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Abstract: Fullerenes have a unique structure, capable of both encapsulating other molecules and
reacting with those on the exterior surface. Fullerene derivatives have also been found to have enor-
mous potential to address the challenges of the renewable energy sector and current environmental
issues, such as in the production of n-type materials in bulk heterojunction solar cells, as antimicrobial
agents, in photocatalytic water treatment processes, and in sensor technologies. Endohedral metallo-
fullerenes, in particular, can possess unpaired electron spins, driven by the enclosed metal atom or
cluster, which yield valuable magnetic properties. These properties have significant potential for
applications in molecular magnets, spin probes, quantum computing, and devices such as quantum
information processing„ atomic clocks, and molecular magnets. However, the intrinsically low yield
of endohedral fullerenes remains a huge obstacle, impeding not only their industrial utilization but
also the synthesis and characterization essential for exploring novel applications. The low yield
and difficulty in separation of different types of endohedral fullerenes results in the usage of a large
amount of solvents and energy, which is detrimental to the environment. In this paper, we analyse
the methodologies proposed by various researchers and identify the critical synthesis parameters
that play a role in increasing the yields of fullerenes.

Keywords: endohedral metallofullerenes; EMFs; arc discharge; bottom-up synthesis; in situ doping

1. Introduction

Carbon, the building block of life and the fourth most abundant element in the
universe, is one of the most indispensable materials known to humankind. In addition to
the two naturally occurring allotropes, graphite and diamond, carbon is also capable of
taking several remarkable physical forms on the nanoscale. One such distinct allotrope in
the family of carbon nanomaterials is the fullerene. Its discovery [1] sparked a great deal of
curiosity and interest amongst the scientific community due to its unique closed, cage-like
structure, composed solely from sp2 hybridized carbon [2,3]. Within the first few years
after the discovery of buckyball C60, the term ‘fullerene’ achieved a uniform acceptance
as the general name for these carbon cages. Fullerenes can have different numbers of
carbon atoms, shapes, and symmetry; hence, the largely accepted notation system [4] is to
subscript the number of carbon atoms to state the class of the fullerene. The structure of
C60, the most abundant buckyball, has been verified to consist of 12 five-membered rings
and 20 six-membered rings [2]. Most of the fullerenes obey the isolated pentagon rule (IPR),
where pentagons are exclusively surrounded by hexagons, which increases their stability.
However, several fullerenes, especially a number of endohedral fullerenes (see next section),
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do not follow the IPR rule [5]. Instead they follow the maximum pentagon separation rule,
where they exhibit maximum pentagon separation for maximum stability [6].

Fullerenes are known to have different isomers, with C60 having 1812 theoretically
different isomers [7,8]. These isomers can have different symmetry, form, and energetic
stability. An example of the different structures of the six most stable isomers of C80 is
shown in Figure 1, with D5d and D2 being the most stable and abundantly found isomers [9].
Fullerene isomers are also known to have different oxidation potential and chemical
reactivity. For instance, the D3 isomer of C78 is easier to oxidize than the C2v isomer
of the same fullerene by about 0.25 V [10]. Another very intriguing feature of the fullerenes
is that they have a hollow space, which is large enough to encapsulate other atoms, ions,
molecules, and various kinds of clusters, giving rise to a new class of hybrid materials
called endohedral fullerenes.
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2. Structure of Endohedral Fullerenes

The ability of different sizes of fullerene cages to incorporate different types of met-
als and clusters can lead to the formation of materials with novel solid-state properties.
The robust nature of the carbon cage plays a very important role in isolating the atoms
from the exterior environment, while the electronic properties of the cage can be tuned
by the selection of the atoms inside. La@C82 was among the first discovered endohe-
dral fullerene, where the symbol @ denotes the inclusion of a La atom inside a C82 cage.
Since then, fullerenes encapsulating metallic [11], carbide [12,13], nitride [14], and many
methano- [15] and oxide- [16] clusters have been synthesized and isolated over the years.
In fact, fullerenes containing single atoms of elements that otherwise are not stable, such as
noble gases [17–19] and non-metals [20] such as nitrogen [21], have also been synthesized.
Transition metals and actinides were amongst the challenging elements to encapsulate
within fullerenes, primarily due to their reactivity and the difficulties associated with their
incorporation into the graphite rod for arc-discharge synthesis. However, over the past
decade, significant progress has been made in also encapsulating various transition metals
within fullerenes. [22] In these cases, while describing the diversity of the fullerene cages,
prefixes and cage symmetries are also used. For instance, Sc4(µ3-O)3@Ih(7)-C80 represents
the endohedral cluster group, cage structure, and point-group symmetry, following the
nomenclature of Fowler and Manolopoulos [4].

