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Abstract: P-splines are a versatile statistical modelling tool, dealing with nonlinear

relationships between the response and explanatory variable(s). GAMLSS is a dis-

tributional regression framework which allows modelling of a response variable using

any parametric distribution. The combination of the two methodologies provides one

of the most powerful tools in modern regression analysis. This paper discusses the

application of the two techniques when the response variable is zero-adjusted (or semi-

continuous), which combines a point probability at zero with a positive continuous

distribution.

Key words: P-splines; gamlss; Box-Cox t distribution; zero-adjusted distribution,

zero-heavy distribution; semi-continuous distribution

1 Introduction

This paper discusses two powerful ideas in modern statistical modelling: the P-splines

approach to smoothing and Generalized Additive Models for Location, Scale, and

Shape (GAMLSS). P-splines, introduced by Eilers and Marx (1996), is a very flexible

smoothing tool for modelling the relationship between a response variable and one

or more explanatory variables, and is based on penalized regression techniques. Its

simplicity and flexibility allows it to be used in a variety of practical applications. A

good review of P-splines and a more detailed comprehensive account of the topic is

given by Eilers and Marx (2021).

GAMLSS was introduced by Rigby and Stasinopoulos (2005) as a way of overcom-

ing some of the limitations associated with Generalized Linear Models (GLM, Nelder
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and Wedderburn, 1972) and Generalized Additive Models (GAM, Hastie and Tib-

shirani, 1990). More specifically, the problems which GAMLSS aimed to overcome

were heterogeneity and/or skewness and kurtosis in the distribution of the response.

GAMLSS is a distributional regression model (that is, a proper parametric distribu-

tion is assumed for the response variable), useful when the distribution of the response

variable does not belong to the exponential family and/or when the researcher is not

only interested in how the explanatory variables shift the location of the distribution,

but also how they affect its shape (e.g. variance (volatility), skewness, kurtosis). The

idea that the two methodologies can work together nicely arose at a GAMLSS short

course given at Utrecht University in 2008, by Mikis Stasinopoulos and Robert Rigby,

as part of the International Workshop on Statistical Modelling. At the end of the

course Brian Marx and Paul Eilers joined a very interesting conversation where new

ideas about merging the two techniques emerged.

The implementation of GAMLSS at the time was rather rigid, relying on classical

cubic smoothing splines for modeling nonlinear relationships. The estimation of the

smoothing parameters in the cubic splines was not automatic, but relied on the spec-

ification of the degrees of freedom. This made the modelling of several explanatory

variables rather difficult. The simplicity of P-splines, and the fact that they could be

easily implemented in R, made the automatic selection of smoothing parameters far

easier. This was the first achievement of the merger of the two methods. Monotonic,

circular and other types of smoothers came later.

This article celebrates the merger of the two techniques by using an application in

which the response variable has a zero-adjusted (or semi-continuous) distribution,

i.e. a mixed distribution, comprising a probability mass at zero and a continuous
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positive distribution (Rigby et al., 2019). These distributions have received attention

in diverse application areas, such as medical (Liu et al, 2019), environmental (Popuri

et al, 2015), actuarial (Heller et al, 2006), sports betting (Houghton et al, 2019) and

agriculture (Belasco et al, 2012). Modelling approaches are generally either two-part

models in which the zero probability and the continuous component are modelled

independently, or a single model as in Tobit or Tweedie models. Here we adopt the

two-part model approach, accommodated within the GAMLSS framework.

