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Abstract. The stochastic analysis of the deflection behaviour of an idealised slender structure subject to
stochastic disturbance is studied. In a previous work by the authors, the response of an Euler-Bernoulli
beam subject to stochastic disturbance was studied. The current work extends the same techniques to
a modified Euler-Bernoulli beam with both flexural beam and shear properties. The beam is subjected
to a stochastic ground motion in the form of periodic motion with disturbance in the amplitude of the
motion. The disturbance is in the form of Gaussian white noise. This results in a Stochastic Partial
Differential Equation (SPDE) version of the modified Euler-Bernoulli beam equation. The stochastic
analysis was then conducted by numerical methods using a combination of a finite difference scheme
and Monte-Carlo Simulation. Given that the input force is Gaussian, it is also observed that the response
of the system is a Gaussian process.
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1 Introduction

Stochastic modelling is important for problems with inputs containing uncertainties as is it helps in
capturing the uncertainties in the system. For example, one can describe the system response when one
is able to obtain the response distribution function either numerically or in closed form where possible.
As a follow up to the work of the author (see [1]), in this work we examine the effect of both stochastic
body forces and ground motion by examining such forces as the input of a modified Euler-Bernoulli
beam equation [2]. For a uniform mass, uniform stiffness and undamped vibration, the modified Partial
Differential Equation (PDE) is given by

EI
∂4w
∂y4 +µ

∂2w
∂t2 −GA

∂2w
∂y2 = Q(y, t) (1)

where w is the lateral deflection, y is the longitudinal spatial variable, t is the time variable, Q is the
input load, µ is the mass per unit length, E is the Young’s modulus, I is the second moment of the area
of the beam’s cross section. The product EI is known as the flexural rigidity that measures the force
required to bend the beam. GA is the shear rigidity of the beam, where G is the shear modulus and A
is the cross-section area of the beam. As in the related paper [1], in this study, we consider a stochastic
force of the form

Q(y, t) ∝ ξ(y, t) , (2)

where ξ(y, t) is a Gaussian white noise giving rise to a Stochastic Partial Differential Equation (SPDE).
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Figure 1: Lateral deformations of the beam [2]

2 Formulation

A beam of length h with uniform density, flexural rigidity and shear rigidity subject to undamped vi-
bration caused by ground acceleration is considered. Its lower end is assumed fixed at the foundation
forming a cantilever structure. The beam is assumed to have both flexural and shear properties, thus, able
to deform in both bending and shear configurations. The response of such a beam, illustrated in Figure
1, subjected to a sinusoidal ground motion is governed by a modified Euler-Bernoulli equation as

∂4w
∂y4 +

µ
EI

∂2w
∂t2 − GA

EI
∂2w
∂y2 =− µ

EI
∂2

∂t2

(
αsin(ωt)

)
. (3)

The problem is formulated in a two-dimensional Cartesian coordinate system with origin at the fixed end
of the beam. The pressure load acts along the x-axis thus the displacement of the beam is denoted by
x = w(y; t). By the process of non-dimensionalisation we can re-scale equation (1) as

w′′′′+ ẅ−β
2w′′ = αsinωt , (4)

by choosing h,
√

µh4/EI, EI/h4,and
√

EI/µh4 as the reference length, time, pressure respectively and
angular frequency respectively. For ease of notations, a prime ′ is used to denote the partial derivative
of the displacement with respect to y, and a dot · is used to denote the partial derivative of the dis-
placement with respect to t; w and α are the scaled deflection and amplitude; y and t are the spatial and

temporal variable respectively and β = h
√

GA
EI is the parameter that controls the overall shear and flexural

behaviour of the beam. The boundary conditions for the cantilever beam are

w(0, t) = w′(0, t) = w′′(1, t) = w′′′(1, t)−β
2w′(1, t) = 0 . (5)

For an initial value problem (IVP), the beam is assumed to be initially at rest, so

w(y,0) = ẇ(y,0) = 0 . (6)

