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Abstract 

This paper details a novel physics-informed data-

driven approach for developing computationally fast 

metamodels for predicting fatigue damage and its spatial 

distribution at common failure sites of power electronic 

components. The proposed metamodels aim to serve the 

end-users of these power components by allowing an 

informative model-based assessment of the thermal fatigue 

damage in the assembly materials due to different 

application-specific, qualification and user-defined load 

conditions, removing current requirements for 

comprehensive device characterisations and deploying 

complex finite element (FE) models. The proposed 

methodology is demonstrated with two different 

metamodel structures, a multi-quadratic function, and a 

neural network, for the problem of predicting the thermal 

fatigue damage due to temperature cycling loads in the 

wire bonds of an IGBT power electronic module (PEM). 

The results confirmed that the proposed approach and the 

modelling technology can offer FE-matching accuracy and 

capability to map highly nonlinear spatial distributions of 

the damage parameter over local sub-domains associated 

with material fatigue degradation and failure due to 

material/interfacial cracking.  

1. Introduction 

Assuring and assessing the reliability performance of 

power electronic modules (PEMs) deployed in different 

applications remains a key challenge for the industry [1-3]. 

Power components based on current packaging 

architectures are most susceptible to thermally induced 

fatigue damage of their wire bonds and the die attachment 

layer. While many studies contributed to the reliability 

modelling of PEMs [4-8], the informed deployment of 

these modules in different applications remains a challenge 

for the end-users. Driven by considerations for protecting 

intellectual property (IP), data on internal design and 

dimensions of power components and their bill of materials 

are not included in manufacturers’ technical datasheets and 

thus are not readily available. To assure the required 

reliability of PEMs under application-specific load 

conditions, the end-users must engage in time-consuming 

and costly activities to characterise the component and to 

evaluate its reliability performance through modelling 

and/or physical testing. 

Finite element (FE) modelling, coupled with lifetime 

prediction methodologies and models, offers a robust 

solution for this problem by predicting damage metrics for 

the expected failure modes, for example, the studies 

reported in [5-8]. Lifetime prediction methodologies for 

PEM have been also extensively developed, with much of 

the effort on establishing accurate models predicting the 

wire bonds lifetime under accelerated active and passive 

temperature cycling conditions that qualify the device for 

the respective application load. Most commonly, lifetime 

models such as Cofin-Manson and Paris laws require 

damage parameter values that are semi-empirically 

correlated to the cycles to failure. For the failure of wire 

bonds in PEMs, a damage metric is most often obtained 

with FE simulation, and commonly chosen as the plastic 

strain range per cycle. This lifetime modelling approach 

has been demonstrated extensively, and in many studies 

[6,9]. However, developing and using such FE-based 

computational models to predict damage, and then lifetime, 

is a complex task that requires characterisation data, 

specialist skills, computing hardware, and advanced 

simulation software tools, all of which are not available to 

many end-users. 

In this work, the authors aim to address the above 

position through a methodology for developing fast and 

user-friendly damage prediction models that take 

advantage of the combined deployment of metamodeling 

and machine learning (ML) using physics-informed 

damage data, where the focus is on the realisation of spatial 

mappings of results through a geometric abstraction of the 

failure site. The metamodels protect the manufacturer's 

intellectual property by not disclosing and not requiring 

any information about the packaging design, the internal 

component layout and topology, and the bill of materials. 

At the same time, they can be deployed by end-users of 

power devices with ease, to allow assessing the damage 

under user-defined application loads and visualise the 

damage distribution, allowing for the informed deployment 

of power electronics components across different 

applications through a better understanding of their 

reliability performance under respective load conditions. 

