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Summary

This work concerns the structural vibration of a bladeless wind turbine, modelled by a two-deck
Euler–Bernoulli beam, due to a surrounding potential flow. The deflection is governed by the
Euler–Bernoulli equation which is studied first by a linear theory and then computed numerically
by a finite difference method in space with a collocation method over the arc length, and an
implicit Euler method in time. The fluid motion in the presence of gravity is governed by the
full Euler equations and solved by the time-dependent conformal mapping technique together
with a pseudo-spectral method. Numerical experiments of excitation by a moving disturbance on
the fluid surface with/without a stochastic noise are carried out. The random process involved in
generating the noise on the water surface is driven by a Wiener Process. A Monte Carlo method
is used for stochastic computations. The generated surface waves impinge on the beam causing
structural vibration which is presented and discussed in detail. By elementary statistical analysis,
the structural response subject to the stochastic hydrodynamic disturbance caused by white noise
is found to be Gaussian.

1. Introduction

A wind turbine is an engineering masterpiece that converts kinetic energy from the wind into
electrical energy. It is eco-friendly with zero emissions and sustainable as renewable energy is
collected. Many different types have been designed to improve the efficiency and reduce the
manufacturing cost. The most common configuration consists of a large beam with blades atop.
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2 Z. LIU ET AL.

Fig. 1 Schematic of a cylindrical bladeless wind turbine.

The reader may refer to (1–3) for a review. More recently, a novel project regarding vortex-
induced bladeless wind turbines (BWT) was introduced by a tech firm called Vortex Bladeless.
A comprehensive work by (4) studied the dynamic modelling of such context. In general, a BWT
consists of a mast body mounted on a base via a flexible rod whose bottom is anchored to the ground.
A schematic of a cylindrical BWT is presented in Fig. 1. In the article, we investigate the interaction
of a BWT surrounded by a potential flow of shallow depth, which has potential applications in
possible offshore installation.

The BWT can be considered as a classic Euler–Bernoulli beam whose history can be traced back
to 1750 when two famous mathematicians (see (5)) introduced a linear partial differential equation
(PDE), in one-dimensional space and time, which was used to characterise small deflections of
a beam structure under the effect of a lateral load. Many different application areas, for example
the structural design and analysis of cable-stayed bridges, roofs of football stadiums, high-rise
buildings, and soil retaining walls, amongst others, with varying scales of loading. The motivation
behind this work originated from the potential risk of structural damages caused by external strong
impact forces such as those generated by floods, earthquakes or wind gusts. A good understanding of
such vibration using mathematical analysis and computations has always been essential and greatly
beneficial to the civil engineering community. Much work has already been achieved so far in the
significant interest of wind loads (see for example (6–8) and the references therein). In this work, a
valid numerical scheme based on a finite difference method by using the arc length as the canonical
variable is introduced to compute extreme solutions with overhanging structures. Another important
application is highlighted by beam-like structures in contact with water, for example, dams, long-
span bridges, breakwaters and navigation locks, dam-reservoir systems and aircraft wings. It has
been intensively studied in offshore engineering to understand the dynamical behaviour of the fluid–
structure interaction, for example in the event of an earthquake, due to the interest of safe design and
life time prediction. A comprehensive literature review can be found in (9). Early work described in
the pioneering work of (10) in which the hydrodynamic loads were taken as an added mass attached
to the interface between the structure and the water. Such a simplified model has been widely adopted
in some codes of practice for example (11, 12). Other work incorporated more complex features
together with other numerical approaches such as a finite element or boundary element method
(see for example (13)). A structural analysis was conducted in (14) with different settings of the
surrounding water domain. In recent years, there has been an increase in research interest on this topic
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TWO-DECK BEAM 3

as there have been water-related catastrophes due to extreme weather leading to heavy rainstorms or
tsunamis which in turn cause flooding and damages in low-level areas. To this end, the current work
is focused on the flood-related problem in which the hydrodynamic loads are to be formulated by
the full Euler equations.

