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A B S T R A C T   

The conditions giving rise to a uniform Rankine stress field involving straight stress characteristics in the soil 
behind a gravity retaining wall under pseudo-dynamic loading, are revisited. Considering combined gravitational 
and seismic body forces, exact closed-form solutions are derived for: (1) the coefficients of active and passive 
earth pressures, (2) the critical values of the five governing problem parameters required to generate the Rankine 
stress field i.e., wall inclination, wall roughness, backfill inclination, soil friction angle, and body force vector 
inclination. It is shown that the above parameters are not independent, as the critical value (termed “Rankine 
value” in this paper) of any of them can be derived as a function of the rest. It is further shown that when the 
critical wall roughness required to generate a Rankine stress field is smaller, in absolute terms, than the actual 
wall roughness, the generalized Rankine solution is conservative, overestimating active earth pressures and 
overestimating the passive, although it does not correspond to a limit state. When this condition is violated i.e., 
when the critical wall roughness is larger, in absolute terms, than the actual one, the trend reverses and the 
Rankine solution becomes both unconservative and not physically realizable. Further, if the Rankine wall 
roughness changes sign (i.e., turns negative for active conditions or positive for passive), the solution becomes 
even more conservative, yet implicitly corresponds to a kinematically unfeasible wall movement. A parametric 
investigation of these solutions is provided, with emphasis on practical situations and numerical examples, 
shedding light into the physics of the problem.   

1. Introduction 

The origins of modern earth pressure theory can be traced back to the 
pioneering works of Coulomb (1776) and Rankine (1857) [1,59], who 
founded two parallel schools of limit analysis, namely the kinematic and 
the stress approach [2–8]. Ancestor of today’s kinematic limit analysis 
methods is Coulomb’s limit equilibrium approach (as extended by sub-
sequent investigators, notably Müller-Breslau [9]) based on the equi-
librium of a triangular soil prism formed by two planar yield surfaces, 
Fig. 1: the soil-wall interface (inclination, ω and roughness, δw) and a 
planar yield surface in the soil mass (inclination unknown and rough-
ness, φ) emerging from the wall base, the inclination of which is opti-
mized to maximize or minimize the soil thrust on the wall depending on 
the limit state of interest (active or passive), Fig. 1a. Seeking an 
analytical solution without involving heuristic procedures such as those 
employed by Coulomb, Rankine [1] was the first to consider the limit 

stresses in the soil based on the principles of continuum mechanics i.e., 
by solving the pertinent differential equations of equilibrium in the 
backfill, while simultaneously satisfying the failure criterion and the 
stress boundary conditions. Using this approach and employing the 
so-called conjugate planes theorem, Rankine was able to solve the ide-
alised case of an infinite slope of cohesionless soil (unit weight γ, friction 
angle φ) and demonstrate that the soil thrust on any vertical plane is 
parallel to the soil surface having an inclination equal to the backfill 
inclination, β, Fig. 1b. This suggests that the Rankine solution for a 
vertical wall is limited to the case where the wall roughness is equal to 
the backfill inclination. However, the generalized problem treated by 
Coulomb’s method, involving a wall of arbitrary roughness δw and 
inclination ω, was not addressed by Rankine. The effect of wall rough-
ness in Rankine’s analysis was later investigated by several researchers 
including Saint-Venant [10], Levy [11] and Boussinesq [12] - see review 
by Heyman [4]. 
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Rankine’s efforts to simultaneously satisfy equilibrium and the fail-
ure criterion without considering compatibility of deformations, paved 
the way for the development of slip-line theory [3,11–16]. Due to 
inherent difficulties in integrating the relevant non-linear governing 
equations for frictional materials [2,4,17], only a handful of exact 
closed-form solutions exist for cases encompassing soil self-weight. 
These solutions are typically associated with straight stress character-
istics like those involved in the classical Rankine solution. Despite the 
idealised nature of these formulations, employing a uniform stress field 
in the backfill, associated with straight stress characteristics, to deter-
mine earth pressures is attractive as it greatly simplifies the analysis. In 
this context, Chu [18] extended the classical solution of Rankine to 
encompass inclined walls [19–22], while an extension pertaining to 
seismic conditions was later published by Iskander et al. [23]. Other 
approximate solutions for assessing seismic earth pressures using limit 
states and various elastoplastic methods have been proposed, among 
others, by Ebeling et al. [24], Kloukinas [25], Shamsabadi et al. [26], Xu 
et al. [27] and Conti & Caputo [58]. Various comparisons of the pre-
dictions of the methods against experimental measurements are avail-
able, including the studies by Giarlelis & Mylonakis [28] and Kloukinas 
et al. [29]. 

The classical Rankine solution considers the tractions on a vertical 
plane which act parallel to the soil surface. For a horizontal backfill, the 
tractions act horizontally; the active and passive Rankine earth pressure 
coefficients are then obtained from the familiar expressions Kγ = (1 ∓
sin φ)/(1 ∓ sin φ) or tan2 (45 ∓ φ/2), where the upper and lower signs 
correspond to active and passive conditions, respectively. 

For a backfill inclined at an angle β, the Rankine earth pressure co-
efficients are obtained by Eq. (1) [30] 

Kγ = cos β
cos β ∓

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos2 β − cos2 φ

√

cos β ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos2 β − cos2 φ

√ (1)  

where, again, the upper sign in the numerator and the denominator 
corresponds to active conditions and the lower sign to passive. 

The earth pressure coefficient derived by Chu [18] is provided by Eq. 
(2a) and the inclination of the soil thrust is specified by Eq. (2b) 

Kγ =
cos(β − ω)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + sin2 φ ∓ 2 sin2 φ cos θa,p

√

cos2 ω
(

cos β ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos2 β − cos2 φ

√ ) (2a)  

δa,p = tan− 1
[

sin φ cos θa,p

1 ∓ sin φ sin θa,p

]

(2b)  

where θa,p = sin− 1 [sinβ/sinφ] ∓ (β – 2ω), and the double sign has the 
same meaning as before. 