2. Methodology 

The main attributes of the proposed methodology are 

the complete automation of all steps that require 

computation and the synthetic generation of physics-

informed datasets required for the meta-modelling part of 

the approach. For a given PEM structure, a fully scripted 

high-fidelity FE model generation (parametric model) and 

design-of-simulations runs are carried out first. The models 

enable assessing the damage level at anticipated failure 

sites (e.g. in wire bonds, solder attachment, etc.) as a 
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function of user-defined cyclic loads, but other model input 

parameters that capture design or manufacturing variations 

can also be included. As with the traditional Response 

Surface modelling approach, the proposed methodology 

utilises several high-fidelity analyses in the thermal load 

design space but uses a robust multi-quadratic (MQ) 

metamodel structure and a Neural Network to model the 

load-damage relationships in the spatial domain of the 

failure site. Underpinned by physics-of-failure data for the 

PEM assembly materials’ degradation or damage, and 

locational damage distribution data informed by the FEA 

analysis, these fast models are capable of providing 

predictions not only for a characteristic damage value of 

the respective failure mode (e.g. wire bond cracking and 

wire liftoff) but a much more detailed prediction for the 

spatial distribution of the damage parameter (using spatial 

abstraction of the true failure site’s geometry). The latter is 

a very important attribute of the proposed approach as it 

enables a robust deployment of different lifetime models in 

the public domain that may have different definitions of the 

required lifetime model input value of the damage 

characteristic, which is often obtained through a location-

dependent or a spatial subdomain-dependent calculation 

using the damage parameter predictions at the failure site. 

The methodology steps are visually outlined with the 

block diagram given in Fig. 1 and are also described in 

Table 1. 

 
Figure 1: Methodology for physics-informed dataset 

generation, damage predictions and MQ and Neural 

Network metamodel development. 

While in this study the methodology formulation, the 

demonstration and the metamodel validation focus on the 

realisation of the spatial damage distribution prediction 

capability of the metamodels, the methodological approach 

can be extended to the temporal domain too by defining 

and constructing a higher-dimension multi-variate MQ or 

Neural Network (NN) model structures. 

 

Table 1. Methodological steps of the physics-informed 

metamodeling approach. 

Step                                 Description 

1 

Component Charatresiation Data. If the 

metamodeling methodology is carried out by the 

manufacturer, to deliver metamodels to the end-user, 

without disclosing intellectual property, the component 

characterisation data will be readily available. 

Otherwise, the power device of interest must be fully 

characterised in terms of geometric data and materials.  

2 

Loading Conditions Data. The loading condition such 

as temperature cycling is parameterised. These load 

parameters are also the metamodel input parameters. 

Other parameters can be considered without any 

limitation. 

3 

FE Modelling and Analyses Automation. A 

parametric finite element model is developed using the 

characterisation data from Step 1, and FE simulation 

runs are scripted to allow the automation of all analyses 

for a defined set of data points in the parameter design 

space. An automated run of the FE simulations is 

executed. FE predictions for a defined damage 

parameter about a failure mode and mechanisms of the 

power module become available. 

4 

Phytsics-Informed Datasets. A spatial subdomain 

associated with the failure site of interest is defined. 

Extracting the FE prediction/data of interest from all 

analyses is scripted to enable the automation of this 

step. For the defined failure site spatial domain, mesh 

nodes/element’s locations (coordinates) and element 

volumes are gathered along the respective FE 

predictions for the damage (nodal or element values). 

6 

Extended Datasets and Data Labeling. The physics-

informed datasets in Step 5 are processed into the 

format of multi-variate data points with combined load 

and spatial location parameters. The data points are 

labelled with the associated damage value, as predicted 

by the FE simulation, for the respective load and spatial 

location. 

7 

Metamodel Development. A subset of the data (training 

dataset) is used to build a metamodel. Two model 

structures are suggested, MQ metamodel and Neural 

Network, both with excellent computational and 

predictive power characteristics. Realise the 

visualisation of metamodel results through a spatial 

domain abstraction of the failure site. 

8 

Metamodel Validation. Validation of models is 

performed using the balance of the data (the validation 

dataset), to assess model predictive power & accuracy. 
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3. Power Device and Thermo-mechanical Finite 

Element Model Development 

The power electronic module that is investigated with 

the proposed damage prediction metamodeling 

methodology features a conventional IGBT packaging 

architecture with wire bond interconnections. Figure 2 

shows a schematic of such a Power IGBT assembly.  The 

actual Si chip (IGBT) is attached to a ceramic substrate, 

most commonly one of Alumina (Al2O3) or Aluminium 

Nitride (AlN). The substrate has copper metallization on 

both sides, in the form of thin layers with thickness 

typically around 300 m, which are formed through direct 

thermal bonding (hence the reference to the metalized 

substrate as direct bond copper (DBC) substrate). The 

assembly of the chip and the DNC substrate is attached to 

the baseplate by soldering.  The baseplate, typically Cu or 

AlSiN, provides the structural integrity for the entire 

package and acts as the interface with the heat sink which 

is a common thermal management solution. 

