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Abstract—This paper presents parametric model order reduc-
tion (pMOR) by the Lagrange approach of matrix interpolation
for the thermal-mechanical and reliability study of a power
electronics module (PEM) with nonlinear behaviours. Most pre-
vious research in model order reduction (MOR) studies reports
thermal-mechanical simulations using a sequentially coupled
method. In this research, a direct-coupled thermal-mechanical
analysis, which simultaneously solves the thermal and structural
governing equations, has been used to obtain thermal and defor-
mation results. Furthermore, for pMOR, the linear approach
of matrix interpolation is limited to linear changes between
sampled-parametric points. Hence, a new way of interpolating
system matrices using the Lagrange interpolation method has
been adopted to implement the matrix interpolation efficiently.
The parametric reduced-order model (pROM) solution by the
Lagrange approach of matrix interpolation agrees well with the
full-order model (FOM) and takes similar computational time as
the linear (bi-linear) approach of matrix interpolation. pROM
simulations offer up to 85.5% reduction in computational time.

Index Terms—Finite Element Method, Thermal-Mechanical
Analysis, Power Electronics Module, Reliability Assessment,
Parametric Model Order Reduction.

I. INTRODUCTION

New advanced technologies in industries, e.g., space & de-
fence, energy, renewable energies and transportation, introduce
complex and expensive projects to engineers and scientists.
Reliability analysis is one of the most crucial factors of these
technologies in keeping them safe and operational. Luckily,
mathematical models can simulate the physical behaviours
of domains and provide in-depth data for analyses and de-
signs. Engineering sciences and their derived PDEs (partial
differential equations) are capable of successfully describing
physical behaviours of systems. One of the most widely used
computational methods to solve PDEs is FEM/FEA (finite
element method/analysis). For FEM computation, PDEs are
discretised to algebraic equations via approximate unknown
variables, which have complex and notably high dimensional
systems of differential equations [1]. FEM provides excellent
prediction, but in terms of simulating large-scale models or
design points explorations, the computational time requirement
is challenging, which is why model order reduction (MOR) is
vital. In present literature, Krylov subspace-based MOR meth-
ods have been commonly used as they are “semi-automatic”
compared to the Modal truncation method, a classic reduced
order modelling method [2, 3].

Thermal behaviours of electric systems can cause per-
formance degradation and reliability issues. Thermoelastic
behaviour is one of the critical causes of these systems’ com-
ponent deterioration. Therefore, reliability assessment based
on thermal-mechanical analysis is a crucial subject of study.
Previously, Eblen [4] carried out a coupled thermomechanical
analysis-based reliability study of electronics components with
the help of FEM and CARES, a computing tool for reliabil-
ity assessments. Thermomechanical analysis of an electronic
package was presented by Codecasa et al. [5], focusing
on reducing computing time with TRIC, a projection-based
solver. Coupled thermomechanical analysis has been extended
to electrical-thermal-mechanical analysis to study an electrical
contact site by Shen and Ke [6].

Thermal analysis with MOR techniques is also helpful in
reducing computing time for reliability assessments. Krylov
subspace-based MOR techniques have been utilised for ther-
mal analysis of an electric converter assembly by Liu et
al. [7]. Thermal boundary condition independency of Krylov
subspace-based reduced order modelling approach has been
examined for thermal and coupled thermal analysis by Rogié
et al. [8] and Codecasa et al. [9, 10].

Reduced order modelling for coupled problems is highly
desirable due to the complexity of systems. Choi et al. [11]
used Krylov subspace-based MOR technique to achieve a
coupled thermal-mechanical ROM (reduced order model) of
a micro-resonator. Rajaguru et al. [12] examined electri-
cal loading in a PEM structure using ROMs built with
Krylov subspace-based MOR techniques. A coupled electrical-
thermal-mechanical model of a MEMS microgripper was
studied by Binion and Chen [13], exploring several MOR
techniques.

