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Abstract - Navigating through roadworks represents one of the 

main sources of safety risk for Connected and Autonomous 

Vehicles (CAVs) due to the altered road layouts. The built-in base 

maps do not normally reflect these changes, causing CAVs to 

experience difficulties in sensing and trajectory generation. 

Therefore, the objective of this paper is to evaluate different 

collision-free trajectory generation for CAVs at roadworks to 

improve safety and traffic performance. Trajectory generation 

algorithms using lane-level dynamic maps were examined for: (1) 

CAVs rely on data from in-vehicle sensor only and (2) CAVs 

receive additional information via a Smart Traffic Cone (STC) in 

advance regarding roadwork configurations. Experiments were 

conducted at a controlled motorway facility operated by National 

Highways (England) using a vehicle instrumented with a suite of 

sensors. Schematics of the roadworks scenario were translated 

into an integrated simulation platform consisting of a traffic 

microsimulation (VISSIM) to simulate traffic dynamics and a sub-

microscopic simulator (PreScan) capable of simulating vehicle 

autonomy and connectivity.  Results indicate that traffic conflicts 

and delays decrease by 40% and 3% respectively when CAVs 

receive additional information in advance (i.e., Scenario 2) 

compared to the other scenario. These findings would assist road 

network operators in developing ‘CAV-enabled roadworks’ and 

vehicle manufacturers in designing a vehicle-based ‘roadworks 

assist’ system. 

Index Terms—roadworks zone, CAVs, smart traffic cone, in-

vehicle sensors, simulation 

 

I. INTRODUCTION 

CAVs are defined as vehicles which can communicate with 

other vehicles (V2V), infrastructure (V2I) and everything 

(V2X) with the capability to drive in all weather and road 

conditions without human intervention [6]. In the UK, the 

development of CAVs is still in an embryonic stage, with some 

industry analysts predicting that CAVs will account for about 

30% of sales in 2035 [7]. The development of CAVs is 

propagated on continuous improvements in complimentary 

technologies such as advanced camera and sensor systems to 

allow vehicles to detect road conditions. Software programmes 

are also developed which can take the input data of the road 

conditions and use it to safety control vehicles driving 

behaviour. As such, much of the focus in CAV research and 

development has been on the performance of sensor systems to 

generate accurate measurements of the environment. However, 

an issue that often overlooked is how the format of the 

environment can facilitate CAV operations. To consider this 

issue, operators of road infrastructures have started to appraise 

their networks for the readiness of CAVs. For instance, the UK 

government is currently implementing policies to prepare the 

Strategic Road Network (SRN) for CAV operations with over 

£27.4 billion to be invested over the next five years in 

modernising and upgrading the entire SRN [8].   

While CAVs can remarkably improve highway mobility and 

safety [9], they will bring many technological and 

infrastructural implications and challenges. This is because 

CAV performance can be influenced by a number of factors 

such as roadworks, road surface conditions, merging and 

diverging sections, which can result in CAV disengagements 

[10], [11]. Roadworks are common along highways, present 

due to improvement and maintenance activities [9]. Therefore, 

this paper focuses on the CAV operations in a highway 

environment during roadworks. In roadworks, the road layout 

is altered and vehicles have to adapt their usual trajectories to 

travel reliably within the new road configuration [11]. 

However, CAVs may fail to navigate safely and experience 

difficulties because the base map available in their path 

planning module does not reflect the altered road layout [12]. 

Therefore, the localisation and navigation systems 

implemented in the CAV trajectory generation planning 

modules are required to reliability sense their dynamic 

surroundings and understand the new environment with a high 

degree of precision [13]. These modules need to make use of a 

combination of detailed mapping of the road network as well as 

the information gathered from the in-vehicle sensors [14].  

CAVs rely heavily on vehicles’ sensors data but they are 

prone to misinterpret roadworks conditions due to the ever-

changing road conditions [12]. This could be due to obstruction 
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Globally, 1.35 million lives are lost annually due to traffic 

incidents, which is the main cause of death for people aged 

between 5-29 [1]. Over 90% of traffic accidents are attributed 

to human errors [2]. Reducing human errors by curtailing 

human involvement in driving represents a major motivation in 

accelerating the advancement of vehicular technologies [3]. 

Connected and Autonomous Vehicles (CAVs) offer a means to 

reduce human error in the driving as well as unlocking the 

potential to offer ancillary benefits such as reducing traffic 

congestion and vehicle emissions [4], [5].  
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from objects ahead of the sensors blocking the sensors’ field-

of-view. One plausible solution to improve mobility 

performance in such situations is to transmit details of 

roadworks to oncoming CAVs via V2I in advance [15], [16]. 

This would improve the quality of traffic services and facilitate 

the development of collision-free trajectories when 

approaching roadworks zone [14]. One approach to distributing 

information of roadwork configuration to oncoming CAVs is to 

employ Road Side Units (RSUs) such as a Smart Traffic Cone 

(STC). The STC shares an information package which provides 

accurate information about the modifications in the road 

environment. Once received, CAVs take this information 

package and incorporate it into their high-definition (HD) road 

maps. Conventionally, the road maps implemented for 

navigation use road-center lines based on static map to provide 

a route from an origin to a destination based on the vehicle’s 

position and orientation which must be collision-free and 

according to the traffic rules [14], [17]. CAVs require a higher 

level of detail about the surroundings and road surfaces for self-

position estimation [18]. To aid this, novel navigational 

dynamic maps are required as they provide centimeters level 

accurate references [19] allowing overlay of sensor data onto an 

HD map making use of lane-level [20] rather than road-level 

lines [18]. This allows for the computation of new trajectories 

with maximum safety, enough planning time and a smooth 

transition [21], [22].  

Simulation can be a highly effective solution to appraise how 

the roadworks configurations may affect CAV operations and 

the effectiveness of RSUs to improve mobility through 

roadworks [23], [24]. This approach improves the cost-

effectiveness of the roadworks development stage and allows 

the maximum number of scenarios to be tested against different 

factors [9], [25]. However, a highly detailed integrated 

simulation platform with a combination of different simulation 

layers, namely a traffic microsimulation tool (network-level 

simulation) and a sub-microscopic simulation (vehicle-level) 

tool is required for conducting infrastructure appraisal in a 

virtual environment [26], [27].   

To effectively model the operations of CAVs in highway 

environments, this paper examines whether the use of an HD 

digital maps at roadworks would result in an increase in traffic 

safety and efficiency of CAV though testing two scenarios: (i) 

employing the data collected via in-vehicle sensor only and (ii) 

fusing the data from in-vehicle sensors with an information 

package received from a STC. This study makes use of an 

instrumented vehicle equipped with a suite of sensors to collect 

high quality data, which mimics the data input a CAV would 
receive in a roadworks scenario. Experiments were conducted 

using the instrumented vehicle at a controlled motorway facility 

operated by National Highways. From the data collected, an 

integrated simulation platform is developed to evaluate each 

scenario. 

To the authors' knowledge, the novelty of this study 

contributes to the following aspects: (1) This study quantifies 

the impacts on traffic safety and efficiency in the context of 

connected and autonomous vehicle (CAV) operations at 

roadworks, utilising lane-level data from real-world trials 

which existing literature failed to provide. (2) This study 

utilises a controlled real-world environment to accurately 

replicate real-world roadworks specifications on a motorway 

rather than simulated data. The use of real-world lane-level data 

to effectively calibrate and validate simulation models to 

estimate traffic safety and traffic efficiency of CAV operations 

at roadworks has been a breakthrough from current research. 

