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Abstract—The dynamic electrical characteristics of 

insulated-gate bipolar transistor (IGBT) are of great 
significance in practical high power electrical applications and 
are usually evaluated through double pulse test (DPT). 
However, DPTs of IGBTs under various working conditions is 
time-consuming and laborious. Traditional estimation 
methods are based on detailed physical parameters and 
complex formula calculations, making deployment process 
challenging. This paper proposes a novel DPT efficiency 
enhancement method based on graph convolution network 
(GCN) and feature fusion technology, which can estimate and 
supplement switching transient waveforms of all working 
conditions. Thereby, dynamic electrical characteristics of the 
IGBT are obtained by estimated waveforms of DPT. This 
method proposes a multimodal attention fusion network 
(MAFN) to capture and fuse the features of switching transient 
waveforms between different positions thereby improving the 
expressive power and performance of the model. Moreover, 
this method is novel in that it is the first to utilise GCN to 
embed DPT data under multiple working conditions into a 
graph structure, which can use the graph structure 
information to fuse the features of spatially correlated working 
conditions data to obtain reliable estimation results. The 
method has been verified to be effective and accurate on real 
dataset collected on two batches of IGBTs. 
 

Index Terms—IGBT, Double pulse test, Graph convolutional 
network, Feature fusion. 

I. INTRODUCTION 

nsulated-gate bipolar transistors (IGBTs) are now widely used 
in a variety of medium-power and high-power power electronic 
(PE) converters [1], such as full-bridge inverters [2], [3] and 

boost converters [4]. The IGBT is one of the key components in 
the PE system, and its performance directly affects the efficiency, 
response time, switching frequency, power density, reliability and 
stability of the system. Therefore, design engineers, researchers 
and manufacturers of PE systems need to fully verify the dynamic 
behavior of the IGBT to be able to estimate its power loss to judge 
whether the corresponding requirements are satisfied. However, 
the parameters given in the specification are measured under 
specific conditions. The external parameters in practical 
applications are application-specific and often vary, so some of 
these parameters cannot be used directly. Any suboptimal choice 
or improper use can directly or indirectly cause the failure of the 
IGBT, resulting in serious consequences. To evaluate the behavior 
of the switch of the IGBT and observe parameters, the most 
effective method is the double pulse test (DPT). 

The DPT method is the standard method for characterizing and 
evaluating the dynamic electrical performance of IGBTs, which is 
achieved through use of an inductive load and a power supply [5]. 
The inductor is used to replicate circuit conditions in a converter 

design. The power supply is used to provide voltage to the inductor. 
An arbitrary function generator is used to output pulses that 
triggers the gate of the IGBT and thus turns it on to start conduction 
of current. Key parameters describing the behavior of the switch of 
the IGBT include the turn on delay time 𝑡don, the current rise time 
𝑡ri, the turn off delay time 𝑡doff, the current fall time 𝑡fi, the turn on 
loss Eon and the turn off loss Eoff [6]. Due to some limitations of 
DPT in practical applications, several estimation methods have 
been proposed to analyse and evaluate these electrical 
characteristics of IGBT. 

Three methods are commonly used to obtain the static and 
dynamic characteristics of IGBT: Circuit simulation [7], [8], 
behavioral models [9] and electrothermal models [10], [11] and 
[12]. Device-level circuit simulation is based on IGBT physical 
model such as those of Kraus et al [13], Hefner et al [14] and Wang 
et al [7]. For example, the simulation program with integrated 
circuit emphasis (SPICE) is a popular IGBT circuit simulation tool 
that can improve the accuracy of the simulation by using more 
physics knowledge of devices [15], [16]. However, these methods 
always require detailed physical information about the IGBT 
model and the circuit topology. In addition, these methods bring 
computational burden while pursuing higher accuracy. In the case 
of behavioral models, the features are neglecting of the device 
physics to a certain extent, but the advantage is that the models are 
simpler and easy to configure, and involve fast simulation times 
[17]. Recently, Bai et al [9] proposed an FPGA-based IGBT 
behavioral model to simulate IGBT fast transients in PE circuits 
without the need for an iterative solution algorithm. However, this 
type of method cannot represent the switching transients without 
information about parasitic parameters and diode reverse recovery. 
Although electrothermal models can use electrical and thermal 
couplings to solve the heat-flow calculation and consider the 
temperature effect, adding multi-dimensional thermal fields and 
considering packaging characteristics in the simulated estimation 
process will greatly increase the complexity of the model. 

To accurately estimate the dynamic characteristics of IGBTs, 
researchers typically directly perform curve fitting on DPT results 
under specific working conditions, and then estimate switching 
transient waveforms based on measurement results and data sheets. 
For example, the electrical transient model (ETM) has been 
proposed to simulate static and dynamic behaviors of IGBT-diode 
switching cell in order to determine semiconductor losses by using 
specially developed algebraic equations [18], [19]. However, this 
type of method ignores the effect of temperature on the device and 
relies heavily on mathematical formulas and parameter extraction. 
Until recently, work presented in [5] added temperature as a 
parameter to the original ETM to determine the losses of the IGBT 
diode during the simulation. However, this method still cannot 
overcome the dependence on many physical parameters. The 
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characteristics of related methods are summarised in Table I. 
 

TABLE I 
SUPERIORITY AND WEAKNESS OF IGBT DPT ESTIMATION METHODS 

Type of 
methods 

Related 
papers 

Superiorities Weaknesses 

Circuit 
simulation 

[7], 
[8] 

1. Relatively high 
accuracy 

2. Strong 
interpretability 

1. Relying on 
physics 
information of 
devices 

2. High 
computational 
difficulty 

Behavioura
l model 

[9] 

1. Ignoring device 
physics 

2. More convenient 
3. Fast simulation 

speed 

1. Relying on 
parasitic 
parameters and 
diode reverse 
recovery 

Electrother
mal model 

[10], 
[11], 
 [12] 

1. Considering 
temperature 
effect 

1. High complexity 
2. High computing 

requirement 

ETM [18], 
 [19] 

1. Accuracy 
limitation 

2. Easy access to 
parameters 

1. Involving 
complex 
mathematical 
formulas 

Deep 
learning-

based 

The 
proposed 

1. Ignoring device 
physics  

2. High accuracy 
3. Transferable 

model for other 
devices 

4. Fast getting 
estimation result 

1. Requiring 
training data 

 
Under various working conditions, DPTs of IGBTs are time-

consuming and laborious task. Traditional estimation methods are 
based on detailed physical parameters and complex calculation 
approaches, making deployment difficult. With the development 
of artificial intelligence techniques, deep learning-based 
algorithms are increasingly used in industrial applications. As DPT 
waveforms are various time-series signals that have correlation 
with input parameters such as gate voltage, temperature, and load 
current, data-driven deep learning-based methods have the 
potential to predict these signals and thus to obtain the dynamic 
parameters of the IGBT module. 