In 1991, researchers succeeded in encapsulating metal atoms, which opened a complete
new set of possibilities in the field of material development, generally referred to as
endohedral metallofullerenes [23]. Among the endohedral fullerenes, the trimetallic nitride-
containing cages of the type M3N@C2n (where M = Sc, Gd; 2n = 68–96), shown in Figure 2,



Inorganics 2024, 12, 38 3 of 20

have been one of the most studied materials since their discovery in 1999 [14] due to
their high yields during synthesis and their appropriate HOMO-LUMO levels, desired for
applications in solar cells. However, despite the comparable high yields, empty fullerenes
still constituted as major product during the synthesis process. The yields of M3N@C2n were
further improved by Dunsch and Yang [24], who introduced ammonia during fullerene
synthesis and produced an endohedral fullerene, Sc3N@Ih-C80, as the majority product for
the first time. This family of fullerenes has an especially high yield because of the charge
transfer from the encaged cluster, which results in a stable ion pair and stabilizes the higher
fullerene cages of various isomeric structures. In addition, the large HOMO-LUMO gaps
give further kinetic stability to the hybrid molecule.
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2.1. Endohedral Metallofullerenes: EMFs

In the years following the discovery of C60, the study of empty cage fullerenes heavily
dominated the field of nanomaterials. The focus on empty cage buckyballs often resulted in
the blind assumption that endohedral metallofullerenes (denoted as EMFs) possessed the
same structural or chemical properties as the corresponding empty cages. However, over
the years, after more studies were conducted on individual EMFs, it became established that
they exhibit novel structural, chemical, and electronic properties, which were completely
different to those of their parent empty cages. For instance, carbon cages of EMFs have
different isomeric structures as compared to their parent fullerene cage, and they also
show different solubility in individual solvents [25]. As for their electronic and chemical
behaviour, their chemical reactions with radicals [26] and many other cyclo-addition [27]
reactions show significantly different patterns and redox potentials [28]. For instance,
the reduction potentials of La@C82 and La2@C80 are 0.70 V and 0.81 V lower than that
of C60 [29]. The reason for such a huge difference is largely attributed to the covalent
interaction between the enclosed species and the carbon cage as well as the charge transfer
phenomenon from the metallic species to the fullerene cage.

The most studied metallofullerenes involve rare earth metals, such as La, Sc, Dy, and
Tm [23,30–35], and main group metals such as Li and Ca [36]. There is an extensive array
of EMFs that have one, two, three, or even four metal atoms trapped inside them [37].
Alternatively, they can also contain M3N [14] or M2C2 units [12], where M refers to metals.
The key to understanding the electronic properties of these hybrid materials is through
studying the degree of charge transfer from the metal species to the exterior cage, which
alters its electronic state. While the number of electrons transferred from a majority of
metal atoms to the cage is known and verified using X-ray diffraction, absorption, and
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other spectroscopic methods [31–35], we observed that contradictory results still exist
in the literature regarding the effect of the various parameters on the arc synthesis and
the formation mechanism of these fullerenes. For instance, Dunk et al. claimed that
the formation mechanism is governed by a charge transfer between the metal and the
cage [38]. Through detailed mechanistic studies, they revealed that the C2 insertion during
the bottom-up synthesis becomes more difficult as the oxidation state of the metal increases.
This charge transfer and the nature of the cluster inside the cage also dictates a series
of properties, such as electrochemical behaviour and light emission. In fact, Ito et al.
studied Er2@C82 and Er2C2@C82, which showed nearly identical cage properties with a 6-
negatively charged C82

6−, using fluorescence spectroscopy [39]. Most notably, this cage
charge contradicted an earlier publication by Wang et al. claiming that the Er2@C82 and
Er2C2@C82 compounds have a 4- negatively charged cage, i.e., C82

4− [40]. Furthermore, Ito
et al. showed that the characteristic emission of the erbium ions at 1520 nm was influenced
by the symmetry of the cage, an observation later echoed by Plant et al. [41] Until as
recently as 2020, previously unknown factors, such as enantiomers and enthalpy, were
discovered to play vital and evolving roles in the synthesis mechanism for fullerenes C2n
(50 ≤ 2n ≤ 70) [42]. After a critical analysis of research articles [43,44], it can be concluded
that the complete mechanism of their formation, either through a bottom-up or top-down
approach, and the charge transfer itself remains elusive and highly controversial [45].
In fact, the insights derived from experimental results have also been contradictory to
theoretical results in the field. For instance, it has been suggested that factors such as the C2
concentration and temperature may dictate the more favourable direction of the reversible
C2 injection/ejection reaction during the synthetic process [46]. However, theoretical
studies have highlighted that the C2 injection is more energetically favourable than its C2
ejection counterpart, contradicting the experimental data on the importance of temperature
and concentration [47,48]. The missing key links and low synthesis yield of fullerenes make
it difficult to investigate the fullerene formation mechanism. Utilizing both experimental
and theoretical frameworks is therefore necessary to answer some of the fundamental
questions of this field.

As briefly mentioned in the previous section, the isomeric structures of the carbon
cages encapsulating metals differ from their empty counterparts [34]. Further study of
the positions and movements of the encapsulated atoms is also important in determining
the chemical and physical properties of EMFs, including their magnetic behaviour, elec-
tron paramagnetic resonance (EPR), and electrochemical properties [49]. The structure
of the EMFs themselves had long been speculated, but the first crucial evidence came
through in 1995 when Shinohara et al. experimentally confirmed that the metal atom
is indeed encapsulated within the fullerene cage [31]. The synchrotron X-ray powder
diffraction patterns of Y@C82 and the maximum entropy method (MEM) revealed that the
yttrium atom was displaced from the centre and instead tightly bound to the cage [50].
The study also confirmed strong dipole–dipole and charge transfer interaction between
the different molecules [49]. MEM/Rietveld analysis has long been used to determine
the structures of metallofullerenes [31,50]. However, the results (structure and position
of metals inside the carbon cage) obtained by this method have been in question in re-
cent years. This started when Wang et al. [12] discovered that the scandium carbide
endohedral fullerene, Sc3C2@C80, was, in fact, what had long been considered to be a tri-
metallofullerene Sc3@C82 [51]. These incoherences emphasize the importance of 13C NMR
and synchrotron X-ray structural analysis in determining the structures and encapsulated
cluster inside the fullerene cage and suggest the unreliability of the decades of results
obtained exclusively using MEM/Rietveld analysis when determining the structures of
metallofullerenes [52–54]. Consequently, the structures and positions of metals inside a
fullerene have been re-examined in the past few years [55–58]. Furthermore, it was also
observed that these metal clusters had motions and trajectories inside the cage [59], which
also changed positions depending on the temperature [60,61].
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2.2. Environmental Application