(3) Novel approaches to address the data requirements for 

roadworks and develop collision-free trajectories for CAVs 

operating in roadworks situations are introduced in this study. 

These algorithms were implemented within a simulation 

environment that accurately represents real-world roadworks 

conditions along the motorway. (4) The effectiveness on 

vehicle safety and traffic performance of a smart traffic cone 

(STC) serving as a Road Side Unit (RSU) has been evaluated. 

The proposed STC can transmit roadworks messages to CAVs 

using a High Definition (HD) lane-based digital map. The 

evaluation of the effectiveness on STC makes our research 

comprehensive and unique in its approach. 

The rest of the paper is organised into six sections. First, a 

literature review is presented on contribution of CAVs to 

improve traffic performance at roadworks, technological and 

infrastructure consideration related to CAV deployment at 

roadworks and research surrounding testing in a virtual 

simulation are discussed. The data collection and preparation 

procedure adopted in this research are then introduced. The 

subsequent section provides an in-depth explanation of research 

methodology adopted to test the two scenarios, followed by an 

explanation of the results. The paper is wrapped up with 

discussion and conclusion derived by integrating CAV 

technologies and concepts in a roadworks setting.  

II. LITERATURE REVIEW 

The interaction between roadworks and CAVs introduces 

many technological and infrastructural challenges such as 

detection of roadworks traffic control devices and roadworks 

setting. A major impact of these challenges is on the collision-

free trajectory generation algorithms of CAVs given the CAV 

needs to reliably and efficiently traverse the roadworks despite 

the sudden dynamic changes in lane configurations [9]. To 

enhance the decisions emerging from the collision-free 

trajectory generation algorithms during roadworks, 

comprehensive testing is required. Typically, this testing is 

carried out virtually using computer simulation models. This 

can comprise of high numbers of scenarios with combinations 

of varying factors leading to more flexibility and repeatability. 

Current applications of traffic simulation pertaining to 

roadworks are scarce, though the topic is growing in interest. 

The relevant studies related to the CAV impact to improve 

traffic performance during roadworks, detection systems of a 

roadworks setting using smart traffic devices and navigation of 

CAVs in roadworks are discussed.  

A. CAV impact on traffic performance during roadworks 

Roadwork areas tend to bring about negative impacts on the 

traffic performance such as increased travel time, queue length, 

accidents and dissatisfaction among road users [9], [28]. With 

the introduction of advanced technologies, CAVs have the 

potential to improve traffic performance at roadworks by 

exchanging information of the traffic conditions ahead as well 

as the recommended driving speed in a timely manner to 
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smooth the traffic flow resulting in a more efficient and safer 

network [9], [29].   

Agriesti et al. [24] explored the impact of lane closure on 

CAVs with different market penetration rates (MPR) of CAVs. 

Average delay is reduced between 10-25% when the MPR 

increased from 10-100%. Similarly, Zou et al. [30] also 

observed a reduction in average travel time when deploying 

CAVs. For example, travel time reductions of 25%, 50%, and 

90% were achieved with a CAV market penetration rate (MPR) 

of 34.1%, 62.25%, and 100% respectively in a congested 2-to-

1 roadworks area [30]. Another study [16] examined the impact 

of CAVs at different traffic demand levels. For instance, the 

mean travel time was reduced by 40% and capacity increased 

by 65% at 2-to-1 area for a flow rate of 3000 vehicles/hour. 

However, the results were only significant at a high traffic flow 

rate. Ramezani et al. [31] tested the effectiveness of speed limits 

for CAVs in the proximity of roadworks areas. Their results 

show that by deploying speed management techniques with a 

CAV MPR of 80% or higher, delays were reduced by 13% 

while the congestion period was reduced by 26.4% with a 100% 

MPR. Genders et al. [32] appraised the safety advantages (using 

TTC as the safety surrogate measure) when diverting CAVs to 

alternative routes. For moderate MPRs (<40%) early dynamic 

rerouting improved the network safety because the improved 

driving behaviour balance the additional trip distances. 

However, for large MPRs (>40%), the network safety 

decreased since longer trip distances were added to the network 

and this increased the risk of safety hazards. Safety related to 

roadworks was also explored by Abdulsattar et al. [33] but 

major focus in their research was to reduce rear-end collisions. 

Their results showed that at a 10% MPR there is a substantial 

safety improvement. For example, at a 10% MPR with medium 

and high traffic demand levels, the probability of rear-end 

collisions was reduced by 50%.  

B. CAVs detection of roadworks 

Roadworks induces unexpected and complex geometric 

change in the roadway setting with the use of warning signs or 

devices that mark the beginning and end of the affected lanes. 

This presents a navigational challenge for CAVs since these 

new changes may not be updated instantaneously on the HD 

digital maps implemented within the vehicle. As a result, CAVs 

cannot depend only on these maps. It is crucial that CAVs must 

be able to detect that roadworks are taking place in the roadway 

ahead from warning signs and devices (such as cones, barrels, 

and lane markings) to react and navigate efficiently and safely 

in a timely and precise manner. There are several ways to detect 

roadworks using devices such as cameras, lidars, and 

communication-based detection.  

Camera-based detection systems adopt machine learning 

techniques such as neural network [34], [35] and deep learning 

[36] to classify and recognize the predefined and standardised 

device used as the ground truth from real-time videos of the 

roadway ahead. For example, in the system developed by Wang 

et al. [37], the system accurately recognised and detected cones 

with a 100% success rate and maintained a 90% accuracy when 

sensing the range. False detection rates were reduced in the 

system by Lee et al. [38] enhancing the ability of CAVs of 

identifying objects using a camera. Other studies [35] showed 

that lane markings can also be recognised by camera systems. 

Recent literature adopting LiDAR to detect objects shows 

promising results [39], [40]. These studies also highlighted that 

by employing a LiDAR sensor, detection robustness can be 

improved when compared with camera-based detection 

methods which can be affected by light conditions, image 

quality, and occlusions [9]. As a result, more types of objects 

can be detected. Moreover, some research shows that LiDAR is 

capable of detecting and tracking lane markings [41], [42].  

An I2V communication can be established between a vehicle 

and a device equipped with a tag that transmits a message. An 

I2V communication system was proposed by Garcia-Garrido et 

al. [43] where a wireless sensor was installed on a traffic 

signpost. This sensor transmits information to all equipped 

vehicles on the road layout ahead. Similarly, Qiao et al. [44] 

developed and successfully tested a V2I sign detection system 

at roadworks. Lane marking detection is also possible using 

communication-based detection [45]. 

From all the detection systems, the communication-based 

detection of devices provides the most advantages for CAV at 

roadworks. This is because it discards irrelevant detected 

objects, eliminates the chance for false detection, and it creates 

and transmits relevant information [9]. However, with regards 

to cost-effectiveness, the camera-based system is the optimal 

choice as LiDAR is still expensive and the cost of connected 

devices is yet to be assessed [9].  