In this article, graph convolution network (GCN) with 
multimodal attention fusion network (MAFN), referred to as 
MAFGCN, is proposed to estimate IGBT DPT waveforms. A 
novel MAFN is first proposed to capture the relationship between 
different positions in input signals, thereby improving the 
expression ability of the fusion feature. The GCN-based module is 
used to estimate switching transient waveforms of the IGBT diode 
and obtain the dynamic behavior of the switching unit under 
various working conditions. The highlight of this method is that 
the DPT results for all operating conditions can be quickly 
estimated, and the model can be generalised to other types of 
IGBTs using only DPT data at room temperature. The proposed 
method can greatly reduce the number of required DPTs, saving 
labour costs and time. The complete algorithm and model are 
implemented in Python and validated with experimental data 
obtained from a DPT rig. 

There are three technical contributions in this paper: 
1) This paper proposes a GCN-based approach to enhance IGBT 

DPT efficiency and fast evaluation of IGBT dynamic 
characteristic through estimated DPT results, which embeds 
DPT data under each working condition into spatial graph 
structure. 

2) MAFN is proposed to provide strong impressive features to 
GCN module so that graph convolutional layers can capture 
the core features of DPT waveforms successfully.  

3) For generalizing the well-trained model to other IGBT 
modules, the graph transfer strategy is introduced. 

The remaining sections of the paper are structured as follows. 
Section II presents the applicability analysis of DPT data 
embedded in a graph structure. Section III describes the proposed 
method. Section IV introduces the designed experimental platform, 
the test measurements and the data gathering. Experiment 
validations and results are reported in Section V. Finally, Section 
VI concludes the paper.  

II. APPLICABILITY ANALYSIS OF GRAPH STRUCTURE 

EMBEDDING OF DPT DATA 

A. Designed DPT Procedure 

In the DPT experiment, the upper device is the freewheeling 
diode (FWD), the lower-side IGBT is the device under test (DUT). 
The diagram of the applied DPT circuit is shown in Fig. 1. A DPT 
is a tool that enables a power switch to be turned on and off at 
different current levels. By adjusting the switching times Sଵ , Sଶ 
and Sଷ , the turn-on and turn-off waveforms of DUT can be 
controlled and measured over the full range of operating conditions. 
For the second pulse, it is important to build up current in the 
complementary device or diode so that when the switch turns on, 
the effects of any reverse recovery current can be evaluated. A load 
inductor is employed to limit the rate of 𝑑𝑖 𝑑𝑡⁄ . 
 

 
Fig. 1. The circuit diagram of DPT for deploying the experimental platform. 
 

 

Two consecutive pulses generated by the pulse function 
generator are transmitted to the DUT. By adjusting the first pulse 
duration, the switching transient can be captured at the desired 
current level at the end of the first pulse and at the beginning of the 
second pulse. VDC is the dc-link voltage, Lload is the load inductance, 
Vge is the gate voltage, Vce is the collector voltage, Ic is the collector 
current, and IL is the load current. In the gate drive, the positive 
voltage V+ = 15V, the negative voltage V- = -10V, the gate 
resistance is Rg = 1.5Ω, 2.5Ω or 3.5Ω. Considering the influence of 
the parasitic parameters of the commutation circuit on the 
characteristics of the IGBT switch, the parasitic inductance was 
changed by changing the length of the copper bus. The two types 
of the parasitic inductance in our experiment are Lp ≈ 120nH and 
160nH. 

During S to Sଵ, the first pulse is applied to IGBT and the IGBT 
is turned on. A constant voltage VDC is added to the load inductance 
L୪୭ୟୢ which makes the current through it to increase linearly: 

𝐼ୡ =  
𝑉ୈେ ∙ S

L୪୭ୟୢ

 (1) 

According to Eq. (1), IL which is also Ic of the IGBT, depends 
on VDC, L୪୭ୟୢ and pulse duration time S. It is feasible to set the 
current by the method of controlling S with fixed VDC and L୪୭ୟୢ. 
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During Sଵ to Sଶ, the IGBT is turned off, but the current flowing 
through L୪୭ୟୢ  cannot be suddenly changed. So, the current will 
commutate to FWD of counterpart arm. The duration time from Sଶ 
to Sଷ  of turning-off is not of importance during test condition. 
Therefore, in this experiment, we set it between 10μs and 20μs to 
meet the experimental requirements. After the reverse recovery 
process, the current flows into the IGBT through L୪୭ୟୢ, similarly 
to period S to Sଵ. At Sଷ, the IGBT will be turned off again. Based 
on the loss 𝑃, the switching loss 𝐸୭୬ in turn-on transient and 𝐸୭ 
in turn-off transient are calculated by oscilloscope as: 

𝐸୭୬/୭ = 𝑃(𝑡ଶ) − 𝑃(𝑡ଵ) = න 𝑉ୡୣ𝐼ୡ𝑑𝑡
௧మ

௧భ

 (2) 

where 𝑡ଵ and 𝑡ଶ represent the starting and ending moments of the 
turn-on or turn-off transient respectively. From switching transient 
waveforms generated by DPT, we can also get information relating 
to the IGBT’s turn-on/turn-off delay (𝑡ୢ(୭୬)/𝑡ୢ(୭)), rise time (𝑡୰), 
fall time (𝑡), 𝑡୭୬/𝑡୭ (turn-on/turn-off time), 𝑑𝑣 𝑑𝑡⁄ , and 𝑑𝑖 𝑑𝑡⁄ , 
etc. 