It is noted that the inclination of soil thrust on the wall, δa,p, in the 
above equations does not necessarily coincide with the actual roughness 
of the soil-wall interface δw (this is also true in the simple Rankine case 
δa,p = β that Eq. (2) reduces to for ω = 0) and renders the whole approach 
dubious. Similar, yet correct, solutions for pseudo-dynamic seismic 
thrusts on semi-gravity (L-shaped) cantilever walls have been derived by 
Evangelista et al. [31] and Kloukinas & Mylonakis [32], employing a 
pair of slip planes of roughness equal to the soil friction angle. The 
validity and limitations of the generalized Rankine solutions are dis-
cussed herein with emphasis on key new results including analytical 
solutions for the critical values of backfill inclination, amplitude of 
seismic body forces, and the soil friction angle required to induce 
Rankine conditions. Some advantages and limitations of these solutions 
are presented here for the first time, with the help of parametric studies. 

2. Generalized limit stress analysis 

Limit stresses in the backfill are determined based on the infinite 
slope assumption shown in Fig. 2, which is asymptotically exact at large 

Fig. 1. (a) Coulomb’s limit equilibrium wedge, (b) Rankine’s conjugate stress planes approach.  

Fig. 2. Infinite slope equilibrium (Zone A), for combined gravitational and 
seismic action. Further, the normal and shear stresses (σβ, τβ) acting parallel to 
the soil surface are determined as linear functions of depth, yielding a constant 
stress ratio (τβ/σβ) = tan (β + ψe), Eqs (3) and (4) . 
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distances from the wall [18,33–35]. Following the analysis presented in 
the above studies , the soil mass is assumed to be in a condition of limit 
equilibrium under the combined action of gravity and earthquake body 
forces with inclination ψe = ah/(1− av) (positive values pertaining to 
active conditions i.e., body forces pointing towards the wall). The same 
inclination is considered to also apply for the surcharge q, as a conve-
nient but not necessary assumption since there is no rotational similarity 
transformation associated with the analysis at hand, like the one used for 
the non-Rankine stresses in Mylonakis et al. [35]. The contact tractions 
acting on the vertical sides of the soil element of Figs. 1 and 2, are 
mutually cancelling due to symmetry, so that the body forces fh = A γ z 
ah, fv = A γ z (1 − av) and the corresponding force due the vertical 
surcharge fq = A/cosβ q (1 − av) are in equilibrium with the reactions N 
and T at the base of the soil element, A being the arbitrary width of the 
element, Fig. 2. 

σβ =
N

A/cos β
=

(

γz+
q

cos β

)

(1 − av)cos2 β cos(β+ψe) /(cos β cos ψe) (3)  

τβ =
T

A/cos β
=

(

γz+
q

cos β

)

(1 − av)cos2 β [tan β+ tan ψe] (4) 

The position of the stress point (σβ, τβ) is shown on the Mohr circles of 

stresses in Fig. 3 for both active and passive conditions, as well as the 
corresponding position of the poles and the inclination of the major 
principal plane. Based on the geometry of the Mohr circle (Fig. 3a), the 
contact stress σθ acting on an arbitrary plane inclined by an angle θ with 
respect to the vertical can be related to the known stress point (σβ, τβ) 
through the mean stress SA; the corresponding traction inclination 
(mobilised fiction) on this plane, δmθ, can also be calculated from the 
(τθ/σθ) ratio, as shown in Appendix B. These solutions are shown in Eqs. 
(5) and (6) below 

σθ = [1 − sin φ cos(Δ2θ − δmθ)]
/
[1+ sin φ cos(Δ1e + β+ψe)] σβ (5)  

tan δmθ = τθ / σθ = [sin φ cos(Δ2θ − δmθ)] / [1 − sin φ cos(Δ2θ − δmθ)] (6)  

In the above expressions, Δ1e = sin− 1[sin(β+ψe) /sin φ] and 
Δ2 = sin− 1(sin δmθ /sin φ) denote the auxiliary Caquot angles shown on 
the Mohr circle diagrams of Fig. 3 [17,36]. Also, the term Δ2 − δmθ in the 
above expressions can be replaced by the known quantity (Δ1e – β + ψe +

2θ) to simplify the analysis as shown in Mylonakis et al. [35]. 
Following the approaches available in literature, one can readily 

determine from the above stress fields the earth pressures on the wall 
plane, as well as the corresponding thrust inclination, treated as 

Fig. 3. Stress tensors near the backfill surface (Zona A) for active and passive conditions.  
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mobilised interface friction angles. This result, however, can be physi-
cally justified only in terms of a perfectly bonded interface, i.e. a static 
frictional mechanism which may not occur in practice. In other words, 
the soil-wall interface may instead turn into an actual sliding surface 
with peak shear resistance (friction angle δw) mobilised at lower strains 
relative to the friction angle φ of the backfill [37–39]. This is indeed the 
case, except for minor localization phenomena at the wall base, espe-
cially when rotational modes of failure are involved [37,40,41]. 

Moreover, the direction of the shear traction on the wall surface is 
governed by kinematic considerations that are not explicitly considered 
by stress solutions like the one at hand, and which are obviously 
different under active and passive conditions given the tendency of the 
backfill to move downward or upward, respectively, relative to the wall, 
Fig. 4. Evidence of the above can be found in the literature [37,40–45]. 
Evidently, contrary to common perception, stress solutions are not al-
ways independent of the kinematics of the problem and may require 
such information to make proper predictions [46]. 

The arising stress boundary condition according to the aforemen-
tioned physical restrictions enforces a boundary condition at the soil- 
wall interface of the form τw = σw tan δw, where σw and τw are the 
normal and the shear component of contact traction, respectively, and 
specify the position of the stress point on the Mohr circle, which is 
different for active and passive conditions, as evident in Fig. 5 [25,35]. 

Accordingly, the stress states arising from the two boundary condi-
tions are generally different unless the angle separating the two prin-
cipal planes in Zones A (Fig. 3) and B (Fig. 5) is zero. 