 
Figure 2: Schematic of a typical IGBT power module 

packaging architecture. 

  

Further, non-schematic, details of the specific PEM that 

is modelled in this study are given in Fig. 3 (a). Here, the 

module’s external plastic case is not visualised to reveal the 

internal construction of the assembly. In the set of wires, 

each wire has a bond and a stitch to the Si chip, and a bond 

at the other end to the copper trace pattern. In the modelling 

work, a 3D slice of the full module is captured, along the 

full length and through the thickness of the package, so that 

a single wire is fully represented. 

Figure 3 (b) shows the 3D slice section as a CAD model 

and details the finite element mesh at the level of the wire 

bond. In addition, the materials that made the PEM are also 

annotated. The solder material providing the 

interconnection between the Si chip and the copper layer 

on the AlN substrate, and similarly between the DBC 

substrate and the AlSiC baseplate, is SnAg alloy. The 

thickness of the solder layers is 100 m. In the FEA, the 

96.5Sn3.5Ag solder is modelled as visco-plastic with the 

Anand constitutive law and model constants reported in 

[10,11]. Aluminium wires are Al-H11 alloy, with a 

diameter of 375 m, and modelled with time-independent 

bilinear kinematic hardening material behaviour where the 

yield strength is temperature-dependent [12]. Due to the 

symmetry plane, only half of the 3D slice domain shown in 

Fig. 3(b) is used for the FE model and in the FE 

simulations. 

 
Figure 3: (a) Topology outline of the power electronic 

module architecture, with a close view of the IGBT chip 

and wire bonds, and (b) 3D CAD slice model of the device 

along the full length of the module, capturing a single wire, 

close view of the FE mesh density at the wire bond level, 

and annotation of the bill of materials. 

 

Given the focus of this work, the PEM FE thermo-

mechanical simulations are implemented in a fully 

automated manner, through ANSYS APDL scripting, 

where different thermal cycle load profiles are evaluated 

with the different simulation runs. The temperature cyclic 

load is defined with the low-temperature extreme value 

𝑇𝑚𝑖𝑛 and the temperature range ∆𝑇 of the cycle, where in 

this instance the ramp and dwell times are kept fixed. 

However, the ramp time/rate and dwell time can be also 

added to the load parameter design space to archive even 

further generalisation of the cycle load profile. 

The FE model generation in the parameterised space of 

load-defining parameters is fully scripted using the 

ANSYS APDL command language and macro script 

functionality. This allows for the complete automation of 

simulation runs with different temperature cycle load 

parameters. For this problem, a single FEA simulation took 

about 50-65 minutes, determined by the load cycle duration 

that was simulated and was carried out using shared 

memory parallel with 16 processors of high-performance 

computing run on Intel(R) Xeon(R) processor workstation 

at 2.20 GHz, with 10 cores and 20 logical processors. 

Figure 4 shows an example of FE simulation 

predictions for the plastic strain range due to one 

temperature cycle,  ∆𝜀𝑝𝑙, in the wire bond domain next to 

the chip. The plastic strain range in that location is a 

commonly used indicator of material damage (damage 

parameter) that can be used in lifetime models to predict 

the wire liftoff failure due to bond cracking. Specifically, 

the interfacial mesh layer (here, with a thickness of 50 m) 

is used to observe the damage distribution. This interfacial 

wire region is defined as the local spatial site for which the 

metamodels are developed. 

AlN
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Figure 4: Example of FE simulation prediction of the 

plastic strain range (damage parameter) magnitude,  ∆𝜀𝑝𝑙,  

and distribution in the Al wire bond (chip interface side).  

The interfacial layer where the crack is expected is defined 

as the local failure site of interest. 