C. Smart traffic devices for CAVs to identify roadworks 

A prerequisite for CAVs navigating through a dynamic 

environment is to autonomously recognise and react to the 

surrounding objects. In roadworks, CAV detection of traffic 

control devices (e.g., cones and barrels) is essential. Traffic 

control devices can be equipped with IT systems which use 

communication technologies to transmit a package of 

information to warn approaching CAVs towards roadworks and 

assist into generating new safe trajectories. An overview of 

several ‘smart’ traffic control devices that enable CAVs to 

navigate roadworks is presented in this section including 

connected and robotic traffic control devices.  

Connected devices can be equipped with sensors and 

modules to monitor the traffic environment and report the 

current dynamic situations to an operator through wireless 

communication [46], [47]. Examples of these devices include 

cones, barrels, panels, and arrow boards [9] and they are 

becoming more common in modern highways [48], [49]. They 

have been applied to provide real-time data to validate 

roadworks location, identify errant vehicles, debris detection, 

sends alarms to workers on site if a potential risk is detected and 

can also sense the public trespassing the roadworks areas [48], 

[50]. This study considers a smart traffic cone (STC) as the 

traffic control device to identify roadworks and its application 

in the literature is reviewed. Intellinium developed a prototype 

of a STC which is able to connect to smartphones and sends 

notifications if a cone falls in the roadwork area [51]. 

Schönrock et al. [52] produced a STC prototype to detect and 

localize traffic disruptions to assist in police operations for 

information dissemination to surrounding drivers, RSUs and 

servers. Kantawong and Phanprasit [46] proposed a STC which 

can detect vehicle accidents. In [53] an STC application was 

placed in front of roadworks area to send information to RSUs 

so as to warn incoming traffic and ensure safety.  
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Robotic Traffic Control Devices are intelligent devices that 

can move autonomously and are connected to a central 

management station. Robotic traffic control devices include 

barrels, cones, barricades, and sign bases [9]. Since the 

positions of these devices can be moved remotely the size and 

duration of roadworks can be reduced as well as the workers 

exposure to traffic. Shen et al. [54] developed and tested in a 

roadworks area using robotic safety barrels which move 

autonomously for human driven vehicles. The central 

management station was able to pinpoint the location of each 

barrel and transmit the planned trajectory for each. The system 

was tested in real-world trial and the maximum positioning 

error for all robots was 11 cm.  

D. Guidance for CAVs through Roadworks 

Human drivers are normally capable to pass through roadworks 

by navigating around traffic cones and barricades while 

obeying traffic signs and may alter travel paths based on public 

service notifications of road closures. This capability is also 

expected from CAVs, by using detailed mapping of the road 

network, and comparing the information received from sensors 

with the historical information within the maps for localisation 

and determining which lane to use [55]. However, some 

challenging conditions, for example, adjustments in lane 

geometry and speed related to roadworks have a great impact 

on the collision-free trajectory generation and decision-making 

of the CAV [55].  

The guidance frameworks for navigation follow a data-

processing scheme consisting of five parts [55]. Initially, the in-

vehicle sensors receive data from the dynamic environment 

surrounding the CAV through (e.g., image recognition, 

positional data) [56], [57]. Secondly, the state estimation 

section recognises the location of the vehicle relative to the data 

obtained from sensors [58]. Thirdly, based on all possible 

vehicle actions the local planning section identifies the 

geometrical and dynamic constraints [59]. The trajectory 

generation section predicts vehicle trajectory based on vehicle 

controls and physics constraints. The controllers section carries 

out the manoeuvre by using data from the trajectory generation 

section [60]. However, to enhance this guidance framework, 

CAVs require a new framework for data collection in which 

information from external sources establish communication 

channels, including V2I communication, V2V communication, 

RSUs, and HD maps are fused together [49], [61]. These 

sources aim to augment the data collection capabilities of 

CAVs, simultaneously increasing their hierarchal data 

processing. The additional information from the 

communication line allows updates on several attributes for 

example: change in lane geometry, closure of lanes, 

emergencies, diversions, variable speed limit adjustments and 

new construction [55]. 

The novelty of this study lies on its exploration of vehicle 

operations in roadwork environments, addressing the need to 

maintain and enhance existing road infrastructures. Whilst 

research on CAV operations during roadworks is limited, this 

study fills the gap of knowledge by evaluating the behaviour of 

CAVs in such scenarios to ameliorate traffic disruptions. By 

collecting empirical data using an instrumented vehicle 

alongside with developing an integrated simulation framework, 

this research effectively mimics CAV behaviours in a highway 

environment, specifically focusing on roadworks settings. The 

impact on safety and efficiency of CAVs when approaching 

roadworks are investigated, considering camera-based and I2V 

systems as guidance for obtaining collision-free trajectories. 

Additionally, the study introduces the use of Smart Traffic 

Cone (STC) as a road side unit, to transmit timely information 

packages to CAVs. Key performance indicators such as traffic 

conflicts and delays are estimated, which helps to strengthen the 

understanding of CAV behaviours and quantifies the effects of 

I2V systems in roadwork scenarios. Furthermore, the study 

contributes to determine the optimal roadworks detection 

system. Overall, this research offers novel insights into CAV 

operations in roadworks and their impact on traffic performance 

and safety. 

III. DATA 

To adequately represent CAV operations in highway 

environments, it is necessary to gather similar data that such 

vehicles would receive in real-world operations. This data 

covers the measurement of different features of the traffic 

environment including the detection of organically changing 

‘objects’ (e.g., cones and construction vehicles) and 

surrounding vehicles. The data used in this paper is collected 

using a vehicle instrumented with a suite of sensors from real-

world trials to calibrate the simulation model. Due to inherent 

risk and safety associated with live highway operations, the 

experiments were not conducted on the SRN but at a controlled 

motorway facility operated by National Highways. A series of 

experiments were carried out to examine how a CAV can 

safely navigate within an artificial roadworks area using 

different configurations derived from the Traffic Signs 

Manual.  

A. Vehicle Instrumentation and Controlled Experiments 

A 2017 Ford Focus Zetec was procured as the base vehicle to 

be instrumented. Multiple sensors were installed in this vehicle 

to allow it to collect the same variety of data as a fully CAV. A 

sensing subsystem was installed in an instrumented vehicle to 

gather microscopic data comprising a LiDAR sensor, two radar 

sensors (front and rear), two camera sensors (front and rear), 

localisation sensor, weather sensor, gyroscope, accelerometer 

and a MobilEye camera sensor. It is important to clarify that 

whilst multiple sensors were equipped in the instrumented 

vehicle, not all of them were utilised in the present study. 

Specifically, our study utilised GPS, cameras, and radar sensors 

to navigate through the created scenarios. A schematic diagram 

of the instrumented vehicle is shown in Fig. 1.  

 
Fig. 1. Sensor configuration on the instrumented vehicle used  
 

However, a large amount of data cannot be processed using 

conventional systems because of many forms of data, their 

complexity, and their varying sampling frequencies. Hence, to 
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examine the information and patterns within the data, a system 

architecture is needed for data collection, transmission, and 

storage. All the information was unified on a central 

computational unit and a data integration architecture was 

developed to satisfy the requirements of various sensor 

environments and provide a run-time environment. 