The above analysis yields the following solution for the normal 
traction on the wall 

σw = SB[1 − sin φ cos(Δ2 − δw)] (7)  

where δ = δw and Δ2 is the corresponding Caquot angle 

Δ2 = sin− 1(sin δw / sin φ) (7b) 

The inclination of the major principal plane from the horizontal is 
θ1B,α = (Δ2 – δw – 2 ω)/2, Fig. 5. In the general case, the principal planes 
and the corresponding stress characteristics in zones A and B, are 
separated by the angle θАВ given by Eq. (8) 

θAB = θB − θAe = [(Δ2 − δw) − (Δ1e − β) − 2ω − ψe] / 2 (8)  

where, as discussed earlier, 

Δ1e = sin− 1[sin(β+ψe) / sin φ] (8b)  

is a second Caquot angle pertaining to Zone A. 
In the special case at hand of a vanishing angle θAB (Rankine state), 

one obtains the condition 

(Δ2 – δw) – (Δ1e – β) – 2ω – ψe = 0 (9) 

Also, the overall seismic thrust on the wall can be obtained by 
integrating Eq. (5) along the surface of the wall to get 

P=

∫H/cos ω

0

p ds =
∫H/cos ω

0

σw

cos δw
ds (10) 

Introducing the change of variables (Fig. 6), 

z= h (1+ tan ω tan β) = h cos(ω − β)/[cos ω cos β] (11a)  

and noting that 

ds = dh /cos ω (11b)  

yields the following exact solution for the limit (active or passive) thrust 

PE =KqE(1 − av)qH +
1
2
KγE(1 − av)γH2 (12)  

where, 

KγE =
cos(ω − β) cos(β + ψe)

cos δw cos2 ω cos ψe

[
1 − sin φ cos(Δ2 − δw)

1 + sin φ cos(Δ1e + β + ψe)

]

(13)  

KqE =KγE
cos ω

cos(ω − β)
(14)  

are the corresponding earth pressure coefficients due to self-weight and 
surcharge. 

It is important to stress that Eqs. (13) and (14) are symmetric in the 
sense they can provide both active and passive limit states for proper 
values of the soil and interface friction angles φ and δw, as well as seismic 
action angle ψe (i.e., positive δw, φ, ψe for active conditions and negative 
δw, φ, ψe for passive). Further, for the Rankine case at hand the term (Δ2 
− δw) in the numerator of Eq. (13) can be replaced with (Δ1e – β + 2ω +
ψe) by means of Eq. (9), to simplify calculations. Similar formulations, 
for the gravitational case - without integrating the contact stresses, are 
given by Caquot & Kerisel [36], Costet & Sanglerat [47] and Soubra 
[48]. 

Alternative expressions have been derived by Chu [18] and Iskander 
et al. [23], which, however, are complicated and not symmetric with 
respect to active and passive conditions, involving square root terms that 
become indeterminate upon a change in sign of parameters δw, φ, and ψe. 

3. Parametric analysis of the generalized Rankine stress 
condition 

The Rankine condition in Eq. (9) can be satisfied by infinite combi-
nations of the five governing parameters φ, δw, ω, β and ψe. Among them 
are the familiar cases δw = ω = β = ψe = 0 (i.e., vertical smooth wall, 
horizontal backfill) and δw = β, ω = ψe = 0 (vertical rough wall of 
roughness equal to the slope inclination). It is also straightforward to 
solve Eq. (9) with respect to each of the above parameters as function of 
the others to get Eqs (15)–(19). 

ωR =
1
2
[(Δ2 − δw) − (Δ1e − β) − ψe] (15)  

δR = tan− 1
[

sin φ sin(Δ1e − β + ψe + 2ω)
1 − sin φ cos(Δ1e − β + ψe + 2ω)

]

(16)  

βR = tan− 1
[

sin φ sin(Δ2 − δw − 2ω − 2ψe)

1 − sin φ cos(Δ2 − δw − 2ω − 2ψe)

]

− ψe (17)  Fig. 4. Effect of kinematic conditions on the orientation of contact stresses for 
shear failure at the wall-soil interface (Zone B). [Positive notation shown fol-
lows the one adopted in this work.]. 
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ψeR = tan− 1
[

sin φ sin(Δ2 − δw − 2ω + 2β)
1 + sin φ cos(Δ2 − δw − 2ω + 2β)

]

− β (18)  

φ R=sin− 1

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin2δw +sin2(β+ψe) − 2sin δw sin(β+ψe)cos(δw − β+ψe +2ω)

√

sin(δw − β+ψe +2ω)

]

(19) 

It should be noted that Equation (15) results directly from Eq. (9), 
whereas derivation of Eqs. (16)–(19) requires some algebraic manipu-
lations provided in Appendix B. 

For purely gravitational loading (ψe = 0), the counterparts of Eqs. 

(15) and (16) can be found in the works of Levy [11], Saint-Venant [10], 
Considère [49], Caquot & Kerisel [36], Costet & Sanglerat [47] and Chu 
[18], whereas more complicated alternatives to Eq (16) have been 
derived by Evangelista et al. [31] and Iskander et al. [23]. Equations 
(17)–(19) were derived in the PhD dissertation of Kloukinas [25] and are 
presented here for the first time. 

Eq. (19) provides unique friction angle values φ that satisfy Eq. (9), 
except for some special cases where Eq. (19) becomes indeterminate and 
Eq. (9) is satisfied for all values of φ. Among these are the classical 
Rankine conditions (δw = ω = β = ψe = 0; δw = β, ω = ψe = 0), or the case 
where δw = β + ψe and ω = − ψe, which is an extension of Rankine’s 
conjugate plane theorem for the seismic case. It is worth noting that 
some of the above equations have been explored in the past under 
different forms. The first investigations of the generalized Rankine so-
lution were carried out in the 19th century by Saint Venant (1870), 
Considère [49] and Levy [11], who derived a simplified form of Eq. (15) 
and proposed that retaining walls should be designed with specific 
inclination so that the Rankine condition is met [4]. 

For the simpler case of gravitational loading, Eqs. (15) and (16) have 
been derived in a number of studies including Caquot & Kerisel [36], 
Costet & Sanglerat [47] and Chu [18]. As already mentioned, some of 
these solutions do not employ the predicted interface friction angles as 
actual (required) values, but merely as mobilised quantities on the 
surface of the wall - irrespective of the actual wall roughness δw , without 
even discussing the sign of the predicted interface friction angle [21]. 
Accordingly, these solutions may violate the failure criterion on the 
wall-soil interface and are often incompatible with the kinematics of the 
problem, especially under passive conditions [18]. 

