

Fine-Grained Food Image Classification and Recipe Extraction using a Customised Deep

Neural Network and NLP

Razia Sulthana Abdul Kareema, Timothy Tilfordb, Stoyan Stoyanovc

aSchool of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, London, SE10 9LS, , United Kingdom
bSchool of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, London, SE10 9LS, , United Kingdom
cSchool of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, London, SE10 9LS, , United Kingdom

Abstract

Global eating habits cause health issues leading people to mindful eating. This has directed attention to applying deep learning

to food-related data. The proposed work develops a new framework integrating neural network and natural language processing

for classification of food images and automated recipe extraction. It address the challenges of intra-class variability and inter-class

similarity in food images that have received shallow attention in the literature. Firstly, a customised lightweight deep convolution

neural network model, MResNet-50 for classifying food images is proposed. Secondly, automated ingredient processing and recipe

extraction is done using natural language processing algorithms: Word2Vec and Transformers in conjunction. Thirdly, a

representational semi-structured domain ontology is built to store the relationship between cuisine, food item, and ingredients.

The accuracy of the proposed framework on the Food-101 and UECFOOD256 datasets is increased by 2.4% and 7.5%, respectively,

outperforming existing models in literature such as DeepFood, CNN-Food, Wiser, and other pre-trained neural networks.

Keywords: Image Classification, Ingredient Identification, Recipe Extraction, Deep Neural Networks, Domain Ontology, Natural

People have become more mindful about healthy eating.

This has led to an increase in interest in healthy home cooking

[1]. Culinary styles, known as cuisine, closely mirror

individuals’ eating habits, and there is a trend of people

learning cooking through online resources. This trend has led

to an increased circulation of food-related images on the

internet and has opened up a lot of challenges in the field of

Computer Vision and Artificial Intelligence [2]. Automated

classification of diverse food images in different cuisines,

estimating the platter nutritional quantity, identifying the

ingredients from the food images, diet analysis, and food

preference learning are a few areas of re-

2

search attraction in recent days [3]. This demands training
machines to understand the realm of culinary arts and hence
can be suitably modified for specific applications.

Machine Learning inferential models plays a vital role in diet
monitoring, calorie calculation, food weight estimation, and
ingredient identification apps in day-to-day life [4]. However,
these models often require extensive training and may be
susceptible to errors due to human input. For instance, a user
might upload an image of a food platter, hoping the application
can identify the ingredients and provide a recipe for preparing
it. Indeed, food images are examples of fine-grained visual
recognition because they are non-rigid and have intrinsic
properties.

Email addresses: razia.sulthana@greenwich.ac.uk (Razia Sulthana Abdul

Kareem), t.tilford@greenwich.ac.uk (Timothy Tilford),

s.stoyanov@greenwich.ac.uk (Stoyan Stoyanov)

Figure 1: Food Variants

Inter-class similarity [5] and intra-class variability [6] are the
another characteristic of food images that render it hard to
classify. The Fig. 1 (a) includes images of pasta, noodle, and
salads, appear to be similar despite coming from different
classes, demonstrating inter-class similarity. Alternately, the
Fig. 1 (b) include images of different types of pizza and despite
being in the same class, they look dissimilar demonstrating
intra-class variability.

Most food categorization and ingredient detection systems

rely on human validation to verify their predictions, often

employing algorithms like k-Means, Support Vector Machines

(SVM), and Vocabulary Trees [7]. Other studies focus on

developing Convolution Neural Networks (CNN) for processing

food images [8, 9, 10]. These self-learning CNN mod-

Preprint submitted to Neurocomputing April 27, 2024

els are robust than human-validated ones, and exhibit superior

performance in object identification, boundary detection,

pattern/texture identification, etc.

A customised AlexNet Deep CNN (DCNN) model is

introduced in [8], trained using the extensive ImageNet

database and applied to the UECFOOD100 and UECFOOD256

datasets. The RootHoG feature extraction method was

employed and the model’s performance is compared against

the Foodness Classifier (FC) model [9]. One of the main

concerns in [8] DCNN model was the high number of

parameters. The FC model in [9] is trained by tuning its

hyperparameters over 470,000 food pictures scraped from

Twitter to classify the image into 100 different classes. The

model was trained with the UECFOOD256 databases and Food-

101 databases [10] and recorded an accuracy of 94.3% on ’beef

raman noodle’ and 92.7% on curry.

The area of food image analysis faces several challenges

regardless of whether a supervised learning algorithm, an

unsupervised learning algorithm, or a deep neural network

algorithm is used. Most existing research works apply these

algorithms and models on the benchmarked datasets and

medium-scale image datasets or endeavor to build a fully

automated system without human intervention. Also, there

exists an unintentional bias in classifying food images across

different classes; heterogenous food image databases are

another notable factor. To address these challenges and

shortcomings of existing methods, the proposed approach

focuses on building a comprehensive Food Classification and

Recipe extraction by utilising an FC&R-CNN model with

enhanced robustness to extract features from the food images.

The utilization of Natural Language Processing (NLP) becomes

essential for the efficient extraction and processing of recipes,

cuisines, and food classes. Hence, NLP is introduced to discern

and establish relationships within these elements, enhancing

the effectiveness of recipe extraction and processing. This is

achieved through the following novel developments:

1. A custom-made CNN network architecture, MResNet-50

is built as a modified version of ResNet-50 and then is

employed to classify images in UECFOOD256 and

Food101 datasets. The MResNet-50 is applied to the

UECFOOD256 dataset and Food-101 dataset to classify

the images and it is found that MResNet-50

outperformed ResNet-50 by achieving higher accuracy on

both datasets.

2. We propose to automatically identify and label the

ingredients in the image using Natural Language

Processing (NLP) techniques namely Word2Vec and

Transformers and extract appropriate recipes from the

Recipe1M+ and Recipe Ingredient datasets.

3. An ingredient-recipe hierarchical domain ontology is built

to link ingredients, recipes, and cuisines facilitating

structured knowledge organization. It automatically

establishes relationships between ingredients,

encompassing various food types and cuisines.

Additionally, it identifies and categorizes food types

containing allergens, promoting informed food choices.

The primary objective of the MResNet-50 model is to

achieve fine-grained classification of food images by effectively

Figure 2: A schematic illustrating the organization of the paper and its
associated objectives.

discerning inter-class similarities and intra-class variabilities,

utilizing its specifically designed layers for this purpose within

the CNN model. Unlike existing literature models that rely on

human intervention, the CNN model operates independently

and does not necessitate human verification.

3

To assess its effectiveness, the model’s performance is

compared against those in the literature that require human

intervention and struggle with identifying inter-class

similarities and intra-class variabilities in images. This

comparative analysis demonstrates that the proposed model

achieves superior accuracy, confirming its capability in

precisely classifying interclass similarities and intra-class

variabilities.

As part of objective 3, a domain ontology specific to food

images is constructed. Given its semi-supervised nature, the

domain ontology allows for human intervention to evaluate

classification quality and validate the model for potential

future applications, if necessary.

The images depicted in Fig. 1 (a) and Fig. 1 (b) are sourced

from the Food-101 and UECFOOD256 datasets, respectively

which demonstrates inter-class similarity and intra-class

variability. These images are considered as a basis for a brief

case study analysis. In subsequent experiments, they are

inputted into the proposed framework, the MResNet-50,

which effectively classifies the images. Additionally,

ingredients and cuisine are identified using the suggested NLP

method, and the ontology is further updated with the

pertinent information related to these images.

The rest of the paper is organized as follows. Section II

reviews background research in food image classification,

recipe extraction using NLP, and methods that use domain

ontology for food-related applications. Section III provides a

detailed explanation of the FC&R CNN which in three modules:

the DCNN model (MResNet-50), recipe extraction algorithms in

NLP, and food domain ontology. In Section IV, presents the

implementation process and experimental findings. Section V

concludes the paper by listing potential enhancements for

future research.