Water wave has been a major research topic to scientists for centuries due to the common presence
on the planet in the environment and daily life with multiple-scale features varying in the order of
millimetres to the order of kilometres. To reduce the complexity of this flooded problem, a surface
gravity wave is considered as the source of external load to the beam-like structure. The dynamics
of the fluid surface are formulated under the framework of a time-dependent conformal mapping
technique which was first pioneered in (15) and adopted by (16) in the context of water waves.
The flow structure beneath the surface, including the hydrodynamic pressure (to be coupled with
the beam structure), can be derived by elementary harmonic analysis and computed efficiently
via the fast Fourier transform as shown in (17) and successfully applied to various problems
(18–20). More recently, Flammarion and Pelinovsky conducted a statistical analysis of random
water wave fields under the framework of the Benjamin–Ono equation in (21). For the present
problem, it is also reasonable to include the effect of a stochastic disturbance in the dynamic
boundary condition on the free surface to address the randomness in the surrounding environment.
Stochastic computations are achieved in Monte Carlo simulations and followed by statistical
analysis.

The purpose of the article is twofold: a. to model the beam–fluid interaction and conduct
computations by a valid numerical scheme that deals with such coupling; 2. to understand the
stochastic behaviour of the beam structure caused by random disturbances on the water surface.
The article is structured as follows. The detailed formulation and numerical schemes are shown in
sections 2 and 3. The computational results are presented and discussed in section 4. A concluding
remark is made in section 5.

2. Formulation

A cylindrical BWT of height H is considered in a two-dimensional Cartesian coordinate system.
It stands on flat ground and is surrounded by a potential flow of water with density ρ and mean
depth h on both sides of the beam. Mean depth h is assumed to be small in comparison to H. The
gravitational force acts in the negative y direction. At the fixed end on the bottom, the vibration of
the base due to the pressure exerted by the water flow is no longer negligible as in the literature. Two
different materials are considered for the base and the mast body with the former being much more
rigid than the latter. Such physical feature is quantified by flexural rigidity or bending stiffness. All
the structural properties are assumed to be uniform and time-independent. The notations are listed
in Table 1. It is noted that the base is much more rigid than the mast. An illustrating representation
of the BWT with various variables is presented in Fig. 2. The water on the left-hand side remains

Table 1 The notations of the physical parameters for the mast and the base.

Mass per unit length Flexural rigidity Height

Mast ρ0 D0 H − l
Base ρ1 D1 l
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4 Z. LIU ET AL.

Fig. 2 Schematic of the problem.

stationary and is irrelevant to the current study. This is because the base of the BWT is significantly
more rigid than the mast, and the maximum water depth, h, does not exceed the depth of the base.
Consequently, in this context, the interaction between the water and the base can be approximated
as that with a solid wall. The ratio of h over H is assumed to be small and denoted by

δ = h

H
, (2.1)

in which δ � 1. As the base is much more rigid than the mast, we assume that

D0/ρ0

D1/ρ1
= O(δ2). (2.2)

A further assumption on the zero thickness of the beam is made.
Non-dimensionalisation is achieved by selecting

l,
√

l/g, ρg (2.3)

as the reference length, time and force per unit length. Under such scaling, the length of the base is
fixed to be 1. All the other notations remain unchanged in the rescaled system.

2.1 Water waves

The associated velocity potential and streamfunction are denoted by φ(x, y, t) and ψ(x, y, t)
respectively. The interface between the fluid and air is denoted by ζ (x, t). The fluid motion can
be described by the velocity potential which follows

∇2φ = 0, 0 < y < ζ + h, (2.4)

φy = 0, y = 0, (2.5)

φx = 0, x = 0, (2.6)
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TWO-DECK BEAM 5

ζt = φy − φxζx, y = ζ + h, (2.7)

φt + 1

2
|∇φ|2 + ζ + p = B, y = ζ + h, (2.8)

where B is the (time-dependent) Bernoulli parameter which can be eliminated by redefining the
velocity potential as

φ̃ = φ −
∫ t

0
B(t′)dt′, (2.9)

and p can be written as
p = P − Patm = 0, (2.10)

where P is the pressure in the fluid and Patm is the atmospheric pressure. The Bernoulli equation for
the free surface becomes

φ̃t + 1

2
|∇φ̃|2 + ζ = 0. (2.11)

All the other governing equations for the fluid remain unchanged. In the fluid body, the pressure
field can be computed by the Bernoulli equation (2.8), which yields

P = −φ̃t − 1

2
|∇φ̃|2 − y. (2.12)

