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ABSTRACT 22 

The quality of lane markings is pivotal for safe operations and efficient trajectory generations of 23 

Connected and Autonomous Vehicles (AVs). However, most studies are devoted to enhancing in-24 

vehicle detection systems and ignore the impact of faulty lane markings. An instrumented vehicle was 25 

employed to mimic the data input of an AV and real-world trials were conducted on (1) live motorways 26 

and (2) a controlled motorway facility. From the live motorway data, causal factors affecting computer 27 

vision lane detection and classification algorithms were examined and an enhanced lane classification 28 

algorithm was developed to overcome the limitations posed by poor lane markings. In the controlled 29 

motorway facility, experiments to modify the physical appearance of the lane markings were conducted 30 
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to further test the performance of the developed algorithm. The detection rates of the developed lane 31 

classification algorithm were compared with the Lane Departure Warning (LDW) system already 32 

implemented in the vehicle. Findings revealed that the LDW system is accurate over 95% and 54% of 33 

time when lanes are faded by 50% and 75% respectively. Further testing on the quality of the lane 34 

markings was carried out virtually in such a way that the experiments were replicated in a simulation 35 

environment to: (1) identify lane marking conditions that can be reliably adopted for safe operations of 36 

AVs, (2) estimate the effect of adverse weather and lighting conditions on road markings detection and 37 

(3) address localisation issues for AVs. Simulation results show that poor lane markings have a 38 

significant negative impact on AV safety, especially in inclement weather and poor light conditions 39 

inducing an increase in conflicts, and delays. This can be compensated if more sophisticated sensors 40 

are employed in AVs, and the operators of road network develop lane-based digital road maps. 41 

Keywords: lane markings, lane detection and classification, AVs, inclement weather, retro-reflectivity, 42 

simulation, lane-based digital maps 43 

 44 

1. Introduction 45 

Both government and industry have been focusing on developing AV technology for its potential to 46 

substantially improve road safety, traffic efficiency and promote environmental friendliness (Bajpai, 47 

2016). In the UK, the government has invested heavily in the development of AVs and industry analysts 48 

predict that AVs will account for about 30% of sales in 2035 (Catapult Transport Systems UK, 2017). 49 

Much of the attention about AVs is currently devoted to technical developments of the vehicle. 50 

However, the ability of AVs to operate fully autonomously may not be entirely contained within the 51 

vehicle technology due to the inherent complexity in the road infrastructure (Liu et al., 2019).  52 

Existing roadway designs and configurations are not intended for AV operations (Sanusi et al., 53 

2022). Current design may not be suitable for mixed traffic operations with issues surrounding 54 

environmental sensing and trajectory planning. In terms of trajectory generation for AVs, sense-plan-55 

act methodology is currently in place (Katrakazas et al., 2015). Nevertheless, this methodology cannot 56 

dynamically reflect changes in road geometry, road layout, and traffic dynamics (Katrakazas et al., 57 

2019). To enrich the situational awareness of the trajectory generation method, it is important to take 58 
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the elements of road infrastructure into consideration  (e.g., lane markings, road signs, traffic lights, 59 

traffic controls, and variable message signs) (Katrakazas et al., 2019). Therefore, clear, and consistent 60 

road markings and signages are crucial for a safe and precise navigation for AVs under a dynamic 61 

environment. 62 

Lane markings and signs are fundamental inputs for AV system (e.g., lane departure warning 63 

(LDW) and lane-keeping assistance systems (LKAS)) to maintain its position on the road through 64 

detecting lane markings accurately and timely. However, the performance of such systems can possible 65 

be jeopardised due to inexistent, confusing, obscured or non-compliant road markings (Khattak et al., 66 

2021). Some factors affecting the quality of road markings are deposits on the roads such as oil and 67 

mud, adverse weather like sun glare, rain, snow can also obscure road markings (Khattak et al., 2021). 68 

As a result, the quality of lane markings need to be consistently monitored along the route to ensure the 69 

robustness of LDW and LKAS for AVs (Khan et al., 2019). If these major factors are ignored , the 70 

ability of AVs to plan safe trajectories would be limited since their sensors would not be able to detect 71 

the road markings with high integrity.  72 

To detect lane markings, most AVs rely on camera-based, Light Detection and Ranging (LiDAR)-73 

based and fusion approaches (Zhang et al., 2021). Solely relying on image or LiDAR sensors might not 74 

guarantee safe driving performances under poor driving conditions (Khattak et al., 2021). For example, 75 

cameras provide rich information working at high framerate and low-cost but are sensitive to light 76 

conditions and cannot capture depth information directly. For LiDAR, accurate depth information of 77 

the surroundings of AVs are provided from the 3D point clouds but it has a limited range and does not 78 

support colour information. Sensor fusion can compensate the respective drawbacks from camera and 79 

LiDAR. A more sophisticated measure is to ensure that the information gathered from the in-vehicle 80 

sensors is integrated with a combination of data from road side beacons (Kuutti et al., 2018) and highly 81 

detailed road maps (Katrakazas et al., 2015). AVs require a higher level of detail of maps for self-82 

position estimation than the static road centre-line maps used for conventional vehicles (Watanabe et 83 

al., 2020). Additionally, navigational dynamic maps are necessary to provide centimetres accurate 84 

references. 85 
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To appraise how lane markings impact AV operations, a virtual simulation environment can be a 86 

highly effective solution. Through simulation, the effect of the condition and visibility of lane markings 87 

leading to the disengagement of AVs can be verified through a controlled experiment without the need 88 

of real-world testing. The outcomes of such simulations can be used to prevent the same disengagement 89 

reoccurrence and modify existing infrastructure to prevent further disengagements. A sub-microscopic 90 

traffic simulator environment (e.g., PreScan (Formosa et al., 2022)) could provide an appropriate 91 

testbed to accurately represent the AV functionality, communication, mixed fleets and varying road, 92 

weather and light conditions. To obtain more realistic values, the surrounding dynamic traffic can be 93 

generated via a microscopic simulator (e.g. PTV VISSIM) and integrated with the sub-microscopic 94 

simulator (Formosa et al., 2022). Despite the robustness of the integrated simulation platform, this 95 

approach can prove to be complex and challenging since all possible combinations of traffic situations 96 

are time and computationally exhaustive to be modelled, so a number of ‘benchmark’ scenarios have to 97 

be developed. 98 

In conclusion, lane markings are essential for safe operations of AVs. However, sporadic attention 99 

has been given to examining the impact between lane marking quality on lane marking detection and 100 