2. Related work

This section explores the existing literature on classifying

food images, identifying and labeling food items, extracting

ingredients, and using ontologies for food-related applications

corresponding to the objecctives. However the following

sections and subsections are also framed each corresponding

to one objective as shown in the Figure 2

Figure 3: A Collection of Food Image Datasets

2.1. Food Image Classification and Labelling

Research in food image classification has led to

advancements in visual and feature-based recognition, making

it possible to extract abstract information from food images

using machine learning algorithms. Yang et al. [11] recognize

the food by assigning a label to each of the pixels in the image

which are then distributed over a histogram. The combined

histogram from different portions of the image is taken as the

feature vector and passed on to the discriminant classifier to

recognize the food type. This method is termed Pairwise

Feature Distribution (PFD). Although this method works

effectively to detect food types in highly pixelated images, their

performance tends to scale down in clustered images. The

research presented in [12] uses Scale Invariant Feature

Transformation (SIFT) to identify food types in images with

variations in deformations and geometry. Despite being able to

identify the food type in images with deformations and

geometric variations, this approach has limitations as it cannot

handle texture invariance in images. The list of food image

datasets used in literature is shown in Fig 3. Following SIFT, a

Non-redundant local binary pattern (NRLBP) is applied in [13]

to extract the interest points in the image and and categorizes

their appearance. However, there is room for analysing the

structural invariance in the food images.

Alternately, a 2-step model is proposed in [14] on PFID

dataset [15] to detect candidate regions in an image using

region segmentation. DPM uses the sliding window to slide

over the image making it computationally expensive and

achieves a classification rate of 55.8%. A multi-ranking

framework with modified growing region segmentation and

SVM is proposed in [16]. It segments a food image into smaller

regions and calculates similarity within pixels. The

segmentation process is validated by human evaluation on 20

food images, achieving an accuracy of 61% for 17 food items.

However, identifying tiny food ingredients with varying

textures and colors would be more challenging and time-

consuming. Another movable bounding box algorithm to

identify the individual objects in an image is proposed in [17].

SVM with Linear kernel is applied to achieve a classification

rate of 81.55%. The majority of recent work uses SVMs for

classification and despite their popularity, SVMs perform

poorly on large datasets and images with cluttered objects.

Several deep learning algorithms are designed specifically for

the classification of food images. The author in [18] proposes

Im2Calories, which uses the GoogleNet CNN model on

Food101 and MenuMatch dataset for calorie estimation of the

food platter. This technique works effectively with raw,

uncooked foods than cooked food because food change colour

when they are cooked.

CNNs have been used extensively in the food image

processing. Krizhevsky CNN [19] is trained with ImageNet to

extract the colour features from the image. Comparing the

Krizhevsky CNN’s performance to that of the Spatial Pyramid

4

Matching (SPM) algorithm and the conventional SVM

algorithm, the Krizhevsky CNN outperforms the other two

benchmark techniques.

Bounding boxes are used to identify and categorise the

objects in an image, based on which several DCNN networks

are proposed in the literature [20]. These networks typically

extract both high-level and pixel-level features from the image.

The bounding boxes are formed by dividing the image into

regions using: R-CNN [21], Fast R-CNN [22], Faster R-CNN [23],

Mask R-CNN [24] models. Regression-based bounding boxes

based on class probabilities are framed using YOLO [25],

YOLOv2 [26], SSD [27], DSSD [28] CNN models. In General,

CNN frameworks like AlexNet, VGGNet, ResNet, and DarkNet

are used for object detection. Inspired by ResNet [29], a robust

feature extractor DarkNet-53 [30], is developed, and almost all

the variants of the ResNet models have succeeded in providing

excellent results with many datasets and benchmark

applications. Different ResNet models, including ResNet-18,

ResNet-19, ResNet-20, and ResNet-34 using CIFAR datasets, are

mentioned in a recent work [31, 32]. The reason the authors in

[31] have decided to investigate ResNet models is that they

utilise less energy than other pretrained networks, which

motivated us to further investigate ResNet and introduce a

modified version of it for the proposed study. A Wide

Hierarchical Subnetwork-based Neural Network (Wi-HSNN) is

applied in [13] which employs a subnet-based iterative training

and a batch-by-batch parallel scheme. This approach is

particularly useful for processing large-scale datasets but faces

the drawbacks of subnetwork algorithms.

2.2. Recipe Extraction

The process of extracting a food’s recipe based on its

ingredients requires the application of NLP techniques and a

detailed understanding of the semantic relationships between

ingredients. Probabilistic models, Bayesian models, Neural

network models, Text processing models, and several other

models are proposed in the literature for recipe extraction.

A graphical model in NLP, Conditional Random Field (CRF) is

applied to the VIREO Food-172 dataset and the corpus from

the ’Xinshipu’ website [33]. The graphical model, G is a

collection of ingredients and contains N vertices representing

the ingredients. The model generates a matching score that is

matched against corresponding recipe’s CRF. However, it is a

computationally expensive process and demands more

training time. A probabilistic Bayesian cuisine topic model is

used for recipe identification from food images in [34]. It

applies probability distribution using a Gaussian kernel over

Yummily66K and also compares the result with the Bayesian

model and Boltzmann machines. Nevertheless, the topics

under which the cuisines are classified are statically fixed but

have to vary dynamically as different food styles evolve.

A joint neural embedding with Long-Short Term Network

(LSTM) is used for learning the recipe-image pair in Recipe1M

corpus [35]. It trains the neural network by embedding the

recipes with the food images. ResNet-50 and VGG-16 models

are executed over the dataset in three versions: fixed vision,

fine-tuning, and semantic regularization. The semantic

embedding approach outperforms the other two in both the

ResNet50 and VGG-16 CNN models. Although semantic

embedding is taken into account, many of the foods prepared

today use ingredients that are in new and unusual

combinations, which makes the process challenging. An

extended VGG and multitask CNN is applied in [36]. Term

Frequency–Inverse Document Frequency (TF-IDF) and

Word2Vec from NLP are applied for recipe extraction. The

ingredient vector vj corresponding to rj recipe data is defined

by vj =
P

k
N

=1 tf −id fk,j∗Word2Vec(wk), where N is the count of

words corresponding to a recipe, Word2Vec() is the vector

derived for the specific word wk, and tf − id f is the TF-IDF value

of the ingredient in the recipe. VGG, on the other hand, is more

computationally intensive than ResNet models.

2.3. Domain Ontology for food based applications

Domain ontology is a knowledge framework of specific

concepts that are designed to a specific domain and is

extensively applied in many different applications. However,

little research is done in the area of food ingredient-recipe

background. FoodOn [37] is a specific food ontology that

provides the semantics of food nutritional facts, chemical

ingredients, and nutritional components. But it contains a lot

of information about food-related nutrition facts than food-

recipe itself. FoodKG [38] proposes a food ontology graph that

recommends food to the user based on nutritional facts on a

day-to-day basis. Each of the ingredients, its corresponding

recipes, and their nutritional composition is represented as

entities and relationships in the ontology hierarchy. NLTK

toolkit is also used to manage the queries raised by the users

and nouns, verbs, adverbs are handled by

WordNetLemmatizer. FoodKG is linked to FoodOn and

semantic descriptions from USDA (the U.S. Department of

Agriculture) but yet designed with very minimal ontological

conceptualization.

3. Materials and Methods

In this section, we discuss the proposed approach in three

folds.

3.1. Proposed DCNN Model

CNNs are layered architecture that is helpful for image

labeling, annotation, classification, etc. These multi-layered

neural network process the input images with minimal

preprocessing. Almost all the pre-trained CNN architectures

are trained with ImageNet Dataset (The biggest repository of

1.2 million highresolution images). The ImageNet Large-Scale

Visual Recognition Challenge (ILSVRC) competition evaluates

5

neural network algorithms developed for image classification

[19]. It is obligatory to report top-1 % and top-5 % error rates

when the

 (b) Proposed (c) Identity block and Convolution block —
(a) ResNet-34 MResNet-50 MResNet-50 Proposed model

Figure 4: Building blocks

Imagenet dataset is used over any CNN architectures. Top-1 %

accuracy is obtained when the image is rightly identified.

Alternatively, Top-5% accuracy is achieved when the predicted

result matches with the top 5 images that are identified by

ImageNet. A CNN is trained using ImageNet to carry out a

particular task, initial weights are assigned to the network

links, and the transfer learning approach is used to use the

learned information to complete another task.

CNN networks are modeled with several convolution layers

followed by at least one fully connected layer with a set of

nodes that corresponds to the number of image classes.

ResNets, the residual network model was developed by He et

al., in the year 2016 [29]. The ResNet-50 model is designed

with 48 convolutional layers, one max pooling layer, and one

fully connected layer. As compared to AlexNet and VGGNet,

ResNet exhibits superior generalization performance with

essentially fewer parameters compared to other models.