The above observations can be demonstrated with the help of 
experimental data. To this end, Fig. 7 depicts results from the experi-
mental study of Fang et al. [50] for the active and passive thrusts 
developing on a vertical wall of roughness δw = 19.1◦ supporting a loose 
cohesionless backfill of friction angle φ = 30.9◦ for different backfill 
inclinations i (same as symbol β in this work). The experimental results 
are compared against the predictions of some classical formulations, 
including the Rankine solution under the assumption δw = i. The 
lower-bound type solution of Mylonakis et al. [35] has been included on 
the graphs for comparison. As evident from the plots, realistic Rankine 
conditions result only when the backfill inclination i is equal to the 
actual wall roughness δw, which corresponds to δ = i = δw = 19.1◦ and 
different directions for the active and passive case. At parameter com-
binations where the Rankine condition is satisfied, the predictions of all 
solutions not only coincide, but are also exact in the realm of limit 

Fig. 5. Active and passive conditions calculated from the stress tensor in the vicinity of the wall (Zone B). The arrows in bold denote the corresponding tractions on 
the wall. 

Fig. 6. Integration of contact stresses along the wall surface.  
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analysis, being in excellent agreement with the experimental measure-
ments [18,20]. This can be attributed to the development of straight 
stress characteristics in the backfill which define the Rankine stress 
state. For other points in the graphs, the stress characteristics are 
generally curved to satisfy the (incompatible) inclinations of the major 
principal planes close to the wall and the soil surface. Evidently, the 
Rankine solution is conservative for both active and passive conditions 
on these plots. 

Results for the critical wall inclination ωR based on Eq. (15) are 
depicted in Fig. 8 (plotted in terms of the ratio ωR/φ) for purely gravi-
tational loading (ψe = 0), as a function of the soil friction angle φ and 
different backfill inclinations β/φ. Wall roughness δw/φ = 1/2 is 
assumed in all plots. Apart from the special case of a vertical wall (ωR =

0) where classical Rankine conditions develop for δw = β, generalized 
Rankine conditions could be readily fulfilled in the active case for pos-
itive backfill inclinations (β > 0) and in the passive case for negative 
inclinations (β < 0). 

Otherwise, very large (unfeasible) wall inclinations would be 
required, especially in the passive case. Further, an increase in wall 
roughness (not shown here in the interest of space) would lead to an 
increase in critical wall inclination ωR for both active and passive con-
ditions. As visible in the graphs on the left side, for φ = 35◦ to 40ο the 
critical wall inclination for a horizontal backfill under purely gravita-
tional loading is on the order of 10◦ and 30◦ for active and passive 
conditions, respectively. 

Fig. 9 presents the same solution with the inclusion of earthquake 
acceleration ah = 0.2 g and two different wall roughness values, δ/φ = 1/ 
2 and 2/3. The results indicate a significant reduction in critical wall 
inclination ωR both for active and passive conditions, with the reduction 
being stronger for the passive case. An increase in wall roughness would, 
again, lead to an increase in critical wall inclination for both active and 
passive conditions. 

Results for the critical wall roughness δR under pure gravitational 
loading are presented on Table 1 for different backfill inclinations β, 
different wall inclinations ω, and different friction angles φ. Based on 
these results, the critical wall roughness coincides with the backfill 
inclination only when the wall is vertical (ω = 0). These results may lead 
to unfeasible roughness values that are incompatible with the kine-
matics of the problem which dictate the direction of shear tractions on 
the wall surface. For this reason, the negative and positive values ob-
tained for active and passive conditions respectively, are denoted with 
an asterisk because they correspond to kinematically inadmissible 
states. The specific physical constraint is often not acknowledged in the 

literature (e.g. Ref. [18]) where such values are provided without dis-
cussion. The influence of soil friction angle φ on wall roughness for in-
clined walls and a symmetrical condition between the ratios β/φ and 
ω/φ are also evident on Table 1. Finally, it appears that the Rankine 
condition is mostly feasible for positive wall inclinations, especially for 
the active case, while for the passive case the Rankine condition is un-
feasible for large positive values of ω and all physically realizable values 
of wall roughness. 

In Fig. 10, the effect of earthquake action on the critical wall 
roughness, δw, is examined for a horizontal acceleration ah = 0.2, for the 
same cases investigated in Table 1 and a vertical wall (ω = 0). Evidently, 
the critical wall roughness under earthquake action is not equal to the 
slope inclination β as in the classical Rankine solution, but increases for 
both active and passive conditions, approaching the limit value δw = φ 
for relatively steep backfills and high friction angles φ. Remarkably, the 
active Rankine state is feasible under earthquake action even for nega-
tive slope angles (β < 0), whereas the passive state might not be feasible 
for β > 0, as this would require positive values of δw which are not 
physically admissible for the specific limit state. 

The amplitude of seismic acceleration αh required to ensure a 
Rankine stress state in depicted in Fig. 11 for a vertical smooth wall (ω =
δw = 0), negative slope inclination (β < 0) for the active case and positive 
inclination (β > 0) for the passive. As evident from the graphs, αh values 
fall into a reasonable range only for the active case (up to 0.15g), 
whereas for the passive case extreme accelerations are needed (up to 2g), 
especially for steep and dense backfills. For opposite backfill inclinations 
(β > 0 for active and β < 0 for passive), the results indicate non-critical 
orientation of the seismic action, that is seismic action pointing towards 
the backfill in the active case and towards the wall in the passive. 

An additional parametric investigation is presented in Fig. 12, in 
terms of the critical wall roughness for different seismic accelerations 
and backfill inclinations. In accordance with the aforementioned ob-
servations, passive Rankine conditions are feasible for negative backfill 
inclinations (β < 0) with only minor influence of seismic acceleration 
level. On the other hand, wall inclination has a stronger effect on δR, 
which results in a wider range of roughness values. Active Rankine 
conditions are fulfilled for all backfill inclinations, even negative ones. 
For an inclined wall (ω = 20◦), the active Rankine condition requires 
high wall roughness corresponding to a δw/φ ratio of almost 1. 