To mimic the setup of roadworks, specifications of a 

roadworks zone were obtained from the ‘Traffic Signs Manual’ 

developed by the Department for Transport and National 

Highways [62]. Roadworks typically include an advance 

warning zone (zones to warn driver to reduce their speed ahead 

of road work zones), transition zone (zones where the lane 

width gradually reduces) and the work zone (zones where actual 

road activity is taking place) [63]. However, the actual layout 

of the roadworks adopted in this study is slightly modified due 

to length restrictions. The controlled facility is a motorway 

testbed with a total length of 650m with lane width of 3.2m for 

Lane 1 and 3.45m for both Lanes 2 and 3 (represented in Fig. 

2.). The lane closure scenario was set up where the entry taper 

length was 180m with cones placed 1.5m apart. Traffic cones 

were then placed 9m apart at the edge of Lane 1 for 63m. The 

exit taper length was restricted to 3.2m. The first 100m of the 

testbed was reserved for vehicles to accelerate from 0 

to 60mph. Schematics of site setup is displayed in Fig. 2.  

 
Fig. 2. Schematic of the Roadworks experiment with cone placements at the 

controlled facility.  

Four different traffic vehicle formations were evaluated 

progressing through the roadworks at the testbed: 

1. The instrumented vehicle drives in Lane 2.   

2. The instrumented vehicle with a conventional following 

vehicle in Lane 2.   

3. The instrumented vehicle drives with a leading and a 

following conventional vehicle in Lane 2.   

4. The instrumented vehicle drives in Lane 1, merges to Lane 

2 with a leading and following conventional vehicle 

alongside a conventional vehicle in Lane 3. 

The vehicle formations are displayed in Fig. 3. The four 

formations of vehicles are selected by varying the degree of 

manoeuvrability of the vehicles. Formation 1 is the most 

flexible while in formation 4 the CAV is surrounded by other 

vehicles. During the data collection process, each traffic vehicle 

formation described in Fig. 3. was repeated 10 times to provide 

accurate data. It is worth noting that previous studies have 

extensively examined the effect of the number of replications 

of simulations on the consistencies between results. Results 

have shown that by taking the average of at least 10 replications 

can improve the reliability of the findings [64], [65].  Selecting 

10 replications can effectively strike a balance between 

computational resources and obtaining consistent results. While 

a larger number of repetitions would provide different 

dynamics, it would also significantly increase the 

computational time and resources required for the simulations. 

These scenarios ensured that realistic data such as 

acceleration and deceleration profiles are utilised in the 

simulation model to generate realistic results for a virtual real-

world workzone scenario. Since the experiment was conducted 

under a controlled environment, the data was collected by 

several authorised personnel including professionals that work 

in transport engineering industry with full driving license. This 

ensured that the different driving styles and acceleration and 

deceleration profiles are employed in the simulation scenario. 

Additionally, the work zones scenarios developed in the 

simulation environment are all calibrated and validated using 

real-world traffic data (such as flow, speed, and headway) so 

the major issues relating to CAV operations are captured. It was 

determined that these factors play a crucial role in influencing 

safety and conflicts within the simulation model. Our findings 

align with previous studies that have highlighted the significant 

influence of speeds and headways on conflicts and delays [66], 

[67]. Other parameters are initiated with the default parameters 

set by VISSIM.  

 
Fig. 3. Schematic of the vehicle formations for the roadworks 

experiment conducted at the controlled facility 

IV. METHODOLOGY 

This section explains the experimental framework for the 

integrated simulation platform to investigate how a CAV can 

navigate through roadworks. Using the data collected from the 

real-world trials in the controlled motorway facility; the 

baseline scenarios were developed in the simulation model. In 

this stage, PreScan provides the schematics of the testbed and 

the functional parameters of the instrumented vehicle were 

replicated in the simulation. Subsequently, VISSIM was used 

to model realistic surrounding traffic flow. These two 
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simulation platforms are linked together such that the 

surrounding traffic was simulated at the same time as the CAV 

operation. When using both simulators simultaneously, a 

comprehensive integrated platform is built that is more 

powerful allowing the investigation of scenarios with varying 

vehicle functionalities with different traffic conditions. This 

section continues by describing the control details of the 

scenarios created in PreScan: (1) CAVs rely on data from in-

vehicle sensor only and (2) CAVs receive additional data and 

information in advance regarding roadworks (e.g., location, 

lane-level road map, road geometry). The collision-free 

trajectory generation algorithm for the CAV was adjusted to 

reflect the scenarios.   

A. Experimental Framework 

Using the data collected from the application of the traffic 

formations in the controlled motorway facility; the baseline 

simulation scenario was developed in PreScan. In this stage, the 

schematics of the testbed and the functional parameters of the 

instrumented vehicle were replicated in the simulation. 

Subsequently, VISSIM was used to model surrounding traffic 

flow. These two simulation platforms are linked together such 

that the surrounding traffic was simulated at the same time as 

the CAV operation. Different controls of the simulation 

scenarios were conducted in Simulink. Detailed explanations of 

each phase of the methodological framework are described in 

subsequent section. Fig. 4.  shows the framework of integrating 

PreScan with VISSIM.  

 
Fig. 4. Framework of integrating PreScan with VISSIM 

 

B. Baseline Simulation Scenario 

In PreScan, it is essential to develop a baseline scenario 

without any roadworks, using data collected from the 

instrumented vehicle. This allows the alternative roadwork 

scenarios to be compared to a common standard. The baseline 

scenario development follows a four-stage process consisting 

of: (i) scenario building, (ii) sensors modelling, (iii) control 

system implication and (iv) execution of experiment.  
Firstly, the network of the testbed was created in PreScan 

GUI. Dimensions of the simulation network followed the real-

world measurements and geographic road configurations of the 

actual facility. It should however be noted that apart from the 

static road information, other parameters relating to the CAV 

model do not vary between the scenarios. Each scenario was 

defined by the parameters of the CAV and control systems. 

Vehicles within the PreScan library provide detailed 

information of the CAV, ranging from vehicle body 

characteristics to vehicle components such as engine, 

suspension, steering, tyres, and brakes. A Ford Focus was 

implemented to replicate the instrumented vehicle which 

was used to collect real world data as best as possible. The 

environmental sensors of the CAV system (e.g., radar, laser, 

camera, GPS) were then modelled within PreScan GUI. Using 

the GUI, the sensor design and benchmarking were made easier 

by modifying the sensor type and sensor characteristics (e.g., 

range and field-of-view). These were placed on the CAV to 

replicate the information from the dynamic environment.  

Subsequently, VISSIM was used to represent the network 

section to generate surrounding traffic flow based on the real-

world data collected from the testbed. In this way, a 

comprehensive platform was built allowing the investigation of 

driving behaviours and vehicle functionalities under different 

traffic conditions. The network development involved defining 

model parameters, vehicle composition, number of lanes, the 

required input traffic data and driving behaviour characteristics. 

Calibration of the road network and simulation parameters were 

required to accurately replicate real-world road traffic 

conditions. While some parameters were initiated by default 

from VISSIM, the speed profile and headway were extracted 

from the real-world experimental data collected at the testbed. 