Deeper CNNs like AlexNet would typically increase accuracy,

but they would cause vanishing gradient problems [39].

ResNet, on the other hand, introduces a skip connection to

solve the issue of vanishing gradients in deep layers

Fig. 4 (a) & (b) shows the building block of the ResNet model.

The input x is passed into the first layer and is processed by a

mapping function H(x) to produce an output function F(x),

where F(x) = H(x) − x. The input x is again passed to layer 3

skipping layer 2. Hence layer 3 reads input x explicitly and

draws an identical pattern from it. Although the layers are

stacked, the input is skipped to the middle layer, referring to it

as a ”skip connection,” and since identity mapping is carried

out, neither the parameters nor the complexity is increased.

The proposed MResNet-50 model is designed to use swish

activation function in all its building blocks (Fig. 4 (b)).

The swish activation function [40] proposed by Google

outperforms Relu activation function at many occasions during

image classification. The function swish,f(x) = x.sigmoid(x) i.e.

f(x) = f(x) = 1+
x
e−x as compared to relu, f(x) = max(0, x), used in

Inception-ResNet-v2 and Mobile NASNetA shows improved

accuracy of 0.9% and 0.6%, respectively over ImageNet

dataset. Inspired by the properties of swish being a non-

monotonic, smooth, and self-gated function, the performance

of MResNet-50 further increases with swish. The two building

blocks of the MResNet-50: Identity block and Convolution

block are shown in Fig. 4 (c). The identity block produces an

output: swish((block3(block2(block1(x))))+ x) and the output

produced by convolution block would be:

swish((block3(block2(block1(x)))) + batch norm(conv2D(x)))

with x as input.

The MResNet-50 model is designed in five stages with 50

layers. The MResNet-50 model is designed to be lightweight as

the

1. The first stage is designed with the convolution operation

of 64 kernels each with a kernel size of 7*7 with a stride

of 2. Following this, batch normalization, swish activation,

and max pooling operation are done. This is the first layer

of MResNet-50.

2. The second stage has one convolution block and two

identity blocks. In each block three convolution

operations are carried out with a kernel size of 1*1, 3*3,

and 1*1 and a corresponding kernel count of 64, 64, and

256. This adds 9 layers to the MResNet-50.

3. The third stage has one convolution block and three

identity blocks. In each block three convolution

operations are carried out with a kernel size of 1*1, 3*3,

and 1*1 and a corresponding kernel count of 128, 128,

and 512. This adds 12 layers to the MResNet-50. 8% of the

filters are reduced in this layer following the final identity

block.

4. The fourth stage has one convolution block and five

identity blocks. In each block three convolution

operations are carried out with a kernel size of 1*1, 3*3,

and 1*1 and a corresponding kernel count of 256, 256,

and 1024. This adds 18 layers to the MResNet-50. 10% of

the filters are reduced in this layer following the final

identity block.

5. The fifth stage is similar to stage 2 but with a kernel count

of 512, 512, and 2048 respectively for each layer. This

adds 9 layers to the MResNet-50.

6. This is followed by the average pooling, layer flattening,

fully connected layer, and a softmax function. It adds 1

layer to the MResNet-50.

On the whole, they all add up to 50 layers in the MResNet-50.

The swish activation function is used in all the layers, and the

model is trained and tested while the epoch and optimizer are

changed and validated.

6

3.2. Automated Ingredient Identification using NLP

Following the food images classification in the Food101 and

UECFOOD256 datasets, the Recipe1M+ dataset and the Recipe

Ingredient datasets are processed using the Word2Vec

algorithm to learn the dependencies between the ingredient

and food classes.

The Word2Vec converts every word into a vector

representation without losing its syntactic and semantic

properties. It applies the Cosine function and finds the

correlation between the words. Since Word2Vec is a two-

layered network with one hidden and one output layer. The

Word2Vec learns by speculating on the words around the input

word of the food item using the formula: Word2Vec(wordin) =

wordin ∗ P(word
wordoutin) i.e.

 (a) skip-gram model (b) Word Embedding & similarity calculation

Figure 5: Word2Vec

Word2Vec(fooditem) = fooditem ∗ P(∀wordsinsentencefooditem).

Word2Vec uses the Skip-gram approach to predict the

probability of the context given the name of the food item (Fig.

5(a)). For example, to search for the word ’mac and cheese’ in

a random sentence one-half teaspoon of chitpole makes a spicy

mac taken from the Recipe1M+ dataset, the probable

predictions are

P(macandcheeseone−half), P(macandcheeseteaspoon), P(macandcheeseof),

P(macandcheesechitpole),

P(macandcheesemakes), P(macandcheesea), P(macandcheesespicy),

P(macandcheesemac).

For every word wordposition = [1,2,3,4,...P] in the randomly

chosen sentence within a fixed window size of s, the context

within the words is calculated. The likelihood of the prediction

is given by

likelihood(Θ) =
Q

i
P

=1
Q

−s⩽j⩽s,j,0 P(wordi+j|wordi;θ) which is

likelihood(Θ) =
Q

i
P

=1
Q

−s⩽j⩽s,j,0 P(wordout|wordin;θ). The word

out slides every word in the sentence and the

P(wordout|wordin) is calculated by

P(wordout|wordin) = P

∀windowexp(wordexp(wordin∗wordin∗wordout) out).

The softmax function is applied on wordin ∗ wordout and for

every food item that is passed into the untrained model, the

embeddings are mapped, probability prediction and likelihood

are calculated, and the output vocabulary softmax(wordin ∗

wordout) is predicted (Fig. 5(b)). In simple words, the Skipgram

algorithm, part of the Word2Vec framework, is extensively

utilized for learning word embeddings. These embeddings

represent words in a continuous vector space and are designed

to predict surrounding context words based on a given target

word. This approach effectively captures semantic

relationships between words. The food item identified by the

Word2Vec and MResNet-50 models is validated against various

window sizes/embeddings during the training phase until the

best embedding with the highest score that shows the highest

similarity is found. The embeddings that generate a negative

error score are ignored while training the next food item saving

the execution time.

The transformers are another tool for finding the long-term

dependencies between the text contents [41]. The transformer

has two parts encoder and a decoder. The architecture of the

transformer is shown in [42]. The encoder and decoder have

multi-head attention and feed-forward blocks. In addition, the

decoder has a masked multi-head attention block. The encoder

maps the word representation word = [w1,w2,w3,w4,...wP] to a

sequence of continuous values z = [v1,v2,v3,v4,...vP], the

decoder utilises the results of the previous iteration and then

generates output words in an autoregressive fashion. A

pointwise convolution with fully connected layers and a

stacked selfattention unit is used in both the encoder and

decoder units.

The attention function takes the query and key-value pair as

input and outputs a weighted sum of a value. The
Query∗KeyTranspose

attention(Query, Key,Value) = softmax
(

sqrt(DimensionKey)) ∗ Value where dimensionkey is the dimension of

the query and key. The multi-head attention function in the

decoder instead of performing dot-product of queries with

keys projects the querykey value N times, and the results of

each of the projections are finally concatenated

multiheadattention(Query, Key,Value) =

Concatenation(A1, A2,..AN) where Ai represents the

attention(Query, Key,Value) for every ith projection. In the

proposed method, we train the model with sentences from

Recipe1M+ and Recipe Ingredient dataset and each training

batch includes a sentence with a word length of 100. The

training period in our machine took 0.02 seconds and the

overall training time was around 32 mins significantly smaller

than the preprocessed dataset. Alternately during the initial

execution of the transformer model architecture, it took 12 hrs

for training 36 million sentences in 100,000 steps. One of the

effective features of the transformer model is the attention

mechanism and this capability allows transformers to handle

all words or tokens simultaneously, enhancing processing

7

speed and facilitating the development of larger language

models. The proposed approach integrates both Word2Vec

and Transformers to effectively manage short words and

lengthy sentences, particularly in reverse order. This

integration results in the creation of a robust automated recipe

extraction model.