Parametric modelling is crucial for design point explo-
rations and optimisations, and the parametric reduced order
model (pROM) presents an appropriate solution to over-
come computational time requirement issues that arise during
parametric modelling. Bissuel et al. [14] surveyed numerous
thermal models of electronic boards to optimise the device by
building pROM based on the modal approach of MOR. Baur
et al. [15] demonstrated parameterisation of the physical prop-
erties of a micro-thruster through various pMOR (parametric
model order reduction) approaches in its frequency response
investigation. Feng et al. [16] have developed electrical and
coupled electrothermal pROMs to enhance the geometric
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parameters of a nanoelectronics structure. A superposition
principle-based pMOR approach has been used by ter Maten et
al. [17] to change several variables of coupled electromagnetic-
thermal models of electronic devices. Bouhedma et al. [18]
built a Krylov subspace-based pROM for a piezoelectric en-
ergy harvester to modify the physical dimensions of the model.
Schütz et al. [19] looked at several ROMs of a micro-actuator
to transform its magnetostatic variables. An optimised model
of a miniaturised thermoelectric generator has been created by
Yuan et al. [20] exercising multiple pMOR methodologies.

Considering nonlinear behaviours in a model is a central
part of an analysis as it provides in-depth data, and building
a nonlinear ROM is advantageous as nonlinear computation
requires relatively more time. Scognamillo et al. [21] exercised
a MOR code, FANTASTIC, to evaluate the nonlinear thermal
activities of a coupled electrothermal PEM model. A multi-
physical ROM of a piezoelectric actuator considering nonlin-
ear inputs was achieved, through Krylov subspace-based MOR
method, by Schütz et al. [22]. In a recent investigation [23],
the temperature-dependent coefficient of thermal expansion
(CTE) of the wire material of a PEM has been parametrised
in direct coupled thermal-mechanical parametric reduced order
modelling.

The sequential coupling method has been widely exer-
cised in most afore-mentioned studies for thermal-mechanical
ROMs. Direct coupled thermal-mechanical analyses offer
more sensible and precise insights into systems and should be
considered in reduced-order modelling. The direct coupling
method, which concurrently solves thermal and structural
equations, has been utilised in this work for the thermo-
mechanical ROM. Temperature-dependent material properties
have been varied here for design point exploration, as prior
pMOR studies only focused on changing constant model
parameters. Nonlinear plasticity behaviour is also evaluated for
the wire material of the PEM structure. The matrix interpola-
tion method has been expanded to a new way of interpolating
matrices, based on Lagrange interpolation, to create the pROM
with a Krylov subspace-based pMOR approach for the current
analysis.

II. PROBLEM FORMULATION

A. Parametric Full Order Model (pFOM)

The state-space representation of the parametric full-order
model (pFOM) is stated as the followings [20, 24]:

E(pi)ẋ(pi, t) = A(pi)x(pi, t) +B(pi)u(pi, t)
y(pi, t) = C(pi)x(pi, t)

(1)

E(pi),A(pi) ∈ RN×N are parametric point (pi) dependent
system matrices, with B(pi) ∈ RN×M and C(pi) ∈ RP×N

representing input and output matrices. u(pi, t) ∈ RM and
y(pi, t) ∈ P are parametric point (pi) and time (t) dependent
inputs and outputs of the model together with x(pi, t) ∈ N,
which defines the states. pi is the vector of model parametric
points for design point explorations with i = 0, 1, . . . k, and k
identifies the total parametric points.

B. Projection-based Model Order Reduction (MOR)

The state-space representation of the full-order model
(FOM), which is the non-parametric-point-dependent form of
the model shown in (1), is stated as the followings [20, 24]:

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(2)

E,A ∈ RN×N are system matrices, with B ∈ RN×M and
C ∈ RP×N representing input and output matrices, they are
parametric point (pi) independent. u(t) ∈ RM and y(t) ∈ P
are only time (t) dependent inputs and outputs of the model
together with x ∈ RN , which defines the states. The order of
the model, N ∈ N, is significantly high.