2.2 Euler–Bernoulli equation and the linear theory

The deflection w(y, t) of the BWT is governed by the rescaled Euler–Bernoulli equation (5, 28, 30)

a(y)
∂4w

∂y4
+ ∂2w

∂t2
= Q(y, t)

R(y)
, (2.13)

where Q(y, t) is an external load acting on the beam, that is the force per unit length, subject to the
standard boundary conditions for a cantilever

w(0, t) = ∂w

∂y
(0, t) = ∂2w

∂y2
(H, t) = ∂3w

∂y3
(H, t) = 0. (2.14)

The coefficient a(y) and R(y) are defined by

a(y) = γ0 = D0

ρ0gl3
, R(y) = r0 = ρ0

ρ
, for 1 < y < H, (2.15)

a(y) = γ1 = D1

ρ1gl3
, R(y) = r1 = ρ1

ρ
, for 0 < y < 1. (2.16)

It can be easily seen that γ0
/
γ1 = O(δ2). By separating the variables, the solution of the Euler–

Bernoulli equation can be written in a series of modal compositions as follows

w =
∞∑

j=0

αj(t) φj(y), (2.17)
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6 Z. LIU ET AL.

where αj are the time coefficients and φj are the spatial eigenfunctions or the so-called natural modes.
By introducing the inner product 〈.,.〉 associated with the eigenfunctions defined by

〈f1, f2〉 =
∫ H

0
f1(y)f2(y) dy, (2.18)

and making use of the orthogonality condition, it can be deduced that

αj = 〈φj,
Q
R 〉

〈φj, φj〉 , (2.19)

where φj can be found to be in the form of

φj = b11 cos
(√

ωjy
) + b12 sin

(√
ωjy

)
+ b13 cosh

(√
ωjy

) + b14 sinh
(√

ωjy
)
, for 1 < y � H, (2.20)

φj = b21 cos
(√

δωjy
) + b22 sin

(√
δωjy

)
+ b23 cosh

(√
δωjy

) + b24 sinh
(√

δωjy
)
, for 0 � y < 1. (2.21)

Besides the boundary conditions (2.14), φj, φ′
j , φ′′

j , φ′′′
j from (2.20) and (2.21) are also matched at

y = 1 giving 4 extra conditions. Therefore, an 8 × 8 linear system for the coefficients bij is obtained.
The associated matrix has zero determinant yielding a solvability condition which is used to solve
for the ωj, usually referred to as the natural frequencies of the structure. In the limit when δ → 0,
the asymptotic behaviour of the φj near the base is written by

φj = (b21 + b23) + δ
1
2 (b22 + b24)

√
ωjy + 1

2
δ(b23 − b21)ωjy

2 + O(δ
3
2 ), (2.22)

in which the first two terms are found to be zero by imposing the boundary conditions at y = 0
from (2.14). Here, we restrict Q to be the hydrodynamic pressure exerted by water. The vibration
caused by aerodynamic pressure above the water surface can be computed and added into the solution
subject to a linear superposition but is not considered in this work so that Q is only non-zero in the
submerged region (y < h). In addition, we suppose that Q is of O(1), then there exists M ∈ R such
that sup

y<h
|Q| = M, which can be used together with (2.1), (2.19) and (2.22) to derive

αj = O(δ), w = O(δ2), for 0 < y < 1. (2.23)

As the deflection of the base is much smaller than the lengthscale of the water wave, it is reasonable
to assume that the base part acts as a vertical wall whenever it interacts with external forces due to
water flows. Also, the leading order term in the solvability condition for the natural frequencies is
written by

1 + ω2

12
+ cosh �

[(
1 − ω2

12

)
cos � − √

ω
(

1 + ω

3

)
sin �

]

+ sinh �
[√

ω
(

1 − ω

3

)
cos � − ω sin �

]
= 0, (2.24)
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TWO-DECK BEAM 7

where � = √
ω(H − 1). In the case where H � 1, a simple rescale by choosing H as the reference

length can reduce (2.24) to

1 + cos
√

ω cosh
√

ω = 0, (2.25)

which is the characteristic equation of the natural frequencies for a uniform beam of unit length.
The ωj, up to the first-order accuracy, can be found by solving (2.24) using Newton’s method. It is

a straightforward exercise to derive the normal modes from (2.20) and (2.21), which are fundamental
in structural analysis and engineering assessment. Next, we follow to investigate the dynamical
response of the two-deck beam to the hydrodynamic pressure exerted by water waves for various
values of water depth. It will be achieved by a numerical scheme coupling the beam deflection and
the wave motion that is introduced in the following section.