Multiple simulation runs were then performed to obtain 

simulation outputs comparable to the real-world values. The 

car-following model used in VISSIM is the Weidmann99 

model given in (1):  

 

vn(t + ∆t) = min

{
 
 

 
 un(t) + 3.6(CC8 +

CC8 − CC9

80
un(t))∆t

3.6
(sn(t) − CC0− Ln−1)

un(t)

, uf

}
 
 

 
 

 (1) 

where t is current time, ∆t is the time step, vn(t + ∆t) is the 

speed of the following vehicle in the next time step, sn (t) is the 

space headway from the ego-vehicle and following vehicle, uf 

is the free flow speed, un is the speed of following vehicle and 

Ln-1 is the length of preceding vehicle. The parameters used in 

VISSIM are given as CC0 representing the standstill distance 

as 1.5 m, CC8 representing the standstill acceleration given as 

3.5 m/s2 and CC9 represents the acceleration as 1.5 m/s2 when 

the speed is 80km/hr. The density and velocity of the vehicles 

on the road in PreScan were determined by VISSIM.  

With regards to lane change, vehicles in the VISSIM only 

change lane if there is a sufficient safety distance available 

given as [68]: 

sdesired = CC0 + CC1 x v (2) 

where v is the speed of the vehicle, CC1 is headway time and 

CC0 is the standstill distance. Values of CC1 are given as 0.9 s 

and 0.6 s for conventional and autonomous vehicles 

respectively. Values for CC0 are taken as 2 m and 1 m for 

conventional and autonomous vehicles. The decision to change 

the lane is triggered by a slow-moving vehicle ahead or the 

information received from the STC. If the road has a diversion, 

then the lane change can be forced by the routing decision in 

the model. PreScan and VISSIM interact in such a way that the 

motion of vehicles in PreScan respects the trajectories 
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generated by VISSIM, and the trajectories in VISSIM adapted 

to the motion of the subject vehicle simulated in PreScan. 

Next, the microsimulation model was linked to PreScan. 

Every change in PreScan was associated with a change in 

the Matlab/Simulink software. This interface allowed the user 

to design, add, implement, or validate the scenarios tested 

through a compilation sheet. This interface consists of 

subsystems made up of blocks which manage driving 

manoeuvres and vehicle control. As a result, the ego-vehicle 

travels within the Vissim environment alongside normal traffic. 

With every run, the output files were stored in a database for 

post-processing. Key Performance Indicators (KPIs) such as 

conflicts and delays were monitored for further analysis. 

Moreover, a 3D visualisation viewer allowed the user to 

analyse the results of the experiment by providing multiple 

viewpoints, pictures, and video generation capabilities.  

A comprehensive analysis to evaluate the model's 

performance and its ability to capture real-world complexities 

was conducted under various conditions and scenarios. The 

model was tested with different traffic flow patterns, including 

varying traffic densities, peak hours, and congested traffic 

conditions. By subjecting the model to these scenarios, it was 

ensured that it could handle different levels of traffic demand 

and accurately simulate the resulting interactions and conflicts 

between vehicles. Furthermore, the model was evaluated under 

different weather conditions. By examining the model's 

behaviour in diverse conditions, its adaptability and robustness 

in capturing the dynamics of lane-changing manoeuvres and 

potential conflicts were assessed. To validate the model's 

performance, the simulation results were compared with 

empirical data collected from real-world observations. 

C. Baseline Simulation Scenario 

Two simulation scenarios for roadworks were created 

in PreScan. The objective of these scenarios is to evaluate CAV 

performance when (i) relying on in-vehicle sensors only to 

navigate through roadworks zone and (ii) the CAVs benefit 

from receiving essential information regarding the details of the 

roadworks and employ this information in developing a 

collision-free trajectory. 

 

1) CAVs Rely on In-Vehicle Sensors  

CAVs may experience difficulties navigating through the 

road work zones as this alters the traffic network. Therefore, the 

in-vehicle sensors need to have the ability to detect 

and understand the new environment with an extremely high 

degree of accuracy. As a result, for the deployment of CAVs 

within the SRN network, the scenario of using only in-vehicle 

data is explored to determine whether such data is sufficient for 

safe CAV navigation through roadworks.  

 In this scenario, roadworks were created in PreScan by 

placing traffic cones as specified in Section 3.1. The CAV 

gathers the surrounding dynamic information by using the data 

collected by its sensors (e.g., LiDAR, radars, cameras).  

The first test included the CAV driving in Lane 1 where 

roadworks was taking place. Control algorithms were 

developed in the Simulink interface to adjust the collision-free 

trajectory generation algorithm within the CAV. This algorithm 

was adjusted to receive inputs from sensor data to enhance the 

road maps information. In this way, as the CAV travels on the 

road, readings from the sensors and data obtained from the map, 

transform the representation of the road network. This was 

essential to inform the CAV about the altered dynamic 

surroundings due to roadworks.  

The vehicle was also able to identify that it was driving in the 

same lane where road works were taking place. As a result, this 

required the CAV to reduce its speed to 60 mph and carry out a 

collision-free mandatory lane change to Lane 2. The distance at 

which roadworks identification occurred was set to 60m. This 

value is obtained from the real-world experiments at the 

position where drivers change lane due to roadworks. This 

distance value was used as a trigger to notify the trajectory 

generation algorithm that roadworks was occurring if the cone 

is also observed and Table 1 presents the pseudocode of this 

algorithm.  

 
TABLE 1: ALGORITHM TO TRIGGER IDENTIFICATION OF ROADWORKS  

Pseudocode of the algorithm        

Initialize the Range to 60; % detection takes place within this limit 

Initialize the ID of smart cone to 15; % ID of the STC 
Initialize the Message; % Message status from STC on (1) or off (0) 

 
if vehicle is driving in the direction of roadworks  

| for t = simulation_start to simulation_end 

|   if vehicle distance from cone is less than Range & Message of roadwork 
has been sent 

|       generate new trajectory;   

|     else 
|       keep current trajectory; 

|    end 

end 

The second test included the CAV driving in Lane 2 while 

the roadworks zone was in Lane 1. Like the previous test, the 

CAV identified that it was approaching roadworks area through 

in-vehicle sensors data. As a result, it reduced its speed to 

60mph. In this scenario since no mandatory lane change was 

required, the CAV continues with its own trajectory on Lane 2. 

 

2) CAVs Rely on In-Vehicle Sensors Aided by I2V 

Communication 

This scenario was developed to see how CAVs can fuse 

essential information from roadworks in developing collision-

free trajectories. More specifically, this experiment extends the 

previous scenario in two-ways (a) CAVs receive a ‘roadworks 

essential information pack’ from a STC situated at the start of 

the roadworks zone in advance, and (b) the input to the 

collision-free trajectory generation algorithm is further 

modified to receive the information in advance from the STC 

fused with the in-vehicle sensors data.  

The same traffic cone placement that was utilised in the 

baseline scenarios (i.e., in-vehicle sensors only) were also 

employed in this simulation. The main difference is that in this 

scenario a STC was placed at the start of roadworks. It was able 

to send ‘the information pack’ to notify approaching vehicles 

about the roadworks ahead. This information includes:  

i. location of the roadworks in x and y coordinates.,  

ii. start and end date/time of the roadworks,   

iii. length of the roadworks,   

iv. speed limit,  

v. geometry (e.g., tapper length, angle),  

vi. types of barriers (e.g., cones, temporary fences)  

vii. information on lane closures (e.g., Lane 1 is closed)  
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viii. lane configuration (i.e., a digital map consisting of 

lane center lines given the road layout within the work 

zone)  

As a result, the CAV receives ‘the information pack’ and, 

together with the readings from the sensors, transforms the 

representation of the road network to plan its trajectory. It is 

important to highlight that the information pack provides a 

major advantage to any approaching vehicle (e.g., the CAV in 

our simulation) as such information is fused with the sensing 

data and allows the vehicle to navigate safely even 

with a blocked field-of-view. Table 2 presents the pseudocode 

of the data transmitted by the STC and received by the CAV. 