A massive number of publications in fullerene-related research show the possibility of
using fullerenes for a variety of environmental and energy applications. The characteristics
of fullerenes that give them an advantage over other materials include their robust carbon
structure, absorption of light in the visible range, electron-accepting capabilities, and more
recently, superconductivity [62]. All these properties make fullerenes especially sought-
after materials for energy applications, especially organic solar cells [63]. They have become,
and remain, an important part of high-performance organic solar cells.

2.3. Synthesis

Over the past few decades, EMFs have been proposed for a number of applications,
including energy harvesting in organic solar cells [64] and MRI contrast agents [65–67].
EMFs have been synthesized through a range of different methodologies, such as laser
ablation of graphite [23,68], arc discharge [30,33], ion bombardment [36,69], resistive heat-
ing [70], and electron initiation inside carbon nanotubes (CNTs) within aberration-corrected
high-resolution transmission electron spectroscopy (AC-HRTEM) (CNT acts as a nanore-
actor container to facilitate the formation of endohedral fullerenes from metals and the
amorphous carbon atoms trapped inside. The process is energetically enabled under the
presence of an electron beam inside an AC-HRTEM.) [71]. Some of these popular methods
are summarized in Table 1 below.

Table 1. Advantages and disadvantages of different synthetic approaches.

EMF Synthesis Method Advantages Disadvantages

Arc discharge [72]

• Low setup and
maintenance costs

• Fewer structural defects
• Access to the broadest

catalogue of EMF

• Difficult to scale-up
• Requires extensive

purification
• Low yield (1–30%)

Laser ablation [72]

• Higher purity of
products

• Useful for mechanistic
studies

• High cost for reactor
building and maintenance

Molecular surgery [72,73]

• Low energy impact
• Simple HPLC

purification

• Several synthetic steps
required to open/close the
fullerenes cage

• Harmful synthetic solvents
• Limited to non-metal and

alkali-metal EMFs
• Low yield (~0.1 to 1%)

Ion implantation [72]

• Lower pressure required
(5–10 mbar)

• Low-temperature
process, where ions are
accelerated towards the
carbon cages

• Simple HPLC
purification possible

• Limited to non-metal and
alkali-metal EMFs

• Very low yield (10−5 to
10−4%)

The Kratschmer–Huffman arc method has been widely used and accepted as the
most efficient and cost-effective technique to produce EMFs and, hence, is the focus of this
review. Figure 3a shows a schematic diagram of a typical standard direct current (D.C.)
arc-discharge apparatus, and Figure 3b shows the actual image of one in the Porfyrakis
laboratory in the Department of Materials at the University of Oxford.
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While the Kratschmer–Huffman method immediately became the most popular choice
of EMF synthesis, it was not exempt from certain limitations. Most notably, only 60–70%
of the graphite electrode was transferred to the carbon condensate (CC) containing the
fullerenes and EMF, while the remaining 30–40% was lost as graphite build-up on the
cathode. This disadvantage has now been eliminated by utilizing a high frequency arc
discharge to supply the arc. The symmetrical setup of the electrodes allowed reaching
up to a 100% conversion of the electrode material into the fullerenes and EMF containing
CC [74]. Additionally, high-frequency arc discharge can also be used for further mechanistic
investigation of fullerene synthesis.

A metal oxide/graphite composite is used as the anode, whereas graphite is used
as the cathode, and both of them are arced in the D.C. mode in the presence of an inert
gas (usually helium). Despite three decades of extensive research and various proposed
pathways, a well-established formation mechanism for the synthesis of fullerenes and
EMFs is still missing. Their ambiguous reaction pathways, alongside the violent conditions
involving the plasma formation, arc, and chemical ionization that are required for the
synthesis, are a major drawback in studying the synthesis mechanisms of these unique
carbon nanostructures. Furthermore, a few other drawbacks hinder the scaling-up of their
synthesis and consequently the applications of endohedral metallofullerenes. The overall
yield of the arc-discharge synthesis of EMFs is low, with the ratio of EMF-to-empty-cage typ-
ically at around 1% [49]. As a result, a mixture of empty cage and endohedral fullerenes is
typically produced, thus limiting the applications of the existing chromatographic method-
ologies for their fast and efficient separation. This results in the use of excessive amounts
of solvents to efficiently separate them, which is neither ecological nor environmentally
friendly. Therefore, it becomes important to review the synthesis of fullerenes. Shinohara
published the first detailed scientific review of EMF research in 2000 [75], followed by an
extensive update on endohedral fullerenes by Popov et al. in 2012 [76]. Many other groups
have addressed the synthesis and properties of endohedral fullerenes [76–79], including
nitride fullerenes [24], carbide cluster fullerenes [80], and oxide cluster fullerenes. Herein,
we focus primarily on critically discussing the key findings in the field for optimizing of
synthesis parameters of endohedral metallofullerenes and the new chemically activated
method, with a particular emphasis on the post-2000 science along with comparisons to
the early methodologies. The yield of the EMF has been observed to be highly dependent
on the pressure of He gas, the arc current, the arc gap, and the composition of anodes,
among other factors [51,81]. Liu [82] and Bandow [83] have argued that other parameters,
such as the presence of catalysts (Cu, Fe, etc.), the back-burning of anodes, and in situ
activation during arc discharge, also have an effect on the EMF yield. However, the latter
two parameters would not increase the yield by a huge fraction because they do not modify
the arc conditions drastically or change/influence the synthesis chemistry, e.g., lower the
activation energy of the formation of the endohedral metallofullerenes. However, in order
to maximize the efficiency of the method, a balance between the time spent during the
synthesis and increase in yield needs to be established. Predominant aspects of overcoming
the above challenge are anode composition, ionization potential, catalysts, and helium
pressure in synthesis [74].
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In recent years, the Kratschmer–Huffman arc design has also been modified mechan-
ically in several ways to make it more environmentally friendly. For instance, the use of
demineralized coal electrodes, minimizing the use of current and using direct current instead
of high alternating current are a few ways in which the process has been made more efficient
and less energy intensive [85]. Recently, Kyesmen et al. showed scaled-up production yield of
fullerenes by employing such methods and including efficient energy usage by using resistive
heating of one of the electrodes along its length [86]. Such green methodologies should be
further explored for future research purposes and industrial-scale production of fullerenes to
ensure an environment friendly approach towards using nanomaterials.