3. Numerical scheme

3.1 Water dynamics

To compute the dynamics of the system (2.4)–(2.8), we employ a time-dependent conformal
mapping, first pioneered by (15) and then adapted in water wave problem by (16), which conformally
maps the physical domain into a simple geometry in the canonical plane. It has been successfully
applied to many different problems concerned with the dynamics of a free surface in (23)
for gravity waves, (22) for capillary–gravity waves, (24) for hydroelastic waves and (25) for
electrohydrodynamic waves. In particular, the numerical experiments of excitation of gravity solitary
waves were achieved numerically in (26, 27). Meanwhile, the approach can be used to examine the
flow structure in the fluid body given a free surface as shown in (18).

The pressure field in the fluid body can be then calculated from a given free surface y = ζ (x, t).
The core idea behind such a technique is to transform the complex boundary in the physical domain
[0, λ], where λ is the wavelength, onto a simple geometry in a new ξ − η plane that is a strip along ξ

in [0, L] of finite depth d in our case. We denote the variables on the surface by Y(ξ, t) = ζ (x(ξ ), t),
X(ξ, t) = x(ξ, ζ (ξ, t), t), �(ξ, t) = φ(x(ξ ), ζ (ξ, t), t), �(ξ, t) = ψ(x(ξ ), ζ (ξ, t), t). The explicit form
of the conformal mapping can be obtained by solving the boundary value problem

� y = 0, � φ = 0, �ψ = 0, 0 < η < d. (3.1)

y = 0, φη = 0, ψ = A, η = 0, (3.2)

y = Y, φ = �, ψ = �, η = d, (3.3)

in which � = ∂ξξ + ∂ηη is the Laplacian in the canonical plane. Using elementary analysis, one
obtains

Xξ = 1 − T[Yξ ], (3.4)

�ξ = T[�ξ ], (3.5)

d = 1 + 〈 Y 〉, (3.6)

where 〈.〉 and T are defined by

〈 f 〉 = 1

L

∫ L

0
f (ξ )dξ, (3.7)
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8 Z. LIU ET AL.

T[f ](ξ ) = 1

2d
PV

∫
f (ξ ′) coth

[ π

2d
(ξ ′ − ξ )

]
dξ ′. (3.8)

Here, ‘PV’ stands for Principal Value. The functions in the physical domain can be evaluated by

φx = φξ xξ + ψξ yξ

x2
ξ + y2

ξ

, (3.9)

φy = φξ yξ − ψξ xξ

x2
ξ + y2

ξ

, (3.10)

and those in the canonical plane can be computed from the surface variables as follows

y = F−1
[ sinh k(η + d)

sinh kd
F[Y]

]
+ η

d
, (3.11)

φ = F−1
[cosh k(η + d)

cosh kd
F[�]

]
, (3.12)

ψ = F−1
[ sinh k(η + d)

sinh kd
F[�]

]
− 〈� 〉

d
η, (3.13)

where F represents the fast Fourier transform. In terms of the new variables, the time-evolution
equations become

Yt = Yξ T
[�ξ

J

]
− Xξ

�ξ

J
, (3.14)

�t = �2
ξ − �2

ξ

2J
− Y + �ξ T

[�ξ

J

]
, (3.15)

where J = X2
ξ + Y2

ξ is the Jacobian of the conformal map. The hydrodynamic pressure in the fluid
body can be captured by using the Bernoulli equation (2.12) at an arbitrary level beneath the water
surface. The reader may refer to (18) for more details regarding the harmonic analysis.

A fourth-order Runge–Kutta method is employed to compute the fluid dynamics via (3.14)–(3.15).
For travelling waves with speed c, the system can be further simplified into one single equation

c2

2

(
1

J
− 1

)
+ Y = 0. (3.16)

The surface elevation can then be expressed as a Fourier series which is truncated after N terms

