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Abstract
Intersections affect the maneuvering and driving behavior of vehicles. The present study attempts to simulate an isolated sig-
nalized intersection with the dimensions obtained through the influence zone of intersections. This model includes several
unexplored traffic characteristics observed at the intersection, such as non-lane-based heterogeneity and seepage behavior.
The model was calibrated and validated with the field data collected in New Delhi, India. Several measures of performance,
such as GEH statistics, Theil’s coefficient, root mean square error, and so forth, were used to validate and benchmark the
simulation model. After calibration and validation, the model was used to find delays. The delays obtained from the model,
several manuals, and the field were compared and found to be close to the field delays. Further, delays obtained from
Indonesian and Canadian manuals were comparatively closer to the delays obtained from the field, whereas delays obtained
from the Indian Highway Capacity Manual (2017) and U.S. Highway Capacity Manual (2010) are overestimated. The model
presented can be used to benchmark the performance of signalized intersections under a variety of traffic and environmental
conditions.
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The highlights of this study are:

� It developed a traffic simulation model, calibrated
and validated using field data.

� Commonly ignored features—non-lane-based het-
erogeneity and seepage—were addressed.

� Intersection with the influence zone of the intersec-
tion (IZOI) was incorporated.

� It helps to model and analyze intersections with-
out losing or adding extra road length.

� Delays were estimated and compared with the
field and several highway capacity manuals.

Signalized junctions are one of the essential facilities
for the management of vehicles on highways. Signalized
intersections are provided when the traffic volume is
high. Otherwise, roundabouts can be provided (1). These

are important to study because several distinct features
are observed here, such as multiple conflict points, differ-
ent directional movements of vehicles at the same time,
and so forth. Further, a unique behavior of vehicles is
observed at signalized intersections, where small-sized
vehicles such as two-wheelers creep into the small spaces
available between other vehicles. This behavior is called
‘‘seepage,’’ and it can affect the capacity of the intersec-
tion (2). Moreover, it can affect safety and cause
increased traffic.
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Several acceleration/deceleration maneuvers happen
at signalized intersection, which effect safety and emis-
sions. A report by MoRTH 2016 states that more than
49% of overall road crashes take place at intersections
(3). Furthermore, studies suggest that vehicle emissions
are higher during accelerating and decelerating maneu-
vers (4). As the number of vehicles in Delhi is increasing
at a fast rate, it is causing increased emissions of several
pollutants such as PM2.5, NOx, SOx, CO2, CO, and so
forth. The Directorate of Economics and Statistics states
that there were around 4.8 million registered vehicles in
Delhi in 2006, which increased to 7.8 million in 2013;
and by 2017, the number of vehicles in Delhi had reached
10.5 million (5). Around 850 intersections are located in
the area of Delhi in response to this increasing traffic
demand (6).

Most of the simulation models developed so far are
based on homogenous traffic without considering seep-
age, heterogeneity, and non-lane-based behavior, and
so forth (7–12). The present study aims to address these
gaps by employing a cellular automata (CA) simulation
model to capture more realistic traffic behavior.
Firstly, it models the seepage behavior with the calcula-
tion of neighborhood vehicle gaps. Additionally, the
study includes the IZOI and seepage behavior. The
IZOI is the distance from intersections affecting the
drivers’ speed and acceleration (13). The incorporation
of the IZOI is a valuable parameter in the simulation
of a solitary intersection, obviating the necessity for
supplementary road length and diminishing computa-
tional intensity to expedite results. Further, this model
can simulate a variety of conditions such as simulation
of 1-lane/2-lane homogenous/heterogeneous traffic,
simulation of signalized/unsignalized T- or cross-junc-
tion, and so forth. However, the present study is
mainly focused on the simulation of a cross-junction.
For a specific input and calibration parameters, the
proposed model can be used at any location. It can be
used to optimize signal timings by minimizing emis-
sions and vehicle delays. The model was calibrated and
validated with microscopic and macroscopic para-
meters at two signalized (cross) junctions in Delhi,
India. Fundamental diagrams (FDs) were used to cali-
brate and validate the model macroscopically, while
the trajectories and errors obtained from calibrations
were used to validate the model microscopically. It is
known that CA needs less execution time compared
with other car-following models and can be simulated
on personal computers. Moreover, these models are
simple to implement and understand, and can realisti-
cally represent the heterogeneous traffic (14).
Therefore, CA with lane-changing models is used in the
present study to comprehensively model and under-
stand signalized intersections.

Paper Organization

The first section provides an overview of the issues sur-
rounding the simulation of signalized junctions. The next
section provides a comprehensive review of the existing
literature. The section after that pertains to the developed
simulation methodology. The following section outlines
the process of calibrating and validating the model. The
findings derived from the simulation model have been
elaborated on in the penultimate section. The conclusion
and suggestions for future research are discussed in the
final section.

Literature Review

Several microscopic traffic modeling studies, including
car-following and CA models, have been developed to
understand complex traffic dynamics (15–22). The eva-
luation and critical review of these studies is discussed
here.

Heterogeneous Traffic Models

In the literature, many of the models developed so far have
utilized homogenous one-lane-based traffic (7, 12, 21).
The first basic grid block model of homogenous one-
lane traffic was developed by Biham et al. (21). In this
study, a junction where vehicles move left to right and
up to down was modeled. The rest of the directions
were not considered (such as east to west) and lane
change of vehicles was not allowed in the study.
Several modifications of this study came subsequently
(7, 23–25). Most of the studies before 2012 are based
on single-lane homogenous traffic. A heterogeneous
traffic CA model at signalized intersections was mod-
eled by Tian, consisting of two modes (bus and car)
having buses twice the size of cars with open bound-
aries and two-lane roads (10). Lane changing was
allowed in the model, but not the directions. A more
realistic model was proposed by Radhakrishnan and
Mathew—the ‘‘cellular automata-driver-vehicle-object’’
simulation model—with seven modes: cycle-rickshaw,
motorized three-wheeler, two-wheeler, light commer-
cial vehicle, car, heavy commercial vehicle, and bus
(26). The number of lanes was not specified in the
model; the road was divided into cells of 1 3 1m2. The
model was calibrated and validated with field data and
used to obtain saturation flow rates. It showed 30%
variation in the observations of delays. Similar to Tian,
Deo and Ruskin also modeled a two-mode model hav-
ing large vehicles double the size of small vehicles (10,
27). The model was able to simulate a cross- and T-
type signalized intersection with fixed traffic signal tim-
ings. It was concluded that the vehicle mix has a major
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impact on the performance of a signalized junction.
Two simulation approaches, namely CA and VISSIM,
were compared by Chai and Wong using four modes—
heavy vehicles, car, motorcycles, and pedestrians—to
evaluate the vehicle and pedestrian conflicts; it was
found that SSAM overestimates the conflicts obtained
from VISSIM (28). Marzoug et al. studied the prob-
abilities of accidents at unsignalized intersection with
heterogeneous traffic, where drivers do not follow the
rules (29). Where the above-mentioned authors mod-
eled motorized vehicles simulations, Ren et al. simu-
lated the interaction and dispersion of bicycles at
signalized intersections (30). A similar and updated
version of Tian’s work was studied by Pang et al. (10,
31). The influence of a central bus-stop of two intersec-
tions was studied by Pang et al. (31). The model con-
sisted of two modes—bus and car—with an open
boundary and three lanes. No other heterogeneous
traffic CA models at signalized intersection were
found.

