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Abstract—Finite element (FE) modelling integrated with 

lifetime prediction models is an attractive and powerful 

approach for predicting and improving the thermal fatigue 

reliability of power electronic components and modules 

subjected to temperature cycling loads. The challenge with the 

FE-based modelling approach is the model development effort, 

device characterisation data requirements and the 

computational cost of the high-fidelity simulation. This paper 

presents a modelling methodology for developing fast and user-

friendly damage prediction models for power components that 

benefit from the combined deployment of meta-modelling and 

machine learning (ML), using physics-informed damage data. 

The main attribute of the meta-modelling framework is the FE-

like mapping of the spatial distribution of the thermal fatigue 

damage parameter in the local domain of the failure site. The 

thermal fatigue predictions for the planar solder 

interconnection layer in a conventional wire-bonded, Si-based 

Insulated-Gate Bipolar Transistor (IGBT) power electronic 

module (PEM) are demonstrated using the proposed 

methodology under parameterised thermal cycling load. The 

results show that the metamodel with location-dependent model 

parameters can retain the accuracy of damage predictions 

obtained with the full-order FE simulations and can accurately 

inform on the damage spatial distribution in the solder layer. 

The metamodel is found to have superior performance 

compared to a unified Neural Network model with the same 

spatial damage prediction attribute. 

Keywords — Power components, IGBT, reliability, solder 

interconnects, metamodels, thermal fatigue, damage, Machine 

Learning 

I. INTRODUCTION 

Power electronic components are used to convert and 
control electrical energy, and therefore they are widely used 
in many applications ranging from renewable energy (e.g. 
solar and wind power) and smart grids to electric vehicles and 
industrial drives to consumer appliances and chargers of 
electronic devices [1]. One of the main driving forces of the 
power electronics technology along with cost, volume, 
weight, and functionality is reliability. The reliability of power 
electronic packages is a serious concern and a major challenge 
for the end-users of power electronic components and 
modules because high-reliability requirements mark almost 
any application of power electronics [2,3]. Despite the 
significant body of reliability-focused research and studies in 
the public domain, on technology, design, test and simulation, 
the informed deployment of packaged power electronic 
devices in different applications remains a challenging task. 
To assure the required reliability of power components under 
application-specific load conditions, end-users must carry out 

time-consuming and costly activities, e.g. substantial physical 
and reliability tests, often complemented with complex high-
fidelity physics-based simulations, to characterise, evaluate 
and assure their reliability performance [4,5].  

The deployment of reliability assessment approaches that 
rely on simulating the physics-of-failure in the power 
electronic components is increasingly recognised as a 
powerful and efficient strategy to gain insights into the 
reliability performance and lifetime of power electronics [6]. 
While several failure modes and mechanisms at the package 
level can occur and thus have a direct impact on reliability, it 
is the thermal fatigue damage which is of prime concern [5]. 
Temperature cycling loads make the die attachment and 
interconnection layers (commonly solder) and the wire bonds 
susceptible to failure under modes such as interfacial cracking 
and lift-off, receptively. Both solder interconnection layer 
damage modelling, for example [7,8], and wire bond lift-off 
failure simulations, for example [9,10], have received 
extensive attention in power electronics reliability studies. 

The design and manufacture of a power electronic 
component is a challenging task that requires careful 
consideration of the device's performance in the electrical, 
thermal, and mechanical domains. The functional 
performance and characteristics are regarded as being the 
most critical from an end-user point of view and therefore are 
comprehensively detailed in the manufacturer’s component 
datasheets. However, other characterisation data (for example 
internal package construction, geometric dimensions, 
materials, and material properties) is typically not included in 
the manufacturers’ technical datasheets because of Intellectual 
Property (IP) and know-how protection reasons and 
considerations. 

Although power electronic components are increasingly 
designed to deliver an adequate reliability performance, these 
parts are still designed and manufactured by large in a non-
specific application manner. The current position is that any 
deployment of physics-of-failure modelling requires the end-
user to undertake a full characterisation of the power 
component or module of interest, deploying different 
experimental characterisation techniques, to gather the 
required data on the device. This data can then support the 
respective damage mechanics model development, e.g. finite 
elements based, that can be used to predict the damage 
induced in the assembly materials under the user-defined 
application or accelerated life test load condition. High-
fidelity model development and simulation on its own is a 
challenging task as it needs specialised modelling skillsets and 
software and is also time-consuming to develop and run. 