 

4. Physics-informed Meta-modelling of Damage 

Spatial Distribution 

4.1 Datasets for Meta-modelling 

The data required for metamodel development is 

generated with the parametrized thermo-mechanical finite 

element model and the automated run of 31 load-case 

simulations. Each analysis is a simulation of the PEM 

response to a particular passive temperature cyclic load that 

is defined with the minimum temperature and the 

magnitude of temperature excursion of the load, 

(𝑇𝑚𝑖𝑛 ,  ∆𝑇)
𝑖
 ,  𝑖 = 1, 𝑚, where in this investigation 𝑚=31. 

Here, 21 of the load profiles are used to create the set of 

physics-informed damage data to be used to develop the 

metamodels (training data), and the remaining 10 load 

cases are used for validation of the metamodel accuracy 

against the respective FEA results. The cycling load 

profiles used to generate the training dataset are defined in 

a structured manner over a truncated 𝑇𝑚𝑖𝑛 -∆𝑇 design space 

to retain the physical feasibility of the cycle definition, as 

shown in Fig. 5. The following parameter levels are 

deployed: 

• 6 levels of 𝑇𝑚𝑖𝑛 in the range -55°C to 145°C 

• 6 levels of ∆𝑇, in the range 40°C to 240°C. 

 
Figure 5: Temperature load-cycle cases analysed with FE 

simulations and used to establish the training dataset for 

metamodeling. 

The load cases used to validate the developed 

metamodels are listed in Table 2. 

 

Table 2. Temperature load-cycle cases used for metamodel 

validation. 

 
Load Case Ref. Number, # 

1 2 3 4 5 6 7 8 9 10 

L
o
a

d
 𝑻𝒎𝒊𝒏 

(°C) 
-35 -35 -35 -35 5 5 5 45 45 85 

∆𝑻 

(°C) 
100 140 180 220 60 100 140 60 100 60 

 

To demonstrate the concept of metamodels with the 

capability for mapping the spatial damage distribution, as 

it can be obtained with a full-order FE simulation, the local 

spatial domain of the Al wire bond at the interface with the 

chip is selected. This interfacial layer and how the damage 

parameter,  ∆𝜀𝑝𝑙, is spatially distributed within are of prime 

interest for several reasons: 

• This is the location of wire bond cracking due to 

thermal fatigue, leading to the wire lift-off failure. 

• Lifetime models for the wire bond lift-off cycles to 

failure require the damage parameter values at this 

location, where the crack takes place. 

• The special distribution information from a model 

is a critical requirement, to allow for the 

deployment of different approaches where the 

damage metric for the lifetime model may be 

formulated differently (for example volume 

weighted average over a region that may be 

different with different lifetime models). 

   

The damage parameter spatial location values are 

associated with the FE mesh element centre locations for 

the mesh elements in the spatial domain of the failure site 

(i.e. the interfacial mesh layer shown in Fig. 4). Because 

the spatial domain demonstrated here is a planar layer at 

the wire bond to the chip interface with a single mesh 

division, only X and Y spatial coordinates need to be 

deployed. However, without any limitation, three-

dimensional location definitions for more complex three-

dimensional spatial domains of local failure sites within the 

global PEM domain can be defined similarly. 

The mesh element of the wire-to-chip interfacial layer 

of interest is defined by a mesh grid with the size of 8×8, 

thus resulting in 64 spatial locations with coordinates (𝑋𝑗, 

𝑌𝑗) ,  𝑗 = 1,2, … ,64.  

The training dataset for building a metamodel is 

assembled as a combination of the load data points, 

(𝑇𝑚𝑖𝑛 ,  ∆𝑇)
𝑖
 ,  𝑖 = 1, ,2, … ,21) and the location datapoints, 

(𝑋𝑗, 𝑌𝑗),  𝑗 = 1,2, … ,64, resulting in 1,344 data points. 

Each data point in this extended dataset is a 4-dimensional 

vector normalized over the range [0,1]. Each of these 

points is labelled with the respective damage value  ∆𝜀𝑝𝑙 at 

that location as obtained from the respective FE analysis at 

the location-matching mesh element. The damage values 

are also normalized over [0,1], based on the actual range 

IGBT module Al 

wire interfacial 

layer with Si chip 

FE mesh-defined spatial 

damage distribution in the 

critical for cracking

wire bond layer

Accumulated plastic strain 

per temperature cycle =

damage metric

IGBT wire bond (half 
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found with the training dataset. The same procedure is 

followed with the load-cycle cases set aside to generate the 

datasets for metamodel validation. The size of the 

validation dataset is 640 data points. 