Once the CAV receives this data and recognises that there is 

roadworks ahead, the vehicle’s collision-free trajectory 

generation starts to use the dynamic map obtained as part of the 

information pack. The dynamic map contains a digital map of 

the road layout consisting of lane-level centerlines of the 

revised roadworks as opposed to a road-center lines based static 

map. In this way, the trajectory generation algorithm can 

create new collision-free trajectories based on the fused data 

from the in-vehicle sensors and the information pack.   

The first test included the CAV driving in Lane 1 which was 

closed due to roadworks. An information pack was transmitted 

from the STC to the CAV about the roadworks situation via an 

I2V message. Control algorithms were developed in Simulink 

interface to read this message. Vehicles receiving messages 

from STC can alter their decision-making based on the 

information received within the STC's range. The vehicle 

identified that it was approaching a construction zone which 

triggered a speed reduction to 60mph and the use of a dynamic 

map to navigate the area. The dynamic map included a 

trajectory generation algorithm to create a path for the CAV to 

conduct a lane change manoeuvre to Lane 2 or Lane 3.  The 

distance at which roadworks the message was sent from the 

STC to the CAV was set at 60m. In most of the simulations, the 

lane change was performed as soon as the message was received 

depending on the surrounding traffic.    

The second test included the CAV driving on Lane 2 while 

Lane 1 was closed for the construction works. The CAV 

received the information that it was approaching a construction 

zone and reduced its speed to 60mph. However, there was no 

need to change lanes. Similar to the other scenario, the vehicle 

was able to identify vehicles from Lane 1 that were changing to 

Lane 2, resulting in a lower driving speed.    

D. Overall Framework 

In summary, the collision-free trajectory generation 

algorithm developed for the ego-vehicle initially generates a 

trajectory based on the location of the ego-vehicle received 

from PreScan. The trajectory generation function makes use of 

a fourth-degree polynomial as shown in equation (3): 
x(t) = p0 + p1t + p2t

2 + p3t
3 + p4t

4 (3) 

where p0 − p4 are the coefficients which can be found based on 

the current location (t0) and the end point of the trajectory (t𝑓).  

Multiple trajectories are generated from (3) and the optimal one 

is found by minimising a cost function for the longitudinal and 

lateral movement as shown in (4) and (5) respectively: 
Clongitudinal = kjJt(s) + ktT + ks(sḟ − sṫ)

2 (4) 

Clateral = kjJt(d) + ktT + kddf
2 (5) 

 

TABLE 2: ALGORITHM OF STC TO SEND INFORMATION PACKAGE ABOUT 

ROADWORKS TO CAV 

Pseudocode of the algorithm 

Initialize the StationID to 1; % ID of the transmission station 

Initialize the DetectionTime to now();  % current time 

Initialize the Latitude X to Latitude % Latitude of the smart traffic cone 
Initialize the Longitude Y to % Longitude of the smart cone 

Initialize the Direction to 0; % Direction angle of smart cone 

Initialize the SpeedLimit to 60; % Speed limit at the break down area 
Initialize the ClosedLaneNumber to 1; % the ID of closed lane 

% Data of all vehicles in the simulation model 

if vehicle is driving in the direction of roadworks  
|  for t = simulation_start to simulation_end 

|      X_V(t) = Latitude % Latitude of the Vehicle 

|      Y_V(t) = Longitude % Longitude of the Vehicle 

|     Distance(t) = sqrt((Y_V(t)-Y)2+(X_V(t)-X)2) %   |     Calculate the 

distances with the help of coordinates 
|      ReceiveInformationOfLaneClosure 

|      ReceiveWarningMessage 

|  end 

end 

 

where kj, kt, ks and kd are adjustable weights, 𝐽 is jerk, 𝑇 is the 

time to execute the trajectory, 𝑠 is longitudinal trajectory, 
(sḟ − sṫ) is the difference in the final velocity from current 

velocity, d is lateral movement, df is distance from desired 

lateral position. Trajectories that are not on a collision course 

are considered and the optimal trajectory is selected with the 

lowest cost calculated from the cost function. The generated 

trajectory would be rejected if obstacles present within the 

bounding box of the vehicle.  The pseudo-code for trajectory 

generation function is presented in Table 3.  

 
TABLE 3: ALGORITHM TO IDENTIFY OPTIMAL TRAJECTORY FOR EGO-VEHICLE 

Pseudocode of the algorithm        

function for all paths generated 

|  if path is impossible 

|     regenerate path; 
|    else if it is on a collision course 

|       regenerate path; 

|    else  
|       calculate the cost function; 

|  end 

end 
send  the lowest cost to trajectory generation algorithm 

update the estimated position of the ego-vehicle 

 

The path tracker uses the generated trajectory as input and 

outputs throttle, steering and breaking for the ego-vehicle to 

actuate. ‘Pure pursuit’ [69] is a lateral path tracker (which 

outputs the steering angle) and with the help of a longitudinal 

PI controller (which ensures the velocity is maintained, 

therefore handling the throttle and breaks) for tracking the 

trajectory generated by the algorithm. To minimise the cost 

function for the generated trajectory, convex optimisation is 

adopted under constraints of the path and vehicle dynamics 

[70]. This optimisation method would ensure an efficient 

computation of the optimal path.   

The control system (See Fig. 5) enables data fusion which 

allows additional data from multiple sources to be integrated to 

generate an optimal trajectory. To account for spatial alterations 

due to roadworks, the control system makes use of additional 

received information from in-vehicle sensors, lane-based map 

and STC to regenerate the trajectory based on the available 
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paths if the ego-vehicle identifies a hazard. Trajectory of the 

ego-vehicle is hence determined by Multiple Criteria Decision 

Making and  Deterministic Finite Automata employed by Furda 

and Vlacic [71]. This approach is perceived as the state-of-the-

art approach in collision-free trajectory generation when 

encountering roadworks [14].  

 
Fig. 5. Overall framework of collision-free trajectory generation 

algorithm in roadworks 

V. RESULTS 

From both scenarios developed in the simulation framework, 

the sensitivity analyses were conducted, and the 

results were evaluated through key performance indicators 

(KPIs) covering traffic conflicts and delays. Each scenario was 

simulated 10 times by utilising 10 different random seeds to 

generate different traffic dynamics surrounding CAVs. To 

improve the reliability and accuracy of the estimated results, it 

is common practice to perform multiple simulations and take 

the average of the outcomes. By conducting ten simulations and 

averaging the results, the variability introduced by individual 

runs can be reduced, leading to more robust findings. This 

approach is particularly valuable when numerous factors can 

influence the outcomes. Parameters such as road design, driving 

manoeuvres and behaviour of the CAV were kept constant. By 

utilising the evaluation script, the outputs from the simulation 

were examined.  