To improve on this current position, alternative modelling 
approaches are needed to offer simple, fast-to-run, and 
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accurate models that can be deployed with ease by the end-
users, for example in line with the surrogate modelling 
strategies in [11-14]. 

In this paper, a reliability metamodeling methodology for 
power electronics modules that allows for the assessment of 
the damage due to application loads without the need for 
comprehensive data characterisations, specialised simulation 
software and specialised modelling skills is proposed and 
demonstrated. The novel attribute of the approach which 
makes it useful and deployable, apart from the superior 
computational efficiency, is the enhanced level of fidelity, 
enabling the spatial distribution prediction of the damage 
parameter in the power assembly materials at the local failure 
site. The proposed metamodels can thus benefit the 
deployment of different lifetime models available in the public 
domain which by large are not standardised and can require as 
input damage spatial distribution information. 

II. META-MODELLING METHODOLOGY 

A. Metamodeling of Damage Spatial Distribution using 

Multi-Quadratic Functions 

Traditionally, the Response Surface (RS) approach in 
engineering has been considered and used in the design-of-
experiments (DOE) investigations, and to support design-for-
reliability studies with a clear focus on the design exploration 
and optimisation of physical systems [15]. Most RS 
developments and applications remained limited to the 
construction of approximation- and interpolation-based 
surrogate models that encompassed the relationship between 
design parameters considered for improvement and a physical 
variable that needs to be predicted. However, the methodology 
has also the potential, not realised yet, to be utilised for the 
problem of product intellectual property (IP) protection while 
at the same time allowing for an adequate fidelity of the 
modelling prediction. In the context of this work, the model-
predicted parameter is the material damage accumulation in 
the failure site of the power device package under thermal 
fatigue loads of a specific application, and the increased level 
of fidelity of the metamodel is in the ability to predict the 
spatial distribution of the damage parameter over a user-
defined subspace liked to the failure site. 

The proposed computational methodology involves 
several steps, formulated here for the problem of modelling 
and predicting the thermal fatigue damage in the planar solder 
interconnection layer of a conventional IGBT wire-bonded Si 
chip power electronic module structure. Each step and the 
modelling data/results flow between the steps are fully 
automated. The automation of the steps is a key requirement 
to enable the practical realisation of the approach. The 
targeted metamodel structure takes as inputs the temperature 
load parameters and the spatial coordinates of locations that 
define the local domain of the failure site, and the model 
prediction is for energy-based damage metric for the solder 
material. Most commonly, the accumulated deformation 
energy per cycle (inelastic strain energy density, or plastic 
work, i.e. the area enclosed by the hysteresis loop) is used as 
a damage parameter and input in Morrow’s type of fatigue law 
to predict the cycles to failure 𝑁𝑓 [16,17]:  

𝑁𝑓 = 𝐴(∆𝑊)−𝐵 (1) 

where 𝐴  and 𝐵  empirically derived constants and ∆𝑊  is 
accumulated deformation energy per cycle, commonly 
derived as a volume-weighted average at the crack location. 

The workflow of the prosed methodology is as follows: 

Step 1: The PEM of interest is fully characterised (internal 
layout, geometric dimensions, bill of materials, material 
properties and non-linear constitutive laws). The temperature 
cycling load condition is parametrised and the limits of the 
design space for the load, informed by the application/ 
qualification test requirement for the PEM, are specified.  

Step 2: For the given PEM structure, a fully scripted high-
fidelity non-linear finite element model generation 
(parametric model) is prepared, and automated design-of-
simulations runs (load cases) in the thermal load design space 
are carried out. The simulation results are physics-informed 
datasets for the damage (plastic work) at the anticipated failure 
sites (the solder layer in this instance) as a function of the 
analysed load cycles. Damage results are extracted and 
processed in an automated manner and split into datasets for 
model development (training data) and model validation. 

Step 3: Deploy a robust multi-quadratic (MQ) metamodel 
structure to represent the load-damage relationships in the 
spatial domain of the failure site. The metamodel generation 
is extended to spatial location predictions through an approach 
where the MQ metamodel coefficients are made location-
dependent. The spatial location points are defined by the 
spatial coordinates of the FE mesh nodes or mesh elements’ 
centres at the failure site and chosen to allow visualisation of 
the metamodel precited damage distribution. 