Fig. 13 explores conservatism aspects of the generalized Rankine 
solution for a vertical wall of natural roughness δ = 0 or δ = 15◦

retaining a backfill of φ = 30◦ and variable inclination β, subjected to 
purely gravitational loading (ψe = 0). Both active and passive states are 

Fig. 7. Comparison of predictions for active and passive thrust, by various methods with experimental data by Fang et al. (S/H denotes horizontal wall movement 
over wall height.) 
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explored. The predictions of the general stress solution (a conservative 
formulation) by Mylonakis et al. [35] and the classical limit-equilibrium 
solution (an unconservative formulation) by Coulomb/Müller-Breslau, 
are included in the graphs for comparison, under the assumption δ = δw. 
Ten (10) slope inclinations β (equal to the critical Rankine wall rough-
ness δR) are considered, varying from − 25◦ to +25◦. The predictions of 
all three methods coincide for the correct slope inclination/wall 
roughness β (=δ) = δw and deviate away from that value, with the stress 
solution being always on the conservative side relative to the limit 

equilibrium solution. 
It should be noted that the predictions of the Rankine solution for the 

vertical wall and purely gravitational loading at hand are meaningful 
only when: (1) the mobilised roughness δR (or slope inclination β = δR) 
are positive for active conditions and negative for passive; (2) the 
mobilised roughness δR is smaller (or equal), in absolute terms, than the 
actual wall roughness δw. If both these conditions are met, the Rankine 
solution will be conservative (or exact if δR = δw) as evident on the upper 
right graph for 0 < δR < 15◦, the lower right graph for − 15◦ < δR < 0, 

Fig. 8. Variation of critical wall inclination under gravitational loading to fulfill the generalized Rankine condition as function of soil friction angle φ, for different 
backfill inclinations β; δw = φ/2. 
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and the graphs on the left side for δR = 0. Interestingly, for the two 
graphs on the left side the only valid roughness value is δR = 0, as for 
higher or lower values the solution will either violate the failure crite-
rion on the wall, or be unfeasible from a kinematic viewpoint. Evidently, 
outside its range of applicability, the generalized Rankine solution may 
be conservative or unconservative depending on the circumstances. 

It is also noted in passing that in the region beyond β = 15◦ where all 
methods seem to provide the same overall soil thrusts (upper right 
graph), the Rankine solution employs a higher backfill inclination 
(recall that β = δR), so the horizontal component of soil thrust drops 
(while the vertical component increases), which renders the Rankine 
solution gradually less conservative. This is further discussed in the 

Fig. 9. Variation of critical wall inclination to fulfill the generalized Rankine condition as function of friction angle φ, for different backfill inclinations β and 
horizontal earthquake action ah = 0.2, δw = φ/2 and 2φ/3. 
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numerical example in Appendix A. 
A graphical summary of the behavior of the generalized Rankine 

solution from the viewpoint of feasibility and conservatism is provided 
in Fig. 14. The sketch shows how the physical restrictions as to the ki-
nematics of the problem and the failure criterion on the soil-wall 
interface are affecting the conservatism of the solution and restricting 
its applicability. The following are worthy of note. 

(1) The Rankine solution would be exact in the realm of limit anal-
ysis, mobilising the full strength of the soil-wall interface (and 
thus inducing a limit state in the backfill), only when δR =+ δw or 
− δw for active and passive conditions, respectively.  

(2) The solution would remain meaningful when 0 < δR < +δw for 
active conditions and − δw < δR < 0 for passive (roughness points 
located within the base of the two large right triangles, Fig. 14). If 

these conditions are met, the solution is both physically realisable 
and conservative, and reaches a maximum level of conservatism 
for δR = 0 (white circle at triangles top, Fig. 14). Nevertheless, it 
won’t correspond to a true active or passive limit state, as the 
strength of the wall surface won’t be exhausted.  

(3) On the other hand, if the failure criterion on the wall is violated 
|δR| > |δw| but the thrust inclination has the proper sign (i.e. 
positive roughness larger than +δw or negative roughness smaller 
than − δw), the solution will turn unconservative and become 
most unconservative for |δR| = φ (white circles in small triangles, 
Fig. 14). In this range the solution will cease to be meaningful.  

(4) If the Rankine wall roughness changes sign i.e. turns negative for 
active conditions or positive for passive (points along the broken 
lines above the triangles top), the solution will become even more 
conservative, yet unfeasible from a kinematic viewpoint. 

Table 1 
Critical wall roughness δR/φ for active and passive conditions under gravitational loading.  

β/φ -½ -¼ 0 ¼ ½ 

ω/φ -½ 0 ½ -½ 0 ½ -½ 0 ½ -½ 0 ½ -½ 0 ½ 

col # {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} 

φο - 
Active 

25◦ -{15}  
(*) 

− 0.5  
(*) 

0.194 -{12}  
(*) 

¡0.25  
(*) 

0.452 -{9}  
(*) 

0 0.646 -{6}  
(*) 

0.25 0.795 -{3}  
(*) 

0.5 0.909 
30◦ 0.436 0.650 0.793 0.894 0.963 
35◦ 0.679 0.823 0.909 0.963 0.994 
40◦ 0.871 0.942 0.979 0.996 0.999 
45◦ 0.975 0.995 1.000 0.996 0.983 

φο - 
Passive 

25◦ − 0.216 − 0.5 − 0.750 -{12}  
(*) 

− 0.25 − 0.531 -{9}  
(*) 

0 − 0.294 -{6}  
(*) 

0.25  
(*) 

− 0.045 -{3}  
(*) 

0.5  
(*) 

-{1}  
(*) 30◦ − 0.179 − 0.782 − 0.565 − 0.330 − 0.082 

35◦ − 0.147 − 0.809 − 0.595 − 0.360 − 0.113 
40◦ − 0.119 − 0.834 − 0.621 − 0.387 − 0.140 
45◦ − 0.094 − 0.856 − 0.644 − 0.410 − 0.163  

(*) Unfeasible. 

Fig. 10. Variation of critical wall roughness to fulfill the generalized Rankine condition, as function of friction angle φ, for different backfill inclinations β, vertical 
wall and horizontal earthquake action ah = 0.2. 
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Fig. 11. Variation of critical earthquake acceleration to fulfill the generalized Rankine condition, as function of backfill inclination and friction angle φ, for a vertical 
smooth wall (δw = 0). 