A. Traffic Conflict 

A traffic conflict is a traffic event involving the interaction 

of two or more road users, where one or both road users need to 

take evasive action, such as braking or swerving to avoid a 

collision [72]. The most widely used metric to identify traffic 

conflicts is Time-To-Collision (TTC) [73]–[77]. This measure 

is defined as the remaining time before an impact takes place 

between two road users unless an event to change their 

trajectories and speed occurs, such as braking or a change in 

steering angle. Its equation is given as:  

TTC =
s

vego−vehicle
 

(3) 

where vego−vehicle is the speed of the CAV and s is the distance 

between preceding vehicle and CAV. A critical value for TTC 

must be defined to make a distinction between a relatively safe 

encounter and a critical one. The majority of studies determined 

the critical value for TTC to be 1.5s (e.g., [78], [79]).  

The values of TTC surrounding the CAV were captured and 

the 1.5 second threshold was adopted to determine the 

percentage increase in the number of traffic conflicts in relation 

to the baseline scenario (i.e., no roadworks) in two situations: 

(i) lane change, (ii) no lane change for both scenarios. This is 

represented in Fig. 6. 

 
Fig. 6. Percentage increase in conflicts estimated with no roadworks 

scenario 

Referring from Fig. 6., in the scenarios which CAV only used 

in-vehicle sensors, the number of traffic conflicts increases 

by 18% (relative to the baseline scenario with no roadworks) 

when the CAV did not change lane. When the CAV performed 

a mandatory lane change, the number of traffic conflicts was 

significantly higher (i.e., 67% relative to baseline scenario). 

Under the scenario which the CAV fuses data from 

‘roadworks essential information package’ alongside with in-

vehicle sensor data, the number of traffic conflicts only 

increase by 6% when no lane change occurs and a 27% increase 

in number of traffic conflicts (relative to baseline scenario) was 

observed in the situation which the CAV performed a 

mandatory lane-change event . 

During the simulation, it was noticed that in some simulation 

runs, the CAV performed its lane change at some distance from 

the start of the roadworks. However, in other simulation runs, 

the CAV came to a complete stop because its field-of-view of 

the construction zone was blocked. Shorter ranges were found 

to result in a higher number of conflicts as all vehicles change 

lanes over a shorter distance. Conversely, a higher range allows 

for earlier detection of lane closures and lane change 

manoeuvres, thus reducing conflicts. Moreover, when the 

CAV did not change its lane leading to the roadworks, the 

conflicts were 49% lower compared to when the CAV had to 

perform a mandatory lane change. The conflicts derived from 

this test were attributed to the vehicles in roadworks lane 

cutting in the lane in which the CAV was driving in. 

B. Delay 

Roadworks often involve changes to the capacity of the road 

which can lead to increases in journey times. The increase in 

% increase in conflicts to a scenario with no roadworks

27%

67%

6%

18%

No lane change

Lane change

CAVs rely on 

in-vehicle 

sensors aided 

by I2V 

communication 

CAVs rely on in-

vehicle sensors  
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journey time is mainly due to the enforced reduction in 

speed when navigating through roadworks and can result in 

delays. Delay in this simulation was estimated as the additional 

time taken by the vehicles to travel the network as compared to 

the baseline scenario where roadworks is absent. This KPI was 

also captured from the output files generated after every 

simulation run. This KPI is explored and presented in Fig. 7. 

    
Fig. 7. Percentage increase in delays estimated with no roadworks 

scenario 

As expected, Fig. 7. show that roadworks cause delays on the 

traffic network. Delay is 26% higher than baseline scenario 

when mandatory lane change is performed compared to the 

situation when the CAV maintained its trajectory within the 

same lane (i.e., 10% higher delays). Moreover, since the 

CAV was using only in-vehicle sensor data, in cases where 

the field-of-view of the CAV was blocked, the mandatory lane 

change was performed closer to roadworks which increases the 

delay due to surrounding traffic. Similar results are observed 

when using the fused data, delays increased by 23% when the 

CAV performed a mandatory lane change compared to a 8% 

increase in delay when lane changing manoeuvre did not 

happen. 

C. Comparative Analysis 

Comparing between both scenarios, a unanimous decrease 

throughout all KPIs were observed when the CAVs received the 

information pack in advance relative to the scenarios which 

vehicles solely relied on the in-vehicle sensor data only for 

perception and sensing. To further elaborate, a sharp 40% 

decrease of traffic conflicts and 3% reduction in delay are 

witnessed when CAV travels through roadworks with 

additional information of roadworks received compared to 

solely rely on in-vehicle sensors for mandatory lane change 

situations. Similarly, for scenarios without lane change 

manoeuvre, a percentage decrease of 12% and 2% in conflicts 

and delays respectively were achieved when the CAV received 

the information pack.   

It is important to further elaborate the level of impact on the 

reduction of conflicts by sending out the information package 

to the CAV. This package contributes significantly towards 

traffic safety as it allows the CAV to plan the trajectory 

beforehand based on the dynamic map and by using the in-

vehicle sensor data it was able to plan and reduce conflicts. 

Delays also decreased, despite the benefits accrued from the 

distribution of the information pack to the CAV on this KPI is 

lower. This is perhaps due to the short length of the testbed 

replicated within the simulation environment. Further testing 

was also performed to determine whether the mean conflicts, 

journey time and delays are the same in all the scenarios 

developed. A Kruskal-Wallis test was carried out and the results 

show that all three KPIs are statistically different.    

The advantages of adopting a STC to send out the roadworks 

information package over using only in-vehicle sensor data to 

navigate through roadworks is clearly highlighted from the 

results obtained. This scenario resulted in the lowest number of 

conflicts, a shorter journey time and less delay. 

Further testing was also performed to determine whether the 

mean conflicts, journey time and delays are the same in all the 

scenarios developed. The Kruskal-Wallis (KW) test evaluates 

the impact of modifications on the accuracy and precision of the 

simulation output. It yielded a substantial H statistic of 338.618, 

along with a p-value of 0, which decisively rejects the null 

hypothesis. Hence, this finding suggests that all three KPIs 

are statistically different and that the means of the results 

obtained after implementing the modifications were 

significantly different. The positive impact of these 

modifications is visually evident in Figure 6 and 7. To ensure 

simulation accuracy, we enhanced precision by averaging the 

results of 10 replications. 

A closer look at Fig. 8 and 9 indicate that the results obtained 

from a single simulation exhibit greater fluctuations compared 

to the averaged results of 10 replications. These fluctuations can 

be attributed to the inherent randomness present in the system 

and the specific conditions encountered during each simulation 

run. However, by taking the average of multiple replications, a 

more stable and representative picture of the lane detection 

performance can be obtained. The standard deviation for delays 

across the 10 repetitions was found to be 0.768 seconds, 

reflecting the low variability in the amount of time CAVs 

experienced delays during the scenarios. Similarly, the standard 

deviation for TTC across the 10 different random seeds was 

0.3403 seconds, indicating the low variability in TTC between 

the simulations. 

 
 

Fig. 8. Impact of replications on the average delay simulation results 

in normal traffic conditions (i.e., no roadworks) 
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Fig. 9. The impact of replications on the average TTC simulation 

results in normal traffic conditions (i.e., no roadworks) 

VI. DISCUSSION 

Navigating through complex traffic environments such as 

roadworks with mixed fleets is one of the key challenges faced 

by CAVs. At present there are no consistent operational 

procedures regarding how such vehicles can objectively 

interpret and react to rapidly changing situations within 

roadworks. Moreover, most of the existing guidance 

frameworks for CAV navigation adapt to an existing 

transportation framework. However, it is crucial to develop and 

implement more dynamic guidance frameworks with desirable 

features to accommodate the widespread deployment of CAVs 

in the future [55]. As a result, in this study, an integrated 

simulation framework was developed on a real-world 

controlled motorway facility in England to examine the impact 

of using in-vehicle sensor data and real-time information 

package sent out by STC to explore the implications of CAV 

operations during roadworks.  