Sub-step 3.1: For a given spatial location, construct the 
respective MQ model using the training data. Validate the 
model against the validation dataset. Extract the location-
dependent model coefficients. 

Sub-step 3.2: Repeat Sub-step 3.1 until the metamodel is 
developed for all spatial locations of interest for the failure 
site. Use the final model to predict the spatial distribution 
of material damage under an arbitrary temperature cycle 
load within the load space.  

The workflow of the proposed methodology is 
schematically outlined with the block diagram given in Fig. 1. 

 

Fig. 1. Methodology for physics-informed multi-quadratic meta modelling.  



 

 
Underpinned by physics-of-failure data for the PEM 

solder damage, and locational damage distribution data 
informed by the FEA analysis, the final metamodel can 
provide predictions not only for the characteristic damage 
value of the respective failure mode (i.e. crack of the solder 
layer) but a much more detailed prediction for the spatial 
distribution of the damage parameter. The model does not 
require any other input data (e.g. no geometric and material 
data) apart from the load condition under which the damage 
needs to be predicted. The availability of damage spatial 
distribution is a major advantage because it enables a robust 
deployment of different lifetime models in the public domain. 

B. Neural Network Model Extension 

The availability of physics-informed datasets also supports 
the use of machine learning (ML) methods for the 
development of an MQ-equivalent metamodel. Regression 
type Artificial Neural Network (NN) model structure suits 
well the data and the task. Unlike the MQ metamodeling 
approach, the datasets for NN model development are further 
processed in the form of unified labelled data where the input 
is specified as a multi-dimensional vector combining both the 
temperature cycle parameters and the coordinates of the 
spatial locations. The approach also favours the deployment 
of an enlarged training dataset which can combine both the 
prime FE-based data and additional MQ metamodel generated 
data if the accuracy of the MQ metamodel is acceptable. 

III. DEMONSTRATION CASE STUDY 

A. IGBT Power Module  

The power electronic module in this study is a 
conventional IGBT package as schematically illustrated in 
Fig. 2.  In this architecture, the Si chip (IGBT) is attached to a 
ceramic substrate such as Alumina (Al2O3) or Aluminium 
Nitride (AlN). The substrate has copper metallization on both 
sides that realises the required current circuitry and contact 
terminals for interconnections and bus bars. The copper 
metallization layers are formed through direct thermal 
bonding, giving the name direct bond copper (DBC) substrate. 
The chip is attached to the DBC substrate by soldering, and 
similarly, the chip/DBC substrate assembly is attached with a 
solder layer to the baseplate.  The baseplate is typically made 
of Cu or AlSiN and provides the required structural integrity 
of the entire PEM package. To allow for enhanced thermal 
management, most PEM applications deploy a heat sink 
attached to the baseplate. 

 

Fig. 2. Schematic of a typical IGBT power module packaging architecture.  

B. Thermo-mechanical Finite Element Model  

A 3D FE slice model of the IGBT module is deployed, 
encompassing a single wire of the device and the complete 
layered structure through the full thickness of the package. 
Fig. 3 (top) shows details of the PEM and the 3D slice section 
as a CAD model, which, in turn, underpins the respective 

thermo-mechanical finite element model. The FE model takes 
advantage of the existing symmetry plane along the 3D slice 
(X-Z), and hence only half of the demonstrated CAD domain 
is used and meshed. The backplane of the FE slice model has 
a coupled-node (DOF Y) boundary condition. Fig. 3 (bottom) 
also details the finite element mesh and the bill of materials 
for this PEM. The interconnection material between the Si 
chip and the copper layer on the AlN substrate is 96.5Sn3.5Ag 
solder alloy, and similarly between the DBC substrate and the 
AlSiC baseplate. The thickness of each of the two solder 

layers is 100 m. The visco-plastic material behaviour of 
solder is modelled with the Anand constitutive law, with 
model constants for 96.5Sn3.5Ag solder as detailed in [18].  

The aluminium wires have a diameter of 375 m and are 
modelled with time-independent bilinear kinematic hardening 
constitutive law and temperature-dependent yield strength as 
given in [19].  