Y(ξ ) =
N∑

n=1

an cos

(
2nπξ

L

)
+ bn sin

(
2nπξ

L

)
, (3.17)

where the coefficients an, bn are unknowns. In all the computations, N = 2048 Fourier modes are
used. The domain [0, L] is uniformly discretised into N mesh points, and L = 200 is commonly used
in the computations. The dynamic equations (3.14)–(3.15) are evaluated on these mesh points. The
derivatives and the T-transform are computed via Fourier multipliers. The resulting system is solved
by Newton’s method. The l∞ norm of the residual error is set to be less than 10−10 for convergence
test. Such a fast and accurate numerical method has been proven to be robust and efficient.
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TWO-DECK BEAM 9

3.2 Beam deflection

The rescaled Euler–Bernoulli beam equation (2.13) is used to compute the beam deflection. The
problem is parametrised over the arc length in the range [0, H]. The N collocation points are chosen
to be uniformly distributed with a step size H

/
N along the domain

si = iH

N
, i = 1, 2, ..., N. (3.18)

The associated deflection is denoted by wi, that is wi = w(si). The boundary conditions in (2.14) can
be imposed by introducing four ghost points as follows

s−1 = −�s, s0 = 0, sN+1 = H + �s, sN+2 = H + 2�s, (3.19)

and setting

w0 = 0, w−1 = w1, (3.20)

wN+1 = 2wN − wN−1 (3.21)

wN+2 = wN−2 − 4wN−1 + 4wN . (3.22)

The dynamics of the beam equation (2.13) is computed by an implicit Euler method in time and a
second-order central difference scheme in space. The second-order equation (2.13) can be expressed
as two coupled differential equations of the first order by using the artificial variable v = ∂w/∂t as
follows

∂U

∂t
= MU + F, (3.23)

where

U =
(

w
v

)
, M =

(
0 1

−a ∂4

∂y4 0

)
, F =

(
0
Q
R

)
. (3.24)

The computation starts at t = 0 and ends at t = T when the beam completes interacting with the
incident water wave. In practice, T is selected to be 200, and the temporal step size �t is chosen to
be T

/
n. The discretised variables are denoted by

Uj
i =

(
w(si)
v(si)

)
, at t = tj = jT

n
. (3.25)

The matrix form of the backward Euler scheme can be written in the form of(
IN −�tIN

a�tM IN

)(
Wj+1

Vj+1

)
=

(
Wj

Vj

)
+

(
0

Q�t
/

R

)
, (3.26)

where IN is the identity matrix and M is the matrix containing finite difference replacement of
the fourth spatial derivative, characterised by central difference coefficients: 6 on the diagonal,
−4 on the adjacent diagonals, and 1 on the second diagonals, all scaled by the factor 1/(H/N)4.
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10 Z. LIU ET AL.

The two vectors V = [v1, v2, ..., vN ]T and Q = [Q1, Q2, ..., QN ]T are defined similarly as in wi.
Multiplying both sides by the inverse of the matrix from the left-hand side of (3.26) completes one
temporal increment. The numerical stability is guaranteed due to the nature of the implicit method.
The efficient performance of this scheme and its advantages over the finite element method were
discussed in detail in (28).

3.3 Summary

To summarise, a fast hybrid scheme is introduced to solve the problem of fluid–structure interaction
of a beam with its base immersed in an inviscid incompressible flow. The fluid dynamics is computed
by a Fourier spectral method combined with a fourth-order Runge–Kutta method whereas the beam
deflection is simulated by a finite difference scheme with collocation over the arc length together
with an Implicit Euler method. The two parts are coupled by the load term Q that is obtained by
by considering the pressure difference exerted on the two sides of the beam structure. The pressure
exerted on the left side of the beam is constant since the water level on that side remains unchanged
under the assumption that the beam acts like a vertical wall during the beam–fluid interaction. The
pressure beneath the surface exerted on the right side of the beam can be computed from the Bernoulli
equation given a surface profile as illustrated in (18). The elastic collision between the fluid and
the non-deformable submerged beam is achieved by using the method of images in an extended
domain [0, 2L] where two identical wave dynamics are simulated in [0, L] and in [L, 2L] respectively,
propagating in opposite direction towards the two boundaries x = 0 and x = 2L. The elastic collision
takes place at x = 0, where the two wave dynamics meet due to the periodic boundary from the
Fourier spectral method. In all the computations, the step sizes are selected as �ξ = 0.1, �s = 0.02
and �t = 0.01 for achieving high accuracy. The parameters of conventional materials for a wind
turbine are as follows

γ0 = 0.2, γ1 = 20, r0 = 2, r1 = 5, H = 10, (3.27)

which will be fixed in the subsequent computations.