3.3. Food Domain Ontology

A directed graphical ontology is developed using the Protege

tool. The food items, ingredients, and cuisine are considered to

be the main classes and each of their occurrence would be an

instance. The relation between the food item and the

ingredient would be a ’has ingredient’ relationship, and

similarly, there are many other relationships like ’use together’,

and ’check for allergen’. The items used in the ingredients may

be a simple mixture or compound mixture and are also

specified in the ontology. The proposed one is capable of

accommodating many hierarchies and its semi-supervised. The

hierarchy can be extended to make it deeper still keeping the

model faster. Food items and ingredients identified by the

model in the aforementioned section are stored in the

ontology.

For a specific cuisine, there may be a number of food items,

but a few might be prepared using the staple ingredients and

many of them are made from the same ingredients but in a

different form. For example, the dish Gratin (id 30 in

UECFOOD256 category) is a French Cuisine and can be made

with breadcrumbs, grated cheese, egg, butter with many other

vegetables. Alternately, Gulai (id 231 in UECFOOD256

category) is Indonesian cuisine and is made with completely

different types of ingredients. Though there are a number of

cross relations between the cuisine, food items, and

ingredients the ontology always organises to bring them into a

structure.

4. Experiments and Results

The proposed framework is executed in a x86-64 machine

(minimal 32GB) connected to NVIDIA TITAN X (32GB dedicated

memory) GPU including a software stack comprising of GPU

driver 352.68 or newer, a CUDA toolkit of 8.0 or newer, a

python version 3.7 or compatible version beyond 2.7. The

execution environment is pytorch build stable (1.13.1),

package CONDA, language python and computation platform

CUDA. We selected the specified hardware because the chosen

hardware configuration possessed sufficient speed to manage

the extensive datasets we were working with and the

algorithms we designed. Above all it was readily accessible to

us. The reason for creating a customised CNN architecture is

that it is optimized and trained to excel at the detection of

patterns and intricate features within and across food images.

This customized model strikes a balance between the task’s

complexity and the computational resources at hand.

Moreover, it integrates domain-specific insights by

incorporating a domain ontology. The fine-tuning of

hyperparameters is conducted systematically to enhance the

model’s performance for the targeted application.

4.1. MResNet-50 performance analysis

The MResNet-50 model is trained using ImageNet and the

weights are reused for classifying images in Food-101, and

UECFOOD256 datasets. The input image to the ResNet50

model is of size 256*256 with 3 slices of RGB image taken from

both datasets. The model is trained and tested against three

optimizers: Adaptive moment estimation (Adam), Stochastic

Gradient Descent (SGD), and SGD with momentum. The

performance of the model is analysed with each of the

aforementioned optimizers and using three loss functions: (1)

Angular Softmax, (2) Categorical Cross-Entropy, and (3) Large

Margin Softmax Loss. In addition, the batch size, validation

split, and epoch are varied, and the model’s performance is

measured using several metrics: training loss, test loss, training

accuracy, test Accuracy, precision, and F1 score. A very detailed

layer architecture of the proposed MResNet-50 is explained

below and shown in Fig. 6 and the below steps shows how it is

made lightweight by introducing the pruning operation at

intermediary stages:

1) In the 1st layer-1st stage, the input image of shape

(256*256*3) corresponding to (image height, image width,

channels) is passed into the MResNet-50 model. The input

image is zero-padded with (3*3) matrix and is then subjected

to 2D convolution operation between input image (256,256,3)

and 64, (7*7) kernel with stride 2. Both the input image and

kernels are square in shape. The spatial dimension of the

resultant feature map is calculated us-

ing jinputsize

(height/widthstrides)+2∗padding−kernelsizek + 1. This implies
j

1 giving 128 as the dimension of the new feature map. It

produces a resultant feature map of size (128*128*64).

Following this Batch Normalization is executed with axis

value=3, swish activation function, and max pooling with (3*3)

kernel size with a stride of 2. The shape of the new

feature map after max pooling is calculated using

jinputsize(height/width)−kernelsizek jk

strides +1 which implies +1 which gives

a feature map with a dimension of (63*63*64). 2) In 2nd layer-

2nd stage, the feature map (63*63*64) is subjected to a 2D

convolution operation with 64, (1*1) kernel with a stride=1 and

padding=0. The resultant feature map is of size (63,63,64). This

is followed by Batch Normalization with axis value=3 and swish

activation function.

3) In 3rd layer-2nd stage, the feature map (63*63*64) is

subjected to a 2D convolution operation with 64, (3*3) kernel

with a stride=1 and padding=1. The resultant feature map is of

size (63,63,64). This is followed by Batch Normalization with

axis value=3 and swish activation function.

8

4) In 4th layer-2nd stage, the feature map (63*63*64) is

subjected to a 2D convolution operation with 256, (1*1) kernel

with a stride=1 and padding=0. The resultant feature map is of

size (63,63,256). This is followed by Batch Normalization with

axis value=3 and swish activation function.

The feature map out of the 1st layer-1st stage is subjected to

2D convolution with 256, (1*1) kernel, stride=1, padding=0

followed by batch normalization and produces an output

feature map (63,63,256) that is added to the output feature

map from 4th layer-4th stage (63,63,256). This is subjected to

the swish activation function and the (63*63*256) feature map

is passed to the next layer.

5) The 5th, 6th and 7th layer in stage 2 performs the

same functions similar to 2nd, 3rd and 4th layer in stage 2.

Alternately, the output feature map out of the 4th layer-2nd

stage is added to the output feature map of the 7th layer-2nd

stage and subjected to the swish activation function.

6) The 8th, 9th and 10th layer in stage 2 performs the

same functions similar to 2nd, 3rd and 4th layer in stage 2. The

output feature map out of the 7th layer-2nd stage is added to

the output feature map of the 10th layer-2nd stage and

subjected to the swish activation function. Following which 8%

of the layers are pruned to ensure that the model is made

lightweight.

7) In the 11th layer-3rd stage, the feature map

(63*63*256) is subjected to a 2D convolution operation with

128, (1*1) kernel with a stride=2 and padding=0. The resultant

feature map is of size (32,32,128). This is followed by Batch

Normalization with axis value=3 and swish activation function.

8) In 12th layer-3rd stage, the feature map (32*32*128)

is subjected to a 2D convolution operation with 128, (3*3)

kernel with a stride=1 and padding=1. The resultant feature

map is of size (32,32,128). This is followed by Batch

Normalization with axis value=3 and swish activation function.

9) In the 13th layer-3rd stage, the feature map

(32*32*128) is subjected to a 2D convolution operation with

512, (1*1) kernel with a stride=1 and padding=0. The resultant

feature map is of size (32,32,512). This is followed by Batch

Normalization with axis value=3 and swish activation function.

The feature map out of the 10th layer-2nd stage is subjected

to 2D convolution with 512, (1*1) kernel, stride=2, padding=0

followed by batch normalization and is added to the output

feature map from the 13th layer-3rd stage. This is subjected to

the swish activation function and the (32*32*512) feature map

is passed to the next layer.

10) The batch of (14th, 15th, 16th), (17th, 18th, 19th),

(20th, 21st, 22nd) layer performs operation similar to (11th,

12th, 13th) layers. The resultant of it is a (32*32*512) feature

map. Following this, 10% of the layers are pruned to ensure

that the model is made lightweight.

11) In 23rd layer-4th Stage the feature map (32*32*512)

is subjected to a 2D convolution operation with 256, (1*1)

kernel with a stride=2, padding=0. The resultant feature map

is of size (16*16*256). This is followed by Batch Normalization

with axis value=3 and swish activation function. Layers 24th,

and 25th are then executed in the same way as followed in the

12th and 13th layers but with a kernel count of 256 and 1024.

Following this, the convolution block is applied. The resultant

of this layer would be a (16*16*1024) feature map. 12) The

batch of (26th, 27th 28th), (29th, 30th, 31st), (32nd, 33rd,

34th), (35th, 36th, 37th), (38th, 39th, 40th) layer performs

operation similar to (23rd, 24th 25th) layers. However,

following each of these batches, the identity block is applied.

The resultant of this layer would be a (16*16*1024) feature

map 13) In 41st layer-5th Stage the feature map (16*16*1024)

is subjected to a 2D convolution operation with 512, (1*1)

kernel with a stride=2, padding=0. The resultant feature map

is of size (8*8*512). This is followed by Batch Normalization

with axis value=3 and swish activation function. Layers 42nd,

and 43rd are then executed in the same way as followed in the

24th and 25th layers but with a kernel count of 512 and 2048.