Driver Behavior Models

Driver behavior is one of the crucial characteristics influ-
encing the capacity, headway, safety, and performance
of an intersection. In earlier models such as Biham,
Middleton, D. Levine, Nagatani and Seno considered a
basic traffic signal and simulated without considering
other traffic factors such as heterogeneity, seepage, or
driver behavior (7). Subsequently, some other authors
included driver behavior in their studies. Radhakrishnan
and Mathew considered three types of drivers: normal,
aggressive, and cautious drivers (26). The driver behavior
was used to predict the speeds of the vehicles in the
upcoming step. For example, an aggressive driver would
not stop at a red signal, whereas a cautious driver will
stop, and a normal driver may decelerate. Later, Deo
and Ruskin attempted to model driver behavior, but
only two types of driver (normal and aggressive) were
considered in the model (27). A study by Wang and
Chen considered most possible cases of different driver
behaviors (32). Vehicles either are stopped or moving at
any instance of observation; therefore, some of the rules
were applied for these cases. These rules are for: 1) fast-
moving, 2) slow-to-start at the beginning, 3) slow-down
if cannot pass, 4) inch-forward to reduce gap, and 5)
slow down in advance. A variable occupancy rule was
applied to model the interaction between bicycles and
cars by Luo et al. because constant occupancy rules for
vehicles can lead to overestimation of car flux in the sys-
tem (33). Pedestrian violations also affect the driver
behavior; to account for this, a study was done by Li
et al. (34). This study was performed in China (i.e., right-
hand side traffic), considering the interference with

pedestrians and vehicles. Further, this study modelled
four types of drivers: ‘‘crossing slowly’’ ‘‘crossing at uni-
form speed,’’ ‘‘braking and stopping,’’ and ‘‘crossing
while decelerating.’’ The model was compared with the
field data, and it was found that the model can be helpful
in improvement of the capacity and safety of intersec-
tions. A similar model was developed by Li and Sun in
which the authors included aggressiveness of the driver
along with the pedestrian interaction described by Li el
al. (11, 34). An aggressiveness factor (AF) was introduced
to account for the aggressiveness of the drivers; a higher
value of the factor represents more aggressive behavior
by the driver. Chechina et al. updated Nagel and
Schreckenberg’s CA model, and included driver behavior
in a model similar to previous studies, with cautious,
aggressive, and cooperative drivers (19, 35, 36). Here, the
driver behavior was related to the lane change behavior,
not with the speeds or acceleration as in the earlier stud-
ies discussed above.

Seepage Models

Seepage can be of two types: lane filtering and lane split-
ting (37). Lane filtering represents overtaking while the
neighbor vehicles are stationary, whereas lane splitting
means to cross static vehicles which happens mostly at
signalized intersections. The interaction of vehicles
affects the safety and capacity of the intersections (2).
Two-wheelers show a typical interaction at the intersec-
tion, called seepage or creeping behavior. Very few stud-
ies have reported this behavior. A further review of the
studies from 1992 to 2019 revealed that very few studies
have included this behavior in their CA simulation
model (30). Ren et al. modeled bicycle interaction beha-
vior, particularly splitting behavior with fast-moving
bicycles (30).

Based on this critique, it can be concluded that het-
erogeneity, seepage, and driver behavior affect the per-
formance, capacity, safety, and management of an
intersection. Emissions are also a result of these beha-
viors and the maneuvering of vehicles. For a more realis-
tic simulation, these behaviors need to be incorporated
in the CA model.

Methodology

The overall methodology is discussed in this section, con-
sisting of simulation, zone of influence, seepage, and
intersection methodology.

Simulation Methodology

Figure 1 depicts the simulation methodology including
the following steps:
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1) The boundaries of the simulation model in CA
play a crucial role, especially at intersections. The
present model choses an open boundary over
closed boundaries for several reasons, as pre-
sented in a study by Singh and Rao (38, 39).

2) Inputs such as flow/density, type of mode, length
of each approach, dimensions of vehicles, propor-
tion of left, straight, and right vehicles, cycle
length, and so forth were collected from the field
and given as input to the model. These inputs

were used to generate vehicles with predefined
characteristics.

3) The generated vehicles calculate front, left, and
right neighborhood gaps. They also calculate the
gap from the road ends.

4) Vehicles change their behaviors when they are
near to the intersection (based on IZOI).

5) Further, some small-size vehicles coming later
seep through the gaps between other vehicles and
reach near the intersection. When the signal turns

Figure 1. Overall simulation methodology.
Note: TMC = turning movement counts; ZOI = zone of intersection.
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green, they move in their chosen directions (left,
right, or straight). If the signal is red, vehicles are
forced to decelerate and stop before the intersec-
tion. Therefore, the randomization parameter was
not provided when vehicles were in the IZOI.

6) When vehicles reach near the end of the intersec-
tion approach (see bold red dots marked in
Figure 1) they get deleted.

7) Required data is collected while the simulation is
in progress. This data can be used for calibration
and validation.