B. External Influencing and Limitation Factors 

When using the data-driven method, we hypothesise that the 
changes in the data are only related to the working conditions. In 
this case, the model obtained after training is more accurate and 
general. In this part, the main external influencing factors of IGBT 
DPT switching transient waveforms are discussed. 

The first influencing factor is the measurement error. In fact, this 
is unavoidable in experiments due to the limitation of equipment 
precision, uncertainty and random error, etc.  

Secondly, using different DC busbars (VDC) also affects the 
switching transient voltage waveform. Different structures of the 
DC bus can lead to changes in L୮. At a high current change rate 
𝑑𝑖 𝑑𝑡⁄ , the induced potential of L୮ is superimposed on the IGBT, 
which will affect the waveform of 𝑉ୡୣ: 

𝑉ୡୣ = −L୮

𝑑𝑖

𝑑𝑡
+ 𝑉ୈେ (3) 

That is manifested that high Lୗ at the IGBT turn-on transient will 
result in low 𝐸୭୬, and the turn-on time will be extended; too high 
L୮  at the turn-off transient will cause 𝑉ୡୣ  to overshoot the rated 
voltage of the IGBT, cause overvoltage breakdown fault, and 
reduce the tail current. 

Furthermore, different FWD of the circuit will affect turn-on 
transient overcurrent peak 𝐼୮ୣୟ୩  and 𝐸୭୬ . During the turn-on 
transient of the IGBT, the reverse recovery characteristic (RRC) of 
FWD can lead to 𝐼୮ୣୟ୩ in the collector current, which affects the 
turn-on rate and turn-on loss. In addition to being affected by 
𝑑𝑖 𝑑𝑡⁄ , RRC is also related to the stored charge 𝑄୰୰ of the diode. 
𝐼୮ୣୟ୩ can be expressed as 

𝐼୮ୣୟ୩ = 𝐼 +
ඨ2

𝑑𝑖
𝑑𝑡

𝑄୰୰

𝑆𝐹
 

(4) 

where 𝑆𝐹 is the reverse recovery softness factor of FWD [20]. 𝑄୰୰ 
is determined by the forward conduction current 𝐼 before reverse 
recovery and the remaining carrier lifetime of the diode itself 𝜏ୌ: 

𝑄୰୰ ≈ 𝐼𝜏ୌ (5) 

Under a fixed 𝐼 , different 𝑄୰୰  of the diode will affect 𝐼୮ୣୟ୩ , 
resulting in a change in 𝐸୭୬. 

However, it should be noted that same users or same 
manufacturers usually tend to use the same DC busbars and FWD. 
In such cases, external influencing factors have little impact on the 
stability and accuracy of the data-driven method proposed in this 

paper. In other words, the proposed model is better personalised 
for a specific practical application from the training step. To 
comprehensively validate this method, this paper continues to 
consider different Rg in the gate driver and different DC link Lp. 

C. Graph Structure Embedding for DPT Estimation Problem 

This paper proposes to embed DPT data for all working 
conditions in a labeled graph of GCN. GCN belongs to the category 
of deep learning, which learns and trains based on graph structure 
data. GCNs enable prediction and inference tasks at both the node 
level and the graph level by effectively capturing the relationship 
between the topological structure of graph data and node features 
[21]. 

It can be seen from the experiment that the DPT transient 
waveforms under various working conditions are correlated, and 
the degree of correlation is different. We propose to treat each 
working condition of DPT as a node of the graph structure. The 
DPT switching transient waveforms of unmeasured nodes could be 
accurately estimated through the correlation between each node, so 
as to obtain the complete IGBT dynamic electrical characteristics. 
Fig. 2 demonstrates the principle and strategy of graph structure 
embedding for DPT estimation problem. It should be noted that if 
the difference in DC busbar is not considered, the graph structure 
will become simpler. 
 

 
Fig. 2. The principle of graph structure embedding for DPT estimation 
problem. 
 

In DPT data measurement, 𝑉ୈେ = ቄ𝑉ୈେ
(ଵ)

, 𝑉ୈେ
(ଶ)

, 𝑉ୈେ
(ଷ)

ቅ , 𝐼 =

ቄ𝐼
(ଵ)

, 𝐼
(ଶ)

, 𝐼
(ଷ)

, 𝐼
(ସ)

, 𝐼
(ହ)

, 𝐼
()

ቅ , 𝑅 = ቄ𝑅
(ଵ)

, 𝑅
(ଶ)

, 𝑅
(ଷ)

ቅ , and L୮ =

ቄL୮
(ଵ)

, L୮
(ଶ)

ቅ. Therefore, total measured working conditions 𝐶୵ =

ቄቀ𝑉ୈେ
()

, 𝐼
()

, 𝑅
()

, L୮
()
丨 1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 6, 1 ≤ 𝑝 ≤ 3, 1 ≤

𝑞 ≤ 2ቁቅ, in which 𝑖, 𝑗, 𝑝, 𝑞 ∈ ℕା. As shown in Fig. 2, the number 

𝐶୵  is 108. The case temperature Tୡ =

ቄTୡ
()

, Tୡ
(ଵ)

, Tୡ
(ଶ)

, Tୡ
(ଷ)

, Tୡ
(ସ)

, Tୡ
(ହ)

, Tୡ
()

ቅ. The DPT dataset measured 

under Tୡ
() is the training data, and the DPT dataset measured under 

Tୡ = 40℃, 60℃, 80℃, 100℃, 125℃, 150℃  are labels. That 
means the well-trained model can estimate DPT waveforms under 
any Tୡ. 

III. THE PROPOSED METHODOLOGY 

The proposed method MAFGCN consists of three main parts: 
graph construction module, MAFN block, GCN-based module and 
optional graph transfer module: 1) In order to capture more 
comprehensive DPT waveform information and enhance the 
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overall performance of the model, the input data needs to be input 
to the proposed MAFN for feature extraction and fusion. The 
overall input data is denoted by 𝑋 ; 2) SCC-based graph 
construction block conveys an adjacency matrix 𝐴  to GCN 
module; 3) Spatial GCN-based module is trained by output of the 
MAFN and 𝐴  to integrate the information of graph nodes to 
provide spatial dependence for the DPT waveform estimation; 4) 
The graph transfer block can generalise the model so that it can be 
used to predict DPT results of other batch IGBT modules and even 
other brand IGBT modules. Fig. 3 illustrates the complete 
architecture of the proposed method. 