The reduced order model (ROM) of the system expressed
in (2) can be specified as follows [20, 24]:

Erẋr(t) = Arxr(t) +Brur(t)
yr(t) = Crxr(t)

(3)

The matrices in the reduced model, established in (3),
are obtained by the following operations: Er = V TEV ,
Ar = V TAV , Br = V TB and Cr = CV , utilising
PRIMA [25, 26], a Krylov subspace-based MOR procedure.
Er,Ar ∈ Rq×q , B ∈ Rq×m, and C ∈ Rp×q have incredibly
lower dimensions, q ≪ N , as they are transformed via the
projection matrix V ∈ RN×q . The transfer function of the
FOM in (2) is used to obtain the projection matrix (V ), and
then the transfer function of the ROM in (3) is determined.
The full-order and reduced-order models’ transfer functions
are expressed as the followings [25, 26]:

Y (s) = C(sE −A)−1B (4)

Yr(s) = Cr(sEr −Ar)
−1Br (5)

C. Interpolation of Sparse Matrices

Linear matrix interpolation of the system’s sparse matrices
in (2), described by X = E,A,B, can be utilised to construct
a state-space system in (1) as the following [24, 27]:

X(pi) = X(p0) + ω(pi) [X(pk)−X(p0)] (6)

The values of weighting functions, ω(pi), are determined
through the linear interpolation method. The bi-linear (or
multilinear) approach, capable of sampling more than two
parametric points, has been exercised previously for a study
to implement matrix interpolation [23]. For this study, i =
0, 1, ..., k, where k = 6. The implemented bi-linear matrix
interpolation method can be expressed as the followings [23]:

X(pi=0,1,2,3) = X(p0) + ω(pi)
[
X(p k

2
)−X(p0)

]
X(pi=4,5,6) = X(p k

2
) + ω(pi)

[
X(pk)−X(p k

2
)
] (7)

A new way of matrix interpolation, based on the Lagrange
method, has been applied then as the following:

X(pi) = ω0(pi)X(p0) + ω k
2
(pi)X(p k

2
) + ωkX(pk)

(8)



D. Parametric Reduced Order Model (pROM)

The interpolated matrices illustrated in (7) and (8) and
the MOR method outlined in (3) have been utilised to create
pROMs. The pROM can be written as the followings [20]:

Er(pi)ẋr(pi, t) = Ar(pi)xr(pi, t) +Br(pi)ur(pi, t)
yr(pi, t) = Cr(pi)xr(pi, t)

(9)
The pROM in (9) has been solved by the generalized trape-
zoidal rule (GTR) [28, 29].

E. Parametric Thermal-Mechanical Model

The coupled thermal-mechanical model considered for
this analysis is a second-order system; this is attained using
FEM discretisation. The parametric-point-dependent discre-
tised thermal-mechanical model is stated in the following
forms [29, 30]:

M(pi)z̈(pi, t) +D(pi)ż(pi, t) +K(pi)z(pi, t)
= G(pi)u(pi, t)

y(pi, t) = L(pi)z(pi, t)
(10)

M(pi),D(pi),K(pi) ∈ Rn×n signify mass, damping and
stiffness matrices, where 2n = N , with G(pi) ∈ Rn×M

and L(pi) ∈ RP×n representing input and output matrices.
u(pi, t) ∈ RM and y(pi, t) ∈ RP define the inputs and
outputs of the model, with z(pi, t) ∈ Rn depicting states.
In general, matrices are described as the followings [29]:

M =

[
Ms 0
0 0

]
,D =

[
Ds 0
Dtu Dt

]
,K =

[
Ks Kut

0 Kt

]
,

G =

[
F a

Q

]
, z̈ =

[
z̈ut
T̈

]
, ż =

[
żut
Ṫ

]
, z =

[
zut
T

]
(11)

with,
Kt = Ktb +Ktc,F a = F nd + F pr + F ac,
Q = Qnd +Qg +Qc (12)

Ms denotes structural mass matrix. Ds, Dtu and Dt cor-
respond to structural and thermoelastic damping and thermal-
specific heat matrices, respectively. Ks, Ktu and Kt stand for
structural and thermoelastic stiffness and thermal conductivity
matrices, accordingly, while Ktb and Ktc indicate thermal
conductivity matrices of material and convection surfaces. F a

signifies structural (mechanical) load vectors, with F nd, F pr

and F ac describing nodal force and pressure load vectors and
force vectors caused by acceleration effects correspondingly.
Q represents the thermal load vector, whilst Qnd, Qc and
Qg define nodal heat flow rate and convection surface vectors
and heat generation rate vector without Joule heating, in that
order. zut and T symbolise potential displacement and thermal
vectors.