4.2 Multi-Quadratic (MQ) Metamodel 

The multi-quadratic metamodel that is deployed in this 

work follows the surrogate modelling approach known as 

response surface methodology (RSM). RSM has become a 

popular tool in multi-disciplinary optimisation and 

conventionally uses polynomial functions to approximate 

a dataset of input points to known responses. A major issue 

with such polynomial metamodels is that they are not 

accurate in the case of non-linear response data. More 

complex model structures capable of interpolating the 

response data are required to address this challenge. 

While metamodel structures based on Kriging and 

different radial basis interpolation functions have been 

demonstrated, highly non-linear data requires a model 

structure that in addition to the data interpolation feature 

allows for tuning the model accuracy away from the 

interpolation points. 

In this study, the multi-quadratic (MQ) metamodel 

structure [13,14] is used, given with: 

𝐹𝑀𝑄(𝑋) = ∑ 𝑎𝑗
𝑝
𝑗=1 √|𝑋 − 𝑋̅𝑗|2 + ℎ                   (1) 

where 𝑋 ∈ 𝑅𝑛 is the model input data point, i.e. the vector 

of n input model parameters, 𝑋̅𝑗 ∈ 𝑅𝑛 are the metamodel 

training points (𝑗 = 1, … , 𝑝) with known response values 

and h is the so-called shift parameter. The coefficients 𝑎𝑗 

in the multi-quadratic metamodel are computed by 

requiring the function in Eq. 1 to fit exactly the given set 

of finite element analysis response data (𝑋̅𝑗, 𝐹𝑀𝑄(𝑋̅𝑗)) for 

the data points deployed in the model development (𝑗 =
1, … , 𝑝). This requirement results in solving a linear system 

of 𝑝 equations with the coefficients in the multi-quadratic 

model 𝑎𝑗 (𝑗 = 1, … , 𝑝) as unknowns. 

A major advantage offered by the MQ method is its 

excellent ability to control the smoothness of the output 

parameter predictions through the model parameter ℎ. This 

parameter has a major influence on the model accuracy. By 

altering the shift parameter value, the MQ accuracy can be 

improved dramatically. 

The data points defined as the “training dataset” in 

section 4.1 are used to construct the MQ metamodel. At the 

training points, the MQ model predictions have zero error 

because of the interpolation attribute of the model 

structure. Hence, the accuracy of the model is judged by 

analysis of its predictive power using the data points in the 

validation dataset. The validation data has been also used 

to optimally tune the shift parameter ℎ. The optimal value 

obtained for this problem and the datasets that were used is 

ℎ = 0.7. The MATLAB programming environment is used 

to realise the required dataset processing and manipulation, 

the coding of the MQ model structure and solving the 

metamodel structure parameters. 

Figure 6 shows the accuracy of the MQ metamodel, by 

plotting the actual FE simulation predictions vs. the 

metamodel predictions for the datapoints in the validation 

dataset. Both the MSE and the R-squared values show that 

the MQ offers exceptional accuracy for predicting the 

damage parameter value  ∆𝜀𝑝𝑙 at the locations of interest 

and under varying load conditions. The predictive power 

of the model is even more impressive given the highly non-

linear spatial distribution of the damage parameter at the 

wire bond interface region with the chip, as illustrated well 

with the example in Fig. 4. 

 
Figure 6: MQ predicted values vs. ground truth FEA 

values of the [0,1]-normalised plastic strain range per cycle 

values ∆𝜀𝑝𝑙 obtained for the validation dataset (640 points). 

Each data point in the validation dataset represents a cyclic 

thermal load condition (𝑇𝑚𝑖𝑛, ∆𝑇) and a planar (𝑋,𝑌) 

spatial location of the wire bond to chip interface. 