A. Data Input and MAFN Block 

Appropriate input variables and their input forms should be 
selected from the data acquisition module to ensure the accuracy 
and reliability of DPT waveform estimation method. The total 
input data collected by this method from the DPT system is: 

𝑋 = ቄ𝑋ౝ
, 𝑋ౙ

, 𝑋ூౙ
, 𝑋ቅ (6) 

These input variables are the core waveforms in DPT and the 
final estimated target waveforms. For each training of the model, 
one type of data in 𝑋  should be as input data to the next step. 
Dataset 𝑋  contains a total of 4 variables, which means that the 
model needs to be completely trained 4 times to obtain a complete 
DPT estimation result. 

Attention mechanism can solve the deficiencies that RNN 
cannot perform parallel computing and CNN cannot capture the 
long-distance relationships in sequence [22]. The designed MAFN 
as a multimodal feature fuser consists of three self-attention 
modules with different number of attention head as shown in Fig. 
4. Fewer attention heads provide more stable and consistent feature 
representations, while more attention heads can capture more fine-
grained relations and patterns of the input sequence. Selected 
dataset will firstly be input into MAFN module to get most 
expressive feature representations as the input of GCN module. 
The details are presented in the following. 

Self-attention (SA) as a special attention mechanism. This 
module uses multi-head self-attention (MSA) mechanism network. 
Input 𝑋 needs to go through positional encoding process. For the 
ℎth head, the weights of SA can be calculated by 

SA(𝑄, 𝐾 , 𝑉) = softmax ቆ
𝑄𝐾



ඥ𝑑

ቇ 𝑉 (7) 

where 𝑄 = 𝑋𝑊
, 𝐾 = 𝑋𝑊

 , 𝑉 = 𝑋𝑊௩
. 𝑊

 , 𝑊
  and 𝑊௩

  are 
linear transformation matrix of 𝑄 , 𝐾  and 𝑉 , respectively. 

Weights of SA of each head are weighted and spliced to obtain the 
representation of MSA: 

MSA(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑ଵ, ⋯ , ℎ𝑒𝑎𝑑)𝑊 (8) 

ℎ𝑒𝑎𝑑 = SA(𝑄 , 𝐾, 𝑉) (9) 

where 𝑊 donates the output weight matrix of MSA. The output 
of MSA (𝑋

ୗ) needs to go through a feed-forward network (FFN) 
as the final representation 𝑋ୗ . FFN includes two fully-
connected (FC) layers: 

FFN = ReLU(𝑊𝑋
ୗ + 𝑏) (10) 

where ReLU(∙) is the activation function, 𝑊 is weight matrix, 
𝑏 is the bias. Outputs of three self-attention modules 𝑋

ୗ should 
be fused following strategy: 

𝑋୳ୱୣୢ =  𝑤
୳ୱ୧୭୬

ଷ

ୀଵ

𝑋
ୗ (11) 

where 𝑤
୳ୱ୧୭୬ donates the weight of the 𝑖th self-attention module. 

𝑋୳ୱୣୢ , as the most expressive feature representation of DPT 
sequence, will be the input of the GCN-based module. 
 

 
Fig. 4. Detailed structure of the MAFN block. 

B. Graph Construction Module 

As described in Section II.C, the whole DPT dataset can be 
embedded into a graph structure with multiple nodes. In this paper, 
this method applies the Spearman correlation coefficient technique 
to calculate and visualise the spatial correlation between 
subdatasets under each working condition, which is constrained by 
linear relationships so as to does not lose nonlinearity information. 

According to the training data, we should firstly calculate the 
SCC between each two nodes. Given two input sequences 𝐷ଵ =

൫𝑥ଵ, 𝑥ଶ, ⋯ , 𝑋ೞ
൯  and 𝐷ଶ = ൫𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦ೞ

൯ , the Spearman 
correlation coefficient 𝜌 can be calculated by 

 
Fig. 3. Structure of the proposed (MAFGCN) method (the GCMCN method includes a MAFN module, a graph construction block, a GCN-based spatial 
module and an optional graph transfer block, in which a residual operation between the input and output of the of GCN module for improving the effect of 
feature fusion and preventing the gradient disappearance problem during training). 
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𝜌 = 1 −
6 ∑ 𝑑

ଶೞ
ୀଵ

𝑙௦(𝑙௦
ଶ − 1)

 (12) 

where 𝑙௦ is the length of the input sequence, 𝑑 = 𝑅௫ − 𝑅௬ is the 
difference between ranks of variables 𝐷ଵ and 𝐷ଶ. The calculation 
principle of 𝑅௫  and 𝑅௬  can refer to [23], which will not be 
explained in detail here. 

This method uses 𝜌 as the similarity index between nodes to 
build an adjacency matrix. In GCN, the graph can be referred as 
𝐺 = (𝑃, 𝐸), in which 𝑃 = {𝑝ଵ, 𝑝ଶ, 𝑝ଷ, ⋯ , 𝑝ே} is the set of 𝑁 nodes 
and 𝐸  is the edge set. In the set 𝐸 , element 𝑒 ∈ 𝐸  is the edge 
between node 𝑝  and node 𝑝. To presents the correlations between 
nodes, the adjacency matrix can be identified as 𝐴 ⊂ ℝே×ே, and 
elements 𝐴 in 𝐴 can be computed by 

𝐴 = ൜
𝑤 , 𝑖𝑓൫𝑝 , 𝑝൯ ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

where 𝑤 ∈ [0,1] is the degree of relevance between node 𝑝  and 
𝑝 . In this method, 𝑤 = 𝜌 . Due to 𝜌 ∈ [−1,1] , further 
normalization process is not required here. 