Vehicle Modeling. The process of vehicle modeling com-
mences with the establishment of fixed attributes, such as
the dimensions of the vehicle, its maximum and mini-
mum speeds, accelerations, and the generation of an ID
for the vehicle (Algorithm 1). In addition, various public
properties that change with the advancement of simula-
tion are defined, including parameters related to rando-
mization, lane-change probabilities, safety gaps, and
position preferences. The initial values for the vehicle’s
position, speed, acceleration, and deceleration are all set
to zero. During the simulation, the vehicle’s current loca-
tion, acceleration, and deceleration are computed. The
leader, follower, left, and right vehicle types and gaps, as
well as their speeds, are identified. The acceleration or
deceleration of the vehicle is dependent on the brake light
status and gap of the leading vehicle. The process of ran-
domization is implemented by decelerating when specific
conditions are satisfied. The activation of the brake light
occurs when the current velocity of the vehicle is lower
than its preceding velocity. The determination of lateral
movement is influenced by factors such as lane change
probability, front gap, and position-specific lane changes,
as discussed in a previous study (40). This methodology
is adhered to by all vehicles. However, as a result of the
small dimensions of two-wheelers, they have a tendency
to develop higher levels of seepage in comparison with
other modes of transportation. The parameters for each
mode exhibit variations and are determined through the
calibration process, as outlined in the Calibration and
Validation section.

Driver Behavior and Influence Zone of Intersections
(IZOI)

It was assumed that vehicles behave differently while
approaching the intersection (mid-block), near the inter-
section, and at the intersection, after sighting the signal.
Therefore, to find the influence of the intersection, the
distance at which vehicles start reducing their speeds
after the signal is sighted (Figure 2) was found with the
help of GPS data. Subsequently, it was assumed that this

is the threshold distance separating the behavior of vehi-
cles before and at the intersection. A signalized junction
with straight approaches was chosen for this study as,
from a straight road, a signal can be seen from a dis-
tance. Vehicles were moved for 1 km distance to the
intersection to find the threshold distance. A GPS was
enabled in the vehicle to record the data. A sample size
was calculated with 90% confidence interval (CI), 10%
margin of error (ME), and with proportion of 0.5 which
was found to be 67 per vehicle. Therefore, 100 samples

Algorithm 1: Brief methodology to model a vehicle in the
simulation

Fixed properties (constant throughout the simulation):
Define vehicle dimensions (length and width)
Define maximum and minimum speed and acceleration
Generate vehicle ID

Public properties (change with vehicle movement in the
simulation):

Define randomization parameters
Define lane change probabilities
Define safety gap
Define position preference parameters

Initialization:
Set vehicle current position to (0,0) (lateral and longitudinal
positions)
Set vehicle current speed to 0
Set vehicle current acceleration and deceleration to 0

In the simulation:
Calculate vehicle current position, acceleration, and
deceleration
Find left and right vehicles and their dimensions
Calculate gaps
Find leader, follow, left, and right vehicle speeds
if leader brake light is off and gap . Gap - safety distance:

Accelerate: set vehicle current speed to max (vehicle
maximum speed, vehicle current speed + acceleration)
Decelerate: set vehicle current speed to min (vehicle
current speed, Gap - safety distance)

endif
Randomization:

if p1 . randomization probability and vehicle current position
< IZOI (p1 is a random number):

Decelerate: set vehicle current speed to vehicle current
speed – 1

endif
Brake light status:

if vehicle current speed \ vehicle previous speed:
Turn brake light status to 1 (on)

endif
Lateral movement:

if p1 . lane change probability (random lane change):
Change the lane

endif
if front gap . desired speed:

Change the lane
endif
Position-specific lane changes (40)
if vehicle is in IZOI and signal status = red:

Apply seepage rules as in section Seepage Methodology
endif
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were collected for each vehicle type. Subsequently, the
trajectory data was extracted to analyze the speeds of the
drivers after seeing the red signal. Further, a point where
drivers start reducing their speeds was calculated. It was
assumed that, at this location, drivers are affected by the
intersection. The process was repeated for different vehi-
cles such as cars, buses, and motorized three-wheelers
(known as auto [tuk-tuk] in India). Vehicles are slow and
have similar behavior in high or congested traffic; there-
fore, data was collected in non-peak hours. The sample
size was calculated using following Equation 1 (41)

n= z2 p(1� p)

ME2
ð1Þ

where
n = the number of samples required,
z = critical value of normal distribution at some CI (say
at 90%, z=1.64), and
p = proportion of population.

The field observations were used to model the beha-
vioral rules for vehicle movement in addition to the traf-
fic dynamics under various conditions at the signalized
intersections. For example, it is commonly observed that
vehicles reduce their speed as soon as they see a red phase
at the traffic signal while approaching the intersection. If
the signal is green, they would continue to move as they
would in a normal mid-block location. CA rules were
modified based on the IZOI; rules before the intersection,
near the intersection, and after the intersection are differ-
ent, as shown in Algorithm 2.

Procedure of Trajectory Extraction from the GPS. The GPS
data was recorded at 1 s frequency. The GPS was set up
to start recording only when three or more satellite sig-
nals were present. Using the GPS data, distances between
each point were calculated using Equation 2 (42). This

was used to find the speed of vehicles at 1 s intervals.
Also, the accelerations of the vehicles were calculated.

Distance between two GPS coordinates (m)

= r 3 arcos½sin lat1ð Þ3 sin lat2ð Þ+ cos lat1ð Þ
3 cos lat2ð Þ3 cos lon2 � lan1ð Þ�

ð2Þ

where
r = radius of the Earth in meters,
lat = latitude in radians, and
lon = longitude in radians.

Figure 3, a to c, shows the deceleration behavior of
motorized three-wheelers, cars, and buses. The two peaks
in the data were caused by a bus stop on the data collec-
tion site (Figure 3). This influences the bus speeds, even
if it was not stopping there. The distance between the
bus stop and the junction was at least 500m. It can be
observed in all the figures that vehicles are affected by
the intersection when they are around 200m near the
intersection. This distance was an effect of non-peak
hour (no or small queue of less than 10 vehicles) traffic
collected with 86 vehicles at the signalized intersection.
To get a close overview of the pattern of zone of influ-
ence (ZOI), the distribution of the observed data was
tested and found to be normally distributed with the fol-
lowing statistics.

Figure 2. Influence zone of intersections (IZOI).

Algorithm 2: Application of IZOI rules

IZOI = X (m) % where X is obtained from field
if location of vehicles \ IZOI % vehicle is in zone of influence
(ZOI)

Decelerate % (with the field observed rate)
elseif location of vehicles . IZOI % vehicle is out of ZOI or at
mid-block.