Fig. 12. Variation of critical wall roughness to fulfill the generalized active Rankine condition, as function of backfill inclination and horizontal earthquake ac-
celeration for friction angle φ = 35ο and wall inclination ω = 0 and 20ο. 
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It should be noted that the different possibilities in the predictions of 
the generalized Rankine solution as to the critical values of wall 
roughness δR can be explained considering that the strain-strain re-
lations, displacement boundary conditions and compatibility of de-
formations are ignored in stress solutions. 

4. Application of Rankine theory on cantilever walls 

The aforementioned restrictions in the application of the generalized 
Rankine theory to conventional gravity walls disappear when the soil- 
wall interface is not part of the failure mechanism. This is the case 

Fig. 13. Investigation of the conservatism of the Rankine solution relative to two general stress and limit equilibrium solutions for active and passive states under 
purely gravitational loading and a vertical wall; ψe = 0, ω = 0, δw = 0 (left) and δw = 15◦ (right), φ = 30.◦

Fig. 14. Schematic of the behavior of the generalized Rankine solution in terms of conservatism (vertical axis) as a function of the relative values of the mobilised 
thrust inclination δR and the actual wall roughness δw (horizontal axis) for active and passive conditions. 
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with the popular L-shaped cantilever walls (or semi-gravity walls) where 
the stress characteristics from the Rankine stress field of the retained 
mass (Zone A) do not intersect the stem of the wall, so the sliding prism 
is formed entirely in the backfill (Fig. 15). To fulfil this requirement, the 
inclination of the β -characteristic ωβ simply needs to satisfy the geo-
metric requirement ωβ > ωwall [20,51]. The inclination of the β-char-
acteristic for seismic conditions can be determined either graphically 
from the Mohr circle of Fig. 3 or, alternatively, from Eq. (15) using δ = φ, 
to get 

ωβ =
π
4
−

φ
2
−

Δ1e − β
2

−
ψe

2
(20) 

The inclination ωβ naturally depends on the seismic angle ψe and 

tends to decrease with increasing acceleration, allowing application of 
the generalized Rankine theory even at walls with short heels that don’t 
satisfy this geometrical requirement under static conditions [31,32]. 

Following common practice, earth pressures are calculated on a 
computational plane in the soil mass, commonly called the “virtual wall 
back”. This can be any arbitrary plane inclined at an angle ω from the 
vertical, however, it is usually preferable to adopt the conventional 
vertical plane (ω = 0), for it leads to a simpler geometry and equations 
[20,51]. Of fundamental importance in the virtual back approach [20, 
52,53] is the proper traction inclination to be considered on this plane, 
for which different approaches have been proposed, including δ = β 
(roughness equal to slope inclination according to the classical Rankine 
solution), δ = δw (roughness equal to the actual soil-wall interface 

Fig. 15. (a) Extreme values of the inclination δ(ω) = ±φ on the boundaries of the Rankine failure prism, and (b) Variation of the dimensionless inclination δ(ω)/ φ 
across the Rankine prism (from ωβ to ωa), for friction angles φ ranging from 25ο to 45ο. 
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roughness) and δ = φ (roughness equal to soil friction angle following a 
“soil-to-soil” friction assumption). Based on the generalized Rankine 
solution presented herein, the mobilised traction inclination on any 
arbitrary plane ω can be easily calculated from Eq. (6). 

The variation of δ(ω) across the whole Rankine wedge (from ωβ to 
ωa) is depicted in Fig. 15, for friction angles varying from 25◦ to 45◦. 
Naturally δ(ω) is bounded between –φ and + φ, which are the maximum 
possible mobilised values along the a- and β-characteristics. Using this 
mobilised value δ(ω) in Eq. (5), the earth pressure on any selected plane 
can be established. Despite the variation of the amplitudes of active 
thrusts PA and obliquities δ(ω) depending on the selection of plane ω, it 
can be shown that all selections lead to statically equivalent systems, 
provided that the body forces in the corresponding hatched soil prism in 
Fig. 15 are accounted for [32]. 

Further, it can be shown that using the mobilised roughness δ(ω) on 
any selected plane, the predictions of the generalized Rankine solution 
and the M − O formula will coincide, which is consistent with obser-
vations from studies on gravitational loading [18,20]. 

Finally, on the classical “vertical virtual back” approach, the thrust 
inclination would be equal to the slope angle β for purely gravitational 
loading (i.e., the classical Rankine solution) and would increase with 
increasing seismic acceleration up to a maximum value δ = φ when the 
β-characteristic becomes vertical (ωβ = 0). This increase in thrust 
inclination would be beneficial for wall stability due to the associated 
decrease in driving forces and increase in resisting ones [29]. 

5. Conclusions 

The theoretical basis of a generalized Rankine condition in a retained 
frictional soil with inclined surface behind an inclined, rough retaining 
wall has been examined, leading to the following conclusions.  

1) Rankine stress fields can be induced for any combination of the 
five governing parameters (φ, δw, ω, β, ψe) matching the stress 
boundary conditions of the problem, beyond the classical 
Rankine cases known in literature (i.e., δw = ω = β = ψe = 0 and 
δw = β, ω = ψe = 0). It was shown that this condition can arise for 
infinite combinations of geometric and material parameters 
obeying a transcendental equation in friction angle φ, wall 
inclination ω, backfill slope β, wall roughness δw and body force 
inclination ψe [Eqs. (9) and (15)]. The above parameters are not 
independent, as the critical value ( referred herein to as the 
“Rankine value”) for any of these can be derived as a function of 
the rest.  

2) Exact closed form solutions were derived, for the first time, for 
the case of seismic loading, providing the critical value of each 
parameter to fulfil the Rankine condition as a function of the rest 
[Eqs. (16)–(19)]. It was shown that a generalized Rankine stress 
condition can be satisfied for a wide range of parameters in the 
active case, but is less feasible for the passive. There are also 
conditions where these relations yield values which are not 
acceptable from a physical/kinematic viewpoint.  

3) For the generalized Rankine condition at hand, an exact plasticity 
solution was derived for the problem of soil with self-weight, 
which yields straight stress characteristics in the backfill. How-
ever, this solution is valid only for the special cases described by 
Eqs. (9) and (15)-(19) and cannot be used unconditionally as an 
earth pressure predictor. From this perspective, the various 
Rankine formulas proposed in the literature may violate the 
failure criterion at the soil-wall interface and, in some cases, even 
the problem kinematics.  