2 P-splines

P-splines result from combining the B-splines basis, which is an orthogonal basis of a

piecewise polynomial, with a penalty applied to the coefficients of the model. The idea

of P-splines proposed by Eilers and Marx (1996) is based on the work of O’Sullivan

(1986) and is derived as the analytic solution of the following penalized least squares

problem: minimize Equation (2.1) with respect to γ:

S = (y −Bγ)⊤W (y −Bγ) + λγ⊤Pγ, (2.1)

where B is a n× r regression design matrix that contains the B-spline basis function

evaluations (based on a specific explanatory variable) as its columns; P = D⊤D is

a r × r penalty matrix; D is a matrix such that Dγ forms d th-order differences of

γ; γ is the corresponding vector of coefficients of length r; W is an n × n diagonal

matrix containing weights wi for i = 1, 2, . . . , n; and λ is a smoothing parameter. The

solution to the penalized least squares problem is given by

γ̂ =
(
B⊤WB + λD⊤D

)−1
WB⊤y , (2.2)



P-splines and GAMLSS 5

and the fitted values are given by µ̂ = Bγ̂. λ is the ‘explicit’ smoothing parameter

(or hyperparameter) which determines the amount of smoothing in (2.2): the greater

the value of λ, the greater the influence of the penalty and therefore the smoother

the fitted function is. There are other parameters ‘implicit’ in the fit of a P-spline:

the number of knots and the degree of the piecewise polynomial in the definition of

the basis B, and the difference defined in the penalty matrix D. These parameters

do affect the model fitting but not as much as the smoothing parameter λ. The

number of knots for B-splines could be set at between 20 and 50. Using the degree

of the piecewise polynomial as three, as default, guarantees that the first and second

derivatives of the fitted smooth function will be continuous, resulting in a smoother

curve. Finally, the default choice for the order of the differences in the penalty is two.

This choice corresponds to an assumption that the γ coefficients behave as a second

order random walk, (while order zero would correspond to white noise (random effect)

and order one to a random walk). In our experience these default recommendations

work well in practice. Surprisingly the number of B-splines knots can be larger than

the number of observations and the method still works.

The beauty of P-splines lies in its simplicity and its flexibility. In addition it has

a random effects interpretation. Given the basis design matrix B, equation (2.2)

is easy to program and calculate in any computer language with reasonable matrix

implementation. For more than one additive explanatory term, one can expand theB

basis or rely on a (modified) backfitting algorithm; see Hastie and Tibshirani (1990)

or Stasinopoulos et al. (2017, p. 68). For smoothing in more than one dimension,

the tensor product of P-splines can be used, see Rodŕıguez-Álvarez and Oviedo de

la Fuente (2021). Also by modifying the basis B or the penalty matrix P one can

create different types of effects. Stasinopoulos et al. (2017, pp. 265-296) shows
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several modifications of P-splines. For continuous terms, this includes: monotonic

and cyclical P-splines and ridge and LASSO regression P-splines. (The latter two

rely on modifying P .) For categorical terms (factors), there exist: (i) random effects,

(ii) Gaussian Markov random fields P-splines, applied to neighbouring (spatial) areas

and (iii) categorical P-splines designed to reduce the number of levels of a factor.

Note that the weights in Equation (2.2) are crucial in the implementation of P-

splines within GAMLSS because they are used as iterative weights within the current

GAMLSS algorithms, see Stasinopoulos et al. (2017, Chapter 3). The iterative weights

are functions of the parameters of the response distribution.

When using P-splines, it is important to be aware of the domain on which the B-

splines are defined. This is usually the region from the observed minimum to the

observed maximum minimum of the explanatory axis, or some values quite close. It

is essential that the domain includes all observed values of the explanatory variable.

More details about P-splines are given by the creators of P-splines: Eilers and Marx

(2010) and Eilers and Marx (2021), the latter being a comprehensive view of P-splines.