AV operations. Therefore, this study used an instrumented vehicle equipped with a suite of sensors, 101 

mimicking the data input of an AV, to conduct real-world trials at:  (1) live motorways and (2) a 102 

controlled motorway facility operated by National Highways (UK). From the live motorway data, 103 

causal factors affecting computer vision lane detection and classification algorithms were examined and 104 

an enhanced lane classification algorithm was developed to overcome the limitations posed by poor 105 

lane markings. In the controlled motorway facility, experiments to modify the physical appearance of 106 

the lane markings were conducted to further test the performance of the developed algorithm. The 107 

detection rates from the developed algorithm were compared to detection rates obtained by the 108 

MobilEye 630 PRO sensor. MobilEye provides a cost-effective approach to appraise lane marking 109 

quality (Mahlberg et al., 2021) but their performance is limited due to the lack of robustness in harsh 110 

operational environments (Kuutti et al., 2018). Further testing on the quality of the lane markings was 111 

carried out virtually such that the experiments were replicated in an integrated simulation platform using 112 

data collected from the real-world trials. This platform provides an approach to: (1) identify the road 113 
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markings condition that can be reliably adopted for safe operations of AVs, (2) the effect of adverse 114 

weather and lighting conditions on road markings detection and (3) the importance of adopting lane-115 

level digital maps for AVs.  116 

To the authors’ knowledge, no research has holistically reviewed the impact of road markings on 117 

AV operations through both real-world trials and simulations. This study is essential given that the 118 

ability of AVs can be severely impaired by the roadway infrastructure’s design and maintenance. 119 

Therefore, this study  provides guidance to AV developers and infrastructure providers regarding the 120 

quality of lane markings to expect in real-world conditions. Additionally, safe AV implementation 121 

would not be achieved by solely focusing on developing vehicular technologies because: (1) the road 122 

infrastructure has a pivotal role to play in ensuring AV safety and (2) there is a long transition period 123 

to automation and the co-existence of conventional vehicles and AVs on the same network. 124 

2. Literature Review 125 

AVs rely on a suite of sensors which collect large streams of data continuously to internalise the 126 

surroundings, for example, identification of lane markings so the vehicle stays in a lane. Lane markings 127 

are considered to be an important road safety feature since the quality of lane markings positively 128 

correlate with driving safety (Burghardt et al., 2021). Therefore, this section reviews the literature by 129 

investigating the lane detection and classification technology for AVs and the factors affecting lane 130 

marking quality and detection rates. 131 

2.1 Computer vision-based lane detection and classification algorithms  132 

Park, Kim and Yi (2016) make use of four fish-eyed cameras on each side of the vehicle to capture the 133 

top-view images for lane detection. The proposed algorithm first filtered the images by a 2-dimensional 134 

(2D) Gaussian kernel and then binarized by setting a threshold value. Random sample consensus 135 

(RANSAC) was adopted and found that lane markings from images can be sufficiently represented by 136 

a second-order polynomial. Niu et al. (2016) used modified Hough Transform to extract small line 137 

segments. These line segments were then clustered into groups using DBSCAN clustering and identified 138 

as lanes through curve fitting. Gupta and Choudhary (2018) show that their method achieved an increase 139 

in true positive and a decrease in false positive results. This was achieved by clustering connected 140 

components using a spatio-temporal incremental clustering algorithm coupled with curve fitting. 141 
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Experimental results show that their work can be adopted in real-time and can recognize road surface 142 

markings viewed from different orientations, conditions and of different sizes.  143 

A common hinderance to recognising lane marking is the obstruction of the marking by other 144 

vehicles in traffic as well as environmental factors. To overcome the issue of obstruction by other 145 

vehicles, Kim, Yoo and Koo, (2018) used a 3-dimensional (3D) disparity map of the road to remove all 146 

vehicles and the Kalman filter to recognise the lane markings. When considering challenging 147 

environmental conditions, including weather-induced challenges such as rain and heat, Taubel, Sharma 148 

and Yang, (2014), develop a lane detection algorithm by integrating the Lucas-Kanade (L-K) optimal 149 

flow method (to determine the lateral position and heading angle of the vehicle between consecutive 150 

images when the lane boundaries cannot be found) and the Hough transform method (when they become 151 

apparent again). Based on road tests, a false reading was only recorded 1.18% of the time.  152 

A fast and robust approach for lane detection based on multi-source camera fusion system was 153 

developed by Xiong et al., (2020). A B-spline lane line was fitted based on the strength of the RANSAC 154 

algorithm for the front view image detection. This was improved by adopting the Hough algorithm for 155 

the two rear-view images correspondingly. When the front-view image detected a valid lane marking, 156 

it was not necessary to integrate the top-view information. Only when there is uncertain, missing, or 157 

false detection, were the two sides and top-view information used for compensation. Experimental 158 

results show that the multi-camera fusion framework contributes to significant improvement in accuracy 159 

and robustness in comparison with traditional methods. 160 

2.2 Lane marking impact evaluation 161 

Expert observation is  a commonly adopted technique to evaluate the impact of lane markings (Stacy, 162 

2019). In various standards such as ASTM E1710, E2176, and E2177 methods to evaluate the impact 163 

of lane markings take into consideration the physical appearance and retro-reflectivity in different 164 

weather conditions (Pike et al., 2007). However, this approach is difficult to adopt as it  requires  165 

subjective   judgements.  166 

With   the advancements in  technology, image  processing  techniques are nowadays used  to  167 

evaluate pavement  markings.  In fact, Zhang et al., (2012) confirms that these  techniques  are  168 

consistent  with  expert judgement. Consequently, evaluation characteristics using machine vision of 169 
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current lane markings can also be examined by the same set of defined pavement markings factors (i.e., 170 

retro-reflectivity, weather, and luminance) (Stacy, 2019). Additionally,  particular  performance  171 

measures  from image processing techniques can also be adopted for evaluating results such as 172 

precision, recall, true/false positives have also been adopted (Mamun et al., 2022). 173 

Several studies have shown that safety is influenced by lane markings (Hatfield et al., 2009; Wu 174 

et al., 2018) which in turn are also highly affected by weather conditions. As a result, another recognised 175 

evaluation design of lane marking impact is due to crash incidences such as traffic conflicts and road 176 

usage patterns (e.g., traffic delays) (Hatfield et al., 2009). 177 

2.3 Lane marking factors affecting computer vision detection algorithms 178 

Little attention has been paid to understand the relationships between lane marking quality and the lane 179 

detection rates (Carreras et al., 2018) and their effect on AVs. This section explores factors which AVs 180 

might face from poor lane markings: (i) visibility issues due to adverse weather conditions, (ii) lane 181 

marking physical properties and (iii) localisation in uncertain driving conditions due to weather 182 

conditions and physical change. 183 

2.3.1 Visibility issues during adverse weather conditions 184 

AVs gather surrounding data from different sensors. Their functionality of each sensor can be affected 185 

by weather conditions (Yoneda et al., 2019). To determine the perception and navigation performance 186 

of sensors under inclement weather conditions, Neumeister et al., (2019) carried out an experiment on 187 