3. Reaction Parameters and Pathways

In this section, we will delve into the critical parameters that are essential for achieving
the highest yield of EMFs, with a special focus on encapsulation in the C82 cage.

3.1. Anode Composition

Metal oxide (e.g., La2O3, Y2O3, etc.) mixed with graphite has generally been used as
the anode material during the arc-discharge process. However, there has been no general
consensus on the ratio of metal/carbon used in the metal. Inakuma et al. also showed
that the abundance of different types of EMF present in the soot depends heavily on the
metal/carbon mixing ratio in the composite rods [51,81]. The M/C ratio has varied widely
over the years, also depending on the metals that are incorporated inside the graphite, as
broadly summarized in Table 2. Furthermore, it has also been found that anodes made out
of metal-carbide rods actually produce EMFs in a bigger yield than metal-oxide rods, which
has been experimentally proved by several authors [82,83]. Using La as the example metal,
the authors showed that the presence of LaC2 in supersaturated carbon vapor plays an
important role in generating the metallofullerenes. However, this conclusion is in contrast
with the work published later by Lian et al. [87], who studied Ni-La alloy anode rods for
the preparation of lanthanum-containing metallofullerenes (La@C82 (I), La@C82 (II), and
La2@C80). It was found that LaNi2 is a much better dopant than conventional La2O3 in the
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anode rod, and the ratio of La:C is very important for increasing the yield. The absence
of oxygen in the LaNi2 dopant can partly be the reason for such observations as well as
the possible catalytic effect of Nickel in the formation of fullerenes. The authors also found
that the use of LaNi2 instead of La2O3 enhanced the amount of raw soot produced from arc
discharge. The authors attributed the results to reduction in the amount of formation of
cathode deposits and debris. The optimum conditions increased the yield of La-EMF by
almost 30% compared to conventional substrates. Comparing the existing literature in this
field, as summarized in Table 2, it seems rather hard to deduce which single metal/carbon
ratio in the anode would produce the best yields for different types of metallofullerenes. It
surely is a huge determinant of the yield of a particular type of EMF, but more research,
both experimental and theoretical, needs to be undertaken in this direction to test different
combinations of metals for anodes and also to explore the chemistry involved.

3.2. Ionization Potential

The ionization potential (I.P.) of the EMFs has been known to play a very important
role in EMF extraction and chemical reactivity, but it only recently came to light that
the first ionization potential of the metal itself plays an important role in EMF synthesis.
Ross et al. deduced that the I.P. of the metal atom not only influences the efficiency of
the synthesis but may partly determine the metallofullerene formation [88]. Their group
noted that when graphite anode rods were impregnated with Y/La atoms and with Sc/Y
atomic composition in equal ratio, there was a greater abundance of La- and Y-containing
metallofullerenes than Y or Sc, respectively. The results suggested that metals with lower
I.P. (La < Y < Sc) tend to react more efficiently, i.e., the growth reaction of metal ions and
fullerene precursor species plays an important role in the arc-discharge process. This
is consistent with other experimental studies that show that lanthanides are easier to
encapsulate inside a fullerene cage compared to other alkali earth metals or transition
metals [89]. Comparing the yields of the synthesis of Pt-EMF [90,91], Fe-EMFs [92], and
Sc-EMFs (Pt I.P. = 8.96 > Fe I.P. = 7.90 > Sc I.P. = 6.56) [93], Pt-EMFs have the lowest yield,
whereas the Sc-EMFs have the highest yield, even though the covalent radii of the metals
are not very different (Pt = 1.17 A; Fe = 1.3 A; Sc = 1.44 A). Since the overall yield of EMFs
is generally low, and their synthesis is a very time-consuming process, it is important that
the choice of the metal atom, which can potentially form EMFs, is based on their ionization
potential and chemical nature of bonding with the carbon clusters.