Following this, the convolution block is applied. The resultant

of this layer would be an (8*8*2048) feature map

14) The batch of (44th, 45th, 46th), (47th, 48th, 49th)

layer performs operation similar to (41st, 42nd, 43rd) layers.

However, following each of these batches, the identity block is

applied. The resultant of it is an (8*8*2048) feature map.

15) The 50th layer performs average pooling. In average

pooling the (8*8*2048) feature map is reduced to (4*4(2048).

This is followed by a flattening and a softmax layer.

The results of the MResNet-50 model are applied to the

Food-101 dataset Table 1 with a split ratio of 80:20 for training

and testing. The experimental analysis is carried out with batch

sizes of 16 and 32 and alternating with changing epochs of 10,

35, and 50 respectively for each of the optimizers Adam, SGD,

and SGD-w-M (SGD with Momentum).

It is observed that the batch size and the number of epochs

have an impact on the results produced by the three

optimizers. During the testing and training phases of the

MResNet-50, the loss values and accuracy values for each of

the three loss functions are measured. The accuracy value

achieved during testing for all three optimizers is slightly less

than training, although the difference is not exceptionally

significant. Hence, the MResNet-50 model is neither

underfitting nor overfitting, as evidenced by the results. The

model can predict accurately for testing data since it has

learned adequately from the training data. The subsubsections

4.1.1 and 4.1.2, address the results of the FOOD-101 dataset

and the UECFOOD256 dataset, respectively. The results

obtained on the FOOD-101 dataset and the UECFOOD256

dataset are separately mentioned in Table 1

9

Batc

h
Size

Optimiz

er
Epoch

s

Angular Softmax loss Categorical Cross

entropy loss
Large Margin Softmax

Loss
Loss Accuracy Loss Accuracy Loss Accuracy

Train Test Train Test Train Test Train Test Train Test Train Test

16 Adam 10 0.088

1
0.095

4
0.833

1
0.8040 0.087

4
0.092

9
0.827

3
0.798

2
0.088

6
0.094

1
0.828

5
0.799

4
16 Adam 35 0.069

7
0.079

0
0.871

9
0.8346 0.092

4
0.098

3
0.865

8
0.828

4
0.093

2
0.099

1
0.866

5
0.829

2
16 Adam 50 0.051

1
0.060

1
0.914

0
0.8779 0.114

1
0.120

2
0.810

8
0.870

4
0.114

9
0.120

9
0.909

6
0.894

7
32 Adam 10 0.031

3
0.042

6
0.906

8
0.8915 0.108

4
0.114

3
0.839

7
0.854

3
0.109

1
0.115

0
0.900

4
0.855

0
32 Adam 35 0.083

9
0.093

9
0.913

5
0.8635

0.108

1
0.114

3
0.890

1
0.856

4
0.109

3
0.115

5
0.875

0
0.857

5

16 SGD 35
0.078

3
0.086

8
0.894

2 0.8602
0.107

5
0.114

6
0.887

1
0.853

0
0.108

2
0.115

3
0.887

8
0.853

8
16 SGD 50 0.071

5
0.080

6
0.824

0
0.7875 0.085

9
0.091

3
0.818

3
0.781

8
0.087

1
0.092

5
0.819

5
0.783

0

10

Figure 6: MResNet-50 architecture diagram

Table 1: Performance of the MResNet-50 model using Angular Softmax Loss, Categorical cross Entropy Loss, Large Margin Softmax Loss Function over Food 101
dataset
Table 2: Performance of the MResNet-50 model using Angular Softmax Loss, Categorical cross Entropy Loss, Large Margin Softmax Loss Function over UEC-
Food256

Batc

h
Size

Optimiz

er
Epoc

hs

Angular Softmax loss Categorical Cross

entropy loss
Large Margin Softmax

Loss
Loss Accuracy Loss Accuracy Loss Accuracy

Train Test Train Test Train Test Train Test Train Test Train Test

16 Adam 10 0.097

8
0.100

2
0.844

2
0.8155 0.094

2
0.097

3
0.851

0
0.789

7
0.094

5
0.096

9
0.812

7
0.793

7
16 Adam 35 0.080

4
0.082

4
0.881

0
0.8644 0.065

6
0.068

2
0.850

8
0.838

9
0.072

8
0.074

4
0.828

0
0.814

3
16 Adam 50 0.072

5
0.074

3
0.888

3
0.8051 0.091

5
0.093

8
0.840

0
0.809

9
0.076

3
0.078

6
0.822

0
0.805

0
32 Adam 10 0.057

0
0.058

4
0.846

7
0.8168 0.081

8
0.083

6
0.823

8
0.746

7
0.108

2
0.110

2
0.804

4
0.786

9
32 Adam 35 0.105

3
0.107

9
0.892

2
0.8616 0.053

4
0.056

8
0.821

1
0.831

7
0.064

2
0.065

5
0.852

4
0.817

5
32 Adam 50 0.092

4
0.094

7
0.870

8
0.8270 0.068

3
0.071

3
0.808

9
0.816

9
0.070

2
0.071

9
0.826

5
0.812

4

16 SGD 10 0.106

1
0.108

8
0.812

5
0.7545 0.105

6
0.109

0
0.803

4
0.762

4
0.091

6
0.094

2
0.776

4
0.756

5
16 SGD 35 0.093

0
0.095

3
0.821

3
0.8005 0.085

6
0.088

6
0.890

3
0.868

1
0.073

6
0.075

7
0.902

1
0.843

6
16 SGD 50 0.074

7
0.076

6
0.856

7
0.8087 0.085

6
0.088

0
0.876

9
0.853

1
0.051

7
0.053

8
0.894

7
0.869

7

32 SGD 10 0.051

8
0.061

1
0.889

5
0.8524 0.090

0
0.096

5
0.906

6
0.846

3
0.090

7
0.097

2
0.884

2
0.847

1
32 SGD 35 0.055

7
0.064

4
0.904

2
0.8696

0.113

7
0.120

3
0.873

9
0.862

1
0.114

6
0.121

1
0.898

0
0.863

0

16
SGD-w-

M 35
0.053

1
0.061

5
0.842

7 0.8093
0.090

7
0.097

8
0.836

6
0.803

2
0.091

9
0.099

0
0.837

8
0.804

3
16 SGD-w-

M
50 0.077

7
0.084

2
0.902

0
0.8761 0.088

4
0.095

2
0.826

1
0.870

1
0.089

4
0.096

3
0.897

0
0.871

1
32 SGD-w-

M
10 0.061

9
0.069

4
0.903

0
0.8689 0.088

4
0.094

3
0.863

6
0.863

0
0.089

1
0.095

0
0.875

6
0.863

6
32 SGD-w-

M
35 0.063

5
0.071

5
0.879

8
0.8478 0.092

5
0.098

7
0.890

0
0.841

6
0.093

6
0.099

7
0.864

7
0.842

7
32 SGD-w-

M
50 0.084

4
0.090

7
0.896

6
0.9155 0.098

6
0.105

6
0.897

1
0.908

9
0.099

5
0.106

4
0.890

9
0.909

7

11

32 SGD 10 0.071

0
0.072

8
0.866

2
0.7859 0.052

8
0.055

1
0.830

3
0.809

7
0.095

8
0.097

1
0.889

6
0.874

6
32 SGD 35 0.075

1
0.077

0
0.891

3
0.8557 0.082

4
0.084

8
0.870

7
0.879

0
0.057

2
0.059

3
0.838

4
0.825

1
32 SGD 50 0.104

2
0.106

8
0.885

5 0.8559

16 SGD-w-

M
10 0.051

1
0.062

4
0.862

2
0.8339 0.092

4
0.094

0

16 SGD-w-

M
35 0.056

5
0.067

9
0.859

7
0.7910 0.089

4
0.091

2
0.842

8
0.812

1
0.067

9
0.070

1
0.824

0
0.807

7
16 SGD-w-

M
50 0.092

5
0.094

8
0.892

3
0.9220 0.104

2
0.107

2
0.815

3
0.880

9
0.087

8
0.090

4
0.895

0
0.875

3
32 SGD-w-

M
10 0.055

8
0.087

2
0.877

3
0.8676 0.074

7
0.076

5
0.742

8
0.742

1
0.097

9
0.099

8
0.811

0
0.794

6
32 SGD-w-

M
35 0.098

2
0.100

7
0.895

1
0.8420 0.066

4
0.069

5
0.711

4
0.730

1
0.066

5
0.068

2
0.779

2
0.765

9
32 SGD-w-

M
50 0.088

5
0.090

7
0.906

5
0.8315 0.081

3
0.084

1
0.795

5
0.876

2
0.085

6
0.087

6
0.868

6
0.851

9

and Table 2 respectively. The significant findings and the

accuracy associated with each optimizer are delineated using

red and blue font colors to facilitate quick referencing. The

highest accuracy achieved for each optimizer is represented in

the font color red.