4. Results

4.1 Dynamics

Numerical experiments conducted on excitation are described in this section. The free surface is
initially flat and under the effect of a single moving disturbances which is placed on the right hand
side of the beam at a distance and is switched on at the launch and switched off at a given time later.
The excited waves continue to propagate towards the beam and are reflected due to a collision. The
computations are stopped long after the end of fluid–beam interaction. To form nonlinear solitary
waves, fully localised forcing such as a normal distribution (see (22, 26, 27)) is being used. The
computational domain is fixed to be [0, 200]. The total displacement and the total curvature are
defined respectively by

w†(t) =
∫ H

0
|w(y, t)| dy, (4.1)

κ†(t) =
∫ H

0
|κ(y, t)| dy, (4.2)
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TWO-DECK BEAM 11

are introduced to quantify the bending. The expression for curvature κ(y, t) is:

κ(y, t) = wyy

(1 + w2
y)3/2

. (4.3)

For the integral (4.1) and (4.2), the integration interval from 0 to H represents the entire length of
the beam. The integral sums up the absolute values of the curvature over the entire length of the
beam, providing a measure of the total bending at time t. The absolute value is used to ensure that
all displacement and curvature contributions are positive, emphasizing the magnitude of the bending
without regard to the direction of the displacement and curvature.

4.1.1 Single pressure distribution. A single pressure distribution is considered as the disturbance
on the water surface in this subsection. It replaces p = 0 in (2.8) on the water surface and is initially
placed at x = d moving leftwards with a speed U under the form of

Pext(x, t) = Ae−(x−d+Ut)2
. (4.4)

It is switched on at t = 0 and later off at t = 20. Taking out the pressure at a certain point generates
a clean solitary wave rather than a periodic shedding of solitary waves (see (26)). The value for d
is chosen to be 80, far away from the beam-like structure, such that there is enough space for the
excited waves to propagate prior to the fluid–structure interaction. The wave dynamics after taking
out the pressure disturbance are to be investigated carefully. The velocity U is selected to be 1. In
the case where h = 0.5, the snapshots during the excitation stage are shown in the top two graphs
from Fig. 3. As can be seen from graph (a), a stable depression solitary wave is excited. The excited
waves continue to move towards and then collide with the beam situated at x = 0 as in graph (c) of
Fig. 3. After the interaction, the waves bounce back and travel in the opposite direction as depicted
in graph (d). Qualitatively similar surface displacements due to the moving disturbance have been
observed from the numerical experiments with the same setting for other water depths such as h =
0.2 and h = 1. We omit the details here. The associated beam deflections for several time domains,
or simply the range of the beam deflections, are depicted in Fig. 4. The graphs exhibit very similar
features. To make further comparisons of the structural behaviours, the time-evolution of w† and κ†

are sketched in Fig. 5. These two quantities remain zero until the propagation of the excited water
waves reaches the beam structure. The first interaction times obtained from the three experiments
for h = 0.2, 0.5 and 1 are found to be identical. Also, w† and κ† both exhibit oscillatory behaviours
at a frequency that has a weak dependency on the value of h. This is a piece of strong numerical
evidence from Figs 4 and 5 that the responses from the beam structure due to the interaction with
the water wave are qualitatively similar for various water depths, and only the magnitude is subject
to a factor depending on the value of h. In the subsequent computations, the water depth is fixed
to be 0.5.

4.1.2 Stochastic disturbance. A stochastic noise is included in the moving disturbance (4.4) as
follows

Pext(x, t) = 0.03
(

e−(x−d+Ut)2 + σχ (t)
)
, (4.5)
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12 Z. LIU ET AL.

Fig. 3 Snapshots of the water surface at t = 15, 32, 80, 120 plotted in the physical plane in the excitation
experiment under a pressure distribution defined in (4.4) with A = 0.03, d = 80 and U = 1 for water depth
h = 0.5. The disturbance is turned off at t = 20.

where χ (t) is a standard white noise with respect to time written in the form of a generalised time
derivative of a Wiener process. By (29), it can be discretised as

χ (t) = W(t + �t) − W(t)

�t
∼

N(0, 1)√
�t

, (4.6)

where N(0, 1) denotes a normally distributed random variable with zero mean and unit variance. It
is noted that the property