To reduce the number of edges in the labeled graph and reduce 
computational cost, we preserve strong correlations between nodes 
and eliminate weak correlations. Therefore, 𝐴 can be updated as 

𝐴 = ൜
𝐴 , 𝑖𝑓𝐴 < 𝜂

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

where 𝜂 is a preset threshold so that any 𝐴  less than 𝜂 will be 
reset to 0. If the device has sufficient computing power, this step 
can be ignored. 

C. Spatial GCN-based Estimation Module 

Instead of applying regular convolutional and recurrent 
networks, this method formulates the problem on graphs and build 
the model with complete convolutional structures, which enable 
much faster training speed with fewer parameters [24].  

After embedding nodes according to the strategy in Section II.C 
and building an adjacency matrix [25], GCN is used to integrate 
the information of neighbor nodes into the target node to provide 
spatial dependence for the DPT waveform estimation task. The 
calculation process of graph convolution is: 

𝑍(ାଵ) = ReLU൫𝐿୬୭୰୫𝑍()𝑊()൯ (15) 

𝐿୬୭୰୫ = 𝐷ି
ଵ
ଶ𝐴ሚ𝐷ି

ଵ
ଶ (16) 

𝐴ሚ = 𝐴 + 𝐼ே  (17) 

where 𝑍() is the input of the (𝑘 + 1)th graph convolution layer, 
𝑊() is the layer-specific trainable weight matrix of the (𝑘 + 1)th 
layer, ReLU(∙) is the activation function, 𝐿୬୭୰୫ is the normalised 
Laplace matrix, 𝐷 is the degree matrix of node, 𝐼ே  is the identity 
matrix. In this paper, the number of GCN layer is set as 2. The 
output layer is a FNN layer. The mean squared error (MSE) 
function is used as loss function ℒ  for network training. The 
structure of the spatial GCN module is shown in Fig. 3. 

D. Graph Transfer Block 

For generalizing the model to estimate other IGBTs and less data 
(only DPT data at room temperature Tୡ

()), the transfer learning 
strategy are proposed. After our experiments, to achieve the best 
transfer effect, the proposed graph transfer method is advocated to 
be used on different IGBTs of the same batch, or on IGBTs of 
different batches with similar rated parameters (such as IGBTs in 
Table II). There are three main steps of this block: graph 

reconstruction, pretraining and fine tuning. Fig. 5 shows the 
detailed flowchart of this graph transfer block. 

In the graph reconstruction step, the graph structure of the target 
IGBT 𝐺 = (𝑃, 𝐸)  should be redefined, in which 𝑃 =
{𝑝ଵ

, 𝑝ଶ
, 𝑝ଷ

, ⋯ , 𝑝ே
}, 𝐸 is the edge set. The adjacency matrix 𝐴

  
should be recalculated according to 𝐺: 

𝐴
 = ቊ

𝑤
 , 𝑖𝑓൫𝑝

, 𝑝
൯ ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (18) 

where 𝑤
 = 𝜌

  is degree parameters. To obtain a pre-trained 
model with 𝐺, the whole should be retrained using 𝑋. Then the 
retrained model is fine-tuned by the DPT dataset of the target IGBT 

𝑋 = ቄ𝑋ౝ
 , 𝑋ౙ

 , 𝑋ூౙ
 , 𝑋

ቅ . We should note it is allowed if the 

amount of data in 𝑋் ≪ 𝑋 because 𝑋does not need DPT data 

under Tୡ
(ଵ)

, Tୡ
(ଶ)

, Tୡ
(ଷ)

, Tୡ
(ସ)

, Tୡ
(ହ)

, Tୡ
(), only need data under Tୡ

(). 
 

 
Fig. 5. Detailed flowchart of the graph transfer learning block. 

E. Implement Procedure of MAFGCN 

The implementation process of the proposed MAFGCN is 
divided into training stage and verification stage. The entire 
algorithm updates parameters with each iteration. The pseudocode 
of the whole procedure of MAFGCN is shown in Algorithm 1. 
 

Algorithm 1: The proposed MAFGCN with multimodal feature 
fusion for DPT estimation. 
Input: The DPT dataset 𝑋 = ቄ𝑋ౝ

, 𝑋ౙ
, 𝑋ூౙ

, 𝑋ቅ  obtained from real DPT 

experiment that is divided into training set 𝑋୲୰ୟ୧୬, validating set 𝑋୴ୟ୪ and testing 

set 𝑋୲ୣୱ୲. The DPT dataset from similar IGBT module 𝑋 = ቄ𝑋ౝ

 , 𝑋ౙ

 , 𝑋ூౙ

 , 𝑋
ቅ. 

Output: The estimated DPT results at  𝑋ୣୱ୲ and 𝑋ୣୱ୲
  and estimation accuracy of 

testing data. 
In the training and validating stages of MAFGCN: 

1 Collect dataset from real IGBT modules and obtain 𝑋 and 𝑋. Initialise 
parameters of the whole MAFGCN; 

2 Calculate 𝐴 (Eq. (13)) through Eq. (12); 
3 Compute and obtain updated 𝐴 through Eq. (14); 
 Training the MAFN module: 
 

4 
Input dataset 𝑋୲୰ୟ୧୬  into three MSA networks to extract 
features 𝑋

ୗ; 
 

5 
Forward propagation through three MSA networks with 
parameters 𝑄 , 𝐾 , 𝑉 and 𝑊; 

 6 Calculate 𝑋
ୗ by using Eq. (10); 

 
7 

Forward propagation through FFNs with parameters 𝑊 
and 𝑏; 

 8 Calculate 𝑋୳ୱୣୢ by using Eq. (11); 
 Training the GCN module with residual operation: 
 9 Input MAFN result 𝑋୳ୱୣୢ into GCN; 
 10 Calculate GCN output by using Eq. (15)-(17); 
 11 Forward propagation through 𝑍() with parameters 𝑊(); 
 Compute the loss function ℒ and update parameters of the entire model; 
 Backpropagation with RMSprop optimiser to minimise ℒ; 
 Update the parameters of the entire MAFGCN model; 
 Compute the performance indexes of the model on 𝑋୴ୟ୪; 

In the graph transfer block: 
 12 Calculate 𝐴

  (Eq. (18)) through Eq. (12); 
 13 Retraining MAFGCN with the input 𝑋(Tୡ

()); 
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14 Fine-tune by the dataset 𝑋(Tୡ

()) and update the parameters of 
the entire MAFGCN model; 

In the testing stage: 
15 Evaluate the model with testing data 𝑋୲ୣୱ୲  and 𝑋  under 

Tୡ
(ଵ)

, Tୡ
(ଶ)

, Tୡ
(ଷ)

, Tୡ
(ସ), and compute accuracy of estimated DPT results. 

