from Et3N·3HF, leading to the formation
of desired carbamoyl fluoride (V).

■ CONCLUSION
In conclusion, we have developed a novel mild, practical,
robust, and safe electrochemical synthesis of carbamoyl
fluorides from oxamic acids using Et3N·3HF as both an
inexpensive nucleophilic fluoride source and supporting
electrolyte. The reaction can be carried out at room
temperature with high faradaic efficiency using solvents straight
from the bottle under non-strictly anhydrous and degassed
conditions. In addition, the complete synthetic sequence
starting from the amine can be achieved in most cases without
chromatographic purification. Finally, taking advantage of the
simplicity of our method, we have also demonstrated, as a
proof of concept, the feasibility of scale-up both in batch and
by transferring the methodology to flow electrochemistry.
Further studies on the electrochemical synthesis of potential
derivatives of carbamoyl fluorides are currently underway in
our laboratory.
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