3 GAMLSS

The mathematical and stochastic modelling of the relationship between a response

variable and one or more predictor variables was elegantly formulated as the classi-

cal linear model, with its accompanying least squares solution, dating back to Gauss

and Legendre in the early 1800s. The “normal model”, a normal distribution re-

gression model, prevailed as an analysis framework until “Theoretical and applied

statistics were both convulsed by the publication of the GLM paper by Nelder and
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Wedderburn (1972).” (Aitkin, 2018). The relaxation of the restrictive requirements

of the normal model progressed from the Generalized Linear Model (GLM), in which

the response distribution was extended from the normal to the exponential family

distribution and the link function was introduced; to Generalized Additive Models

(GAMs) (Hastie and Tibshirani, 1990), which added smooth functions of the covari-

ates to the linear predictor for the mean; to mean and dispersion modelling, in which

modelling of the dispersion parameter of the response distribution was introduced

(Aitkin, 1987; Smyth, 1989); to Generalized Additive Models for Location, Scale and

Shape (GAMLSS) (Rigby and Stasinopoulos, 2005) which arguably represents the

biggest leap forward of the regression methodology. The GAMLSS model extends

the choice of response distribution to any computable parametric distribution; all

distribution parameters may be modelled; and predictors may include linear terms,

smooth functions of the covariates, and random effects. The GAMLSS model is

y
ind∼ D(θ1, . . . ,θK) (3.1)

gk(θk) = Xkβk + sk1(xk1) + . . .+ skJk(xkJk) for k = 1, . . . , K

where D(θ1, . . . , θK) denotes any computable K-parametric distribution; θ1, . . . , θK

are the distribution parameters; gk(·) is the link function for θk; Xk is the fixed

effects design matrix for θk and βk is the corresponding vector of coefficients; skj(·)

is the jth nonparametric smooth function in the model equation for θk; and xkj is

the explanatory variable for the jth smooth function for θk. Note that here we use

skj(·) as a generic notation for any smoother, which can include machine learning

techniques such as regression trees and neural networks. For P-splines, skj(·) takes

the linear form Bkjγkj where the coefficients γkj are restricted by γ⊤
kjP kjγkj ≤ λkj.

A similar specification applies also to random effects (Kauermann, 2010).
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The innovation of GAMLSS is that all the parameters of the distribution can be

modelled as functions of the explanatory variables and therefore all aspects of the

distribution for the response i.e. location, scale, skewness and kurtosis can be mod-

elled. While in the original GAMLSS paper (Rigby and Stasinopoulos, 2005) the

number of distribution parameters was general, the R implementation gamlss uses

K = 4 and the notation θ1 = µ, θ2 = σ, θ3 = ν, θ4 = τ . We will partly use this

notation in the zero-adjusted example of Section 4.

The suite of R gamlss packages (Stasinopoulos and Rigby , 2008; Stasinopoulos et al.,

2017) includes over 100 response distributions. These comprise: continuous distribu-

tions with support on: the continuous real line (−∞,∞); the positive continuous real

line (0,∞); and the unit interval (0, 1); discrete distributions with support on: the

non-negative integers {0, 1, 2, . . .}; and bounded integers {0, 1, 2, . . . , n}; mixed (or

semi-continuous) distributions with support on, for example, [0, 1] and [0,∞). The

former is referred to as zero- and/or one-inflated, with probability masses at zero

and/or one and a continuous component on (0, 1); and the latter is referred to as

zero-adjusted, and has a probability mass at zero and a continuous component on the

positive real line. In addition, the above distributions may be truncated, transformed

or censored, providing a very rich family of response distributions available for mod-

elling. Details are given in Rigby et al. (2019). The P-splines representation of a

GAMLSS model is:

gk(θk) = Xkβk +Bk1γk1 + . . .+BkJkγkJk
for k = 1, . . . , K

subject to γ⊤
kjP kjγkj ≤ λkj for j = 1, . . . , Jk. This results in a penalized log-likelihood

of the form:

ℓp(β,γ,λ) = ℓ(β,γ)− 0.5
K∑
k=1

Jk∑
j=1

λjkγ
T
jkP jkγjk (3.2)
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where β = (β1, . . . ,βK), γ = (γ1, . . . ,γK) and λ = (λ1, . . . ,λK) are vectors con-

taining all relevant coefficients and hyperparameters and ℓ(β,γ) =
∑n

1 log f(y|β,γ)

is the log-likelihood. The penalized log-likelihood of equation (3.2) can be maximized

for fixed λ using either of the two algorithms described in Stasinopoulos et al. (2017,

Chapter 2). λ can be estimated using a (local) REML algorithm described in Rigby

and Stasinopoulos (2012).