IV. SETUP OF DPT PLATFORM AND DATA ACQUISITION 

This section will provide information about the setup of the DPT 
platform. The experimental and validation datasets are collected 
from this described DPT bench. 

In order to collect accurate and reliable data, we have carried a 
series of real DPT experiments. Based on the circuit in Fig. 1 in 
Section II.A, a DPT platform was designed and implemented for 
characterizing IGBTs and diodes. As shown in Fig. 6, the DPT 
measurement device is composed of a high voltage power supply, 
capacitor bank, laminated DC busbar, load inductances, DPT and 
drive circuit, measuring devices (voltage probe and current probe), 
oscilloscope and pulse generator. 

The main DUTs are DIM1200FSS12-A000 and 
DIM1200FSS12-A076 from Dynex semiconductor. Both IGBTs 
are single switch 1.2kV, n-channel enhancement mode, IGBT 
module. This IGBT has a wide reverse bias safe operating area 
(RBSOA) plus 10μs short circuit withstand. The main applications 
of these IGBTs are high power inverter and motor controller. The 
parameters of the tested IGBTs are summarised in Table II. 

The variables of test conditions are Tୡ, VDC, IL, Rg, Lp  and turn-
on/turn-off transient: 
1) Tୡ: 25oC, 40oC, 60oC, 80oC, 100oC, 125 oC and 150 oC; 
2) VDC: 200V, 400V and 600V; 
3) IL: 50A, 200A, 400A, 600A, 800A and 1000A; 
4) Rg: 1.5Ω, 2.5Ω and 3.5Ω. 
5) Lp: 120nH and 160nH. 
6) Transient condition: turn-on, turn-off. 

where the number of total test conditions is 180. Each IGBT was 
subjected to 10 double-pulse tests for each test condition. 
Measurement data of each batch includes 1800 groups, and a total 
of 4800 groups of data are obtained. Test time t, Vge, Vce, Ic, Pon and 
Poff are included in each group data. We apply four channels 
oscilloscope to observe and output waveforms of Vge, Vce, Ic, Pon and 
Poff. Waveforms of channels 1,3 and 4 are respectively represented 
as Vge, Ic and Vce as shown in Fig. 7. There are examples of 
collected waveforms on oscilloscope with the working condition 
of Tc=25oC, VDC=580V, Ic =400A, Rg=2.5Ω, Lp=160nH. 

 

 
Fig. 7. Typical example waveforms of the measured and collected DPT result on oscilloscope at working condition Tc=25 oC, VDC=580V, Ic =400A, Rg=2.5Ω, 
Lp=160nH ((a) in turn-off transient. (b) the complete DPT waveforms (c) in turn-on transient). 
 

V. EXPERIMENTAL RESULT 

This section describes the experimental validations based on the 
proposed DPT estimation approach in Section III and the collected 
dataset in Section IV. 

A.  Performance Criteria 

The proposed method is evaluated using three quantitative 
indexes: mean absolute error (MAE), root mean square error 
(RMSE) and Logcosh error (LE), which are represented by Eq. 
(19), Eq. (20), and Eq. (21), respectively. These evaluation metrics 
provide a clear indication of the accuracy of the DPT waveform 
estimation task. The MSE and MAE measures assess the level of 
deviation between the estimated waveform and the ground truth, 
while the CS captures the similarity between the two waveforms in 

terms of their shape and direction. Together, these indexes provide 
a comprehensive assessment of the accuracy and fidelity of the 
proposed method in estimating the DPT waveform. 

MAE =
1

𝐿ୱ
|𝑦 − 𝑦ො|

౩

ୀଵ

 (19) 

RMSE = ඩ
1

𝐿ୱ
(𝑦 − 𝑦ො)ଶ

౩

ୀଵ

 (20) 

LE =
1

𝐿ୱ
 ቆ

𝑒௬ොି௬
+ 𝑒ି(௬ොି௬)

2
ቇ

౩

ୀଵ

 (21) 

where 𝑦 and 𝑦ො are the true value and estimated value of the DPT 
waveform amplitude, 𝑛 is the 𝑛th sample point, and 𝐿ୱ is the length 

TABLE II 
PARAMETERS OF IGBT MODULES 

Batch DIM1200FSS12-A000 DIM1200FSS12-A076 
VCES 1.2kV 1.2kV 

VCE(sat) (typ) 2.2V 2.2V 
IC (max) 1200A 1200A 

IC(PK) (max) 2400A 2400A 
 

Fig. 6. Setup of the DPT measurement platform. 
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of DPT signals. 

B. Experiments Settings and Result 

Firstly, we should number the data collected from the two types 
of IGBTs in Section IV. The 1800 groups collected from 
DIM1200FSS12-A000 are referred as Dataset A; the 1800 groups 
collected from DIM1200FSS12-A076 are referred as Dataset B. 
This method can estimate DPT results under 1296 different 
working conditions (except 216 kinds under 25℃). The use 
condition of these datasets is listed in Table III. 

 

TABLE III 
THE USE OF TWO MEASURED DPT DATASETS 

Dataset Data division Detailed use 

A 

90% in Tୡ =  25oC, 40oC, 60oC, 80oC, 
100oC, 125oC and 150oC 

Training and validating 
data 

10% in Tୡ =  40oC, 60oC, 80oC, 100oC, 
125oC and 150oC 

Testing data 

B 
100% in Tୡ = 25 oC Graph transfer data 
10% in Tୡ = 40oC, 60oC, 80oC, 100oC, 
125oC and 150oC 

Testing data 

 

Due to limited space, turn-on and turn-off transient detailed 
experimental result under one working condition (Tc=100oC, 
VDC=400V, Ic=1000A, Rg=2.5Ω, Lp=160nH) in Dataset A and one 
(Tc=80oC, VDC=400V, Ic=600A, Rg=2.5Ω, Lp=160nH) in Dataset B 
are illustrated in Fig, 8 and Fig, 9 respectively. Batch size is set as 
64 and training epoch is 100. The RMSprop optimiser is chosen 
with initial learning rate 1 × 10ିହ. All data are normalised before 
model training. 