Continue as moving % (similar to mid-block)
endif
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The IZOI at 95% confidence interval was found using
Equation 3 and the statistics are shown in Table 1.

Influence Zone of Intersection IZOIð Þ=m 6
z � sffiffiffiffi

N
p ð3Þ

Seepage Methodology

Seepage behavior is commonly observed in the non-lane-
based traffic of India and in some other South Asian
countries (such as Bangladesh, Sri Lanka, and China).
Figure 4, a to d, can be used to understand this phenom-
enon in the field. In Figure 4a, a motorized two-wheeler
is trying to pass through the gaps between two cars.

Figure 5 can be useful to understand the modeling of
seepage behavior using CA. When the vehicles come to a
stop as a result of a red phase of the signal (as depicted

in the first and second ellipses of Figure 5), larger vehi-
cles such as buses, trucks, and cars leave a gap (as indi-
cated in the third ellipse of Figure 5) in front of the
intersection. Motorcycle riders assess the width of a gap
and proceed through it if it exceeds both their vehicle’s
dimensions and the necessary safety clearance. This man-
euver allows them to seep through to be near the stop-
bar at the intersection, as depicted in the fourth ellipse of
Figure 5. The following steps depict this process.

1) Vehicles are by default set to move in front.
However, when they are near the intersection,
their main purpose is to seep through the avail-
able gaps between vehicles and reach the begin-
ning of the intersection. They can choose to use
the available gap on any side (right, left, or
straight) of vehicles to go to the front of the inter-
section. Lateral and longitudinal gaps are

Figure 3. Influence of intersection on: (a) motorized three-wheelers, (b) cars, and (c) buses.
Note: red circular dot (�) = the start of intersection; red star ( �) = the first point where vehicles start reducing their speeds.
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calculated as given in Equations 4 and 5, respec-
tively. The gaps d1, d2, d3, and d4 are shown in
Figure 6. In the present study, it has been consid-
ered that the vehicle will only seep if sufficient lat-
eral and longitudinal gaps are available,
otherwise it will stay at its position. If several
vehicles are moving before a vehicle (such as car
and truck) then the vehicle has ability to choose
its leader based on a set of predefined parameters
(40, 43).

2) In each step, all the vehicles check whether they
can pass through the available gap. If their size is
less than the available gap, then they seep.

Lateral gap= min d4, d3ð Þ ð4Þ

Table 1. Normality Test for Zone of Influence

Mode

Descriptive statistics NDGOF IZOI (m 6 1.96*s/ON)

N m s Median Min. Max. AD p Min. Max.

Car 86 187.385 126.2821 184.108 39.1024 314.901 0.704 0.064 160.70 214.08
Bus 98 111.26 62.781 113.63 0.501875 206.41 0.213 0.848 98.83 123.69
MTW 79 141.13 74.73339 132.64 1.39209 212.64 0.578 0.129 124.65 157.61

Note: AD = Anderson -Darling test statistic; m = sample mean; s = sample standard deviation; IZOI = influence zone of intersections; Max. = maximum;

Min. = minimum; MTW = motorized three-wheeler; N = number of samples; NDGOF = normal distribution goodness of fit; p = p-value for goodness of fit.

*1.96 is z-value at 95% confidence interval.

Figure 4. Field-observed seepage behavior: (a) Two-wheeler at a time instance (b) Two-wheelers finding gap between two cars, (c) Two-
wheeler seeping through the gap between two cars, (d) Two-wheeler repeating previous steps (a)-(c) to reach to the front of intersection.

Figure 5. Seepage behavior modeling methodology in current
cellular auromata model.
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Longitudenal gap=min(d1, d2) ð5Þ

A stepwise algorithm to calculate the spaces is given in
Algorithm 3 and Figure 7 with the above steps:

Intersection Modeling

Based on the above steps and a host of other rules, a
simulation model for signalized intersections was devel-
oped to incorporate the heterogeneous non-lane-based
traffic driver behavior and seepage behavior. Vehicles
change their characteristics based on the IZOI.
Simulation of vehicles can be understood with Figure 8.
Vehicles are generated at the beginning of each approach
based on a predefined field observed headway. These
vehicles move based on the CA rules described above.
The vehicles after crossing the junction get deleted.

Calibration and Validation Methodology

Calibration and validation are the critical steps before the
simulation model can be utilized for any purpose. The
inputs provided to the simulation models were a combina-
tion of microscopic (maximum speed and initial accelera-
tion) and macroscopic (traffic flow) parameters. The model
was calibrated with the help of density and flow (Equation
16), with several parameters (Table 2) including micro-
scopic ones (acceleration). Later, it was validated macro-
scopically and microscopically. The macroscopic validation
is well known and has been discussed in various studies,
but as one of the objectives was to model the seepage beha-
vior, it was validated microscopically in addition to macro-
scopic validation (44, 45). Similar microscopic validation
has been discussed in Toledo and Koutsopoulos, Punzo
and Simonelli, and Wu et al. (46–48).

Flow and Density Calculation

The current study simulated a non-lane-based scenario.
In the present study, the number of vehicles passing a
section in an hour is called traffic flow. The density was
calculated as the number of vehicles per kilometer, and
the flow was calculated as the number of vehicles per
hour. These were calculated on the full width of the road,
that is, two lanes. The road was divided into cells with a
size of 0.5m length and 0.7m width (49, 50). The width
of the road was taken as 3.5m based on the Indian stan-
dard (51). This means that a 1 km, two-lane road would
consist of 20,000 cells (2,000 cells lengthwise and 10 cells
width-wise). The dimensions of cars were taken as 2.1m
in width and 3m in length, which would occupy an area
of 18 cells (3 cells in width and 6 cells in length). The den-
sity was then calculated based on the number of occupied
cells in 1 km. For example, if 900 cells are occupied at an
instance, then the density would be 900 cells per 20,000

Figure 6. Calculation of lateral and longitudinal gaps.
Note: d1 and d2 = longitudinal gaps; d3 and d4 = lateral gaps.

Figure 7. Seepage behavior modeling algorithm.