LDW and LKAS. Their results show that rain had a negative impact on the LDW in a vision-based 188 

system only, whilst the effect of ice and snow on camera and radar sensors affected all systems. Hadj-189 

bachir et al., (2019) simulated that the measurable distance of LiDAR would be halved if the intensity 190 

of rain is greater than 30mm/h. Moreover, the splashes from water puddles as vehicles drive through, 191 

could also confuse a LiDAR by falsely identifying the splashes as objects (Yoneda et al., 2019). In 192 

snowy conditions, the lane markings are often obscured, making it impossible to be detected (Yoneda 193 

et al., 2019). These conclusions were also confirmed by Vargas et al., (2021) where sensors were tested 194 

in conditions with rain, fog, snow and lightning. On the other hand, Zhang et al., (2020) showed that 195 

the positioning performance of Global Navigation Satellite System (GNSS) are not dependent on local 196 

weather. Thus, by fusing multiple sensors together (e.g., LiDAR with GNSS), can compensate for the 197 
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shortcomings of another sensor, providing an enhanced detection result. This brings a more trustworthy 198 

and safe detection system with additional redundancy compared with a single sensor system (Kmiotek 199 

et al., 2008). 200 

2.3.2 Lane markings physical properties 201 

Visibility of lane markings is an important physical property which can adversely affect the ability of 202 

lane detection and the safety of  AVs (Austroads, 2019). Retro-reflectivity is used to measure the quality 203 

of lane marking in terms of its visibility to drivers or AVs. It can be formalised as a ratio between 204 

luminance of an object with illuminance from the light source (Choubane et al., 2018). Retro-reflectivity 205 

of lane markings are standardised and in speeds over 70mph, it must be above 100 mcd/m2/lux in lit 206 

areas and above 150 mcd/m2/lux in unlit areas (Highways England, 2020). 207 

Lv et al., (2018) shows that passive disengagements impairing the navigation of AVs can occur, 208 

under the circumstance of degraded lane marking retro-reflectivity. Carlson et al., (2013) showed that 209 

a decrease in retro-reflectivity to 100 mcd/m2/lux, leads to an increase in traffic accidents by 23% when 210 

conventional vehicles are considered. Matowicki et al., (2016) also agreed that retro-reflectivity is an 211 

important factor for correct lane recognition from the experimental result of testing LKAS. Several 212 

factors can possibly impair the retro-reflectivity of lane markings such as higher traffic volume, lane 213 

markings location (centre line or edge line) and geometry (horizontal curvature) because of vehicle 214 

crossovers can scatter the retroreflective beads or abrade them (MacEacheron et al., 2019).  215 

2.3.3 Localization issues in uncertain driving conditions 216 

Precise localisation for AVs requires the construction of detailed maps containing landmarks such as 217 

lane markings. However, it is possible that vehicles cannot self-localise in scenarios such as adverse 218 

weather, poor retro-reflectivity of lane markings and inconsistent lane markings. Under these 219 

circumstances, the data collected by sensors are inconsistent with the map data, limiting the AV’s ability 220 

to identify the correct lane of driving (Vivacqua et al., 2018).  221 

To overcome these limitations, the use of GNSS with high-definition (HD) maps is the typical 222 

methodology for AVs self-localisation (Kang et al., 2020). These maps consist of layers ranging from 223 

road-level map, lane-based map and a localisation model (Zheng et al., 2019). While the road-level map 224 

proved not to be comprehensive enough for lane keeping function, lane-level map proved to be crucial 225 
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in enhancing vehicle’s ability in autonomous driving. This layer can assist the vehicle localisation 226 

system when the lane markings are not visible. The localisation model compliments the lane-level map 227 

by providing features or 3D point cloud information for the surrounding area that the vehicle is driving 228 

on. Moreover, V2I can also be used to inform the vehicle about the current road markings from the 229 

infrastructure, which gathers local or global information.  230 

In summary, AVs are equipped with multiple sensors to navigate the road network with the 231 

assistance of pavement markings (Hallmark et al., 2019). However, lane marking inconsistency, 232 

visibility issues, and adverse weather conditions can severely limit the functionality of the sensory units 233 

of AVs. Detection errors and reduced sensor detection range pose challenges for AVs to perform 234 

optimally under these conditions. To compensate for this limitation, AVs can fuse data from the GNSS 235 

and HD maps to keep in lane (Ukkusuri et al., 2019).  236 

3. Data 237 

An instrumented car with various sensors was utilised to acquire real-time traffic, location, and 238 

infrastructure data, mimicking the data an AV receives on a roadway. From this data, an enhanced lane 239 

detection and classification algorithm was developed. Real-world tests were also undertaken at a 240 

controlled freeway facility. This feature allows for testing without interrupting real traffic. The trials 241 

collect data from the instrumented vehicle to test the performance of the developed algorithm with 242 

fading lane markings. This study utilised the controlled real-world data to develop the network in the 243 

simulation environment to further evaluate the impact of lane markings on an AV in different conditions. 244 

More specifically, this data was used as input to develop the network in the simulator to ensure realistic 245 

scenarios are developed. 246 

3.1 Vehicle Instrumentation and Data Collection Process 247 

Multiple sensors, including a LiDAR sensor, two radar sensors (front and back), two camera sensors 248 

(front and rear), localisation sensor, weather sensor, gyroscope, accelerometer, and a MobilEye camera 249 

sensor, were put in the instrumented car to collect data. A data integration design aggregated all the data 250 

on a central computer. A schematic diagram of the instrumented vehicle is shown in Fig. 1. 251 



10 

 

 252 

Fig. 1. Sensor configuration on instrumented vehicle 253 

This study used detailed data from collected from:  254 

i. Live motorways  255 

To identify causal factors affecting computer vision lane detection and classification algorithms,  data 256 

was collected from live motorway sections in the UK (M1 (J23 to J12), M25 (J19 to J16), M40 (J1 to 257 