4) Regarding the effect of wall roughness, the solution is physically 
meaningful only when 0 < δR < +δw for active conditions and 

− δw < δR < 0 for passive, as show in Fig. 14. If these conditions 
are met, the solution will be exact for δw = δR (corresponding to a 
true limit state) and conservative for |δR |< |δw| (without refer-
ring to true a limit state as the strength of the soil-wall interface 
won’t be exhausted). The maximum level of conservatism will be 
reached for δR = 0.  

(5) On the other hand, if the failure criterion on the wall surface is 
violated but the thrust inclination has the proper sign (i.e. posi-
tive roughness larger than +δw or negative roughness smaller 
than − δw), the solution will turn unconservative and become 
most unconservative as |δR| approaches φ. In this range the so-
lution would cease to be meaningful.  

(6) Further, if the sign of the thrust inclination is violated (i.e., turns 
negative for active conditions or positive for passive), but the 
failure criterion is not violated (i.e., |δR| < |δw|), the solution will 
further increase in conservatism but, again, become unfeasible 
from a kinematic viewpoint. 

(7) The different possibilities as to the values of critical wall rough-
ness δR can be explained considering that the strain-strain re-
lations, displacement boundary conditions and compatibility of 
deformations are ignored in deriving stress solutions like the one 
at hand.  

(8) In case of semi-gravity cantilever retaining walls, the Rankine 
solution can be widely applied, especially under seismic action. 
Using the Rankine solution, the popular “vertical virtual back” 
approach was modified by means of an acceleration-dependent 
soil thrust inclination. This was shown to be beneficial for the 
stability of the soil-wall system, reducing the horizontal compo-
nent and increasing the vertical component of soil thrust under 
increasing seismic acceleration. More information on this type of 
analysis is provided in Kloukinas and Mylonakis [32]. 

As a final remark, it is fair to mention that for cases where SSI and 
site effects are important (e.g. flexible walls, rigid basement walls, 
propped walls, deep soil deposits), more recent approaches such as the 
kinematic theory of earth pressures [54–57] that relate earth pressures 
to relative soil-wall movements, have started being used instead of the 
traditional limit state solutions. Discussing these methods lies beyond 
the scope of this paper. 
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Appendix A. Application Example 

Active and passive earth pressures are computed for a number of practical cases using the generalized Rankine assumption against the general 
stress solution by Mylonakis et al. [35]. 

Considering the example adopted in Mylonakis et al. [35] and Powrie [8] - a gravity wall of inclination ω = 5ο retaining an inclined dry, cohe-
sionless backfill with φ = 30ο and β = 15ο, subjected to horizontal seismic acceleration ah = 0.2, and vertical acceleration av = 0. The physical 
interface roughness of the wall is δw = 20ο ( = 2 /3φ), a common design recommendation for concrete-soil interfaces. 

A.1 Active limit state 

Considering positive horizontal acceleration ah = 0.2 (i.e. pointing towards the wall) and av = 0.  

- The general stress solution by Mylonakis et al. [35] predicts an active pressure coefficient Ka = 0.816, which can be decomposed into a horizontal 
component Kah = 0.740 and a vertical component Kav = 0.345.  

- The Rankine solution yields δR = 26.7ο (Eq. (16)) and Ka = 0.846 (Eq. (13)); the latter can be decomposed into a horizontal component Kah = 0.696 
and a vertical Kav = 0.480. 

The following observations are worthy of note: First, the critical Rankine wall roughness of 26.7◦ is higher than the physical friction angle of the 
interface of 20◦. Even though the overall earth pressure is higher relative to the general solution (which implies a conservative prediction), due to the 
increased wall roughness the horizontal component drops and the vertical rises, which makes the specific Rankine solution less conservative than the 
general stress solution. Second, for L-shaped cantilever walls, the Rankine solution would be suitable, without any loss of accuracy or violation of a 
strength criterion, as shown by Kloukinas & Mylonakis [32]. Third, if one attempts to verify the value δR = 26.7ο predicted from Eq. (16), it is evident 
that Eq. (9) can be satisfied only by the modified value − π + δR. This means that in some cases, deriving the solution requires considering trigo-
nometric roots of the inverse tangent in the form ±nπ + δR,n = 0,1,2… 

Considering active conditions under purely gravitational loading (ah = av = 0).  

- The general stress solution by Mylonakis et al. [35] predicts and active pressure coefficient Ka = 0.422, which can be decomposed into a horizontal 
component Kah = 0.382 and a vertical component Kav = 0.178.  

- On the other hand, the Rankine solution yields δR = 21.8ο (Eq. (16)) and Ka = 0.423 (Eq. (13)); the latter value can be decomposed into a horizontal 
component Kah = 0.377 and a vertical Kav = 0.191. 

The following observations are worthy of note: First, in this case the mobilised wall roughness of 21.8◦ also exceeds the natural wall roughness of 
20◦, but the violation is minor. Second, the Rankine solution is still less conservative relative to the full stress solution. 

A.2 Passive limit state 

Considering negative horizontal acceleration ah = − 0.2 (i.e. pointing towards the backfill) and av = 0.  

- The general stress solution by Mylonakis et al. [35] predicts a passive pressure coefficient Kp = 6.31.  
- The Rankine solution predicts δR = +7.85ο (Eq. (16)) and Kp = 2.97 (Eq. (13)). 

The following observations are worthy of note: First, the critical wall roughness of 7.85◦ is positive and smaller than the actual value of 20◦. This 
suggests that it does not violate the failure criterion at the interface, but it is not physically realizable as it violates the kinematics of the problem which 
requires a negative roughness. Second, the Rankine solution is significantly more conservative relative to the full stress solution. 

Considering passive conditions under purely gravitational loading (ah = av = 0).  

- The general stress solution by Mylonakis et al. [35] predicts a passive pressure coefficient Kp = 6.55.  
- The Rankine solution yields δR = +11.87ο (Eq. (16)) and Kp = 2.65 (Eq. (13)). 

The observations for the case with earthquake loading still hold (notably the violation of the problem kinematics ), but overall the solution did not 
change appreciably relative to the seismic case, since passive pressures are less sensitive to seismic excitation. 

A.3 Alternative configuration for purely gravitational loading 

Considering a problem similar to the previous one, but with horizontal backfill β = 0ο and the rest of parameters remaining the same, suffices to 
demonstrate the importance of different values of wall roughness δR. 