4.1.1. Food101 dataset- Inferences on the Results-Table 1

With angular softmax loss function, the optimizer Adam

achieves the maximum training accuracy as compared to the

other two optimizers for a batch size of 32, and after training

the model with 50 epochs produces a 92.67% accuracy.

Alternatively, this could be overfitting as with the same batch

size, and in 35 epochs, Adam produces an accuracy of 91.35%.

During training on the ImageNet Dataset, ResNet-50 produced

a greater accuracy overall in 35 iterations [43], while

MResNet50 likewise delivers the greatest accuracy in 35

iterations. Similarly, the accuracy produced by the optimizer

SGD with a batch size of 32 and 35, and 50 epochs, respectively,

is 90.42% and 90.96%, and there is no noticeable difference

between these numbers. The accuracy produced by SGD with

Momentum optimizer seems to be fluctuating between 89%

and 91% with batch sizes of 16 and 32.

With Categorical cross-entropy loss, the optimizer Adam

produces the highest training accuracy of 91.97% in 50 epochs

with a batch size of 32 and 89.01% in 35 epochs with the same

batch size. Also, these two numbers do not significantly differ

from one another. Hence 35 epochs are again considered to be

the optimal number with MResNet-50. The SGD optimizer

slightly fluctuates in the accuracy value with 16 and 32 batch

sizes with 10, 35, and 50 epochs. SGD with Momentum

optimizer produces an accuracy of 89.00% and 89.71% with a

batch size of 32 and in 35 and 50 epochs with no discernable

difference between them.

With Large Margin Softmax loss, the optimizer Adam

produces the highest training accuracy of 90.96% with a batch

size of 16 in 50 epochs. The optimizer SGD with batch size 32

produces an accuracy of 90.09% and 89.80% in 35 and 50

epochs respectively and there is no major noticeable

difference between the numbers. Surprisingly, in batch size 16,

SGD with Momentum optimizer produces an accuracy of

89.09%, and 86.47% for 50 and 35 epochs, and a slight

difference between them is seen. Overall, the Adam optimizer

with MResNet-50 produces good results on the Food101

dataset across all three optimizers and the accuracy produced

by all three optimizers is higher for batch size 32 than for 16.

4.1.2. UECFOOD256 dataset- Inferences on the Results-Table 2

With Angular softmax loss the SGD with Momentum

optimizer produces a higher accuracy of 90.65% in 50 epochs

with batch size 32 and 89.51% in 35 epochs with batch size 32

and there is no discernible difference between them. Adam

produces the second-highest accuracy of 89.22% in 35 epochs

and SGD produces 89.13% in 35 epochs with batch size 32. As

such in both Adam and SGD, there is no major difference in the

accuracy.

With Categorical Cross entropy loss, the SGD optimizer

produces a higher accuracy of 89.03% in 35 epochs with a

batch size of 16 and in 50 epochs the accuracy is slightly getting

reduced for the same batch size hence 35 epochs with 16 batch

size is considered an optimal tuning. The Adam optimizer

produces an accuracy of 85.10% and 85.08% with 16 batch

sizes but with 10 and 35 epochs respectively. The SGD with

Momentum optimizer produces an 86.10% and 84.28% with 10

12

and 35 epochs with batch size 16. As a unique feature, the

batch size of 16 is well suited for Categorical cross-entropy loss

with the UECFOOD256 dataset.

With the large margin softmax loss for the SGD produces a

higher accuracy of 90.21% for a batch size of 16 and in 35

epochs and 89.47% for the same batch size in 50 epochs. The

SGD with momentum also produces an accuracy of 89.50%

with batch size 16 for 50 epochs and 82.50% with the batch

size but for 35 epochs. The difference seems to be a bit higher

in this case.

Overall for the UECFOOD256 dataset the accuracy produced by

all three optimizers is higher for batch size 16 than for 32 and

the very highest is produced by SGD with momentum. The

fluctuations observed in the results of implementing

MResNet50 on various optimizers for both datasets, where the

highest accuracy obtained exceeds 85%, might stem from

several factors. These include the diversity of images within

the datasets, variations in optimizers and loss functions

utilized, as well as differences in hyperparameter tuning.

Comparative analysis of the proposed MResNet-50’s Top1%

and Top-5% accuracy values to other models in existing

literature are shown in Table 3. Top-1% accuracy refers to the

model accurately predicting the food item to its corresponding

class, while top-5% accuracy refers to the predicted class

matching any of the top five predictions. Additionally, the

proposed model proves that the prediction accuracy of the

Top5% is greater than the prediction accuracy of the Top-1%.

The execution time taken by MResNet-50 for Food101 dataset

using Adam optimizer is 29.2 min, 30.1 min and 38.6 min and

for UECFOOD256 dataset using SGD optimizer it is 19.8 min,

18.4 min and 23.1 min for each of the models as shown in Table

3. The reduced execution time for the UECFOOD256 dataset

compared to the FOOD-101 dataset is attributed to the smaller

size of the UECFOOD256 than the FOOD-101 dataset.

The results in Table 3 show that the MResNet-50 model

proposed demonstrates superior performance compared to

existing models that required human intervention and those

that struggle with intra-class similarity and inter-class

variability issues. This achievement substantiates the

successful attainment of our objective. Moreover, we have

augmented the test image set with intricate images to evaluate

the model’s ability to handle diverse scenarios. The higher

accuracy observed in handling these images further validates

the effectiveness of our approach. As part of the case study,

food items mentioned in Fig. 1 (a) and Fig. 1 (b) are extracted

from the FOOD101 and UECFOOD256 datasets and the

proposed MResNet-50 model accurately classifies the food

images.

4.2. Results of Ingredient and Recipe extraction

The ingredient identification module runs on the Recipe1M+

and recipe ingredients dataset using two algorithms. The

results of the Word2Vec are shown in Table 4. Following the

preprocessing, the skip-gram algorithm in Word2Vec is applied

with the vector length of 20 and 40 to identify the target

ingredients and thereby extract them. The lower error means

that the vector and the food item are closely related to each

other whereas if higher it means they are far away from each

other and that specific recipe/ingredient is not to the food

item. However, the results of applying Word2Vec before and

after stemming show a marginal difference because stemming

changes the meaning of the sentence. Hence the results shown

in the table is the one that is obtained before applying the

stemming. We train the 256 and 101-dimensional models on

more than a million words and

Figure 7: Patterns learnt by the Transformer

compute the score of every sentence and try to find the

appropriate sentence with the highest computing score. At the

end of the iteration, the final score will be added to the sum of

all the individual predictions, and using the likelihood factor

the relevant sentence is identified and extracted.

The Transformer model is executed on both datasets. As an

initial step, they are subjected to byte-pair encoding. The

millions of sentence pairs are divided into tokens i.e. word-

piece vocabulary. The sentence pairs are then grouped into a

specific lengths of 20 and 40. The Recipe1M+ dataset has two

layers: layer 1 and layer 2. The BLEU (BiLingual Evaluation

Understudy) score is used for measuring the similarity of

prediction in machine translation of searching. The results of

applying transformers and regular baseline LSTM (Long short-

term Memory) [41] are shown in Table 5. The LSTM

approaches using single forward and single reversed methods

followed in [41] are applied to both datasets. The training BLEU

score produced by Transformers on both datasets is recorded.

Fig. 7 shows the pattern learned by the Transformer.

The LSTM is very effective in handling short sentences but

not efficient in handling reversed sentences because it fails to

understand the reversed sequences. On the contrary,

transformers are very good at handling both of them. Most

importantly, we apply the unoptimized, simple, and

straightforward transformer function for handling both the

long and short sequences.

13

4.3. Ontology validation

The proposed semi-structured ontology shown in Fig. 8 can

be validated using descriptive information [50] which tells us

how well the ontology can provide us with the specified

information for the query that is asked of it.