J15) and M69 (J1 to J3)). A total of 9 trials, equivalent to 1062 miles travelled were 258 

conducted.  Additionally, during these trials, 902 lane change events were manually recorded and 259 

matched with the events recorded by LDW System. For every lane change by the LDW system, the 260 

time, left/right indicator status, issues warning messages were recorded.  261 

ii. A controlled motorway facility 262 

To evaluate the impact of lane marking quality, data was collected at a controlled highway facility. Two 263 

experiments were set up and each experiment was conducted in dry daylight without sun glare. The 264 

driver was told to drive in the centre of the lane and avoid harsh braking and accelerating outside the 265 

acceleration zone.  266 

iii. An integrated simulation platform 267 

To evaluate the lane markings condition that can be reliably identified for safe operations of AVs and 268 

to provide guidance to AV developers and infrastructure providers regarding the quality of lane 269 

markings to expect in real-world conditions, an integrated simulation platform was developed. From 270 

this platform the factors affecting computer vision detection algorithms discussed in Section 2.2 were 271 

tested.  272 

In summary, the data extracted from the field experiments include microscopic data collected from 273 

in-vehicle sensors as well as headways, speed, acceleration, and deceleration profiles. Traffic volume 274 
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data such as speed and flow were also collected from inductive loop detectors on the motorways to 275 

calibrate and validate the simulation model. More details about the data used in the study for calibration 276 

and validation is given by Singh et al., (2023).  This data guarantees that the output from the simulators 277 

is realistic such that the conclusions drawn are accepted for a real-world scenario. From this data, the 278 

key performance indicators such as: (1) traffic safety by estimating traffic conflicts and (2) efficiency 279 

by measuring delays of AVs were estimated. 280 

4. Methodology 281 

This section describes the paper's methodological approach.  Real-world and simulated studies were 282 

conducted to assess and evaluate the influence of lane markings on AVs safety and efficiency. Live 283 

motorway data was collected to identify causal factors for affecting computer vision algorithms and to 284 

develop an enhanced lane detection and classification algorithm (Section 4.1). Based on the causal 285 

factors identified, two experiments were developed at a controlled motorway facility (Section 4.2). 286 

These experiments were developed to evaluate the impact of lane change events under any changes in 287 

lane markings. Simulation studies complement the real-world experiment which evaluates the impact 288 

of safe and efficient navigation of AVs when the lane markings are impacted by poor weather, change 289 

in physical properties of lane markings, and the necessity of using lane-based digital maps in the 290 

safety and efficiency of AVs (Section 4.3). From the data collected, a comprehensive assessment on 291 

the quality of lane markings was evaluated in terms of their impact on the traffic efficiency and safety. 292 

An overall framework interlinking the different components of the methodology was developed (Hu 293 

et al., 2023; Lai et al., 2020; Li et al., 2018; Matowicki et al., 2016b). In this paper the framework for 294 

evaluation of the impact of lane marking quality on the operations of AVs is presented in Fig. 2. 295 
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 296 

Fig. 2. A framework for the methodology for evaluation of the impact of lane marking quality on 297 

the operations of AVs 298 

4.1 Enhanced lane detection and classification algorithm 299 

The lane detection and classification algorithm use each video frame to detect lane makings. 300 

The algorithm starts by warping a binary image to birds-eye-view (BEV) (Formosa et al., 2020). From 301 

the video data collected, each frame was recorded approximately every 66ms. In each frame, the 302 

forward-facing images were transformed into BEV image through inverse perspective mapping (IPM) 303 

technique using the intrinsic camera parameters. The IPM algorithm utilised the camera settings 304 

parameters such as the location of the camera (𝑥, 𝑦, 𝑧) coordinate, focal length, yaw, roll and pitch angle 305 

of the camera to translate between the world coordinate system with camera coordinate system. BEV 306 

image assists in lane detection as the lane markings are transformed from two converging lines into two 307 

parallel lane markings. The images are then binarized, which signifies the pixels of the lane markings. 308 

To detect lanes from the frames, a random sample consensus (RANSAC) is used to fit second order 309 

polynomials from the image. This algorithm produces the results of left lane, right lane, intersecting 310 

lines, lanes below threshold, two lanes detected.  311 

In this study, a lane marking is detected by a colour coded approach: red pixels for detecting 312 

the left lane and green pixels for detecting the right lane. If no red or green pixels are detected from the 313 

image, it indicates that there is an issue with lane markings at that location. In the case where both lanes 314 
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are detected, second order polynomials are fitted to the red and green pixels respectively. Fig. 3 shows 315 

an example of rejected and accepted detected lanes. The detected lane markings are also tracked using 316 

Kalman Filter (KF) using the rate of change of position and size of the lane markings through a two-317 

staged prediction and correction model (Formosa et al., 2020). The pseudocode of the algorithm is 318 

presented in Table 1. 319 

  
(a) Situations where lanes are rejected (b) Situations where lanes are accepted 

Fig. 3. Example frames of rejected (a) and accepted (b) from lane classification algorithm 320 

Table 1: Pseudocode of the algorithm for (a) lane detection and (b) lane classification 321 

 322 

4.2 Real-world experimental design to evaluate the impact of lane marking quality in a controlled 323 

facility 324 

Real-world experiments were conducted utilising an instrumented vehicle at a controlled motorway 325 

facility. From the real-world experiment, the vehicle kinematics data are collected for repeated lane 326 

change manoeuvres with different physical appearance of lane markings. The data is used to test the 327 

ability of the MobilEye to provide LDW. When MobilEye detects a lane change, manual records are 328 

also created. Black duct tape was utilised to cover existing lane markers between lanes 1 and 2 to test 329 

algorithm detection rate. In the first experiment, the lanes were faded in a repeated pattern of fully 330 

covered lane markings followed by 75% covered lane markings. The resultant faded lane marking 331 

section has two  fully faded (100%) and two 75% faded lane marking zones as shown in Fig. 4. 332 

(a) Pseudocode of the algorithm for lane detection  (b) Pseudocode of the algorithm for lane classification 

Initialise VideoPlayer and load Video 
Initialise camera Intrinsic parameters (such as focal 

length, principal point, image size, radial distortion, 
skew of the camera) 

 

for each frame: 
|       perform Inverse Perspective Mapping  

|         convert image to grayscale 
|       fit function for each lane marking,  
|       if left lane ->red  

|       if right lane ->green  

 Initialise video frames with lanes 
 

for each frame: 
|       filter red and green Lines to single out left and right lane 

|       count the number of pixels of green and red  

|       fit a second order polynomial with detected pixels 
|       obtain polynomial for left and right lane 

|       find the horizontal displacement between green and red 

line 
|       estimate lane width between red and green lines  

|       using empirical thresholds left, right lanes are classified  



14 

 

 333 

Fig. 4. Exp. 1(a)  L1→L2→ L3; L2→L3 334 

To carry out the experiment, the instrumented vehicle started moving in Lane 1 until it reached 335 

the first completely faded landmarking. A lane change from 1-to-2 was performed in the first fully faded 336 

zone and another lane change from 2-to-3 in the second 75% faded lane marking zone. At the end of 337 

the testbed, the vehicle moved from Lane 3-to-2 and made a lane change at the second 75% faded zone 338 