Algorithm 3: Seepage behavior

Give the size of vehicle
forv = 1: number of vehicles

Check left side gap for vehicle (v)
Check right side gap for vehicle (v)
Check front gap for vehicle (v)
if left side gap for vehicle (v) .size of vehicle (v) + lateral and

longitudinal safe distance
Seep to left

elseif right side gap for vehicle (v) .size of vehicle (v) +
lateral and longitudinal safe distance

Seep to right
elseif lateral position of 1st front vehicle 2 lateral position of

2nd front vehicle . size of vehicle + lateral and longitudinal safe
distance

Seep in-between two vehicles
else

Reduce speed and stop slowly
endif

endfor
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cells (1 km), which results in 50 cars per kilometer (900/
18 cars per km), which results in 50 cars (900/18 vehicles
here) per kilometer. The density calculation is explained
with an example shown below:

Road length= 1000m ð6Þ
Road width= 7m ð7Þ

Cell length= 0:5m ð8Þ
Cell width= 0:7m ð9Þ

Vehicle length= 3m ð10Þ

Vehicle width= 2:1m ð11Þ

say, number of occupied cells at an instance in

a kilometre= 900 cells
ð12Þ

number of cells in 1 km, 2 lane road

= length 3 width=
1000

0:5
3

7

0:7
= 20, 000 cells

ð13Þ

Figure 8. Intersection simulation methodology: (a) Plan of the intersection modelled in the study and (b) Methodology of vehicle
movement in the simulation model.
Note: IZOI = influence zone of the intersection; ZOI = zone of influence.

Table 2. Calibrated Parameters

S. No. Parameter Two-wheeler Three-wheeler Car Bus and truck

1 Length (cells) 4 6 7 25
2 Width (cells) 1 2 3 3
3 Maximum speed (cells/s) 28 22 28 22
4 Acceleration (cells/s2) speed \5.5 m/s 2 1 3 1
5 Acceleration (cells/s2) at 5.5\speed\11 m/s 3 1 2 1
6 Acceleration .11 (cells/s2) 1 1 1 1
7 po 0.29 0.17 0.06 0.16
8 pdec 0.98 0.74 0.94 0.5
9 a 1.25 7.14 7.73 3
10 pbl 0.02 0.91 0.63 0.7
11 plc 0.23 0.8 0.1 0.97
12 Security distance (cells) 10 2 4 3
13 Interaction headway (s) 24 7 14 10
14 b 5.31 1.35 5.73 6.13

Note: a = safety gap check; b = position preference parameter; pbl = randomization parameter when the break light of leader is on; pdec = randomization

parameters when forced to deceleration; plc = probability of lane change; po = randomization parameter at current speed; S. No = Serial number.
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number of cells in a car=
3

0:5
3

2:1

0:7
= 18 ð14Þ

number of cars in a kilometer=
900

18
= 50 cars (vehicles)

ð15Þ

Calibration and Validation

The video data was collected in Delhi for 2 h per day for
3 days. This data was used to extract the traffic flow and
density on the road. Another dataset for the same dura-
tion on different days was collected in Mumbai for the
validation purpose of the simulation. The extraction of
data was carried out through the utilization of MTraDE
(52). The measure of performance (MoP) utilized to cali-
brate and validate the model consisted of the flow and
densities of the vehicles. To calibrate the model
(Equation 4), the flow data acquired from the field and
simulation were minimized in their difference. Figure 9
presents a concise methodology for model calibration.
The input parameters derived from the field, including
headway, speed, composition, and IZOI, were provided.
The study involved calibrating the parameters that are
not readily observable in the field, such as acceleration,
deceleration, randomization, and safe gaps, to align with
the flow observed in the field. The model was calibrated
and validated as follows:

Calibration function MoPð Þ

=min
X field flowi � simulated flowi

field densityi � simulated densityi

� �2 ð16Þ

where
i= the field and simulated data at 5min intervals for 1 h.

A hybrid multi-objective optimization function com-
bining gamultiobj and fgoalattain of the MATLAB
Optimization Toolbox� was used to optimize the para-
meters of the model (53). This model uses the genetic
algorithm (GA) and goal attainment method simultane-
ously. The gamultiobj function employs a controlled and
elitist GA, which is a modified version of NSGA-II
(54, 55). The gamultiobj function has the capability to
automatically invoke the hybrid function fgoalattain to
achieve a higher degree of precision in the solution. The
function fgoalattain further solves the goal attainment
problem for minimizing a multiobjective optimization
problem using the inputs received from gamultiobj.

This approach was used to save on optimization time.
GA optimizations are accurate, but it takes more time.
Whereas goal optimization is fast, it depends on the initi-
alization of parameters and optimizes locally. Therefore,
GA is used to reach near global optimum (initialization
points for goal attainment), and then a local optimum
approach to goal attainment optimization is used for cali-
brating the parameters (56). This approach is called
hybrid multi-objective optimization. There were 44 para-
meters for all four modes (11 each) included in the model:
cars, buses, motorized two-wheelers, and motorized
three-wheelers) (S. No. 4–14 in Table 2) to optimize.
Further details on these parameters are given in some
earlier models (40, 43). Calibrated parameters are given
in Table 2.

Macroscopic Validation

The calibrated model, having been developed, needs to
be validated. Simulation runs were made to generate a
new dataset. There could be several methods to check
whether the data obtained from simulation represents
field conditions satisfactorily (parametric: paired t-test,
two-sample t-test; nonparametric: Mann-Whitney U test,
among others). As the population of the sample is not
known and the sample points in the simulation and field
are not the same, a two-sample t-test without assuming
that the variances of simulated and field data are equal
was carried out to find if the means of the two data sets
(field and simulated) are the same. The flow data of simu-
lation and field should pass the normality test before
doing the t-test. It was found that both sets of data follow
a normal distribution. Table 3 summarizes the field and
simulated traffic flow data normalities.

Figure 9. Calibration and Validation Methodology
Note: CA = cellular automata; MOP = measure of performance.
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A two-sample t-statistics of field and simulated dataset
was carried out in MATLAB 2023 (57) and results are
given in Table 4 with the null hypothesis as ‘‘the mean of
both the samples is equal.’’

Figure 10a shows the q-k curves after the calibration
and validation. The simulated and field data are similar to
each other. The field data was observed in the free flow
conditions, therefore the congested part of the field data is
not visible, whereas it can be seen in the simulated part.

Figure 10b specifically compares the simulated and
observed saturation flow rates. The similarity between
the simulated and field-measured saturation flow rates
provides further evidence supporting the validity of the
simulation model.

The counts obtained from the simulation model and
field at 4min intervals were compared to initially vali-
date the simulation model. Further, field and simulation
observed vehicle speed, headway, and trajectories were
compared. Lastly, FDs of the simulation results were

drawn and compared with theoretical FDs. The results
are shown in the subsequent sections.