4 Zero-adjusted distributions

Response variables which can either be zero or a continuous positive quantity, are

commonly encountered in diverse application areas. Some examples are: microbiome

composition (Liu et al, 2019), daily precipitation and streamflow (Van Ogtrop et al,

2011; Popuri et al, 2015), annual insurance claim amounts (Heller et al, 2006), daily

alcohol consumption (Liu et al, 2019), annual health services expenditure (Liu et al,

2019; Neelon et al, 2016b), annual expenditure on sports betting and online gambling

(Houghton et al, 2019) and cattle mortality rates (Belasco et al, 2012).

Zero-adjusted distributions (sometimes referred to as semi-continuous or zero-heavy

distributions) are appropriate for fitting models with such response variables, i.e.

when the support of the response is in [0,∞) (including zero). These are mixed

distributions, i.e. a mixture of a discrete distribution (a probability at value zero, i.e.

y = 0) and a continuous distribution (for y > 0). Liu et al (2019) and Neelon et al

(2016a) review modelling approaches for such response variables: these comprise two-

part models, in which the zero probability and the continuous component are modelled

separately, which is the approach that we take below; and Tobit models (Tobin,
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1958), which assume an underlying normal (or more generally any) distribution for

the response, which is left-censored at zero. This approach could be more restrictive,

as the zero probability cannot be modelled explicitly. Informally (ignoring strict

mathematical considerations) the distribution

Y∼D(θ, π0) of a zero-adjusted response takes the form:

fY (y|θ, π0) =

 π0 if y = 0

(1− π0)fY1(y|θ) if y > 0

where 0 < π0 < 1; π0 = P (Y = 0) is the point probability at zero; and fY1(y|θ) is any

probability density function with support on the positive real line, with parameters

θ⊤ = (θ1, θ2, . . . , θK). The log-likelihood of any zero-adjusted distribution response

variable can be split into two separate components: the first component is a binary

model, in which the probability π0 of observing zero is modelled against the explana-

tory terms; while the second component, in which the response is positive, is from

a model with support on the positive real line. A general zero-adjusted GAMLSS

model can be written as:

y
ind∼ D(π0,θ1, . . . ,θK) (4.1)

gπ(π0) = Xπβπ + sπ1(xπ1) + . . .+ sπJπ(xπJπ) (4.2)

gk(θk) = Xkβk + sk1(xk1) + . . .+ skJk(xkJk) for k = 1, . . . , K (4.3)

where equation (4.2) is the predictor for the model for the probability π0 of whether

zero occurred, while equation (4.3) is the predictor for a standard GAMLSS model

for parameter θk of the distribution of the positive values. Because the parameter π0

is informational orthogonal to the parameters θk
1, maximization of the log-likelihood

1i.e. the likelihood function can be split into two components: one containing π0 and one con-

taining θk.
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for (4.1) can be achieved by fitting two separate models, one for (4.2) and one for (4.3),

see Supplementary material . Combining the two components consists of summing

the two deviances to obtain the overall model deviance; if (randomised) quantile

residuals are required they are calculated using the zero-adjusted cdf FY (y|θ) =

π0+(1−π0)FY1(y|θ), where FY1(y|θ) is the cdf with support on the positive real line.