(Fig. 4).  339 

Using the same setup, a different lane change manoeuvre pattern was performed. The instrumented 340 

vehicle started at Lane 1, a lane change was performed from 1-to-2 and then 2-to-3 in the second fully 341 

faded lane marking zone. At the end of the testbed, the vehicle moved from Lane 3-to-2 within the 342 

second 75% faded lane marking zone and back to lane 1 within the fully faded lane marking zone as 343 

represented in Fig. 5.  344 

 345 

Fig. 5. Exp. 1(b) L1→L2 →L3; L3→L2→L1 346 

In the second experiment, the lanes are faded in a repeated pattern of 50% covered lane marks 347 

followed by uncovered (original) lane marks (Fig. 6). The lane change manoeuvre pattern in this 348 

experiment included starting at Lane 2 and performing a lane change with 50% faded lane markings 349 

from  lane 3-to-2 with 50% fadedness. The vehicle then moved to lane 3-to-2 in the 50% fadedness 350 

zone and ends in lane 3.  351 

 352 

Fig. 6. Exp. 2 L2→L3→L2; L3→L2→L3 353 
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The system logged the time, whether the indication signal was on, and whether the sensor gave 354 

a warning for every lane change. In these experiments, the indication signal was not used to determine 355 

the algorithm's success rate. In this study, success rate is the percentage of lane change events where 356 

the system issues a valid warning. The controlled motorway environment made this possible. If the 357 

system doesn't alert during a lane change, it could be due to poor lane markers, a system fault, or bad 358 

weather. The findings from the experiments at the controlled motorway facility could only provide a 359 

snapshot of lane marking conditions to assess the quality of lane markings. Therefore, to validate the 360 

findings, the developed algorithm that takes video data from a camera as ‘input’ and continuously 361 

‘detects’ lane markings was employed.  362 

4.3 Simulation experimental design to evaluate the impact of lane marking quality  363 

To understand the impact of safe and efficient navigation of AVs when the lane markings are 364 

impacted by poor weather, change in physical properties of lane markings, an integrated simulation 365 

framework was developed. The integrated simulation platform is composed of an AV, the road network, 366 

and human driven vehicles. This platform can simulate the functionalities of AVs through sub-367 

microscopic simulation in a calibrated and validated mixed traffic microsimulation motorway 368 

environment. The integrated simulation platform development follows the framework developed by 369 

Formosa et al. (2022) where PreScan simulates intelligent mobility and its functions while VISSIM 370 

simulates the behaviour of individual vehicles within a predefined road network.  371 

In this research, the baseline simulation scenario was constructed in PreScan by replicating the 372 

testbed at the controlled motorway facility and the instrumented vehicle's functional parameters (e.g., 373 

car model, sensor modelling). The data collected by the instrumented vehicle is pivotal for calibrating 374 

integrated simulation platform to model AV traffic flow in VISSIM. These two simulation systems are 375 

linked via Matlab Simulink to share data synchronously. To evaluate several scenarios, simulation 376 

parameters and control systems were changed. A more detailed explanation of each phase of the 377 

methodological framework is described in (Formosa et al., 2022) and Fig. 7 shows the connection 378 

framework. 379 
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 380 

Fig. 7. Simulation experimental framework 381 

4.3.1 Baseline Simulation Scenarios 382 

Creating a baseline simulation scenario is required to compare simulations. The testbed simulation 383 

network was constructed in PreScan with dimensions matching the controlled testbed's topography. 384 

Real-world data for PreScan comes from an instrumented Ford Focus with AV-like sensors. PreScan 385 

keeps environmental sensor parameters (radar, laser, camera, GPS) consistent for comparison. Using 386 

the GUI, the sensor type and sensor attributes (e.g., range and field-of-view) were modified to match 387 

the sensors in the instrumented car. PreScan was linked to VISSIM through MATLAB/Simulink. 388 

In VISSIM, the behaviour and the movement of each vehicle is ruled by the Wiedemann99 model 389 

which is suitable for a motorway scenario (Papadoulis, 2019). VISSIM divides lateral movements into 390 

mandatory and voluntary lane changes to replicate motorway lane changing. Driving behaviour 391 

requirements for this mandatory lane change include maximum permitted deceleration of the lane-392 

changing vehicle and its follower in the target lane. Any lane change requires a safe space (> safety 393 

distance) in the vehicle's travel direction. The gap size depends on the lane-changing vehicle's speed 394 

and the following vehicle's speed.  395 

4.3.2 Simulation scenarios 396 

Three simulation scenarios are created in PreScan to evaluate the impact of lane markings on AVs as 397 

discussed in Section 2.2. The objective of these scenarios is to (1) identify the road markings condition 398 

that can be reliably adopted for safe operations of AVs, (2) the effect of adverse weather and lighting 399 

conditions on road markings detection and (3) the importance of adopting lane-level digital maps for 400 

AVs.  401 

• Physical appearance of roadworks 402 
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Prescan has several options to modify the physical appearance of roadworks for example, fading the 403 

marker paint of the lane markers, road markings and priority lines varying between 0 and 100% and by 404 

adding wear and tear to the lane lines. The visibility of lane markings is reduced in the nighttime. In 405 

this study, light was added to motorway signal posts to examine their effect. PreScan can adjust the 406 

luminous flux, light post spacing, and AV effect. At night, the AV can't read lane markers unless the 407 

highway is brightly illuminated. Hence, either increased street lighting or a lane-based digital map to 408 

guide drivers is required. The retro-reflectivity of lane markings was also modified in the simulation by 409 

allowing only 50% of the light to be reflected back to the vehicle and the sensors. This parameter is 410 

modified in the simulation as Matowicki et al., (2016) reported that retro-reflectivity is a crucial factor 411 

for correct lane recognition from real-world testing.  412 

• Weather effects 413 

Weather effects including precipitation, fog and snow were explored in this study. The baseline scenario 414 

developed to compare the weather effects is from a dry and sunny weather. In the case of precipitation, 415 

PreScan allows to change the parameter value. During adverse weather conditions, freshly marked road 416 

marking are hard to be identified, therefore, faded lane markings make it even harder for the AV to 417 

navigate. In terms of fog, PreScan allows to change the parameter value based on the range of visibility. 418 

It can be observed that while the most affected during fog is the visibility range, the AV will need to 419 

know of what’s ahead in the road network to be able to plan and navigate within the dynamic road 420 

dynamics. PreScan also allows snow to the simulation. During snow, the road situation became 421 

increasing difficult to navigate for AVs. This is due to the snowfall hitting the windscreen and the 422 

sensors, creating noises of the video input for the perception layer causing the quality of input for the 423 

sensors is hampered. The ability for sensors to pick up lane markings exacerbated under snow if the 424 

lane marking is already faded.  Additionally, heavy snowfall covers the road and hence obscures the 425 

road markings.   426 

4.3.4 Overall Simulation Design 427 

In all tests, the instrumented vehicle follows a pre-defined path. In each test, the marker paint of the 428 

lane markings, road markings and priority lines were gradually faded (i.e., wearing and tearing of the 429 
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lane markings) from 50% up to 90% faded. The faded lane markings were tested in clear weather, rain, 430 