The visual validation of traffic flows generated from
the simulation model and observed from the field can be
seen from the following Figure 11. It shows that the num-
ber of vehicles generated from simulation model are com-
parable to the observed flow. A regression line with slope
coefficient near to one confirms the close estimation of
observed flows.

Microscopic Validations

Figures 12–14 depict a comparison between the trajec-
tories, speeds, and headways obtained from both simula-
tion and field data. The presented data indicates that the
simulation model adequately reflects the observed data.
Figure 12 displays a comparison of headways. The dis-
tance between the leading and trailing vehicles gradually
increases until both the drivers perceive a sense of safety.
This phenomenon is discernible from both simulated and
empirical data. The observed incongruity between the
graphs presented in Figure 12 may be attributed to a tem-
porary phenomenon of vehicular clustering, as simulated
in the model.

The graphical representation of speed and accelera-
tion over time for both simulated and field data, as
depicted in Figure 13, reveals that the speed of vehicles

Table 3. Normality Test for Field and Simulated Data

Descriptive statistics Goodness of fit test

N Mean SD Median Minimum Maximum Skewness Kurtosis Distribution AD p

Field data
60 866 362.42 840 300 1830 0.46 20.370 Normal 0.50 0.20

Simulated data
67 1793.42 281.77 1,805 1,133.92 2,506.43 20.033 0.409 Normal 0.47 0.24

Note: N = number of data points; SD = standard deviation; AD = Anderson–Darling test statistic; p = p-value for goodness of fit.

Table 4. Two-Sample t-Test for Field and Simulated Data

h P-value
Confidence

interval t-stat
Degree of
freedom

0 0.087 27.6070 2386.9343 21.7637 32.8949

Note: h = hypothesis result (0 means failed to reject null hypothesis).

Figure 10. Simulated and field data comparison: (a) Comparison of simulated and field volume-density data, and (b) Comparison of
simulated and field traffic flow rate.
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in the field exhibits greater variability in comparison
with the simulated data. This observation may be
because the simulation model places a maximum speed
limit on each vehicle, which none of the vehicles exceed.

In certain field driving contexts, it is possible that some
drivers may not adhere to predetermined behavioral
norms and instead opt to drive at speeds that are more
convenient and appropriate for them (i.e., over-speeding)
given the surrounding traffic conditions. This behavior
can be observed in some existing studies as well (58). In
general, it can be observed from Figure 13 that the simu-
lated and observed speeds and acceleration are in coher-
ence after a certain period of simulation time.

The trajectory plot (distance [x] 2 time [t]) of simu-
lated and observed data is shown in Figure 14. It can be
observed that both simulated and observed data follow a
similar trajectory.

The present study uses the following measures of per-
formances to further validate the simulation model.

The following statistics were used for the validation of
the model.

1) Theil’s U-coefficient, with its bias (UM), variance
(US), and covariance (UC) components. Sub-
sequent Equations 16 to 20 were used to calculate
these (47).

U =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
i (Oi � Si)

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
i (Oi)

2
q

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
i (Si)

2
q ð17Þ

UM =
ms � moð Þ2

1
N

P
i (Oi � Si)

2r
ð18Þ

US =
ss � soð Þ2

1
N

P
i (Oi � Si)

2
ð19Þ

UC =
2(1� r)ssso

1
N

P
i (Oi � Si)

2
ð20Þ

Figure 11. Indicative validation results.

Figure 12. Field and simulation headways comparison.

Figure 13. Field and simulation speeds and acceleration comparison: (a) Comparison of simulated and field speed data, and (b)
Comparison of simulated and field acceleration data.
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2) Root mean square error (RMSE) (59)

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i
(Oi � Si)

2

r
ð21Þ

3) Root mean square percentage error (RMSPE)
(59)

RMPSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

Oi � Si

Oi

� �2
s

ð22Þ

4) The GEH statistic: a statistical technique used in
traffic engineering, forecasting, and modeling to com-
pare sets of traffic volumes (60).

GEH =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VS � VOð Þ2

VS +VOð Þ=2

s
ð23Þ

where
o = observed data,
s = simulated data,

V = volume of simulated (VS) and field data (VO), and
N = total number of samples.

The Theil’s U-coefficient, with its bias, variance, and
covariance components, is shown in Figure 15a. It is
known that a smaller Theil’s coefficient shows a better esti-
mate of observed data. It can be seen from Figure 15a that
the Theil’s coefficient is less than 20% for simulated data
of trajectories, speed, and headways. Moreover, its bias,
variance, and covariance terms are also less than 1. The
bias proportion of Theil’s coefficient (UM) represents the
systematic error. Its variance component tries to explain
the variability in the observed and simulated data. It is con-
sidered good if these values—bias (UM) and variance
(US)—are closer to 0. The covariance component of Theil’s
coefficient (UC) represents the remaining error (other than
bias and variance). It is considered good if this component
is near to 1. This indicates that the simulation model esti-
mates closely match the observed values.

Further, Figure 15b shows the RMSE and RMSPE.
These errors show the deviation of the simulated and
observed data. These values are also very much lower
and this confirms that the simulation model realistically
represents the observed values.

Finally, the GEH statistic was calculated to test the
validity of the model. As per the Federal Highway
Administration (FHWA) guidelines, the GEH values less
than 5 are considered to be a good fit for estimated and
observed volumes (60). The GEH statistic calculated for
the current simulation were found to be 4.01, which vali-
dates the close representation of observed data by the
simulation model. Therefore, the simulation model
developed in the present study is validated and it repre-
sents the observed data satisfactorily.

Results and Discussion

This section discusses the FD and simulation model
results. Further, it compares the delay results with the

Figure 14. Field and simulation trajectories comparison.

Figure 15. Error and Theil coefficient for trajectories (x-t), speeds and headway: (a) Theil’s coefficients comparison for trajectories,
speeds, and headways and (b) Observed errors for trajectories, speeds, and headways.
Note: RMSE = root mean square error; RMSPE = root mean square percentage error; U = Theil’s coefficient; UC = covariance component of Theil’s

coefficient; UM = bias proportion of Theil’s coefficient; US = variance of Theil’s coefficient; x2t = Trajectories.
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existing manuals to demonstrate the simulation model’s
applications. Results such as FDs, delays and a graphical
representation of seepage were calculated and measured
in the field and compared with the simulation model.