3.3. Effect of Catalyst

The catalytic growth of carbon nanomaterials has long been known from the synthesis
of carbon nanotubes [94], and more recently, graphene [95]. However, the use of catalysts
for the synthesis of fullerenes was not developed until 2008, when Stevenson et al. [16]
doped the graphite rods with copper nitrate in a modified arc chamber. They observed that
the presence of metallic copper increased the overall yield of endohedral fullerenes. It still
remains unclear if it also facilitates the formation of endohedral mono-metallofullerenes
and if the ratio of metallofullerenes to other empty cages in the carbon soot is, in fact,
higher than previously reported. Other groups have noted that using transition metal
alloys (e.g., Ni) in the anode composition [87] increases the yield of the EMFs. But again,
results published in the literature make it difficult to judge whether the transition metal
plays an active role as a catalyst or if it just reduces the detrimental effects that oxygen has,
whist using metal oxide composite rods during the arc discharge. We deduce that catalysts
have not been studied in depth largely because of the difficulty in producing homogeneous
composite anode rods containing different catalysts such that they can be actually used
systematically during the arc operation. The development of new methods for efficient
dispersion of catalytic particles inside the electrodes during their fabrication could help
solve these problems. Studying the effect of metal clusters or metal alloys as additives
in the arc discharge, could be worthwhile not only for increasing the yield of EMFs but
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also for elucidating the formation pathways for fullerenes and carbon nanotubes in the arc
reactor chamber.

3.4. Effect of Helium Pressure

The presence of helium in the arc-discharge chamber is well known to be beneficial for
the formation of endohedral fullerenes [96]. It is still not clear what the exact mechanism
behind it is, but it is believed that He, being a small and inert species, facilitates collisions
between carbon atoms without taking part in reactions. Therefore, it enhances the possibil-
ity of carbon–carbon bond formation. There is also a general consensus that varying the
pressure of helium leads to different yields of the EMFs. A literature survey (Table 2) in the
field shows that using lower pressures of helium (50–100 mBar) has been the standard arc-
discharge parameter until recently, when researchers started using high He pressures (up
to 500–700 mBar) for EMF synthesis. In 2017, Qian et al. [97] published the first theoretical
study on how the self-assembly of fullerene during the arc-discharge process is influenced
by the presence of helium. They also proposed how the concentration of helium can change
the distribution of different fullerene formation in the arc. Similar results were shown for
synthesizing fullerenes in a high-frequency arc-discharge system, as reported by Churilov
et al. [74]. The authors experimented with a range of helium pressures (30–150 kPa) and
their effect on the formation of different types of Y-EMFs, and concluded that 120 kPa
results in the maximum yield for the EMF Y@C82. Moreover, empty cages were found to
increase with the helium pressure but not the EMFs. The effect of helium pressure in both
the traditional arc discharge as well as high-frequency arc discharge suggests a difference in
the mechanism of formation of the empty cages and the EMFs. Further studies in this area
can help optimize the exact synthetic parameters for the desired type of fullerene. Another
helium pressure-dependent study was reported by Cherviakova et al. [98], where they
carried out a series of experiments by keeping all the variables constant and only changing
the He pressure in the chamber from 30 to 360 mBar. The experiment was carried out for
various EMFs, and they found that although 120 mBar helium pressure yields the optimal
condition for synthesis of different M@C82, there is a huge variation in the obtained optimal
yield. For instance, although both Sc@C82 and Gd@C82 showed the best synthetic yields
at 120 kPa He pressure, the yields were very different, with Sc@C82 having 9.6 wt% ratio
of all fullerenes, as compared to Gd@C82, which had only 5.4 wt%. However, there is a
massive variation in homemade arc-discharge apparatus as well as differences in the exact
operational parameters used for experiments carried out at different places. Therefore,
there is a need for a systematic study on a single apparatus, for synthesizing the range of
EMFs and determining if the pressure conditions vary depending on the entrapped metals.
Moreover, a wider pressure range should also be tested so that the exact reaction pathway
behind the formation of different types of EMFs can be properly investigated.

Table 2. Summary of the parameters used over the years to synthesize different types of endohedral
metallofullerenes.

Year Anode Fullerene He Pressure
(mBar) Current Extraction

Solvent References

1992 Sc2O3 Sc-EMF 66.6 -
Toluene and
Pyridine and

CS2
1

[35]

1992 Sc2O3 Sc-EMF 266.6 - Toluene [32]
1992 La2O3 La-EMF 266.6 - Toluene [33]

1993 Sc2O3
M/C = 2.3/100 atomic ratio Sc-EMF 66 220 A CS2 [81]

1993 8 wt% La2O3 La@C82 133.3 2.3 A/mm2 Toluene [83]

1994 Sc2O3
M/C = 1:10 66–133 500 A CS2 [51]
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Table 2. Cont.

Year Anode Fullerene He Pressure
(mBar) Current Extraction

Solvent References

1995 La2O3
(La/C = 2:100) La@C2n 133 200 A Toluene [82]

1995 Gd2O3
(1–2% atomic%) Gd-EMF 60 250 A TCB 2 [99]

1995 - Y@C82 66 500 A Toluene [31]
1996 CeO2 Ce@C82 66 DMF [100]
1996 Tm/C = 1:50 Tm@C82 200 175 A Toluene [34]

1996 Pr6O11
(Pr/C = 1:100)

Pr@C82,
Pr2@C80

66 DMF 3 [101]

1998 - Sc@C82 66 300–400 A Toluene [93]

1999 Sc2O3
Sc/C = 2.8/100 Sc3@C82 66 500 A CS2 [11]

2002 M/C = 1/100 (M = La,Y) La@C2n
4,

Y@C2n
160 90 A o-xylene+

DMF/DMA/DMSO [102]

2002 Tm/C composite rod Tm@C82 240 600 A TCB [103]
2002 Gd@C82 960 50 A DMF [104]
2003 Gd2O3 Gd@C60 133 - Dichlorobenzene [105]