snow, fog, and lower retro-reflectivity. 431 

In every scenario tested, the instrumented vehicle gathers the surrounding dynamic information 432 

by its sensors and the minimum thresholds of lane marking conditions that can be identified by AVs in 433 

different weather and lighting environments. In some instances, the AV was not able to continue with 434 

its journey due to its inability to identify lane markings. In this study, only 50% and 90% physical 435 

appearance options are presented. This is because the results from 50% to 90% are similar. Results for 436 

more than 90% fading are significantly different. Further testing was carried out to see whether the lane-437 

based digital road map can be employed to compensate faded lane markings.   438 

To simulate the effectiveness of lane-based digital map, the vehicle’s path planning algorithm 439 

from AVs receives information from lane-based digital map when the sensors are not able to do so. The 440 

lane-based map contains a digital map of the road layout consisting of lane-level centrelines as opposed 441 

to a road-centre lines based static map. In this way, the path planning algorithm can 442 

create new collision-free trajectories based on the fused data from the in-vehicle sensors 443 

and map.  Multiple collision free trajectories are generated from a fourth-degree polynomial from 444 

PreScan taking the current location and the end point of the trajectory into account. Optimal trajectory 445 

is selected with the least cost for both longitudinal and lateral movements. 446 

The path planning algorithm developed for the ego-vehicle initially generates a trajectory based 447 

on the location of the ego-vehicle received from PreScan. The trajectory generation function makes use 448 

of a fourth-degree polynomial: 449 

where p0 − p4 are the parameters which can be found based on the current location (t0) and the end 450 

point of the trajectory (t𝑓).  Multiple trajectories are generated from Equation 1 and the optimal one is 451 

found by minimising a cost function for the longitudinal and lateral movement as shown below: 452 

x(t) = p0 + p1t + p2t2 + p3t3 + p4t4 (1) 

Clongitudinal = kjJt(s) + ktT + ks(sḟ − sṫ)2 (2) 

Clateral = kjJt(d) + ktT + kddf
2 (3) 
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where kj, kt, ks and kd are adjustable weights, 𝐽 is jerk, 𝑇 is the time to execute the trajectory, 𝑠 is 453 

longitudinal trajectory, (sḟ − sṫ) is the difference in the final velocity from current velocity, d is lateral 454 

movement, df is distance from desired lateral position. Trajectories that are not on a collision course 455 

are considered and the optimal trajectory is selected with the lowest cost calculated from the cost 456 

function. The control system enables data fusion where data from multiple sources was integrated to 457 

generate an optimal trajectory. To account for non-localisation issue, the control system makes use of 458 

additional information received from in-vehicle sensors and lane-based map to regenerate the trajectory 459 

based on the available paths if the ego-vehicle identifies a hazard. Trajectory of the ego-vehicle is hence 460 

determined by multiple criteria decision making and  deterministic finite automata employed by Furda 461 

and Vlacic (Furda et al., 2011).  462 

5. Results 463 

5.1 Identification of causal factors from live motorway data 464 

Using data collected from the live motorway, lane change events were manually recorded and cross-465 

referenced with the events detected by the LDW algorithm. No discrepancies were found in terms of 466 

the total number of runs performed, lane changes made, number of lanes changing manoeuvres with 467 

and without lane departure warning through cross-referencing.  468 

Amongst the total trips, a total of 32 ‘no warnings’ cases were recorded. This is equivalent to: 469 

1.1%  of the total cases indicating that the quality of lane markings on the SRN are excellent. A summary 470 

of the factors that contributed to the system issuing ‘no warning’ signal is presented in Fig. 8. These 471 

factors were determined by observing the video data collected by the instrumented vehicle at the 472 

timestamps where the warnings were not issued. 473 

 474 

Fig. 8. Distributions of Root Causes for No Warnings cases from LDW system  475 
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From Fig. 8, one third of the missed detections were attributed to lane marking physical 476 

appearance. In fact, over 40% of the missed detection cases were related to lane marking physical 477 

appearance. Inclement weather also influenced a total of 30% of cases. Other root causes included 478 

system failures due to cold start of the Mobileye system and vehicle excursion which the instrumented 479 

vehicle drove in between the lane markings, causing the Mobileye failing to track the lane marks and 480 

perform accordingly. To evaluate the impact of these factors on the operations of AVs, experiments in 481 

the controlled facility and scenarios in a simulation setting were developed. 482 

5.2 Validation of the lane detection and classification algorithm 483 

To validate the experimental results, the developed computer vision algorithm was employed to 484 

evaluate the impact of lane marking quality on AV operations in the real-world. Live motorway data 485 

was used to test if developed lane detection and classification algorithm has a good performance. From 486 

the video data collected on a particular day (20th April, 2021), a total of 48,747 frames were derived. 487 

To evaluate the lane detection and classification algorithm, frames when the vehicle was stationary were 488 

removed, resulting in a total of 40,453 valid frames for the analysis.  Out of 40,453 frames used to 489 

detect lane markings using the lane classification algorithm, two lines of a lane were correctly detected 490 

for more than 81% of the frames. For more than 13% of the frames, only one line was detected by the 491 

algorithm. This happened (i) when the vehicle made a lane change, (ii) the lines were not visible due to 492 

inclement weather conditions and (iii) the quality of lane markings falls below the threshold. The 493 

algorithm failed to detect any lane marking for about a 1.27% of the frames due to faded lane marking.  494 

From the video data collected on the 21st May, 2021 there are 96,534 frames obtained. Out of 495 

96,534 frames, 89,671 frames were used. Out of 89,671 frames used to detect lane markings using the 496 

lane classification algorithm, two lines of a lane were correctly detected 82% of the frames, (which is 497 

similar to 20th April performance). For more than 13% of the frames, only one line was detected by the 498 

algorithm. The algorithm failed to detect any lane marking for about a 1.27% of the frames due to faded 499 

lane marking. It was interesting to note that the distributions for both days are highly similar and it 500 

displayed the consistency of the lane detection and classification algorithm performance. Additionally, 501 

it can also proof that the lane marking quality are consistent across SRN network. The results are 502 

presented in Fig. 9. 503 
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  504 

Fig. 9. Distributions of Lane Classified by algorithm - 20-APR and 21-MAY  505 

According to the ground truth, 3 no warning lane changing cases were recorded for 20-APR. Using 506 

the lane detection and classification algorithm to apply for the lane change recorded in ground truth, 507 

there were 11 failed lane change detections. The difference is 8 out of 99 lane changes. Such proved 508 

that current algorithm is 90.9% sensitive and suitable for further application.  Similar results were 509 

observed for 21-MAY data with 91% sensitive in lane detection and classification, representing a 510 

consistent performance from the algorithm.  511 

5.3 Experiment results from controlled motorway facility 512 

The lane change manoeuvres were used to test if factors implemented within the experiment affect the 513 