Fundamental Diagrams (FDs)

Simulations were carried out for individual transporta-
tion modes (one mode at a time) as well as mixed-traffic
conditions. The resulting FDs are shown in Figure 16.
The diagram in Figure 16 displays the presence of mixed-
traffic flow, as indicated by the yellow (diamond shaped)
and blue (left facing triangle) points. The comparable
capacity of the data can be observed. This finding serves
as evidence supporting the accuracy and reliability of the
simulation model. Further, Figure 16, a and b, shows the
simulated FDs at the intersections. It can be observed in
the FDs that the order of the capacity and density is
from small vehicles to large vehicles, which means high
capacity and density for small vehicles and low capacity
and density for large vehicles. These are similar to the
curves observed theoretically in the study done in Delhi
by Gaddam and Rao (61).

Delays

The calculation of delays used manuals from different
nations, including China, India, and the U.S., among
others. For the comparison, the delays from the field
were also collected. It has been noted that the delays cal-
culated using different manuals (such as in Table 5) do
not directly take the seepage into account. Nevertheless,
these models have been designed with various adjust-
ment factors to compute the overall estimation of antici-
pated delays. Certain highway capacity manuals

incorporate the proportion of different modes of trans-
port when determining the extent of delays, which could
be a balancing factor for the possibility of seepage (62,
63). Seepage is an inevitable occurrence in India (or simi-
lar traffic behavior settings in South Asia, and Far East
regions), and it is recommended to estimate delays using
the respective highway capacity manual (such as the
Highway Capacity Study, Indonesian Highway Capacity
Manual, and Elefteriadou) to obtain a reasonable repre-
sentation of the actual delay (62–64). This result also cor-
roborates the field evidence that the delay formulas are
often overestimates of the actual delays incurred in the
heterogeneous traffic environment (Figure 17). Table 5
lists the various factors that have been taken into
account when calculating delays using various capacity
manuals.

The delays calculated from different manuals are
shown in Table 5. The factors calculated as per the man-
uals and default and field values of the parameters used
are also shown in Table 5. Delays obtained from the
Indonesian and Canadian manuals are close to each
other compared with other delays (40 s/veh). The delays
estimated from Highway Capacity Manual (HCM) 2016
were comparatively higher than field but close to the
delay from HCM 2010 (57.35 s/veh) (64, 67). Delays
obtained from several manuals are close to each other
because most of these are based on Webster and Cobbe
(68) formula and they consider uniform and incremental
or overflow delay. There are some parts of delay consid-
ered by a few manuals, for example, only Indo HCM
considers the initial queue delay, HCM 2010 considers
this, and HCM 2016 does not include it anymore (66).
Similarly, delays caused by the work zone affect is con-
sidered by HCM 2016. Figure 17 shows the comparison
of delays obtained from different manuals’ field and

Figure 16. Simulated flow-density curve: (a) Comparison of simulated and field volume-density data for various traffic compositions and
(b) Comparison of simulated and field speed-density data for various traffic compositions.
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Table 5. Delays with Parameters Used

Parameter Delay

IHCM (1993) (63)
Cycle time 130
Traffic flow for approach (qv and qj) 2,166
Green time 30
PCELV 1
PCEHV 1.5
PCEMC 0.5
Fraction of LV 0.68
Fraction of HV 0.05
Fraction of MC 0.27
PCU factor fpcu 0.89
Green ratio (gr) 0.231
Cycle time (c) 130 Dj = 40.65*
Degree of saturation (ds) 0.643
Qp = qv*p 1,927.74
Capacity 2,996.63
Base capacity value (c0) 3,400
Entry width correction factor (fw) 1.09
Major road median correction factor (fm) 1
City size correction factor (fcs) 0.94
Road environment type and side friction correction factor (frf) 1
Left-turning % correction factor (flt) 1.1
Right-turning % correction factor (frt) 0.92
Split correction factor (fsp) 0.85

CHCM (1999) (62)
Proportion of stopped vehicles in approach (Psv) 0.8
Proportion of turning vehicles in approach (Pt) 0.35
Green ratio (GR) 0.23
Degree of saturation (DS) 0.89
Capacity (C) 2,221.44
Cycle time (c) 130
Number of PCU remained from previous green phase (NQ1) 0
Saturation flow 2,598
Green time 30

(continued)

Figure 17. Comparison of delay from different manuals, field, and simulation.
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Table 5. (continued)

Parameter Delay

Number of lanes 2 DGj = 3.62*
DTj = 48.092*
Dj = 51.716*

PCELV 1
PCEHV 1.5
PCEMC 0.5
Fraction of LV 0.68
Fraction of HV 0.05
Fraction of MC 0.27
Left-turn vehicle ratio (FLT) 0.99
Right-turn vehicle ratio (FRT) 1.06
Minor road ratio (FMI) 1.2
Side friction (FSF) 0.93
Base capacity (C0) 1900
PCU factor (FPCU) 0.89
Flow (Qveh) 2166
Total actual flow (QPCU) 1,927.74
Degree of separation (0 for no bicycle) 0
Road width (WEFF) 7

CaHCM (2008) (65)
Adjustment factor for the effect of the quality of progression, with (kf)* 0.99 d1 = 40.557*

d2 = 0.536*
d = 40.86*

Proportion of vehicles arriving during the green interval (qgr/q)* 0.24
Average number of arrivals during green interval (qgr) 51
Average number of arrivals per cycle (m) 217
Supplemental adjustment factor for platoon arrival time from (fp) 1
Cycle time (c) 130
Effective green time (s) (ge) 30
Degree of saturation (max = 1) (x1)* 0.224
Saturation flow rate * 4,200
Capacity (C)* 969.23
Evaluation time (min) (te) 60
Effective width of road 7