W(t) − W(s) ∼
√

t − s N(0, 1) (4.7)

has been used in (4.6). The parameter σ from (4.5) controls the amplitude size of the extra random
term or its standard deviation in a statistical sense. The stochastic effect is introduced in order to
address the complex effect of a raindrop or wind force and therefore assumed to be much smaller
than the deterministic pressure. The parameter σ is fixed to be 0.001 in all the stochastic simulations.
The stochastic term is assumed to be uniform in space for the reason that the length scale of this
problem is small in comparison to the meteorological scale. Again, the pressure disturbance moving
at a unity speed is turned on at t = 0 and off at t = 20. A thousand simulations were performed
in one stochastic example. To reduce the computational costs, the temporal domain is shortened to
[0, 120].

The beam deflection purely due to the stochastic disturbance is measured by

ŵ = w − w0, (4.8)
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TWO-DECK BEAM 13

Fig. 4 Beam deflection profiles, excited by the external forcing (4.4), are plotted in the physical plane for water
depths of h = 0.2 (top), 0.5 (middle) and 1 (bottom). The profiles are presented for time intervals t ∈ [0, 50]
(left), [51, 100] (middle) and [101, 200] (right), sampled at every five time steps.

κ̂ = κ − κ0, (4.9)

δ1(t) =
∫ H

0
|ŵ(y, t)|dy, (4.10)

δ2(t) =
∫ H

0
|κ̂(y, t)|dy, (4.11)

by subtracting the deterministic response (w0 and κ0) from the computational outcome. The profiles
of ŵ at different times are depicted in Fig. 6. The behaviours of δ1,2 from 1000 simulations are
demonstrated in Fig. 7. It is interesting to observe that the mean value of δ1 and δ2 oscillate and decay,
resulting in the beam returning to its undisturbed state in the long term. Meanwhile, δ1 and δ2 are
less than 5% of the deterministic response w†

0 and κ
†
0 . The medians oscillate around and eventually

approach zero as time runs on whereas the interquartile range generally decreases in time t. The
outliers with an appearance on only several occasions are not a concern as they are still of small size
at the order of 10−4. Overall, the computational results illustrate that the stochastic noise cannot
cumulate enough energy to make a significant impact on the beam causing a highly overhanging
structure or deflecting over the design limit that is usually 0.4% of the beam length. Increasing the
value of σ could completely change the story as the stochastic disturbance becomes the dominant

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/advance-article/doi/10.1093/qjm

am
/hbae006/7683224 by guest on 03 June 2024



14 Z. LIU ET AL.

Fig. 5 Time-evolution of w† and κ† in the experiment under the effect of a single moving disturbance (4.4).

external forcing imposed on the water surface, which violates the assumption to capture the physical
feature of wind load or raindrop in the problem of a flooded beam-like structure.

4.2 Statistical analysis

To provide a rigorous insight into the vibrational behaviour of the beam, statistical analysis is
conducted. The primary objective is to ascertain the nature of these vibrations subject to stochastic
hydrodynamic disturbance and understand their behaviour over time. Again, the statistical analysis
is based on examining 1000 simulations subject to the stochastic hydrodynamic disturbance in which
h = 0.5 as previously presented.

The initial phase of the analysis involved the computation of the mean and standard deviation of
the beam vibration ŵ at the designated times for all the points. Figure 8 shows the deduced mean
amplitude of the vibration of the beam is of the order 10−8. It indicates the inherent inclination of
the beam to resist deviations from its equilibrium state with stochastic disturbance. The computed
standard deviation is of the order 10−7. It suggests a relatively tight cluster of values around the
mean, suggesting a consistent and stable response of the beam to disturbances.

The distribution of the beam vibration ŵ is revealed through the probability density function (PDF)
in Fig. 9 at several points (with heights 2, 6 and 10 of the beam) of the beam at the end of the
simulations. The PDF plots exhibit a normal distribution tendency. It implies that the stochastic beam
response is governed by a plethora of small-magnitude random disturbances. Further validation of
the Gaussian nature of the vibrational data is achieved through the quantile–quantile (Q–Q) plots.
The linear trajectory observed in these plots emphasised the normal distribution characteristics
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TWO-DECK BEAM 15

Fig. 6 Profiles of ŵ at specific times for water depth h = 0.5, plotted in the physical plane. Grey lines are
the beam deflections for 1000 simulations at specific times; black lines are the profiles averaged over 1000
simulations.