 
(a) Turn-on transient 

 
(b) Turn-off transient 

Fig. 8. Turn-on and turn-off transient waveforms of IGBT DIM1200FSS12-
A000 DPT estimating results at the working condition Tc=100oC, VDC=400V, 
Ic=1000A, Rg=2.5Ω, Lp=160nH ((a) turn-on transient, (b) turn-off transient). 
 

Fig. 8(a) and (b) demonstrates the performance of the proposed 
method on turn-on transient and turn-off transient, respectively. It 
can be found that when using the data test of DIM1200FSS12-
A000, the DPT waveform estimation is highly accurate. As 
demonstrated in Fig. 8(a), the real turn-on delay 𝑡ୢ(୭୬)

୰ୣୟ୪ = 376.75ns 

and the estimated value 𝑡ୢ(୭୬)
ୣୱ୲ = 361ns, the real rise time 𝑡୰

୰ୣୟ୪ =

365.25ns and the estimated value 𝑡୰
ୣୱ୲ = 350.75ns, the real value 

of collector current spike 𝐼୮୩
୰ୣୟ୪ = 2140A and the estimated value 

𝐼୮୩
ୣୱ୲ = 2156 A. In Fig. 8(b), the real turn-off delay 𝑡ୢ(୭)

୰ୣୟ୪ =

1844.25ns and the estimated value 𝑡ୢ(୭)
ୣୱ୲ = 1843.5ns, the real fall 

time 𝑡
୰ୣୟ୪ = 213.5ns and the estimated value 𝑡

ୣୱ୲ = 216.25ns, the 
real value of collector voltage spike 𝑉୮୩

୰ୣୟ୪ = 867 V and the 

estimated value 𝑉୮୩
ୣୱ୲ = 867.8V. 

C. Graph Transfer Estimation Result 

After the graph transfer operation in Section III.D, we performed 
a complete DPT result estimation verification for the IGBT batch 
DIM1200FSS12-A076. At the same time, the dynamic parameters 
of this IGBT module are also calculated using real measurement 
data and estimated data. 

 
(a) Turn-on transient 

 
(b) Turn-off transient 

Fig. 9. Turn-on and turn-off transient waveforms of IGBT DIM1200FSS12-
A076 DPT estimating results at the working condition Tc=80oC, VDC=400V, 
Ic=600A, Rg=2.5Ω, Lp=160nH ((a) turn-on transient, (b) turn-off transient). 

As shown in Fig. 9, the transferred model can correctly estimate 
the DPT results of DIM1200FSS12-A076. In Fig. 9(a), 𝑡ୢ(୭୬)

୰ୣୟ୪ =

619.5 ns and 𝑡ୢ(୭୬)
ୣୱ୲ = 607 ns, 𝑡୰

୰ୣୟ୪ = 286.75 ns and 𝑡୰
ୣୱ୲ =

284.25 ns, 𝐼୮୩
୰ୣୟ୪ = 1440 A and 𝐼୮୩

ୣୱ୲ = 1428 A. In Fig. 9(b), 

𝑡ୢ(୭)
୰ୣୟ୪ = 1429.25ns and 𝑡ୢ(୭)

ୣୱ୲ = 1429.5ns, 𝑡
୰ୣୟ୪ = 384.5ns and 

𝑡
ୣୱ୲ = 384.5ns, 𝑉୮୩

୰ୣୟ୪ = 562 V and 𝑉୮୩
ୣୱ୲ = 558V. Additionally, 

we also present the estimation result and predicted dynamic 
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electrical parameters at the working condition Tc=150oC, 
VDC=600V, Ic=1000A, Rg=3.5Ω, Lp=120nH. 

 
(a) Turn-on transient 

 
(b) Turn-off transient 

Fig. 10. Turn-on and turn-off transient waveforms of IGBT DIM1200FSS12-
A076 DPT estimating results at the working condition Tc=150oC, VDC=600V, 
Ic=1000A, Rg=3.5Ω, Lp=120nH ((a) turn-on transient, (b) turn-off transient). 

With the working condition Tc=150oC, in Fig. 10(a), 𝑡ୢ(୭୬)
୰ୣୟ୪ =

1164 ns and 𝑡ୢ(୭୬)
ୣୱ୲ = 1095.25 ns, 𝑡୰

୰ୣୟ୪ = 406 ns and 𝑡୰
ୣୱ୲ =

480.25 ns, 𝐼୮୩
୰ୣୟ୪ = 1992.9 A and 𝐼୮୩

ୣୱ୲ = 2000 A. In Fig. 10(b), 

𝑡ୢ(୭)
୰ୣୟ୪ = 1971.5ns and 𝑡ୢ(୭)

ୣୱ୲ = 2001.25ns, 𝑡
୰ୣୟ୪ = 326.5ns and 

𝑡
ୣୱ୲ = 331ns, 𝑉୮୩

୰ୣୟ୪ = 964V and 𝑉୮୩
ୣୱ୲ = 950.5V. 

In order to make the experimental results more reliable, we 
conducted DPT result estimation experiments under all working 

conditions. The experimental performance of the proposed 
MAFGCN method tested on 40℃, 60℃, 80℃, 100℃, 125℃ and 
150℃ (average value of 216 working conditions at each Tc) is 
summarised in Table IV. However, MAFGCN is the first deep 
learning-based method for IGBT DPT waveform estimation so that 
we cannot compare with similar methods in other literature. 

D. Comparison Experiments 

Traditional behavioral models can also obtain IGBT DPT results 
through mathematical calculations to obtain dynamic electrical 
characteristic parameters. This section compares the estimation 
performance between the proposed method and a conventional 
IGBT behavior model. The dynamic behavior model is built by 
ANSYS Simplorer software according to the parameters given on 
the DIM1200FSS12-A076 datasheet provided by the manufacturer. 