HCM (2016) (64)
Cycle time (C) 130
Volume-to-capacity ratio (X) * 0.95
Demand flow rate (vph) (v) 2,166
Capacity (vph) (c) * 2,276.3
Adjusted saturation flow rate (vphpl) (s) 4,932.1
Number of lanes in lane group (In) (N) 2
Base saturation flow rate 1,900 (pcphpl) (s0) 1,900
Adjustment factor for lane width (fw) 1.04
Adjustment factor for heavy vehicles in traffic stream, (fhv) 0.96
Adjustment factor for approach grade (fg) 1
Adjustment factor for existence of a parking lane and parking activity adjacent to lane group (fp) 1
Adjustment factor for blocking effect of local buses that stop within intersection area (fbb) * 1 d1 = 49.28*

d2 = 10.48*
d = 59.76*

Adjustment factor for area type (fa) * 0.9
Adjustment factor for lane utilization (fLU) 1
Adjustment factor for left-turn vehicle presence in a lane group (fLT) * 0.99
Adjustment factor for right-turn vehicle presence in a lane group (fRT) * 0.97
Pedestrian adjustment factor for left-turn groups (fLPB) 1
Pedestrian-bicycle adjustment factor for right-turn groups (fRPB) 1
Presence of work zones (fwz) * 0.92
Number of parking movements per hour into and out of parking spaces (Nm) 0
Parking factor applied only when parking is present (P) 0
Through car equivalent for right turns (ER) 1.18
Sum width of all open lanes (aw) 10
Sum of left and through lanes open during work zone operation (nwz) 0
Sum of left and through lanes open during normal operation (n0) 2
Adjustment factor for approach width (fwid)* 0.99
Adjustment factor for reducing lanes during existence of work zone (freduce)* 1.09

Indo-HCM (2017) (66)
Volume (number) (V) 2,166 d1 = 45.93*

d2 = 1.75*
d3 = 0.00*
d = 47.68*

Total lost time per cycle (L) 2
Overall cycle time (CY_Time) 130

(continued)
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simulation models. It can be observed that the simula-
tion model delay is closer to the field delays.

Seepage

A visual presentation that illustrates the seepage dynamics
in the field can be observed through a video recorded in a
non-lane-based scenario at an intersection in India (69).
The trajectories of vehicles under two different
conditions—with and without seepage—are depicted in
Figure 18. The absence of seepage (as depicted in
Figure 18a from simulation) results in the trajectories being
linear, forming a sequence of lines that indicate the queue

formation as the vehicles stand still one after the other at
the red signal of the intersection. In situations where vehi-
cles seep, their trajectories exhibit distinct variations, and a

more irregular pattern can be observed. Evidently, the

motorcycles traverse the intersection despite arriving subse-

quent to the other vehicles. This phenomenon is also

observable in the simulation and field (Figure 18, b and c,

respectively). To avoid a crowded graph, Figure 18 repre-

sents a subset (zoomed version) of the various data points

generated through simulation.
An average of five simulated motorized two-wheeler

trajectories were used to compare the simulated and field
trajectory. Previous studies have fitted a regression model

Table 5. (continued)

Parameter Delay

Degree of saturation (X) 0.704
Capacity of the candidate signalized intersection (in PCU/h) (CSI) 2,483.453
Analysis period (h) (T) 1
Effective green period (g) 30
Initial queue delay (Qb) 0
Duration of demand met (t) 0
Demand parameter (u) 0
Saturation flow (Sfi) 5,283.315
Volume (PCU) 1,717.638
Unit base saturation flow rate (in PCU/h/m) (USF0) 714.058
Width of the road (w) 7
Adjustment factor for bus blockage because of curbside bus stop (fbb) 1
Adjustment factor for blockage of through vehicles by standing right turning vehicles (fbr) 1
Adjustment factor for the initial surge of vehicles because of approach flare and anticipation

effect (fis)
1.057

Note: CaHCM = Canadian highway capacity manual; CHCM = Chinese highway capacity manual; HCM = Highway capacity manual; HV = Heavy Vehicles;

IHCM = Indonesian highway capacity Manual; LV = Light vehicles; MC = Motorcycle; PCE = Passenger car Equivalent; PCU = passenger car unit; Indo-HCM

= Indian highway capacity manual; vph = vehicles per hour; vphpl = vehicles per hour per lane; pcphpl = passenger cars per hour per lane.

*calculated values; other variables are either taken from field or respective manual; all delays in seconds/vehicle.

Figure 18. Different seepage scenarios: (a) non-seepage, simulation, (b) seepage, simulation, and (c) seepage, field.
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to compare the coefficients of field and simulated trajec-
tories (47, 70, 71). However, in the present study, the
Mann-Whitney U test was used to compare the trajec-
tories observed in the field and simulation. The p-value
of the test (0.96. 0.05) directs toward failing to reject the
null hypothesis. Therefore, the mean of the data observed
in the field and simulation is similar. The aspect of vali-
dation visually is also discussed by other researchers (72).

Conclusions

The current model has the capability to simulate a
diverse range of intersections and mid-block scenarios
featuring heterogeneous traffic flow without dedicated
lanes. The model incorporates supplementary attributes,
namely the interaction among vehicles (seepage) and
with signals. The model incorporates seepage behavior
by utilizing inter-vehicle gaps, which are more realistic
(73). The conformity of traffic volume pattern derived
from simulation models with the field data in Delhi has
been corroborated by other studies (61).

The calibration of the model was facilitated through
the utilization of traffic volume and density. Moreover,
the validity of the model was assessed using various
performance metrics. Theil’s coefficient, computed
from the observed and simulated data, was determined
to be below 20%. This indicates that the simulation
model adequately reflects the observed values. In addi-
tion, other statistical measures, such as RMSE and
RMSPE, were found to be within acceptable thresholds
(except for headways). The statistical analysis of GEH
indicates that the precision of the simulation model is
below 5%. This outcome aligns with the findings of the
FHWA report, which suggests that such a measure is
indicative of reliable simulation data (60). Therefore,
the model effectively replicated the observed data and
can be utilized for subsequent analyses pertaining to
the estimation and optimization of delay, queue, and
signal time.

The simulation models yielded a delay of 42.06 s/veh,
as evidenced by Figure 17 which indicates a close corre-
spondence between the delay obtained from the simula-
tion model and the delays observed in the field. This
particular model has the potential to effectively replicate
traffic patterns in a realistic manner, while also enabling
the computation of cycle times, delays, and the related
metrics. The simulation can be augmented with addi-
tional emissions regulations to acquire data on vehicular
emissions.

Limitations

This study does not come without limitations. The reso-
lution of GPS was restricted to 1 s because of instrument

limitations; the model could potentially be improved with
the use of a GPS with higher resolution. Further, the
present study utilized the mean of observed IZOI loca-
tions where deceleration was initiated following the visual
detection of the red traffic signal at the intersection as a
strategy for reducing vehicular speed. The behavior in
question could logically be represented by a distribution
that has been observed in the field.
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