Fig. 7 The values of δ1 (left) and δ2 (right) versus t obtained from 1000 different simulations. The mean
values of δ1 and δ2 are plotted in black lines.

inherent in the beam vibration. The Gaussian nature of these vibrations could be attributed to the
cumulative effect of numerous small independent forces acting on the beam, which is a characteristic
inherent to the Central Limit Theorem.

Beyond the basic descriptive statistics, the higher-order analysis of the displacement distribution
of the beam is assessed by investigating the skewness and kurtosis to provide a more holistic
perspective on the vibration distribution as shown in the bottom panel of Fig. 8. The skewness values,
ranging between (−0.25, 0.5), suggest an approximated symmetric distribution. A skewness value
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16 Z. LIU ET AL.

Fig. 8 The profiles of the first four statistical moments at t = T for all the points of the beam.

close to zero further bolsters the claim of the normality of the displacement distribution. Kurtosis
values in the range (2.5, 3.7) imply a mesokurtic distribution. This indicates that the distribution is
neither too peaked (leptokurtic) nor too flat (platykurtic), again emphasizing the normal distribution
characteristics of the beam displacement.

An important aspect of understanding the beam response is to examine the spatial correlation,
specifically the covariance between the displacements of different points on the beam at a given
time. The covariance shown in Fig. 10, of the order 10−15, suggests an extremely weak correlation.
This weak spatial correlation signifies that the displacement at one point on the beam is largely
independent of the displacement at another point. This is a key observation as it indicates a uniform
and independent response to the external disturbances across the length of the beam.

4.2.1 Kolmogorov–Smirnov test. To validate claims about the normal distribution of beam
vibrations, we employ null-hypothesis testing with the one-sample Kolmogorov–Smirnov (KS) test
for a 5% significance level, which examines whether a sample conforms to a specified theoretical
distribution, for example the normal distribution. This test is practically recommended for sample
sizes of n � 50 to assess data set conformity with a normal distribution. The test statistic, denoted
by d, measures the distance between the cumulative distribution function (CDF) of the data and the
CDF of the reference distribution. The associated p-value quantifies the probability of obtaining the
test result as extreme as the data actually observed under the assumption of the null hypothesis. A
p-value exceeding 0.05 (the chosen significance level) is a common threshold to reasonably infer
that the data follows a normal distribution.
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TWO-DECK BEAM 17

Fig. 9 (Top) Histograms and the fitted probability density function. (Bottom) The quantile–quantile plots
drawn in grey dots (bottom panels) at several positions of the beam when t = T . The black lines are the reference
lines with a unity slope.

We perform the KS test directly on the data of the original displacement w. As the KS test also
assumes that there are no tied values (identical or very similar data points) in the data set since tied
values can compromise the accuracy of the test causing inaccurate outcomes, duplicate values are
removed from the data set to mitigate this issue. This step of data cleaning is crucial for obtaining
reliable test results. Another advantage of such a sampling technique is reducing the sample size
from 1000 to approximately 100.

We follow to evaluate the p-values for the null-hypothesis significance test at several positions on
the beam at the final time as shown in Fig. 11 for y = 4, y = 6 and y = 10. They are found to be
greater than the threshold value, and so are at other heights on the beam. It exhibits the failure to
reject the null hypothesis, which strongly suggests that the beam displacement w closely conforms
to a normal distribution.

5. Conclusion

In this work, the problem of a beam flooded by a potential flow was considered. The dynamic
behaviour of the beam colliding with water waves was computed numerically. The numerical scheme
was successfully implemented to study the beam–fluid interaction. Several excitation experiments
in the absence/presence of randomness were examined. The computational results were analysed
and discussed in detail. The structural response of the beam to the stochastic disturbance governed
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18 Z. LIU ET AL.

Fig. 10 The heatmap of the covariance matrix for all the points on the beam at t = T . (colour online)

Fig. 11 Hypothesis testing results at several positions of the beam when t = T .

by the white noise was shown to be Gaussian by regression and hypothesis testing. Engineers and
researchers can now predict the beam behaviour under certain conditions, allowing for better design
strategies and mitigation techniques. Moreover, this statistical insight complements our previous
findings, offering a more holistic understanding of the beam vibration under the influence of
stochastic disturbances.
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