2004 MNi2 All EMF 960 50 A

DMF (~6–7%)
CS2 (~1.5%)

Pyridine (~1.5%)
Aniline (~1%) 5

[106]

2005 CeO2
(Ce/C = 2/100) Ce2@C80 66.6 70 A TEA/acetone 6 [107]

2006 Sc2O3
Sc/C = 2/100 Sc- EMF 66 150 A, 40 V TCB [108]

2010 Gd2O3 Gd@C82 200 90 A DMF liq./liq.
extraction [109]

2014 Gd2O3
Gd@C82,
Gd@C84

506 110–120 A o-xylene and
DMF [110]

2017 Gd2O3 (M:C = 1:1) mass ratio Gd@C82 1200 50–400 A C5H5N [98]
2017 Sc2O3 (M:C = 1:1) mass ratio Sc@C82 1200 50–400 A C5H5N [98]
2017 Er2O3 (M:C = 1:1) mass ratio Er@C82 1200 50–400 A CS2 [98]
2017 TiO (M:C = 1:1) mass ratio Ti@C82 600 50–400 A CS2 [98]
2017 Y2O3O (M:C = 1:1) mass ratio Y@C82, Y2@C82 600 50–400 A CS2 [98]
2017 Y2O3O (M:C = 1:1) mass ratio Y@C82 1200 50–400 A C5H5N [98]
2023 Tb4O7 (M:C = 1:15) molar ratio Tb@C82 400 mbar 100 A of CS2/toluene [111]

1 Carbon Disulfide; 2 1,2,4-Trichlorobenzene; 3 N,N-Dimethylformamide; 4 68 ≥ 2n ≥ 96; 5 Extraction yield by
weight percent of (Tb, Y, La, Gd)-EMF to soot; 6 Triethylamine.

3.5. Chemically Activated Arc Discharge
3.5.1. In Situ Doping

Another way to address the low yield and the unwanted mixture of various types of
fullerenes is by changing the reaction conditions through in situ doping of the graphite/metal
electrodes, which are to be vaporized during the arc discharge. These methodologies re-
quire the incorporation of reactive gases and/or solid compounds that alter the conditions
and influence the reaction equilibrium towards the formation of higher cages and, ideally,
EMFs. One of the most typical examples is the use of reactive gases, e.g., NH3 [112], whose
incorporation leads to the scaled-up synthesis of trimetallic nitride fullerenes, for instance,
making the Sc3N@Ih-C80 the third most abundant fullerene, after C60 and C70. Another
alternative is the doping of the graphite electrodes themselves with solid organic com-
pounds. Core drilled graphite rods have been repeatedly doped with active inorganic or
organic compounds. These compounds could be calcium cyanamide [113], urea and, most
importantly, inorganic nitrate compounds. In that direction, Stevenson et al. pioneered the
CAPTEAR method (the name stands for “Chemically Adjusting Plasma Temperature, En-
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ergy and Reactivity”) (Figure 4). They core-drilled and filled the graphite/Sc2O3 electrodes
with copper nitrate powder and in a later study with metallic Cu, in order to study the
reactive species generated during the synthesis procedure [114,115]. The decomposition
of copper nitrate led to an exothermic reaction and the generation of reactive nitrogen
gases, oxygen, and vaporized copper. A detailed analysis of the decomposition products
can be seen in the references herein. These factors influenced the temperature, energy,
conductivity of the arc, and reactivity of the plasma. Stevenson et al. observed that this
particular arc discharge reaction leads to the exclusive and highly selective formation of
TNT-type metallofullerenes (Sc3N@Ih-C80) and that the empty cage fullerenes were formed
with a low yield. In their pioneering 2007 publication, they observed that this preferential
formation of EMFs, based on HPLC calculated yield, was about 80% wt as compared to
standard yield of 5–30 wt%. They observed that from the 13 mg of extracted fullerenes,
12 mg were identified as Sc3N@Ih-C80.
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Expanding this method further, we recently developed a similar methodology for
the study of the synthesis of gadolinium metallofullerenes and carbon nanotubes. We
constructed phase diagrams regarding the effect of pressure and doping levels with copper
nitrate on the overall yields. Figure 5 shows a phase diagram (reproduced from [116])
summarizing the ratio between the various fullerene families, depending on different
reaction conditions. Another interesting aspect of this method is that when high doping
with copper nitrate is applied, the yield of C60 and C70 appears to be inversed. During
a conventional arc discharge reaction, the ratio of C60 to C70 is 3:1; however, under high
levels of chemical doping, C70 appears to have a higher yield compared to C60. The results
can be attributed to the difference in thermodynamic stability of these two fullerenes.