Model (4.1) assumes that the probability that Y = 0 (i.e. π0) does not depend on

the distribution of Y for Y > 0. This assumption may be valid in certain empirical

situations and not in others. However, modelling a specific dependence may be overly

restrictive and hence inappropriate. One dependence model is the generalized Tobit

model (Rigby et al. (2019), p. 182) which assumes Y = 0 (if Z < 0) and Y = Z (if Z >

0), where Z has any distribution on the real line. Hence the point probability P (Y =

0) = P (Z < 0) depends on the parameters of the distribution of Z. An alternative

dependence model is to assume that Y has a Tweedie distribution (Tweedie, 1984;

Wood and Fasiolo, 2017), where the Tweedie power parameter lies between 1 and

2. However this is a highly restrictive model, since it is a reparametrization of a

compound Poisson-Gamma distribution (the sum of i.i.d. gamma random variables,

where the number of terms in the sum has a Poisson distribution). The resulting

distribution has a point probability at Y = 0 and usually a multi-modal distribution

for Y > 0. This is unlikely to be an appropriate distribution, although it may be

suitable if only the first two moments of Y are the focus of interest. Note also it

has an additional problem that the normalizing constant of the Tweedie density is

computable only by summing an infinite series.

In the GAMLSS R implementation there are two explicitly defined zero-adjusted dis-

tributions: the zero-adjusted gamma (ZAGA) and the zero-adjusted inverse Gaussian
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(ZAIG, Heller et al, 2006). Both gamma and inverse Gaussian distributions are mem-

bers of the exponential family and therefore have the nice theoretical properties of

exponential family distributions. The problem is that in practice, exponential family

distributions may fail to capture extreme right tail behaviour commonly observed.

There is therefore the need for more flexible positive real line distributions. The

GAMLSS package gamlss.dist provides several positive real line distributions apart

from the gamma and inverse Gaussian: the Weibull, Pareto type 2, inverse gamma,

log-normal (two-parameter distributions), the generalized gamma, generalized inverse

Gaussian and Box-Cox Cole and Green (three-parameter distributions), and the Box-

Cox Cole power exponential, Box-Cox t and generalized beta type 2 (four-parameter

distributions) (Chapter 19, Rigby et al., 2019). More positive real line distributions

can be generated “implicitly” within the GAMLSS R packages by taking any explicit

GAMLSS continuous distribution with support on the real line and (a) inverse log

transform it (i.e. exponentiate it) to a distribution with a support (0,∞), e.g. us-

ing function gen.Family(”JSU”,type=”log”) to generate a logJSU distribution; (b)

truncate it to (0,∞), e.g. using function gen.trun(0,”JSU”,type=”left”) from the

gamlss.tr R package to generate a JSU distribution left truncated at 0 to (0,∞).

Any of the above positive distributions can be converted into a corresponding zero-

adjusted distribution using the gamlss.inf R package.

The first four moments of a zero-adjusted distribution are given in Rigby et al. (2019,

p. 179). Typical plots of zero-adjusted distributions are shown in Figure 1, where a

zero-adjusted Box-Cox t (BCT) and a zero-adjusted log Johnson’s Su (logJSU) distri-

bution are displayed. Next we demonstrate the power of combining P-splines with

GAMLSS using an environmental data set concerning streamflow.
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Figure 1: Plots of zero-adjusted distributions: (a) zero-adjusted Box-Cox t (BCT)

distribution, with values µ = 1, σ = 1, ν = −1, τ = 10 and π0 = 0.2 (b) zero-

adjusted log Johnson’s Su (logJSU) distribution with values µ = 0, σ = 1, ν = −1,

τ = 10 and π0 = 0.2.

4.1 Streamflow data

Van Ogtrop et al (2011) analysed monthly streamflow data from the Balonne River,

Queensland, Australia, recorded from 1951 to 2008. The data are a typical example

of a zero-adjusted response variable.2 Modelling streamflow is of environmental and

economic interest. A total of 12.4% of the monthly streamflow observations have

zero values; the remaining positive streamflows are strongly right-skewed, requiring a

positive real line distribution with a long right tail. The reason for a right-skewed long-

tailed distribution is evident in Figure 2, where the positive values of the streamflow

are shown together with their 50% and 90% quantile values.