An ingredient name when passed onto the ontology will

identify all the food types that use it. The ontology can be used

to filter the food types that have a specific allergen. The

advantage of ontology over using documenting software is that

ontology reunites the food types that share similar ingredients

near to each other in space thereby reducing the entropy

value. The ontology that is built for this application has one-to-

one, one-tomany, and many to one and many to many

relationships. Cer-

Table 4: Word2Vec SkipGram Training Error on both the datasets
Input word Output

vector

length

Target Recipe
1M+

Training

Error

Recipe
Ingredient

dataset

Food item 1 20 0 -0.91 -0.82
Food item 1 40 1 0.64 0.58
Food item 2 20 1 0.18 0.17
Food item 2 40 1 -0.83 -0.77
Food item 3 20 0 -0.08 -0.03
Food item 3 40 0 0.72 0.76
Food item 4 20 1 0.32 0.28
Food item 4 40 0 0.59 0.58
Food item 5 20 1 -0.89 -0.87
Food item 5 40 1 -0.12 0.78
Food item 6 20 0 0.90 0.81
Food item 6 40 0 -0.43 -0.65

Table 5: Transformers BLEU score on both the datasets

Method Training
score
1M+

BLEU
Recipe

Training BLEU

score Recipe

ingredients

dataset
LSTM single forward [41] 28.97 25.23

LSTM single reversed [41] 35.28 29.01

Transformers 45.12 24.19

Figure 8: Ontology picture of cuisine-food type relationship

Table 3: Comparison of the performance of the Top-1% Top-5% of the proposed MResNet-50 model with other existing deep CNN models over Food-101 and
UECFOOD256 dataset

 Food-101 Dataset UECFOOD256

 Top-1% Top-5% Top-1% Top-5%

Deep Food [44] 77.4 93.7 DeepFood [44] 54.7 81.5
CNN-FOOD(ft) [8] 70.41 - CNN-FOOD(ft) [8] 67.57 88.97
ResNet(APL) [45] 78.5 94.1 ResNet(APL) [45] 71.2 91.1
Inception-V3 [46] 88.28 96.88 Inception-V3 [46] 76.17 92.58
WISeR [47] 90.27 98.71 WiSer [47] 83.15 95.45
AlexNet-CNN [10] 56.4 - DeepFoodCam [48] 63.77 85.82
Inception+Wi-HSNN [49] 84.7 - Inception+Wi-HSNN [49] 77.7 -
(Combined results of ResNet,

DenseNet, and InceptionNet)

+WiHSNN [49]

90.8 - (Combined results of

 ResNet, DenseNet, and

InceptionNet) +WiHSNN [49]

83.1 -

ResNet-50 [3] 82.54 95.79 ResNet-50 [3] 71.7 91.33
MResNet-50 - Angular Softmax
Loss (32, Adam, 50) (29.2 min)

92.67 96.43 MResNet-50 - Angular Softmax

Loss (32, SGD-w-M, 50) (19.8

min)

90.65 95.47

MResNet-50 - Categorical Cross

Entropy Loss (32, Adam, 50) (30.1

min)

91.97 97.29 MResNet-50 - Categorical Cross

Entropy Loss (16, SGD, 35) (18.4

min)

89.03 94.35

MResNet-50 - Largin Margin

Softmax Loss (16, Adam, 50) (38.6

min)

90.96 95.79 MResNet-50 - Largin Margin

Softmax Loss (16, SGD, 35) (23.1

min)

90.21 96.59

 CNN

approaches

 CNN approaches

14

tain dishes are related to specific cuisine which signifies oneto-

one relation and a few food items are shared across many

cuisines showing one-to-many relations, many ingredients are

used in one food item showing many relations, and there are a

lot many other relations which are indirectly seen between

food items, cuisines, ingredients, etc. The interrelation

between food and cuisine can be quickly identified in ontology

than the conventional search techniques.

In summary, the application of MResNet-50 to the Food-101

and UECFOOD256 datasets yielded accuracies of 92.67% and

90.65%, respectively compared to existing models.

Additionally, employing the transformer model for ingredient

and recipe extraction resulted in BLEU scores of 45.12 and

24.19 on the Recipe 1M+ and Recipe Ingredients datasets

compared to other techniques. The domain ontology model

integrates the architecture of food-cuisine and ingredients,

establishing a comprehensive framework for Fine-Grained

Food Image Classification and Recipe Extraction through a

tailored combination of Deep

Neural Networks and Natural Language Processing techniques.

Like other research endeavors, this project faces limitations

from two distinct perspectives: the deep learning framework

and the chosen application. In terms of model development,

one of the main concern involves fine-tuning hyperparameters

in ResNet models, given their sensitivity. This sensitivity may

hinder the model’s ability to capture the intricate longrange

dependencies within images during training. However, this is

effectively addressed in the proposed work by leveraging a

domain ontology, which documents relationships between

cuisines and ingredients. Nevertheless, this necessitates the

creation of different domain ontology for various applications.

Regarding the food image application, a limitation stems from

the diversity of cultures and regions, each with its unique

cuisine, which are not all recorded or the images captured into

available datasets. Additionally, to personalize these

applications for individual users, their dietary preferences and

allergens need to be captured and by cross-referencing these

preferences, a holistic application can be developed to meet

the diverse needs of users.

5. Conclusion

This research paper presents a novel Fine-Grained Food

Image Classification and Recipe Extraction framework,

integrating a Customized Deep Neural Network and NLP. The

framework achieves its objectives through three key

innovations. Firstly, a tailored MResNet-50 model is developed,

enhancing food item identification accuracy, surpassing

traditional ResNet-50 models and other similar models in

literature. The MResNet-50 model is optimized for a

lightweight design through layer modifications, feature

pruning, and the adoption of the swish activation function.

Secondly, an NLP module, employing Recipe1M+ and Recipe

Ingredient datasets, utilizes Word2Vec and transformer

algorithms to identify ingredients, demonstrating superior

performance compared to LSTM approaches. Thirdly, an

ontology structured around cuisine, food type, and ingredients

is established, facilitating rapid allergen identification through

the Protege ontology model.

The combined framework of CNN, NLP, and Ontology

exhibits robust and precise performance in food image

processing applications, achieving notable accuracies of

92.67% and 90.65% on the Food-101 and UECFOOD256

datasets, respectively. Furthermore, employing the

transformer model for ingredient and recipe extraction yields

significant BLEU scores of 45.12 and 24.19 on the Recipe 1M+

and Recipe Ingredients datasets, outperforming alternative

techniques. The developed ontology enhances the

framework’s versatility for future applications and accelerates

data processing. The framework enables accurate food image

classification while automating recipe extraction through NLP

and ontology. Considering its potential for future extensions,

this solution stands as a viable option capable of delivering

commendable results within a reasonable timeframe.

The impact of this work extends to the healthcare domain,

empowering vulnerable patients to manage ingredient labels,

allergens, and overall health, while aiding food safety

inspection operators in allergen detection and advisory tasks.

Additionally, the lightweight design of the framework enables

integration with wearable smart devices, facilitating various

healthcare applications such as nutrition tracking, calorie

computation, remote monitoring, and telehealth services. Its

lightweight nature ensures swift real-time execution especially

in mobile applications, offering quick outputs, which could be

explored as a potential avenue for future expansion.

References

[1] M. T. Gorski, C. A. Roberto, Public health policies to encourage healthy
eating habits: recent perspectives, Journal of healthcare leadership 7
(2015) 81.

[2] V. Kakani, V. H. Nguyen, B. P. Kumar, H. Kim, V. R. Pasupuleti, A critical
review on computer vision and artificial intelligence in food industry,
Journal of Agriculture and Food Research 2 (2020) 100033.

[3] G. Ciocca, P. Napoletano, R. Schettini, Cnn-based features for retrieval
and classification of food images, Computer Vision and Image

Understanding 176 (2018) 70–77.
[4] D. Sahoo, W. Hao, S. Ke, W. Xiongwei, H. Le, P. Achananuparp, E.-P. Lim,

S. C. Hoi, Foodai: Food image recognition via deep learning for smart
food logging, in: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 2260–
2268.

[5] S. Horiguchi, S. Amano, M. Ogawa, K. Aizawa, Personalized classifier for
food image recognition, IEEE Transactions on Multimedia 20 (10) (2018)
2836–2848.