By considering a disturbance in the amplitude of the period ground motion we obtain the stochastic PDE
of the form

w′′′′+ ẅ−β
2w′′ = (α+σξ)sinωt (7)

where σ2 is the variance of the stochastic process. The white noise (ξ), see [3], is defined as the time
derivative of standard Wiener process W

ξ(y, t) = Ẇ (y, t). (8)
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2.1 Numerical Scheme

In this study, we will analyse the stochastic process of the system via a numerical approach. To this end
we employ an implicit finite difference scheme to ensure the stability of the computation. The domain of
the problem is uniformly discretised into N grid points y j =

j
N , for j = 1,2, ...,N, with step size ∆y= 1/N

and w j ≈ w(y j) for j = 1,2, ...,N. By imposing a second order finite difference scheme on the boundary
conditions in (5) a finite difference formula for the ghost points can be derived then a matrix of the finite
difference scheme for w over {y j} j=1,2,...,N can be written.

If one introduces an artificial variable v = ẇ which is second order in time, equation (7) can be rewritten
as a system of two coupled PDEs of the first order

∂U
∂t

=
(
M1 +β

2M2
)
U +F , (9)

where U =

(
w
v

)
,M1 =

(
0 1

−D4 0

)
,M2 =

(
0 0

D2 0

)
,F =

(
0
q

)
, D4 and D2 is fourth-order and second-

order finite difference scheme respectively. The time domain [0,T ] is divided into n steps with ∆t = T/n,
where T is the final time. By discretising spatially in y and temporally in t the discretised variables are

Uk
j =

(
w j

v j

)
at t = tk = k∆t. (10)

The backward Euler scheme can then be written in the matrix form[
IN −∆tIN

∆t
(
M1 +β2M2

)
IN

][
W
V

]k+1

=

[
W
V

]k

+

[
0

∆tQ

]
, (11)

where IN is the identity matrix and M1 and M2 are the matrix replacement of the fourth-order and second-
order finite difference scheme for D4 and D2 respectively, W = [w1,w2, . . . ,wN ]

T , V = [v1,v2, . . . ,vN ]
T

and the discretised load, Q= [q1,q2, . . . ,qN ]
T , where qi =(1+σζ)sinωtk and ζ= dW/dt ≈N(0,1)/

√
∆t,

where N(0,1) is a normally distributed random variable with zero mean and unit variance. Equation
(11) is used to conduct Monte Carlo (MC) simulations to obtain data for analysis. For good accuracy,
∆y= 0.002 and ∆t = 0.1s were chosen for 10,000 simulations and the standard deviation of the stochastic
process is chosen as σ = 0.01.

3 Results

The snapshot of the deflection profile of the MC simulation at time T is shown in Figure 2a where we
see a cluster of the deflection about a region. The Expectation E[w] shown in Figure 2b seemed to be the
region about which the cluster is formed which is what is expected due to the fact that the input force is
Gaussian. The resulting output is also a Gaussian process as can be confirmed by the distribution of the
deflection at the top of the beam shown in Figure 3.

4 Conclusions

The stochastic analysis of a beam that can deformed by a combination of flexural and shear deformation
is conducted. The beam is subjected to stochastic ground motion in the form of periodic motion with
disturbance in the amplitude of the motion. The deformation of the beam is governed by a modified form
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Figure 2: (a) Snapshots of w due to stochastic load in (7) using Monte-Carlo method at time T (b) Expectation
E(w) of the stochastic process at T along the beam (c) Variance of the stochastic process at T along the beam (d)
Standard error of the Monte Carlo method at T along the beam

Figure 3: Histogram of the deflection data, w1, from time T and distribution fitted to the data.

of Euler-Bernoulli beam equation. The stochastic analysis was conducted by numerical methods using
a combination of a finite difference scheme and Monte-Carlo Simulation. Given that the input force is
Gaussian, it is also observed that the response of the system is a Gaussian process.
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