The explanatory variables in the data are (i) time, (ii) month, (iii) lags of log stream-

flow, Ft−i = log(streamflowt−i + 1) for i = 1, 2, 3, 4, 5 and (iv) lags of the binary re-

2In the current analysis, because of data copyright issues, we used similar but slightly amended

data.
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0e+00 1e+06 2e+06 3e+06 4e+06
Positive streamflow

Figure 2: Dotplot of the positive monthly streamflows, 1951–2008; the red vertical

lines are the 50% (solid) and 90% (dotted) quantiles of the positive values. The values

are jittered on the vertical axis for display.

sponse Pt−i = 1(yt−i > 0)3, for i = 1, 2, 3, 4, 5, to account for the time series nature of

the data; the climatological features: (v) soi, the southern oscillation index (monthly

air pressure difference between Darwin and Tahiti), (vi) eof1 and (vii) eof2, first and

second empirical orthogonal functions of sea surface temperature, respectively; and

(viii) nino, average sea surface temperatures in the region.

The zero-adjusted distribution model of equations (4.1) – (4.3) is fitted using the

R package gamlss.inf. Since the package does not have a term selection method,

we use the fact that the zero-adjusted response variable can be modelled using two

separate models, one binary (for all data) and one for the positive responses. Terms

are selected for the two models separately using the ‘step-GAIC’ methodology of

the gamlss package (Stasinopoulos et al., 2017, Chapter 11), which minimises the

Generalised Akaike Criterion where ℓ() is the fitted log-likelihood function, df the

model degrees of freedom and k a constant. (Setting k = 2 we have the standard

Akaike Information Criterion (AIC), and k = log n yields the Bayesian Information

3We use the notation 1(·) as the indicator function: 1(x) = 1 if x is true, 1(x) = 0 otherwise.
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Data

Yo = 0, 1,
n.obs = n,
family=BI

Y > 0,
n.obs = n− n0,
family=BCTo

step-GAIC main
effects k=4

step-GAIC main
effects k=4,
for µ, σ, ν, τ

step-GAIC in-
teractions k=10

step-GAIC
interactions
k=10, for
µ, σ, ν, τ

choose D

diagnostic
checks

diagnostic
checks

combine

diagnostic
checks

Figure 3: Model selection procedure used for the streamflow data. Two data sets are
created: (i) a binary response Y0 with n observations (where Y0 = 0 if Y = 0 and
Y0 = 1 if Y > 0) and (ii) a positive response for Y > 0 with n−n0 observations (n0 is
the number of zeros). A stepwise procedure (using the distributions BI and initially
BCTo respectively) is first applied to the main effects with penalty k = 4 and then
to the first order interactions with penalty k = 10. Note that if interactions were
chosen the main effects are refitted (this part is not shown in the diagram). Then for
the positive response data a distribution is chosen using the models for µ, σ, ν and
τ , followed by model diagnostics to check the distribution adequacy. Finally the two
models are combined and diagnostic checks are performed for the combined model.
(Details of the procedure are given in Supplementary material .)
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Criterion (BIC).) The two models can then be combined into a single zero-adjusted

model for Y using the function gamlssZAdj() of package gamlss.inf. Figure 4.1 is a

diagram of the procedure used to select the terms for each distribution parameter.

This strategy has been designed in order to detect interactions; a detailed account is

given in Supplementary material . [We believe that a similar strategy could be applied

to any zero-adjusted regression model, assuming a reasonable number of observations

(n = 696 in our case) and a relatively small number of feature variables (18 in our

case). For positive response variables, (and similarly for response variables on the real

line), only steps 3, 4 and 5 in Supplementary material (the right branch in Figure

4.1) are needed.]