[6] M. Taskiran, N. Kahraman, Comparison of cnn tolerances to intra class
variety in food recognition, in: 2019 IEEE International Symposium on
Innovations in Intelligent Systems and Applications (INISTA), IEEE, 2019,
pp. 1–5.

15

[7] Y. He, C. Xu, N. Khanna, C. J. Boushey, E. J. Delp, Analysis of food images:
Features and classification, in: 2014 IEEE international conference on
image processing (ICIP), IEEE, 2014, pp. 2744–2748.

[8] K. Yanai, Y. Kawano, Food image recognition using deep convolutional
network with pre-training and fine-tuning, in: 2015 IEEE International
Conference on Multimedia & Expo Workshops (ICMEW), IEEE, 2015, pp.
1–6.

[9] K. Yanai, Y. Kawano, Twitter food photo mining and analysis for one
hundred kinds of foods, in: Pacific Rim Conference on Multimedia,
Springer, 2014, pp. 22–32.

[10] L. Bossard, M. Guillaumin, L. V. Gool, Food-101–mining discriminative
components with random forests, in: European conference on computer
vision, Springer, 2014, pp. 446–461.

[11] S. Yang, M. Chen, D. Pomerleau, R. Sukthankar, Food recognition using
statistics of pairwise local features, in: 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, IEEE, 2010, pp.
2249–2256.

[12] Z. Zong, D. T. Nguyen, P. Ogunbona, W. Li, On the combination of local
texture and global structure for food classification, in: 2010 IEEE
International Symposium on Multimedia, IEEE, 2010, pp. 204–211.

[13] D. T. Nguyen, Z. Zong, P. O. Ogunbona, Y. Probst, W. Li, Food image
classification using local appearance and global structural information,

Neurocomputing 140 (2014) 242–251.
[14] Y. Matsuda, H. Hoashi, K. Yanai, Recognition of multiple-food images by

detecting candidate regions, in: 2012 IEEE International Conference on
Multimedia and Expo, IEEE, 2012, pp. 25–30.

[15] M. Chen, K. Dhingra, W. Wu, L. Yang, R. Sukthankar, J. Yang, Pfid:
Pittsburgh fast-food image dataset, in: 2009 16th IEEE International
Conference on Image Processing (ICIP), IEEE, 2009, pp. 289–292.

[16] L. Oliveira, V. Costa, G. Neves, T. Oliveira, E. Jorge, M. Lizarraga, A mobile,
lightweight, poll-based food identification system, Pattern Recognition
47 (5) (2014) 1941–1952.

[17] Y. Kawano, K. Yanai, Real-time mobile food recognition system, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2013, pp. 1–7.

[18] A. Meyers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban, N.
Silberman, S. Guadarrama, G. Papandreou, J. Huang, K. P. Murphy,
Im2calories: towards an automated mobile vision food diary, in:
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1233–1241.

[19] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep
convolutional neural networks, Communications of the ACM 60 (6)
(2017) 84–90.

[20] L. Aziz, M. S. B. H. Salam, U. U. Sheikh, S. Ayub, Exploring deep learning-
based architecture, strategies, applications and current trends in generic
object detection: A comprehensive review, IEEE Access 8 (2020) 170461–

170495.
[21] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for

accurate object detection and semantic segmentation, in: Proceedings
of the IEEE conference on computer vision and pattern recognition,
2014, pp. 580–587.

[22] R. Girshick, Fast r-cnn, in: Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[23] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, Advances in neural
information processing systems 28 (2015).

[24] K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask r-cnn, in: Proceedings of´
the IEEE international conference on computer vision, 2017, pp. 2961–
2969.

[25] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779–788.

[26] J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in: Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 7263–7271.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg, Ssd:
Single shot multibox detector, in: European conference on computer
vision, Springer, 2016, pp. 21–37.

[28] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A. C. Berg, Dssd: Deconvolutional single
shot detector, arXiv preprint arXiv:1701.06659 (2017).

[29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[30] Q.-C. Mao, H.-M. Sun, Y.-B. Liu, R.-S. Jia, Mini-yolov3: real-time object
detector for embedded applications, Ieee Access 7 (2019) 133529–
133538.

[31] Y. Guo, W. Peng, Y. Chen, L. Zhang, X. Liu, X. Huang, Z. Ma, Joint a-snn:
Joint training of artificial and spiking neural networks via selfdistillation
and weight factorization, Pattern Recognition 142 (2023) 109639.

[32] S. Zhang, M. Gao, Q. Ni, J. Han, Filter pruning with uniqueness
mechanism in the frequency domain for efficient neural networks,
Neurocomputing 530 (2023) 116–124.

[33] J. Chen, C.-W. Ngo, Deep-based ingredient recognition for cooking recipe
retrieval, in: Proceedings of the 24th ACM international conference on
Multimedia, 2016, pp. 32–41.

[34] W. Min, B.-K. Bao, S. Mei, Y. Zhu, Y. Rui, S. Jiang, You are what you eat:
Exploring rich recipe information for cross-region food analysis, IEEE
Transactions on Multimedia 20 (4) (2017) 950–964.

[35] A. Salvador, N. Hynes, Y. Aytar, J. Marin, F. Ofli, I. Weber, A. Torralba,
Learning cross-modal embeddings for cooking recipes and food images,
in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 3020–3028.

[36] T. Ege, K. Yanai, Image-based food calorie estimation using recipe
information, IEICE TRANSACTIONS on Information and Systems 101 (5)
(2018) 1333–1341.

[37] D. M. Dooley, E. J. Griffiths, G. S. Gosal, P. L. Buttigieg, R. Hoehndorf, M.
C. Lange, L. M. Schriml, F. S. Brinkman, W. W. Hsiao, Foodon: a
harmonized food ontology to increase global food traceability, quality
control and data integration, npj Science of Food 2 (1) (2018) 1–10.

[38] S. Haussmann, O. Seneviratne, Y. Chen, Y. Ne’eman, J. Codella, C.-H. Chen,
D. L. McGuinness, M. J. Zaki, Foodkg: a semantics-driven knowledge
graph for food recommendation, in: International Semantic Web
Conference, Springer, 2019, pp. 146–162.

[39] S. Hochreiter, The vanishing gradient problem during learning recurrent
neural nets and problem solutions, International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems 6 (02) (1998) 107–116.
[40] P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation functions,

arXiv preprint arXiv:1710.05941 (2017).
[41] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with

neural networks, Advances in neural information processing systems 27
(2014).

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, I. Polosukhin, Attention is all you need, Advances in neural
information processing systems 30 (2017).

[43] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, S. Matsuoka,
Secondorder optimization method for large mini-batch: Training resnet-
50 on imagenet in 35 epochs, arXiv preprint arXiv:1811.12019 1 (2018)
2.

[44] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, Y. Ma, Deepfood: Deep
learning-based food image recognition for computer-aided dietary
assessment, in: Inclusive Smart Cities and Digital Health: 14th
International Conference on Smart Homes and Health Telematics, ICOST
2016, Wuhan, China, May 25-27, 2016. Proceedings 14, Springer, 2016,
pp. 37–48.

[45] Z. Fu, D. Chen, H. Li, Chinfood1000: A large benchmark dataset for
chinese food recognition, in: Intelligent Computing Theories and
Application: 13th International Conference, ICIC 2017, Liverpool, UK,
August 7-10, 2017, Proceedings, Part I 13, Springer, 2017, pp. 273–281.

[46] H. Hassannejad, G. Matrella, P. Ciampolini, I. De Munari, M. Mordonini,
S. Cagnoni, Food image recognition using very deep convolutional
networks, in: Proceedings of the 2nd international workshop on
multimedia assisted dietary management, 2016, pp. 41–49.

16

[47] N. Martinel, G. L. Foresti, C. Micheloni, Wide-slice residual networks for
food recognition, in: 2018 IEEE Winter Conference on applications of
computer vision (WACV), IEEE, 2018, pp. 567–576.

[48] Y. Kawano, K. Yanai, Food image recognition with deep convolutional
features, in: Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp.
589–593.

[49] W. Zhang, J. Wu, Y. Yang, Wi-hsnn: A subnetwork-based encoding
structure for dimension reduction and food classification via harnessing

multicnn model high-level features, Neurocomputing 414 (2020) 57–66.
[50] C. Reyes-Pena, M. Tovar-Vidal, Ontology: components and evaluation, a

review, Research in Computing Science 148 (3) (2019) 257–265.