 

4.3 Neural Network (NN) Metamodel 

The availability of labelled datasets also suits the 

deployment of machine learning algorithms in the task of 

creating regression-type predictive models. As an 

alternative to the MQ metamodeling approach, the training 

dataset is used to train a regression Neural Network model 

structure with four inputs, (𝑇𝑚𝑖𝑛 ,  ∆𝑇, 𝑋, 𝑌), and a single 

output,  ∆𝜀𝑝𝑙. The MATLAB scientific programming 

environment is used to realise the NN model development, 

by deploying a hyperparameter optimisation procedure 

during the training process. A fully connected model 

structure with 2 hidden layers and size (38, 35), and the 

rectified linear unit (ReLU) activation function for the fully 

connected layers of the neural network model, were found 

to minimise the loss function most effectively. The actual 

minimisation of the mean squared error (MSE), i.e. the loss 

function in the NN training process, was performed with 

the limited-memory Broyden-Fletcher-Goldfarb-Shanno 

quasi-Newton algorithm (L-BFGS) [15]. The model 

structure also deploys the standardized form of the 

predictor data, i.e. each numeric predictor variable is 

cantered and scaled by the corresponding variable mean 

and standard deviation given by the dataset parameter’s 

values. 

The accuracy of the NN model is detailed in Fig. 7. The 

actual FEA values of the damage parameter are predicted 

very well by the NN model. Although the MSE error of the 
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NN model for the validation dataset is about two times 

higher compared with the MSE of the MQ-metamodel, it 

remains extremely small, with the R-squared value close to 

100%. 

 
Figure 7: Neural Network predicted values vs. ground 

truth FEA values of the [0,1]-normalised plastic strain 

range per cycle values ∆𝜀𝑝𝑙 obtained for the validation 

dataset (640 points). Each data point in the validation 

dataset represents a cyclic thermal load condition (𝑇𝑚𝑖𝑛, 

∆𝑇) and a planar (𝑋,𝑌) spatial location of the wire bond to 

chip interface. 

 

3. Results and Discussions 

The model accuracy indicators detailed in the previous 

section suggest that both the physics-informed MQ 

metamodel and the NN model have excellent predictive 

power, matching very closely the actual FEA predictions 

for the parameter of interest ( ∆𝜀𝑝𝑙). While here the focus 

is on the demonstration of the approach and hence only 64 

spatial locations are included in the model, the  ∆𝜀𝑝𝑙 values 

at these locations have very different magnitudes, yet such 

highly non-linear spatial distribution is accurately captured 

with the two investigated models. Even more, the approach 

is scalable, particularly in expanding the number of spatial 

locations for which the metamodel will provide 

predictions. This offers some interesting opportunities for 

reasonably detailed and informative mapping of physics-

based parameter results in 3-dimensional subdomains of a 

physical system. 

Figure 8 demonstrates the FE, MQ and NN model 

predictions for the  ∆𝜀𝑝𝑙 at the failure site of interest, for 

the validation load case #6 (see Table 2, the load-cycle 

profile defined with 𝑇𝑚𝑖𝑛 = 5℃ and ∆𝑇 = 100℃). Here, a 

top view of the 3-dimensional layer, of the Al wire bond 

interface with the Si chip in the PEM, is visualised. The 

bottom contour plot is the FE results obtained from a non-

linear transient finite element simulation using ANSYS 

APDL. The upper two plots in the figure are the MQ and 

NN model predictions where the spatial locations used 

have mapped the FE mesh resolution of this sub-domain. 

All three plots use the same legend scale to allow for the 

visual compassion of the results. The MQ model 

predictions match the FE contour plot scale bands across 

all 64 mesh locations, and the NN results are also nearly 

identical except at a few locations. 

The ability to achieve such accuracy is important in the 

context of the rationale for carrying out this investigation. 

From a practical point of view, assessing the reliability 

performance of the PEM, e.g. wire bond failure, through 

model predictions of damage and/or using conventional 

fatigue lifetime models (Coffin-Manson, Paris, etc.) need 

only the results of the damage metric at the failure site only, 

not across the entire structural domain. Yet, with the FE 

approach a full-order FE model is needed of the entire 

structure to capture the material interactions, all input data 

for the CAD model, material properties and their 

constitutive laws, and a transient simulation of the cyclic 

load, to allow ultimately for a subset of results that are 

needed to become available for the damage/lifetime 

predictions. 