4.1.1 Model for π0

A logit regression model was used for modelling the zero probability π0, using the

methodology of selecting terms described on the left branch of Figure 4.1. The fol-

lowing model was selected:

log

(
π̂0

1− π̂0

)
= −11.021

(18.8)
− 0.402

(0.055)
Ft−1 + 0.108

(0.055)
Ft−2 + s(t)− 0.269

(0.094)
soi (4.4)

where t is time in months (from the from the first obervatrion). The standard errors

of the linear coefficients were obtained using a nonparametric bootstrap sampling

of size B = 100; these do not incorporate the uncertainty of the model selection

procedure and are therefore optimistic. The function s(·) is fitted using P-splines.

Note that while the selection strategy was designed for the systematic evaluation

of interaction terms, no interaction terms were selected. The selected lagged values

suggest a delay before changes in the explanatory variable have an impact in the

binary model. In particular the negative coefficient of Ft−1 shows that low riverflow
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Figure 4: The fitted predictor terms for the π0 model: top row: Ft−1 and Ft−2, bottom

row: time and soi.

last month increases the probability of zero riverflow this month.

The effects of the covariates on the log-odds of a zero streamflow are shown in Figure

4, which shows the partial effect from each term given that rest of the terms are fixed

at their mean values. The P-spline function for time indicates that the probability

of zero streamflow is stable till 1970, then dips till the early 1980s and then increases

sharply till the end of the period of observation. The increasing frequency of zero

streamflows after 1980 was also observed by Van Ogtrop et al (2011), who suggested

that “increased water extraction occurred post 1980 upstream of the gauging station”.

Both soi and streamflow lag 1 have negative effects, while streamflow lag 2 has a

positive effect on the probability of zero streamflow.
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4.1.2 Models for the parameters θ of the positive part

We used STEP 3 of the procedure described in Supplementary material to choose

models for µ, σ, ν and τ for an initial Box-Cox t (BCTo) distribution, Rigby and

Stasinopoulos (2006). The BCTo distribution was retained as the best fitting distri-

bution in STEP 4 of the procedure. The resulting fitted coefficients for the BCTo(µ,

σ, ν, τ) model are given below.

ln µ̂ = 57.37
(10.28)

+ 0.52
(0.042)

Ft−1 + sc(month)− 0.026
(0.005)

t+ 5.08
(0.72)

Pt−1 + 0.25
(0.051)

soi (4.5)

ln σ̂ = −9.81
(5.21)

− 0.11
(0.019)

Ft−1 + sc(month) + 0.005
(0.003)

t− 1.009
(0.305)

Pt−1 + 0.29
(0.14)

Pt−2(4.6)

ν̂ = 0.18
(0.077)

+ sc(month)− 0.017
(0.009)

Ft−1 (4.7)

ln τ̂ = 2.50
(11.92)

(4.8)

Standard errors, obtained using nonparametric bootstrapping (B = 100), are printed

below the coefficients. As noted for the π0 model, the bootstrap standard errors do

not take between-model variation into account; a possibility at this stage is to switch

to a fully Bayesian model using the R package bamlss (Umlauf et al., 2021), which

provides variation measures using MCMC automatically. The term sc(·) is a cyclical

P-spline term. Cyclical smoothers are ideal for monthly effects since they ensure

that the December and January effects connect smoothly, with a visually appealing

smooth transition between months. The monthly effect as a factor with 12 levels was

also available for model selection, but the smoother was chosen.