 

Fig. 3. Topology outline of the power electronic module architecture, with 

a close view of the IGBT chip and wire bonds and 3D CAD slice model of 

the device along the full length of the module, capturing a single wire and a 
full solder layer slice (top), and close view of the FE mesh density at the 

solder layer level, and annotation labels of the bill of materials (bottom).  

The thermo-mechanical simulations are implemented and 
executed in a fully automated manner using ANSYS APDL 
FE simulation software command language and macro script 
functionality. Each thermal cycle profile is evaluated with a 
separate simulation run for that load case. A temperature cycle 
load was defined with two parameters: (1) the low-
temperature extreme value 𝑇𝑚𝑖𝑛  and the temperature range 
∆𝑇 of the cycle. Although in this study the ramp and dwell 
times of the cycle are kept fixed for simplifying the 
demonstration of the methodology, these parameters can be 
also added to the definition of the cycle load profile. A non-
linear transient simulation with the outlined 3D slice model, 
for a given cycle load, required about 50-65 minutes of high-
performance computing run using parallel shared memory 
with 16 processors on Intel(R) Xeon(R) processor workstation 
at 2.20 GHz, with 10 cores and 20 logical processors. 

Fig. 4 shows an example of FE simulation predictions for 
the plastic work range per cycle (∆𝑊 ) in the solder layer 
between the Si chip and the DBC substrate. The plastic work 
accumulated per one temperature cycle with a stabilised 
hysteresis loop (i.e. inelastic strain energy density per cycle) 
is a common damage parameter for the thermal fatigue of 
PEM’s planar solder interconnection layers.  



 

 

 

Fig. 4. An example of FE simulation prediction of the plastic work range 

(damage parameter) magnitude (J/m3) and distribution in the SnAg solder 
layer of the IGBT power module.  The interfacial layer of solder with the 

chip is the location where the crack is nucleated and starts to propagate. 

C. Datasets for MQ and NN Meta-modelling 

The data required for metamodel development is 

generated with the parameterised thermo-mechanical finite 

element model and the automated run of 31 load-case 

simulations. Each analysis is a simulation of the PEM 

response to a particular passive temperature cyclic load that 

is defined with the minimum temperature and the magnitude 

of temperature excursion of the load, (𝑇𝑚𝑖𝑛 ,  ∆𝑇)
𝑖
 ,  𝑖 = 1, 𝑚, 

where in this investigation 𝑚=31. A subset of 21 load cases 

is used to develop the metamodels (training data), and the 

remaining 10 load cases are used for validation of the 

metamodel accuracy against the respective FEA results. The 

cycling load profiles used to generate the training dataset are 

defined as follows: 

• 6 levels of 𝑇𝑚𝑖𝑛 , from -55°C to 145°C (step 40°C) 

• 6 levels of ∆𝑇, from 40°C to 240°C (step 40°C) 

In the above load-case matrix, only the load cases for 

which the combination of (𝑇𝑚𝑖𝑛 ,  ∆𝑇) results in a maximum 

temperature of the cycle not exceeding 185° are retained in 

the training dataset (with the other data points excluded). The 

additional 10 load cases used to validate the developed 

metamodels are listed in Table I. 

TABLE I.  LOAD-CYCLE CASES FOR METAMODEL VALIDATION 

Load 
Load Case Ref. Number, # 

1 2 3 4 5 6 7 8 9 10 

𝑻𝒎𝒊𝒏 (°C) -35 -35 -35 -35 5 5 5 45 45 85 

∆𝑻 (°C) 100 140 180 220 60 100 140 60 100 60 

 

Metamodels with the capability for mapping the spatial 

damage distribution, as obtained with a full-order FE 

simulation, are constructed for the spatial domain of the 

solder layer between the chip and the DBC substrate. In this 

instance, because of the 3D slice nature of the FE model and 

the negligible damage variation through the slice thickness 

(Y-direction), the metamodel predictions are needed only for 

a single X-Z mesh elements cross-section of the solder layer. 