LDW systems’ ability. All lane change events were also manually recorded and cross-referenced with 514 

the events detected by the LDW algorithm and no discrepancies were found.  515 

For Experiment 1, 54 complete runs were carried out with 84 lane changes performed in the fully 516 

faded lane marking zone and 91 lane changes in the 75% faded lane marking zone. In the fully faded 517 

lane marking zone, the LDW algorithm achieved a successful lane detection and classification rate of 518 

54.7% in the fully faded zone and 53.8% for 75% faded zone. For Experiment 2, a total of 29 runs were 519 

performed with a total of 114 lane changes made. The LDW can successfully detect 95.3% of lane 520 

changes. 521 

Evaluating the LDW performance for Experiment 1, one observation is that these two levels of 522 

lane marking fadedness seem analogous. Additionally, the successful detection rate at the 75% faded 523 

zone is lower than that in the 100% faded zone. This may be due to the configurations of the test 524 

scenarios. To perform a lane change at the 75% faded zone, the vehicle needed to go past the fully faded 525 

zone. Such condition would affect the ability of the sensor to track the preceding lane markings. Hence, 526 

it failed to detect and issue an LDW. Conversely, in fully faded lane marking zone, the vehicle can track 527 
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the limited available markings from the 75% faded zone, hence a slightly higher lane departure detection 528 

rate is recorded. In Experiment 2, the LDW algorithm in the MobilEye system performs well when 529 

performing lane changes at the 50% faded lane marking zone given the algorithm can track the partially 530 

obscured lane markings.   531 

  For Experiment 1 (i.e., 100% faded and 75% faded), two videos with a total of 29,401 frames 532 

were reviewed. Referring to Fig. 10, the algorithm can detect both lanes over half (51 to 57%) of the 533 

times. Almost 30% of the times, only one lane is detected. This could be due to more frequent lane 534 

change as well as situations in which the algorithm is confused for its incapability to fit the lines from 535 

the lane markings. For Experiment 2 (i.e., 50% faded and no faded), a total of 12,983 frames were 536 

evaluated. Between Experiment 1 and 2, the algorithm is more certain in Experiment 2 (57 %) than 537 

Experiment 1 (51%), indicating a better lane detection and classification performance. Moreover, only 538 

2% of the frames in Experiment 2 failed lane marking detection compared to 4 % in Experiment 1.  539 

 540 

Fig. 10. Distributions of lane detection and classification Rate in Experiment 1 and 2  541 

5.4 Simulation Experiments 542 

Sensitivity analyses were conducted to evaluate the effect of adverse weather, reduced retro-reflectivity, 543 

and limited localisation performances on lane markings. In particular, the results from the integrated 544 

simulation platform were explored by degrading the lane marking physical appearance (such as 545 

including spills, potholes, lighting, and lane fadedness) and several parameters such as (i) clear 546 

conditions, (ii) rainy conditions, (iii) snowy conditions, (iv) foggy conditions and (v) lower retro-547 

reflectivity. KPIs such as traffic conflicts and delays were used to evaluate the effects of deteriorating 548 

lane marking quality and the choice of maps. Three different scenarios were developed: 50% 549 

deterioration with a road-based digital map (blue bars in Fig 11), 90% deterioration with a road-based 550 

Experiment 2  

Experiment  1

  
Experiment 2 
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digital map (orange bars in Fig. 11) and 90% deterioration with lane-based digital map (yellow bars in 551 

Fig. 11). The KPIs from the scenarios were compared with the KPIs from baseline scenario (i.e., normal 552 

weather condition with freshly marked lane markings.  553 

5.4.1 Traffic conflicts 554 

A traffic conflict is a traffic event involving the interaction of two or more road users, where one or both 555 

road users takes evasive action, such as braking or swerving to avoid a collision (Formosa et al., 2022). 556 

Time-To-Collision (TTC) is the common measure of traffic conflict (Formosa et al., 2020). It is defined 557 

as the remaining time before an impact takes place between two road users unless an event to change 558 

their trajectories and speed occurs, such as braking or a change in steering angle (Equation 4).  559 

 where vego−vehicle is the speed of the AV,  vp is the preceding vehicle and s is the distance 560 

between preceding vehicle and AV. A critical value for TTC of 1.5 seconds is defined, following suit 561 

with the majority of studies (e.g., (Van der Horst, 1990)).  The values of TTC surrounding the AV were 562 

captured at the 1.5 second threshold to determine the percentage increase in the number of traffic 563 

conflicts under different weather conditions and retro-reflectivity (Fig. 11).  564 

 565 

Fig. 11. Percentage change in traffic conflicts for different weather conditions and retro-reflectivity  566 

From Fig. 11, any change in physical appearance of lane markings would result in more traffic 567 

conflicts relative to the baseline scenario (i.e., fresh lane markings). As expected, the 90% faded lane 568 

markings in snowy conditions provided the worst performance followed by rainy conditions. However, 569 

TTC =
s

vego−vehicle − vp
         ∀  vego−vehicle > vp (4) 
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the impact of appearance change in lane markings was compensated when lane-based digital road map 570 

is employed. Despite lane-based digital map is used, low retro-reflectivity still caused a higher 571 

percentage of traffic conflicts. This could be due to the surrounding traffic not adopting a lane-based 572 

digital map. 573 

5.4.2 Delays 574 

Delays caused by poor quality lane markings occur due to increased driver workload. Under challenging 575 

driving conditions such as night-time and/or inclement weather, delays are further exacerbated. 576 

Similarly, vehicles with lane marking sensors and/or AVs would struggle in situations where lane 577 

markings are hard to detect. Delay, formalised as the difference between the actual travel time and the 578 

free-flow travel time, was measured to determine whether journey times are affected by the deteriorated 579 

lane markings. This KPI is explored and presented in Fig. 12. 580 

 581 

Fig. 12. Percent change in delays for different weather conditions and retro-reflectivity 582 

From Fig. 12, it is observed that deteriorated lane markings under inclement weather and lower 583 

retro-reflectivity would cause delays. The 90% obscured lane markings provided the worst performance 584 

irrespective of any prevailing condition. This was most evident in snowy conditions, which is expected. 585 

The delays also show that the impact of changes in physical appearance of lane markings was generally 586 

reduced when lane-based digital road map is used.  587 

6. DISCUSSION 588 

Current road infrastructure designs are intended to maximise comfort and safety for human driving. 589 

With the advancement in vehicular technology, various ADASs are being developed and embedded in 590 
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AVs. These systems replace the need of human involvement in driving with increasing level of 591 

automation. However, current road infrastructure is not designed with AVs and ADAS considerations. 592 