Similar to the selection strategy for the π0 model, the selection strategy for µ, σ,

ν and τ checked for interaction terms, but none was detected. The selection of an

appropriate distribution, given the x-terms selected for each distribution parameter,

described in STEP 4 of the Supplementary material , confirmed that the BCTo dis-
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Figure 5: The cyclical P-spline smoothing terms for month for models for µ, σ and ν,

from the model for the positive values of streamflow, with 95% confidence regions.

tribution was best for the data. The selected lagged variables for lnµ, lnσ and ν,

similar to model for π0, suggest a delay before changes in the explanatory variables

have an impact on the positive streamflow distribution, and this delay is longer for

lnσ. The µ, σ and ν models each have a cyclical smoother for month, indicating that

location, variation and skewness are all affected by the month of the year; these fitted

terms are shown in Figure 5. Note that of the environmental explanatory variables

(soi, eof1 and eof2 ), only soi appears (in the µ equation). Also note the acf and pacf

functions of the residual of the model (not shown here) do not indicate a residual

auto-correlation pattern. In the next section we combine the two components of the

model to create the full zero-adjusted model.
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4.1.3 The full zero-adjusted model

Equations (4.4)–(4.8) define the full zero-adjusted BCTo model. Using STEP 6 (a)

and (b) of the procedure described in Supplementary material , we fit the final chosen

model. Figure 6 shows the worm plot (a detrended QQ-plot, Van Buuren and Fredriks

, 2001) and the bucket plot (De Bastiani et al., 2022) from the residuals of the full

zero-adjusted BCTo model. Note that the worm plot is good for checking departures

from the distributional assumptions in general, while the bucket plot more specifically

detects skewness and kurtosis. In the worm plot, one expects approximately 95% of

the points (the worm) to fall within the 95% pointwise confidence interval (gray area)

in an adequate model, which is the case for our zero-adjusted BCTo model.

The bucket plot provides a visual tool for checking whether the moment-based skew-

ness and kurtosis are present in the residuals of a fitted model. The presence of

skewness and/or kurtosis in the residuals usually reflects the fact that the assumed

response distribution is inadequate. The model point (mbct) falls within the shaded

elliptical region at the centre of the plot, which represents a 95% confidence region

for a Jarque-Bera test, indicating that there is no evidence that the moment skewness

and moment excess kurtosis of the residuals are different from zero. There is there-

fore no evidence that the zero-adjusted BCTo model is inadequate. (While the worm

and bucket plots that we have checked show no violation of the model assumptions,

for a thorough residual analysis multiple worm and multiple bucket plots should also

be checked.) In conclusion it seems that the zero-adjusted BCTo model of Equations

(4.4)–(4.8) provides an adequate fit for our data.
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Figure 6: (a) Worm plot and (b) bucket plot from the residuals of the zero-adjusted

model for streamflow.

5 Conclusions

GAMLSS is a “beyond mean regression” model (Kneib, 2013), while P-splines is a

“beyond linear models” methodology. Combining the two methodologies creates a

very powerful tool for the exploration and modelling of complex relationships. The

simplicity and the versatility of P-splines also allows prior knowledge about the rela-

tionships to be accommodated (e.g. cyclical behaviour), which simple amendments

to the original P-spline code allow.

Within GAMLSS this versatility is extended into studying other characteristics of

the distribution rather than just the mean. We have demonstrated the power of the

combination of these tools in a zero-adjusted GAMLSS model, with a strongly skewed

distribution for the positive component (the Box-Cox t distribution), and predictors

for the zero probability parameter and three of the four BCTo distribution parameters

all contained P-spline terms, including cyclical P-splines. The advantage of any zero-
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adjusted model fitted using GAMLSS and P-splines is that it simultaneously provides

both an explanation of the generating data process and probabilistic predictions for

future values. The procedure suggested in Supplementary material for choosing the

model is rather slow, but it ensures that the appropriate variables and their interac-

tions are selected. There is great scope for future work to improving the procedure.

In our application, the modelling could be used in decision making by farmers and

water authorities. Similar types of data are very common in environmental, medical

and econometric studies and there is great scope for future work building on this

approach for prediction.

We are indebted to Brian Marx for his contribution to statistical modelling. We are

proud that we met him and that he considered us his friends. The comment he made

on the eve of the short course given by Alan Agresti at the IWSM in Linz, “seeing

Alan is like seeing the Rolling Stones”, still makes us smile.
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