We compare the complete DPT waveform estimation result of 
the IGBT batch DIM1200FSS12-A076 on the working condition 
Tc=150oC, VDC=600V, Ic=1000A, Rg=3.5Ω, Lp=120nH. 

 
(a) Turn-on transient 

TABLE IV 
PERFORMANCE OF THE PROPOSED METHOD TESTED ON TWO BATCH OF IGBTS (AVERAGE VALUE OF 216 WORKING CONDITIONS AT EACH TC) 

Tୡ 40℃ 60℃ 80℃ 
Batch DIM1200FSS12-A000 

Indexes MAE RMSE LE MAE RMSE LE MAE RMSE LE 
Vge 0.0264 0.0853 1.0015 0.0378 0.1632 1.0071 0.0419 0.0974 1.0546 
Vce 1.1511 1.9497 1.734e+12 0.9513 1.0927 3.134e+16 0.7641 1.3183 4.243e+8 
Ic 3.1633 5.1987 4.984e+19 2.9119 5.8146 4.745e+26 2.9373 6.9872 5.947e+28 

Eon/Eoff 0.0001 0.0003 1.0000 0.0002 0.0004 1.0000 0.0002 0.0004 1.0000 
Batch DIM1200FSS12-A076 

Vge 0.2742 0.8712 3.4521 0.0923 0.2743 1.8326 0.2043 0.2896 1.8362 
Vce 0.3342 0.9838 4.163e+4 1.9878 3.9473 8.723e+16 0.2746 1.9473 1.4375e+5 
Ic 2.2335 10.1221 3.778e+34 4.8122 10.7352 1.946e+32 2.7462 12.8364 1.743e+37 

Eon/Eoff 0.0003 0.0005 1.0000 0.0004 0.0005 1.0000 0.0004 0.0008 1.0000 
Tୡ 100℃ 125℃ 150℃ 

Batch DIM1200FSS12-A000 
Vge 0.0419 0.0812 1.0089 0.0412 0.1544 1.0103 0.0634 0.2177 1.0542 
Vce 1.2689 2.1723 2.342e+15 0.2234 1.4359 2.393e+8 0.2978 1.3927 9.235e+12 
Ic 7.1649 9.7883 8.813e+36 3.7581 7.2134 4.894e+28 0.4677 1.8354 6.783 e+14 

Eon/Eoff 0.0004 0.0005 1.0000 0.0004 0.0005 1.0000 0.0004 0.0006 1.0001 
Batch DIM1200FSS12-A076 

Vge 0.2001 0.3306 1.0510 0.0425 0.1693 1.0226 0.0854 0.2956 1.0879 
Vce 1.8469 4.0545 4.549e+19 1.5542 3.0467 1.521e+21 0.7127 4.0035 3.206e+22 
Ic 6.0917 11.9801 3.534e+37 5.0381 7.9205 3.431e+58 0.5312 2.8188 1.575e+25 

Eon/Eoff 0.0006 0.0008 1.0002 0.0170 0.0413 1.0008 0.0115 0.0349 1.0006 
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(b) Turn-off transient 

Fig. 11. Estimation performance between the proposed method and the 
conventional behavior model at the working condition Tc=150oC, VDC=600V, 
Ic=1000A, Rg=3.5Ω, Lp=120nH ((a) turn-on transient, (b) turn-off transient). 
 

As shown in Fig. 10, the deviation between DPT waveforms 
obtained by the well-configured behavior model and the actual 
measured values is significantly larger than that of the proposed 
method. The proposed method is a data-driven deep learning 
method, so it does not necessitate the creation of complex circuit 
models when used. Since the calculation of complex physical 
circuits is avoided, the pre-trained model could be applied only 
after a simple graph transfer process, thus significantly saving 
computation and deployment time. 

Compared with the conventional behavior model, the proposed 
method does not need to set and adjust many complicated 
simulation parameters, including device parameters and circuit 
parameters, to ensure that the simulation environment can reflect 
the conditions in actual applications, which is easier for users. If a 
detailed physical model is used to simulate the behavior of IGBT, 
including charge storage effects, carrier injection, temperature 
dependence, etc., the computation time is usually longer. For 
example, for simulation models that include coupling of multiple 
physics fields (electromagnetic, thermal, etc.), the computational 
load is particularly heavy and therefore requires more time. 
Enhancing the physical model's precision and lengthening the 
simulation duration will inherently extend the overall computation 
time. Furthermore, most behavior models and physical models 
require model parameter correction based on the actual DPT 
waveforms after the modeling is completed. The proposed method 
trains the model based on the actual DPT waveforms and does not 
require additional correction procedure. 

VI. CONCLUSION 

This paper proposes a novel DPT waveform result estimating 
method, referred to as MAFGCN. The MAFGCN 
comprehensively considers the correlation between each working 
condition to build a spatial graph structure and embeds DPT 
waveform data. This method also designs MAFN block connected 
to GCN to ensure that the model can capture excellent temporal 

feature representations and preform high accuracy. Through the 
above experimental analysis, the following conclusions can be 
drawn: 
1) This MAFGCN based on deep learning and graph neural 

network is accurate for IGBT DPT estimation. These reliable 
estimates can be used to calculate the dynamic electrical 
characteristics of the IGBT module. 

2) The estimation of the test datasets of the same and similar 
batches of IGBTs has high accuracy through graph transfer 
process. For IGBT batches with limited difference, the 
proposed method can still accurately estimate the correct 
DPT results (as shown in Table IV). 

3) The dynamic parameters 𝑡ୢ(୭୬) , 𝑡ୢ(୭) , 𝑡୰ , 𝑡 , 𝐼୮୩  and 𝑉୮୩ 
calculated using the DPT estimation results show high 
accuracy compared with real values. 

In the feature work, we will try to use the proposed MAFGCN 
with graph migration method to estimate other brands of IGBT 
module (e.g., Infineon) DPT results at all working condition with 
only DPT data at room temperature. In the case of the same graph 
structure, the proposed method has great potential. 
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