The state space model, presented in (1), can be formed by
transforming the thermal-mechanical model, explained in (10),
as the followings [30]:[

F 0
0 M

] [
ż
z̈

]
=

[
0 F

−K −D

] [
z
ż

]
+

[
0
G

]
u

y =
[
L 0

] [z
ż

] (13)

with,
E =

[
F 0
0 M

]
,A =

[
0 F

−K −D

]
,B =

[
0
G

]
,

C =
[
L 0

]
, ẋ =

[
ż
z̈

]
,x =

[
z
ż

]
(14)

F has to be non-singular here. F = In is assumed, for the
presented system, with In as an n× n identity matrix.

III. POWER ELECTRONICS MODULE (PEM)

For this analysis, we focused on a 2D-plane model of a
PEM to explore its thermal-mechanical behaviours for a set
of parameteric points. This PEM has SiC as semiconductors.
The physical dimensions of the PEM structure and boundary
conditions set for the direct-coupled analysis are described
in Fig. 1. For the model built in ANSYS, Al (alloy) has
been assumed as the wire material, and the properties of this
material will be parametrised in this pMOR study.

A. FEM Model

In the FEM model, a direct coupled transient thermal-
mechanical analysis has been exercised for the present inves-
tigation. The SiC bodies of the model act as thermal sources
and have an isothermal boundary condition with a maximum
value of TSiC = 200◦C (labelled A in Fig. 1). The bottom
surface of the baseplate, made of Cu material, has a convection
boundary condition with a maximum convection coefficient
of h = 5W/mm2 ·◦ C and a maximum ambient temperature
of TC = 50◦C (labelled C in Fig. 1) and reflects assumed
ambient temperatures. The left and right corner vertices of
the baseplate (Cu) are fixed with no anticipated deformation
(labelled B in Fig. 1). The analysis has 11 loading steps
as shown in Fig 2, and the heat-generating body and the
convection surface have differing temperature and coefficient
values throughout the simulation. Material properties data are
retrieved from ANSYS booklet [31]. The wire material, Al
(alloy), has nonlinear plasticity behaviour, which follows the
nonlinear power hardening law. The power hardening law,
based on Gurson’s Model, is stated in the following [29, 32]:

σY

σ0
=

(
σY

σ0
+ 3G

σ0
εp
)NS

(15)

Here, σY and σ0 are current and initial yield strengths,
and G is the shear modulus. εp represents the microscopic
equivaent plastic strain, and NS is the stress ratio. Initial yield
stress (280MPa) and exponent (0.134) values for nonlinear
plasticity modelling are assumed based on the approaches
described in [29, 33].

B. Parametric Points

The thermal expansion coefficient, CTEAl, and Young’s
Modulus, EAl, of the Al (alloy) are temperature dependent.
These properties of the material add further nonlinear be-
haviours to the body. CTEAl and EAl have been parametrised,
for the current study, for design point exploration. Uniformly
spaced parametric points have been preferred here to imple-
ment pMOR with matrix interpolation, as presented in Fig. 3.
The parametric points have evenly spaced CTEAl and EAl



Fig. 1: 2D-plane of the PEM structure and boundary conditions.
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Fig. 2: Heat-generating body (TSiC ) and Ambient (TC ) temperatures
during loading steps.

values corresponding to their temperature values. The ranges
of CTEAl and EAl values considered for the parametric study
are explained in Fig. 4 and Table I.

Fig. 3: Uniform parametric points.

Fig. 4: Parametric points for the temperature dependent coefficient
of thermal expansion of Al (alloy), CTEAl.

C. Reduced Model

The total degrees of freedom (DOFs) of the state-space
full-order model (FOM) is N = 2n = 27, 094, with N × N
system matrices. On the other hand, the reduced order model
(ROM) has a total DOFs of q = 8, with q×q system matrices.
This results in ROM demanding substantially less time for
computation against its FOM. The overall simulation time

TABLE I: Parametric points for the temperature dependent Young’s
Modulus of Al (alloy), EAl.

Parametric Young’s Modulus (EAl) in GPa
Points 19.85◦C 116.3◦C 212.95◦C
p0 71.06 70.12 69.18
p1 71.05 70.11 69.17
p2 71.04 70.10 69.16
p3 71.03 70.09 69.15
p4 71.02 70.08 69.14
p5 71.01 70.07 69.13
p6 71.00 70.06 69.12

in pROM, including order reductions of system matrices, is
608s, which provides the solution for all seven parametric
points. The pFOM-ANSYS solution, in comparison, would
require around 4200s on the same computer. By means of the
pMOR approach, a decline of 85.5% in computational time
requirements has been accomplished.