It was concluded that the existing level of infrastructure 

technology could mean that CAVs might encounter difficulties 

in navigating through sections of roadworks. This increases the 

chance that either a disengagement event would occur or that a 

CAV could encroach into a roadworks area. This is largely due 

to the limited sensing capability of CAVs in the presence of 

other moving objects (e.g., heavy goods vehicles, HGVs) which 

can block the line of sight. As such, a CAV approaching a lane 

closure in the left lane would not be able to detect if positioned 

behind a high-sided vehicle such as an HGV. This would cause 

the CAV to delay merging into the next lane which potentially 

increased the risk of a collision.  

One method is to provide warning messages from the smart 

traffic control device to the CAV (I2V). However, there are no 

agreed standards or protocols for what the message should 

include from smart traffic control devices even though 

dissemination of such data in real-time is essential [55]. This 

research recommends an information package transmitted by 

STC to CAV via I2V with all the necessary information for the 

CAV to carry out an informed decision and safe manoeuvre 

related to a roadworks scenario. Nevertheless, proper and 

accurate infrastructure maps are still crucial for the desired 

functioning of many I2V applications. CAV installed map data 

might be comparable to the current navigation maps stored in 

GPS devices such as Garmin and TomTom navigators, and 

smartphone applications (e.g., WAZE and Google Maps) [80]. 

However, maps with more precise details which can help CAVs 

plan manoeuvres are crucial [18]. CAV maps need to be three-

dimensional, including all objects on the road or on the roadside 

such as buildings, trees, roadside units, traffic signals/signs 

[81], and includes efficient lane-level digital maps to apply self-

position estimation [18]. Moreover, one may argue that how 

could the High-Definition (HD) map be built in real-time in a 

dynamically changing operational environment such as 

roadworks? Construction companies can develop a digital twin 

model (i.e., a digital replica of a physical model of the 

roadworks environment) which is ‘dynamic’ meaning that 

any changes in the physical component (e.g., changing road 

layout, lane configurations via cones) are automatically 

captured in the digital model through the sensors installed in the 

real-world. The digital map can then be transferred to CAVs in 

real-time. 

It is interesting to observe that the safety benefits are more 

significant (about a 40% reduction in traffic conflicts) than the 

improvements of traffic delays (about a 3% reduction) with the 

inclusion of the V2I communication from the STCs, 

irrespective of whether mandatory lane change has been taken 

place. The reason of less significant improvement in delay 

might be due to the limited length (650m) of the testbed used 

for simulation. Given this limitation, the travel time would not 

deviate significantly. It is important to note the driving 

behaviour used or assumed in the simulation analysis affects the 

results obtained [9]. The behaviour adopted in this study was 

following a conservative driving behaviour and longer 

following gaps. Comparable to results in the literature while 

this type of behaviour is usually cited for safety studies, 

mobility studies usually assume assertive following behaviour 

and shorter gaps [9]. This indicates that CAV benefits are 

sensitive to the assumed driving behaviour calling for more 

efforts that attempt to understand driver’s behaviour of CAVs.  

An essential part to consider is the security of this data and 

procedures required to ensure the data is robust and accurate 

enough for the CAV to operate safely.  The efficiency of the 

data transmission via V2I is highly dependent on the MPR of 

CAVs. To avoid communication congestion and confusion, 

messages should not be exchanged with vehicles on parallel 

roads and should be propagated in one direction [9]. However, 

it is known that as the MPR increases, communication 

congestion can still occur because of the multiple transmitters 

and receivers on the network and the delivery rate can be 

affected. Therefore, this requires further testing and validation.  

This paper has reaffirmed the use of communication modules 

to inform roadworks situations as well as the implementation of 

HD maps which are pivotal for a safe trajectory generation.  

Studies have proved that I2V communication can improve the 

traffic safety by reducing the time to collision by more than 

70% [82]. Furthermore, delay and emissions can be reduced by 

46% and 33% respectively [83]. The CAV design is the 

prerequisite for trajectory generation, yet sensors might fail to 

interpret roadworks precisely in ever-changing road conditions. 

Further digging into the results, it is interesting to observe that 

the safety benefits are more significant (about a 40% reduction 

in traffic conflicts) than the improvements of traffic delays 
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(about a 3% reduction) with the inclusion of the V2I 

communication from the STCs, irrespective of whether 

mandatory lane change has been taken place. The reason of less 

significant improvement in delay might be due to the limited 

length (650m) of the testbed used for simulation. Given this 

limitation, the travel time would not deviate significantly. 

However, key results of this study validate that improvements 

in safety and traffic efficiency are significant only if the 

communication modules and HD maps are in presence. 

Therefore, it can be summarised that the CAV design and 

specifications are just the enabler for the roadworks information 

and HD maps to be deployed whilst the CAVs design per se did 

not contribute significantly when approaching roadworks. 

Additionally, although the microscopic simulator VISSIM is 

not equipped to capture human-CAV interactions, in the present 

study the interaction of human-vehicles was used to estimate 

conflicts (equation 3) based on the leader-follower vehicle type, 

speed and direction angle.  For future work, fuel and energy 

consumptions could be employed as a key performance 

indicator (KPI) as they could assist in achieving net zero 

emissions in the transport sector. 

VII. CONCLUSION 

This paper developed collision-free trajectories for CAVs to 

safely navigate around roadworks at a motorway environment. 

An integrated simulation platform consisting of traffic, 

communication and vehicle autonomy simulators was 

developed and a simulation model of the controlled motorway 

segment was created, calibrated and validated by employing the 

data from a series of controlled experiments. This facilitated to 

test the performance of the trajectory planning algorithms in 

two primary scenarios: (1) when a CAV only utilised the data 

from in-vehicle sensors and (2) a CAV received additional data 

and information via a Smart Traffic Cone (STC) in advance 

regarding roadwork configurations (road and lane layouts) in 

their collision-free trajectory generation algorithms. From these 

two approaches, this research revealed the way in which CAVs 

could navigate through roadworks in a highway environment 

with the aim of improving safety and mobility by addressing 

potential conflicts while ensuring smooth traffic operations. 

From the comparative analysis between the two scenarios, 

the results confirmed that traffic conflicts and traffic efficiency 

improve when CAV receives the information pack in advance 

compared to solely reliant on in-vehicle sensors. The results 

stay consistent irrespective of whether lane change maneuvers 

took place or not. Amongst all KPIs, the introduction of STC 

achieves the greatest safety benefits which a decrease up to 40% 

of number of traffic conflicts is recorded. In addition, delays are 

reduced by 3%. The scenarios examined in this research were 

based on two underlying concepts: (1) enhance mobility and (2) 

improve safety at roadworks. 

The findings of this paper could provide useful insights to 

network operators about traffic conditions and road safety after 

the implementation of CAVs. For CAV manufacturers, the 

result can inspire the development of planning algorithms to 

better equip CAVs when approaching roadworks situations 

Highway authorities can also benefit by considering the 

deployment of the STC especially along roadworks, as to assist 

with the introduction of CAVs.  
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