Without any limitation, metamodel mapping of the spatial 

distribution of damage in the true 3D local spatial domain can 

be achieved identically but considering the complete (X, Y, 

Z) location coordinates. The spatial locations for which the 

metamodels provide damage predictions are defined by the 

FE mesh element centre locations in this study (or alternately 

can be selected as the mesh nodes) for the mesh elements in 

the spatial domain of the failure site. The FE mesh of the 

solder layer X-Z cross section is defined by a mesh grid with 

the size of 52×4 (along X and Z directions respectively), thus 

resulting in 208 spatial locations with coordinates 

 (𝑋, 𝑍)𝑗 ,  𝑗 = 1, 2, … , 208.  

The training dataset to derive the MQ metamodel structure 
parameters for each of these spatial locations is given with the 
load data points, (𝑇𝑚𝑖𝑛 ,  ∆𝑇)

𝑖
 ,  𝑖 = 1, ,2, … ,21, in the training 

dataset. However, for the NN model, the training dataset is 
modified. The point location parameters are to be directly 
included as inputs to the NN model structure, thus giving a 
dataset where each point is a 4-dimensional input vector, 
(𝑇𝑚𝑖𝑛 ,  ∆𝑇, 𝑋, 𝑍)𝑖  , 𝑖 = 1, 2, … , 4368 , and each such data 
point is labelled with the corresponding damage value ∆𝑊 for 
the load and the location obtained with the FEA. The size of 
the training dataset for developing an NN model is the product 
of the load cases (21) and the number of spatial locations 
(208). Data is normalised in [0,1] using the actual range of 
each input parameter in the training dataset. The same 
procedure for dataset creation is followed with the load-cycle 
cases for metamodel validation, resulting in 2080 validation 
data points (10 load cases and 208 spatial locations).  

D. MQ Meta-modelling of Solder Damage 

The multi-quadratic (MQ) metamodel structure 𝑀𝑄(𝑋) 

[20] is defined as: 

𝑀𝑄(𝑋) = ∑ 𝑎𝑗
𝑝
𝑗=1 √|𝑋 − �̅�𝑗|2 + ℎ                   (2) 

where 𝑋 ∈ 𝑅𝑛 is the model input data point, i.e. the vector of 

n input model parameters, �̅�𝑗 ∈ 𝑅𝑛  are the metamodel 

training points (𝑗 = 1, … , 𝑝) with known response values and 

h is the so-called shift parameter. The coefficients 𝑎𝑗  are 

derived by forcing the function in (2) to interpolate (i.e. fit 

exactly) the given set of response values (�̅�𝑗, 𝑀𝑄(�̅�𝑗)) for 

the data points deployed in the model development ( 𝑗 =
1, … , 𝑝). This requirement results in solving a linear system 

of 𝑝 equations with the coefficients in the MQ model 𝑎𝑗 (𝑗 =

1, … , 𝑝) as unknowns. The optimal value obtained for this 

problem and the normalised values datasets is ℎ = 0.00001. 

The processing and manipulation of datasets, coding of 

the MQ model structure and solving the metamodel structure 

parameters are implemented using MATLAB. The load data 

points in the training dataset are used to compute the MQ 

model coefficients, and this is done separately for each spatial 

location in the representee solder X-Z mesh slice. The entire 

calculation process is automated for all locations. Following 

this, a metamodel is derived where the model coefficients are 

location-dependent and computationally can be easily 

handled in a matrix form. At the training points, the MQ 

model predictions have zero error because of the interpolation 

attribute of the model structure. Hence, the accuracy of the 

model can be evaluated based on the observed predictive 

performance for the data points in the validation dataset.  

Fig. 5 shows the accuracy of the MQ metamodel, by 

plotting the actual FE simulation predictions vs. the 

metamodel predictions for the datapoints in the validation 

dataset. Both the MSE and the R-squared values show that 

the MQ offers exceptional accuracy for predicting the 

damage parameter value ∆𝑊 at the locations of interest and 

under varying load conditions. Given the highly non-linear 

spatial distribution of the damage parameter in the solder 

layer, as illustrated well with the example in Fig. 4, the MQ 



 

 

metamodel was able to achieve a very robust performance 

and exceptional, FE model-matching, accuracy. 

 

Fig. 5. Predicted values with MQ metamodels vs. actual FEA values of the 

[0,1]-normalised plastic work range per cycle values ∆𝑊 obtained for the 

validation dataset (2080 data points). Each data point in the validation dataset 

represents a cyclic thermal load condition (𝑇𝑚𝑖𝑛 , ∆𝑇) and a solder layer X-Z 

cross-section spatial location defined by (X, Z). 