This situation raises the prospect of incompatibility between road infrastructure and ADAS, with this 593 

likely worsened under adverse weather and complex manoeuvring as commonly shown in the findings 594 

from field tests. To overcome such limitations from ADAS, the investigation of the failure mechanisms 595 

of different ADASs is essential. More specifically, the causes of failure at adverse weather or complex 596 

manoeuvring need to be understood (Yoneda et al., 2019). Therefore, the perception, planning and 597 

control system of autonomous vehicles can be adjusted accordingly. Such shaped the aim of this paper 598 

to assess the impact on AVs under changing weather and physical conditions of roads.  599 

Both real-world experimentation and simulation analysis were carried out in this study. In terms 600 

of real-world experimentation, the MobilEye LDW system was employed to evaluate the impact of poor 601 

lane markings. Repeated lane change manoeuvres are performed in a controlled testing facility with the 602 

lane markings obscured by black duct tape. Results show that the LDW system is accurate in over 54% 603 

and 95% lane change events when lanes are obscured by 75% and 50% respectively.   604 

In the simulation studies, the impact of inclement weather and impaired retro- reflectivity of 605 

lane markings are evaluated. The KPIs such as delay, and time-to-collision are used to assess the 606 

performance of AV in terms of localisation and navigation. Comparison of the localisation ability is 607 

also made between the use of road-based map and lane-based digital map. Considering the KPIs of the 608 

AVs, a decrease throughout all KPIs was observed when a road-based map was provided to the vehicle 609 

to navigate in the network. This shows that lane markings deterioration has a significant negative impact 610 

on the safe and efficient operation of AVs. Furthermore, a combination of lane markings changes in 611 

physical appearance, adverse weather, and large or fast-moving vehicles generating spray reduces 612 

visibility creating a dangerous scenario of AV disengagement. However, it is also worth noting that 613 

even excellent quality lane markings in inclement weather conditions such as snow and heavy rainfall 614 

may also pose a threat.  615 

Between lane-based digital map and road-based map, the findings from the simulation highlight 616 

the superiority of lane-based digital map. Not only would a lane-based digital support the safe 617 

localisation of AVs, but it would also have a significant positive impact on areas where the lane 618 
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markings have deteriorated no matter the prevailing conditions. However, to be of value, any lane-based 619 

digital map must be allied with accurate road positioning capability within the vehicle itself. At present 620 

most vehicle sensors are accurate to around 1m. This is not accurate enough to ensure safe in-lane 621 

driving when the pavement markings are obscured. 622 

In terms of practical implication, this study recommends that developers of AVs (OEMs) 623 

develop more sophisticated sensors which can integrate with lane-centrelines based on digital maps (for 624 

example, digital twins) to compensate for difficulties with lane marking visibility, whether that is caused 625 

by the quality of the marking themselves or other factors such as weather. Additionally, the AVs can 626 

also take advantages of the communication abilities such as V2V and V2I to alert approaching vehicles 627 

in changing weather conditions.  628 

However, this study does not come without limitations. In the real-world experiment, no lane 629 

change manoeuvre was conducted in the acceleration zone and the time for each lane change was not 630 

recorded. Additionally, the exact location zone of lane change cannot be determined easily when 631 

reviewing the video frames, by adding data from other sensors such as GPS and gyroscope to extract 632 

precise coordinates and heading. Moreover, the original lane marking quality in the controlled facility 633 

was rather poor such that the physical appearance of the lane markings was not 100% flawless which 634 

further impaired the performance of the lane detection and classification algorithm. Some limitations 635 

in the simulation study include that biased result might exist due to the underlying assumptions of the 636 

software. When considering the sub-microscopic simulation environment, one major limitation is that 637 

the scenarios developed relate to motorway operations and are based on human-related situations. For 638 

example, the scenarios developed might not reflect the new critical situations faced by AVs. Moreover, 639 

changing many parameters involve high computational requirements; hence only the essential 640 

parameters such as weather and lane marking conditions were varied.  641 

  Future studies should assess a variety of lane marking types to develop a more robust 642 

understanding of the effect of varying marking properties and the resulting contrast between the 643 

marking and darker or lighter pavements. This study was conducted on a closed-course facility. To gain 644 

a better understanding of how various marking characteristics affect the performance of machine vision 645 

products, real-world investigations on open roadways should be considered. Test conditions could 646 
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include areas with conflicting signals that may make it more difficult to detect the markings, such as 647 

roadways with conflicting messages from previously removed markings, blackout markings, crack seal, 648 

varying road surfaces, rutting, and shadows. Testing should include markings with varying levels of 649 

wear that may impact how well defined the edge of the marking is. The impact of different overhead 650 

lighting systems on nighttime detection of markings on different pavement surfaces in different weather 651 

conditions needs to be investigated further.  652 

7. Conclusions 653 

Lane marking is one of the most important infrastructure elements on the existing roadway systems for 654 

safe operations of AVs. The differences in their physical properties can limit the effective deployment 655 

of AVs. This is because the sensing systems in AVs requires accurate detection of lane markings to 656 

avoid disengagements. However, the lane markings appearance and retro-reflectivity deteriorate over 657 

time, causing localisation issues for AVs. To examine the effect of lane marking on AVs, this work 658 

conducted experiments at a controlled facility to assess the LDW performance of Mobileye sensor when 659 

lanes were 50%, 75% and 100% obscured. About 50% and 60% of lane change manoeuvres can be 660 

identified at all three levels of obscuration. To holistically evaluate the impact of safety and traffic 661 

efficiency for AVs under deteriorated physical appearance of lane markings, an integrated simulation 662 

platform was developed to model lane marking scenarios influenced by external factors such as: (i) 663 

lower retro-reflectivity, (ii) foggy conditions, (iii) snowy conditions, (iv) rainy conditions and (v) clear 664 

conditions. The data from our analyses showed that both inclement weather and retro-reflectivity affect 665 

the AV lane marking detection, especially when lane marking quality is severely deteriorated. However, 666 

results showed that by adopting a lane-based digital map rather than the road-based digital map, the 667 

impairment of lane detection and classification ability due to limited visibility arising from the physical 668 

appearance change in lane markings and light conditions was reduced. This highlights the importance 669 

of lane-based digital map. Not only would a digital roadmap support the safe localisation of AVs, but 670 

it would have a significant positive impact on areas where the lane markings have deteriorated no matter 671 

the prevailing conditions. 672 

 The implication of this study is significant to provide guidance for AV developers and 673 

infrastructure providers in understanding the importance of lane markings for the safe deployment of 674 
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AVs. This research highlights the importance of real-world trials and simulation experiments to assess 675 

the impact of lane markings as an appraisal for AV deployment. Findings from this study proved that 676 

other than vehicular technology, road infrastructure plays an important part in AV localisation and 677 

safety. Such finding provides extra insights to that a safe AV implementation needs a complete revamp 678 

on all the components of transportation network and a long transition period is needed for automation 679 

and the coexistence of conventional and AVs on the same network. 680 
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