For an active limit state:  

- The general stress solution by Mylonakis et al. [35] predicts an active pressure coefficient Ka = 0.337, which can be decomposed int a horizontal 
component Kah = 0.305 and a vertical component Kav = 0.142.  

- The Rankine solution yields δR = 9.71ο (Eq. (16)) and Ka = 0.345 (Eq. (13)), which can be decomposed into Kah = 0.333 and Kav = 0.09. 

The following observations are worthy of note: First, the mobilised wall roughness of 9.71◦ is positive and smaller than the physical value of 20◦, 
which suggests that the Rankine solution does not violate the kinematics of the problem. Second, the Rankine solution is clearly conservative in this 
case, as it predicts higher pressures overall, plus higher horizontal and lower vertical components. 

For a passive limit state. 
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- The general stress solution by Mylonakis et al. [35] predicts a passive pressure coefficient Kp = 4.47.  
- The Rankine solution yields δR = − 3.33ο (Eq. (16)) and Kp = 3.00 (Eq. (13)). 

The following observations are worthy of note: First, the mobilised wall roughness of − 3.33◦ is negative and smaller, in absolute terms, than the 
physical value of 20◦, which suggests that the Rankine solution, again, does not violate the kinematics of the problem. Second, the Rankine solution is 
still conservative, but its predictions are closer to those of the general stress solution, because the Rankine condition is physically realizable. 

Appendix B. Derivation of Equations (16) to (18) 

B.1 Derivation of Eq. (16) – Critical wall roughness  

⁃ From the active stress tensor shown in Fig. 5: 

tan δR =
τw

σw
=

R sin(Δ2 − δw)

S − R cos(Δ2 − δw)
=

sin φ sin(Δ1e − β + ψe + 2ω)

1 − sin φ cos(Δ1e − β + ψe + 2ω) (B-1)    

⁃ Alternative derivation, from Eq. (9): 

Δ2 = δw + Δ1e − β + ψe + 2ω (B-2)  

sin δw

sin φ
= sin

⎛

⎝δw +Δ1e − β + ψe + 2ω
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

θ

⎞

⎠= cos δw sin θ + sin δw cos θ (B-3)  

tan δw = sin φ sin θ + tan δw sin φ cos θ =
sin φ sin θ

1 − sin φ cos θ
(B-4)  

B.2 Derivation of Eqs. (17) and (18) – Critical slope inclination & critical seismic angle:  

⁃ From the stress tensor in Fig. 3a, shown in the Figure below 

Fig. B1. Stress tensor near the backfill surface (Zona A) for active conditions.  

tan(βR +ψe)=
CC′

OC′ =
R sin(Δ1e − β − ψe)

S − R cos(Δ1e − β − ψe)
=

=
sin φ sin(Δ2 − δw − 2ω − 2ψe)

1 − sin φ cos(Δ2 − δw − 2ω − 2ψe)
(B-5)  

and 

tan(β+ψeR)=
BB′

OB′=
R sin(Δ1e + β + ψe)

S + R cos(Δ1e + β + ψe)
=

=
sin φ sin(Δ2 − δw − 2ω + 2β)

1 + sin φ cos(Δ2 − δw − 2ω + 2β)
(B-6)   
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⁃ Alternative derivation, from Eq. (9): 

Δ1e = β + Δ2 − δw − 2ω − ψe (B-7)  

sin(β + ψe)

sin φ
= sin

⎛

⎝β+ψe +Δ2 − δw − 2ω − 2ψe⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
θ

⎞

⎠→  

tan(β+ψe)=
sin φ sin θ

1 − sin φ cos θ
(B-8)  

or 

sin(β + ψe)

sin φ
= sin

⎛

⎝ − (β+ψe)+Δ2 − δw − 2ω + 2β
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

θ

⎞

⎠→  

tan(β+ψe)=
sin φ sin θ

1 + sin φ cos θ
(B-9)  

B.3 Derivation of Eq. (19) – Critical soil friction angle  

⁃ From Eq. (9): 

Δ2 − Δ1e = δw − β + ψe + 2ω
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

θ

(B-10) 

Using the trigonometric identity: 

sin− 1 a − sin− 1 b= sin− 1
(

b
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − a2

√
− a

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − b2

√ )
(B-11) 

we get 

sin δw

sin φ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

[
sin(β + ψe)

sin φ

]2
√

−
sin(β + ψe)

sin φ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

[
sin δw

sin φ

]2
√

= sin(θ) (B-12) 

Solving the equation with respect to sinφ, we obtain 

sin φ=
1

sin θ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2δw + sin2(β + ψe) − 2 sin δw sin(β + ψe)cos θ
√

(B-13)  
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pourrait les ramener à leur premier état. C R Acad Sci Paris 1870;70:473–80 
[Reprinted (1871) J Math Pures Appl 16:308–316]. 
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List of Main Symbols 

A: width of soil element 
ah, av: horizontal and vertical pseudo-static seismic acceleration 
fh, fv: horizontal and vertical body forces in the soil element 
fq: vertical force on the soil element due to surcharge 
KγE ,KqE: seismic earth pressure coefficients due to self-weight & surcharge 
N, T: reactions at the base of the soil element 
PE: overall seismic thrust on the wall 
q: surcharge on backfill surface 
SA: mean stress (centre of Mohr circle) 
β, βR: backfill inclination; critical value to satisfy Rankine condition 
γ: soil unit weight 
δw, δR: wall roughness; critical value to satisfy Rankine condition 
δmθ: traction inclination (“mobilised fiction”) on arbitrary plane in the soil 
Δ1e ,Δ2: auxiliary Caquot angles 
θ1B,α: inclination of major principal plane from the horizontal 
θАВ: angle separating zones A and B 
σβ, τβ: normal and shear stresses acting parallel to soil surface 
σθ, τθ: normal and shear stresses acting parallel to an arbitrary plane 
σw, τw: normal and shear component of soil-wall contact traction 
φ, φR: friction angle; critical value to satisfy Rankine condition 
ψe, ψeR: inclination of combined gravitational/earthquake body force; critical value to 

satisfy Rankine condition 
ω, ωR: wall inclination; critical value to satisfy the Rankine condition 
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