The thermodynamic parameters for the formation of C60 were determined long after
its initial discovery, mainly due to the early difficulties in producing sufficient amounts of
the material and the low purity. Interestingly, despite the fact that the fullerene is a strained
molecule and hence has much higher energy in free form as compared to diamond and
graphite, it can still be formed in sufficient quantities. Higher cages than C60 have a different
structure and symmetry, with C70, the second most abundant fullerene to exceed C60, has
a binding energy per carbon atom of more than 0.02 eV greater than C60, whose binding
energy is 7.40 eV/C [117]. Despite the thermodynamic favour of C70, C60 is kinetically
favoured. According to previous reports, the heat of formation for C70 is 2555 kJ/mol,
and 2327 kJ/mol for C60 [118]. The comparison between C60 and C70 is shown in Figure 6.
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Similarly, fullerenes with more carbon atoms and EMFs themselves, which exhibit different
isomers with different strains, will give a more complicated picture for determining the
thermodynamic parameter of their synthesis [119].
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3.5.2. Effect of Reactive Gases: Methane and Ammonia

Chemically activated arc discharge presents a novel route not only for the control of
the reaction pathway and hence the overall yield of the fullerenes, but also for the synthesis
of novel EMFs with exciting properties, simply by carefully tailoring and studying the
reaction conditions. Chen et al. [120] obtained different yields of dysprosium sulphite
EMFs, a class of materials with interesting magnetic properties, by changing the levels
of methane pressure used during synthesis. The dysprosium disulphide EMFs exhibit
unique magnetic properties, with three energy barriers at 10.5, 48, and 1232 K. In general,
a variety of magnetic behaviour can be observed in EMFs depending on the type of the
incarcerated cluster. For example, the carbide Er2C2@C82 behaves as a paramagnet, while
the monometallic Er@C82 shows an antiferromagnetic behaviour. An important dimetallic
EMF, ErSc2N@C80, has even shown a long life of photoisomerization, which could be
measured for 12 h at 20 K without any degradation. The synthesis of these EMFs is highly
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important, as they hold promising applications as molecular memory elements [121] and
materials for spintronics and telecommunications device applications. EMFs comprising
erbium and scandium are of special interest, as erbium has important optical properties
(1.52 µm emission at the telecommunications window), and scandium atoms have large
nuclear spin (I = 2/7), which is suitable for spin probe and atomic clock applications.

For the efficient synthesis of dysprosium sulphide EMFs, methane has been a valu-
able addition during the arc-discharge synthesis of metallofullerenes as a reactive gas,
similar to the use of ammonia during the synthesis of fullerenes containing trimetallic
nitride [122,123]. Popov demonstrated that the simple addition of 20 mbar CH4 led to
significant reduction in the formation of empty cage fullerenes during the synthesis of
dysprosium sulphide fullerenes. The reaction mechanism in both methane- and ammonia-
mediated synthesis is dominated by the hydrogen atom present in the gases. Hydrogen
suppresses the growth of empty cage fullerenes and enables the more selective synthesis of
mixed-metal and trimetallic nitride EMFs. On the other hand, other additives may have
detrimental effects on the empty cage/EMF ratio. For example, during the graphite/metal
oxide arc evaporation in the presence of SO2, the empty fullerenes are the main products.

Furthermore, the nitrogen-containing atmosphere may lead not only to carbon cages
but to a different class of fullerenes, the azafullerenes, where a nitrogen replaces a carbon
atom and inherits other interesting properties. One of these azafullerenes, Gd2@C79N,
exhibits a long spin relaxation time and a high magnetic spin state and is suitable for
SQUID and pulsed EPR studies. In the case of dimetallic azafullerenes, gadolinium appears
to have a higher yield compared to yttrium [124]. The gadolinium atoms couple in a
ferromagnetic manner.

The formations of carbon nanotubes and metal carbides are two other reactions that
take place during the arc vaporization and could be used as another observation to support
either the bottom-up or the top-down mechanism for fullerene synthesis. Regarding the
proposed mechanism of the charge transfer between the metal and the cage that stabilizes
the EMF, see the work by Shinohara and Kroto [38].

In another example, Shinohara managed to isolate the missing low band gap endo-
hedral metallofullerenes simply by adding Teflon tubes inside the arc reactor, in a short
distance from the centre of the arc. During the arc-discharge process, the Teflon decomposed
to CH2 and CF3 reactive groups that functionalize, in situ, the surface of the fullerenes. The
resulting perfluorinated EMFs were more stable than their pristine counterparts, which are
notoriously difficult to isolate with any common solvent [125]. Examples of the isolated
fullerenes are Y@C70(CF3)3, Y@C72(CF3), Y@C74(CF3) (I), Y@C74(CF3) (II), and Y@C74(CF3)3,
as identified through MALDI-TOF analysis. The authors performed optical and DFT studies
on these following analysis of other missing, small band gap EMFs. By further expanding
the gallery of doping agents and mapping the temperature and pressure conditions, for
example, by incorporating thermal and light sensors in the reactor and identifying the
ideal molar ratio among the compounds, it is expected that the hindrances regarding the
fullerene applications will be overcome. For example, in the case of nitrogen-based doping
compounds, the reactivity in a CAPTEAR reaction appears to be based on the specific
nitrogen anion, further demonstrating the complexity of the reaction [126].