E.  NN model of Solder Damage 

The availability of labelled datasets also suits the 

deployment of machine learning algorithms in the task of 

creating regression-type predictive models. As an alternative 

to the MQ metamodeling approach, the training dataset is 

used to train a regression Neural Network model structure 

with four inputs, (𝑇𝑚𝑖𝑛 ,  ∆𝑇, 𝑋, 𝑍), and a single output, ∆𝑊. 

The MATLAB scientific programming environment is used 

to realise the NN model development, by deploying a 

hyperparameter optimisation procedure during the training 

process. A fully connected model structure with 3 hidden 

layers and size (60, 50, 170), and the rectified linear unit 

(ReLU) activation function for the fully connected layers of 

the neural network model, were found to minimise the loss 

function most effectively. 

 

Fig. 6. Predicted values with the Neural Network model vs. actual FEA 
values of the [0,1]-normalised plastic work range per cycle values 

∆𝑊 obtained for the validation dataset (2080 data points). Each data point in 

the validation dataset represents a cyclic thermal load condition (𝑇𝑚𝑖𝑛 , ∆𝑇) 

and a solder layer X-Z cross-section spatial location defined by (X, Z). 

The accuracy of the NN model is detailed in Fig. 6. 

Although the actual FEA values of the damage parameter are 

still predicted reasonably well by the NN model, the accuracy 

is not as good as with the MQ metamodel. This is attributed 

to the explicit increase of the input vector dimension and the 

highly non-linear relationships of the damage on one side and 

the load location on the other. An approach that can help 

improve the accuracy is to generate additional synthetic data 

for training with the more accurate MQ model, which - as it 

has been proven – can provide predictions with accuracy like 

the FE physics-based simulation. 

IV. RESULTS AND DISCUSSIONS  

The validation of accuracy for the MQ and NN models 

detailed in the previous section suggests that both physics-

informed MQ metamodel and NN model have very good 

predictive power, but the MQ metamodel is superior and can 

deliver predictions that match very closely the actual FEA 

predictions for the parameter of interest (∆𝑊). This is an 

important result because it demonstrates that the 

metamodeling approach can indeed map physical parameter 

predictions with highly non-linear spatial distribution (very 

different magnitudes) over many spatial locations that can 

represent with a sufficient level of detail the topology of a 

local failure site. The approach is also scalable, particularly 

in expanding the number of spatial locations for which the 

metamodel can provide predictions. This offers opportunities 

for reasonably detailed and informative mapping of physics-

based parameter results in 3-dimensional subdomains of a 

physical system. 

Finite element model and the corresponding MQ 

metamodel predictions for the ∆𝑊at the failure site of interest, 

for the validation Load Case #7 (Table I, cycle profile defined 

with 𝑇𝑚𝑖𝑛 = 5℃ and ∆𝑇 = 140℃), are shown in Fig. 7. The 

contour plots visualise the X-Z plastic work range per cycle 

distribution in the solder layer.  

 

Fig. 7. Damage map of solder die attachment layer (given with the contour 

plots of the spatial distribution of the inelastic strain energy density, or plastic 

work, in J/m3 accumulated over one temperature cycle) predicted with finite 
element model (bottom) and MQ metamodels (top). Results are for the 

validation load case #7 defined 𝑇𝑚𝑖𝑛 = 5℃ and ∆𝑇 = 140℃.  

The two plots in Fig. 7 use the same legend scale to allow 

for the direct visual compassion of the presented results. 

These contour plot results show practically identical 

predictions of the damage distribution using the same mesh-

based resolution mapping. The MQ model predictions match 

the FE contour plot scale bands across almost all 208 (mesh-

defined) spatial locations, except for a few. The relative 

difference between the maximum plastic work range per 

cycle values obtained with the FE and MQ metamodel is 

0.05%.   