 
Figure 8: Damage map of Al wire bond at the interface 

with Si chip, defined with the mesh size and resolution of 

the FE model, predicted with (1) finite element analysis 

(bottom), (2) MQ metamodel (centre) and (3) Neural 

Network model (top). Results are for the validation case #6 

defined with temperature cycle load 𝑇𝑚𝑖𝑛 = 5℃ and ∆𝑇 =
100℃. 

 

With the proposed approach, such output is achieved 

with the same accuracy but comes with a great set of 

advantages. Firstly, once developed, the MQ/NN models 

allow for design exploration in the parameters space that 

excludes the spatial coordinate parameters. From a PEM 

end-user's point of view, this is predominantly the 

parametric space of the thermal load definition, allowing 

us to assess the PEM reliability performance under 

different load conditions as dictated by the different 

applications for which these modules are intended. With 
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the proposed modelling technology, end-users can do such 

evaluation without the need to fully characterise the PEM. 

Secondly, the MQ/NN models, once constructed, are real-

time models – they provide predictions instantaneously. In 

contrast, non-linear FE simulation run times take minutes 

or hours.  

While the MQ and NN metamodels provide predictions 

for the damage distribution in the failure site, many lifetime 

models correlate the cycles to failure with a characteristic 

damage value predicted for the failure site. In the case of 

FEA, commonly a volume-weighted average (VWA) of 

the damage parameter is obtained using mesh elements 

associated with the crack domain. In this instance, the wire 

bond interfacial domain with the chip for which the 

metamodels have been developed (as shown in Figures 4 

and 8) is the volume for that calculation, and the damage 

parameter is the  ∆𝜀𝑝𝑙: 

∆𝜀𝑎𝑣𝑒
𝑝𝑙

=
∑  ∆𝜀𝑝𝑙

𝑖𝑉𝑖
𝑚
𝑖=1

∑ 𝑉𝑖
𝑚
𝑖=1

                                   (2) 

where ∆𝜀𝑎𝑣𝑒
𝑝𝑙

 is the VWA plastic strain range, 𝑉𝑖 is the mesh 

element volume of element 𝑖, and the sums are over all 

elements (𝑚) in the volume-weighted averaging domain. 

Because the metamodel spatial predictions match the 

mesh resolution of the FE model, the calculation of the 

VWA damage representative metric (Eq. 2) for use with 

lifetime models can be also made based on MQ and NN 

model predictions for  ∆𝜀𝑝𝑙. Such calculation would 

require the storage of volume data linked to the spatial 

locations of the domain. 

Figure 9 shows a bar chart that compares the ∆𝜀𝑎𝑣𝑒
𝑝𝑙

 

values obtained with the FE, MQ and NN models for the 

ten validation load cases. Given the good accuracy of the 

MQ and NN metamodels at the individual locations that 

define the interfacial layer of the wire bond, as detailed in 

the previous section, the good agreement between these 

models in terms of the ∆𝜀𝑎𝑣𝑒
𝑝𝑙

 prediction is also expected.  

The average absolute difference in the ∆𝜀𝑎𝑣𝑒
𝑝𝑙

 strain value 

from the FE and PIMQ models is 3.5E-5, and in the case 

of the FE and the NN models that difference is 2.2E-5. 

 

Figure 9: Wire bond VWA damage values ∆𝜀𝑎𝑣𝑒
𝑝𝑙

 obtained 

by high-fidelity non-linear FEA, PIMQ metamodel and 

Neural Network model for the 10 different model 

validation load cases. 

4. Conclusions 

A novel approach for metamodel development using 

advanced interpolation methods and machine learning 

technology is formulated and demonstrated. While the 

methodology follows the well-established Response 

Surface Approach that is deployed in design optimisation 

studies, this work extends the concept beyond the 

prediction of a physical parameter. The metamodeling 

framework extends to the spatial domain and can equally 

handle in the same manner temporal predictions. It takes 

advantage of the capability of MQ and ML to handle large 

datasets with highly non-linear behaviour of the response 

data. 

The advantage of the proposed metamodels is that no 

PEM data is required to run these models, and the runtime 

of analysis is only a fraction of the time that the FE 

simulation takes. The proposed models can be provided by 

PEM manufacturers along with PEM datasheets, to allow 

for the component IP protection while enabling the end-

users to assess the reliability performance of the PEM 

under the loads and conditions of their application. 
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