4. Solvent Extraction

Solvent extraction is the next most important step in extraction of the EMFs from the
carbon soot. Across much of the literature, the separation of fullerenes and/or EMFs from
the soot is typically achieved by the Soxhlet extraction (SE) method [127]. Hence, the yield
of extraction is dependent on the type of soot, the number of extraction cycles, and the
solvents circulated through the sample. As discussed in the introduction, the metal inside
the EMFs is not located in the centre of the carbon cage and is shifted towards one of the
ends; therefore, this imparts a dipole moment to the EMF. Thus, the extraction of EMFs
from the soot also requires a solvent of higher dipole moment, such as DMF, aniline, or
DMSO, instead of toluene or other solvents of low dipole moments that have traditionally
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been employed for extracting empty cages [110]. One of the common ways of extracting
the maximum amount of fullerenes is by involving a two-step extraction method, where
first a low-polarity solvent is used to extract the empty cages (>60%), followed by a high-
polarity solvent for maximum extraction of the EMFs [110]. It is also important to note that
different solvents work for different types of EMF. For instance, under constant parameters,
Chervyakova et al. [98] showed that CS2 could efficiently extract 11 wt% of Y@C82 out of
all fullerenes, compared to 5.0 wt % and 2.3 wt% yield of Sc@C82 and Gd@C82, respectively.
Moreover, although CS2 and C5H5N are both considered a good solvent for extracting
EMFs, it was observed that the overall yield of M@C82 could vary widely between the types
of solvents used under different synthetic parameters. For instance, at 360kPa He pressure,
CS2 extraction yielded about 12 times more Sc@C82 than the use of C5H5N. Whereas at
120kPa, CS2 extraction resulted in a threefold decrease in the Sc@C82 yield as compared
to using C5H5N. The authors have not commented on these observations, but perhaps a
detailed study in this direction could help understand the relationship between synthesis
processes and the resultant complex reactions of fullerenes as well as the corresponding
methods to extract them efficiently using a particular solvent.

It has also been reported that porous glass, used for holding the soot and the solvent,
increases the area of contact of the soot with the solvents and thus leads to a two- to
threefold increase in the efficiency of the extraction process [110].

The latest methods and devices for the extraction of fullerenes have seen a shifted focus,
aiming to address the limitations of the Soxhlet extraction method instead of optimising
its parameters. In fact, the typical solvent extraction can be time-consuming, with the
extraction requiring up to 48 h and the need for constant monitoring of stability parameters.
Additionally, an efficient SE is still wasteful and utilizes environmentally harmful solvents,
as listed in the previous paragraph [128,129]. Recently, Churilov et al. [130] devised a
new method of extraction for empty cage fullerenes, called the mechanical extraction
method, where a rotating shaft is used to rotate and grind the fullerenes, thus breaking
the van der Waals bonds between the fullerenes and insoluble carbon particles from the
soot. This also helps in separating the soluble fullerenes from the insoluble fullerenes in
the solvent, thus efficiently separating the two in the extraction process. The combination
of the mechanical influence with the filtration led to a massive reduction in the time taken
for extraction (~15 min) compared to the traditional Soxhlet extraction method, whilst
maintaining a similar resultant weight percentage of fullerene-to-soot-extraction ratio. The
same group went on to demonstrate the efficiency of the method with higher cage empty
fullerenes and EMFs [131]. They showed that the mechanical extraction method could
extract 0.4 wt% higher weight fullerenes, which consisted of about 25% EMFs. Although
the authors showed this methodology to work well with both EMFs and empty cages, we
believe that it is worth using the mechanical extraction method and Soxhlet extraction to
efficiently extract empty cage fullerenes and subsequently EMFs, respectively. Moreover,
improvements can be further made in the mechanical extraction process by introducing
heating in the system. This could lead to increased breaking of the fullerene-carbon particle
bond and their increased solubility in the solvent.

5. Conclusions

In conclusion, we summarized some of the important parameters needed to optimize
the synthesis of endohedral metallofullerenes. It is important to increase the yield of these
nanomaterials in order to carry out in-depth investigation of their synthesis mechanism
as well as to ensure a sustainable use for future electronic and opto-electronic devices.
Challenges still exist in scaling-up the synthesis of individual fullerene molecules and opti-
mizing separation of individual fullerenes from the obtained soot. While the conventional
arc-discharge method, based on the vaporization of graphite composites, seems to have
some limitations, the doping of the rods, despite being a more tedious and uncontrollable
process, can be further expanded and provide new insights and pathways. New doping
agents and optimized reaction conditions can be developed for further studying the role of
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different parameters during synthesis. Our ongoing research has a final aim of mapping
the temperature and pressure conditions during the arc-discharge process by utilizing
tailor-made arc-discharge reactors and carefully controlling and recording the reaction
parameters and conditions. Incorporation of thermocouples inside the reactor to map the
temperature during the synthesis will help in understanding the reaction conditions that
are best suited for optimum synthesis yield of the endohedral fullerenes of interest [132].
This mapping is important not only for the scaled-up production of EMFs but also for
the synthesis of new clusters, presenting either new properties or combining optical, op-
toelectronic, electrochemical, and magnetic properties. Examples of such materials are
EMFs that incorporate erbium with gadolinium or dysprosium in different ratios, with the
former providing the optical properties and the latter providing the magnetic behaviour.
New advances, such as the construction of atomic clocks with N@C60 [133], can provide
new directions for the applications of endohedral fullerenes. In particular, EMFs of both
well-known (such as Y@C82, Sc@C82, and La@C82) or newly developed materials with
different electron and nuclear spin numbers (such as phosphorous-containing endohedral
fullerenes) could potentially be used for atomic clock applications. The incorporation
of machine learning (ML) and artificial intelligence (AI) approaches for the synthesis of
EMFs could revolutionize the industrial-scale production of these molecules by defining
optimal process parameters and complementing traditional techniques such as the Design
of Experiments (DoE) approach [134], favoured by engineers for many decades. This is a
direction in which we plan to endeavour in the near future.

Finally, a combination of optical and paramagnetic properties [135–137] can also lead
to new carbon nanotube–EMF peapods or EMF–graphene hybrid nanomaterials [138] with
novel properties. Even in organic photovoltaics, fullerenes have recently been incorporated
in ternary systems [139]. The incorporation of ternary systems including EMFs and non-
fullerene acceptors could provide further avenues for higher-efficiency solar cells. Thus,
the science and technology of EMFs will be a viable research topic for years to come.
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