 

 

A comparative analysis of a characteristic damage value 

for the solder commonly used with lifetime models, in the 

form of a volume-weighted average (VWA) ∆𝑊𝑎𝑣𝑒  of the 

∆𝑊 values is demonstrated in Fig. 8. The total volume for the 

VWA calculation is the solder subdomain where the 

maximum plastic work concentration is predicted, at the Si 

chip interface and periphery (the encircled mesh elements in 

Fig. 4). Statistical measures for the relative errors,  𝜀𝑟𝑒𝑙 in %, 

of the ∆𝑊𝑎𝑣𝑒  predictions obtained with FEA and MQ 

metamodel, and FEA and the NN model, across the ten 

validation load cases are detailed in Table II. The average 

relative difference in the ∆𝑊𝑎𝑣𝑒 value from the FE and MQ 

models is 0.09%, and in the case of the FE and the NN models 

the average relative difference is 0.85%. While in the latter 

case, the statistical measure still indicates the high accuracy 

of the NN model,  the error is one order of magnitude higher 

compared with the same error for the MQ metamodel. Across 

the validation load cases, the largest relative error between 

the FEA and the MQ metamodel was found with load case #8 

(𝜀𝑚𝑎𝑥
𝑟𝑒𝑙 = 0.28%), and for the FEA and NN model this was for 

load case # 5 ( 𝜀𝑚𝑎𝑥
𝑟𝑒𝑙 = 2.69%). In conclusion, both MQ 

metamodel and NN are viable model substitutes of a full-

order FEA if calculating the damage characteristic value for 

cycles to failure predictions using  Coffin Manson or Morrow 

empirical lifetime models. 

 

Fig. 8. Solder layer characteristic VWA damage values of plastic work 

range per cycle ∆𝑊𝑎𝑣𝑒  obtained by high-fidelity non-linear FEA, MQ 

metamodel, and the unified Neural Network model for the 10 different model 

validation load cases. 

TABLE II.  VALIDATION DATASET STATISTICAL MEASURES FOR THE 

RELATIVE ERROR BETWEEN MQ/NN AND FEA PREDICTIONS FOR ∆𝑊𝑎𝑣𝑒 

 

Relative error 𝜺𝒓𝒆𝒍 (%) 

Min 

𝜀𝑚𝑖𝑛
𝑟𝑒𝑙  

Max 

𝜀𝑚𝑎𝑥
𝑟𝑒𝑙  

Mean 

𝜀𝑚𝑒𝑎𝑛
𝑟𝑒𝑙  

Std Dev 

Model 
MQ 0.0072 0.282 0.088 0.087 

NN 0.1962 2.692 0.853 0.910 

 

The study shows that the proposed metamodeling 

modelling approach is very robust and capable of producing 

model predictions for non-linear damage parameters in PEM 

assembly materials and their spatial distribution in local 

failure sites with the accuracy of a full-order finite element 

simulation. But the metamodels have in addition several 

important advantages. End-users can evaluate the PEM 

reliability performance under different load conditions posed 

by the application, and manage operational usage, without the 

need to fully characterise the PEM and to use advanced FE 

software. Metamodels give predictions in real time, unlike a 

non-linear FE simulation which can take minutes and hours 

to complete. 

V. CONCLUSIONS 

A methodology for metamodeling is proposed and 

demonstrated for the problem of predicting the thermal 

fatigue damage in the solder interconnection layer of an 

IGBT power electronic module. The main novelties in this 

work, taking the standard Response Surface Approach for 

design optimisation and design exploration analysis beyond 

the current state-of-the-art, are: 

• the extension of the physical parameter prediction to 

the spatial domain, enabling FE-like results for the 

parameter distribution in a local (failure) site of the 

physical domain, and this result visualisation. While 

demonstrated only for the spatial domain, the 

proposed models can also be tailored to allow the 

prediction of results in the temporal domain. 

• the deployment of a very accurate, highly non-linear 

multi-quadratic metamodel structure, with a model 

parameter to tune (optimise) the prediction accuracy; 

• MQ model structure that, following validation, can 

efficiently generate large datasets of synthetic 

physics-informed physical parameter data for 

developing more complex and multi-dimensional 

Neural Network models for predicting highly non-

linear behaviour of the response data. 

 

The advantage of the proposed metamodels is that no PEM 
characterisation data is required to run these models, and the 
runtime of analysis is only a fraction of the time that the FE 
simulation takes. The proposed models can be provided by 
PEM manufacturers as part of the respective module technical 
datasheets or as supplementary product reliability assessment 
features, to allow for the component IP protection while 
enabling the end-users to assess the reliability performance of 
the PEM under the loads and conditions of their application. 
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