Fig. 5 exhibits a flow chart summarising the stages of
the pMOR study. The ANSYS Workbench/Mechanical has
been used to create the PEM model, FEM discretisation and
obtain the system matrices for three sampled-parametric points
(p0, p3 and p6). System matrices are extracted as sparse
matrices due to their compactness. The matrices have been
then imported into MATLAB to develop the pROM with the
pMOR method.

Fig. 5: The organizational process to build the pROM.

D. Results and Discussions

The pROM outcomes must align with the FOM-ANSYS
solution to verify that the valid pROM has been built. The
model’s DOFs are temperature and directional deformations,



in this case, directional deformations in the x and y-axis. Fig. 6
illustrates the temperature and total deformation distributions
for the left section of the PEM structure, assessing the results
from FOM-ANSYS and pROM with Lagrange interpolation.
In addition to the MOR approach, the means of matrix
interpolation must be confirmed, so the interpolated point’s
(p2) solution from the pROM has been evaluated in this
figure. The pROM solution demonstrates excellent agreement
compared to the FOM-ANSYS solution.

(a) Temperature (◦C), FOM-ANSYS solution.

(b) Temperature(◦C), pROM solution.

(c) Total deformation (mm), FOM-ANSYS solu-
tion.

(d) Total deformation (mm), pROM solution.

Fig. 6: Temperature (◦C) and Total Deformation (mm) distribution
from FOM-ANSYS and pROM (Lagrange) solutions in the left part
of the PEM structure for the interpolated-parametric point p2.

The wire bond site experiences one of the highest tempera-
tures, seen in Fig. 6a and 6b. The temperature here goes up to
that of the heat-generating body, the SiC-based semiconductor.
The Min temperature values for the PEM structure differ only
by 0.15% between the FOM-ANSYS and pROM solutions,
and there is no difference in the Max temperature. This wire
bond site will be the focus of the presenting result analysis.

Figs. 6c and 6d indicate that the wire and wire bond
site of the PEM structure undergo a significant amount of

deformation. The FOM-ANSYS and pROM solutions vary by
about 1.8% in terms of the total deformation peak value. The
wire body was expected to show the peak deformation in the
PEM model.

(a) Equivalent (von-Mises) stress (MPa),
obtained by the FOM-ANSYS solution,
along the probing point (line/path) in the
PEM for interpolated-parametric point p2.

(b) Equivalent (von-Mises) stress, FOM-ANSYS
vs pROM solution, for the interpolated-parametric
point p2.

(c) Equivalent (von-Mises) stress, obtained by the
pROM (Lagrange) solution, for all the parametric
points.

Fig. 7: Maximum Equivalent (von-Mises) stress over time along a
probing point in wire bond site (in wire body) of the PEM structure.

The maximum equivalent (von-Mises) stresses over time in
the wire bond site (in wire body) are presented in Fig. 7. The
depicted results are obtained from a probing point, which is
a line/path along the wire bond shown in Fig. 7a, considering



the significance of the site [34]. FOM-ANSYS and pROM
(Lagrange and Bi-linear) stress results are displayed in Fig. 7b
for an interpolated-parametric point p2. Stress results obtained
from the pROMs are in excellent agreement with the FOM-
ANSYS result, with only a 0.1% average difference between
the solutions. Thus, the pMOR approach is a suitable approx-
imate modelling approach for reliability analysis-based design
points exploration. Fig. 7c evaluates stress results obtained by
the pROM (Lagrange) for all parametric points. Max stresses
along the probing point extent from 181MPa to 206MPa
for the studied parametric points, which is < 280MPa, the
yield strength of the material. Non-zero equivalent plastic
strain values are seen in this site at and after p3 and reach
a maximum of 4.4×10−4mm/mm at p6 for current loading.

IV. CONCLUSION

The pMOR method has been exercised in this work to ex-
plore different parametric points of a directly coupled thermal-
mechanical PEM model, considering nonlinear plasticity be-
haviours in the wire material. The temperature-dependent
coefficient of thermal expansion and Young’s modulus of the
Al (alloy), the wire material, have been parametrised for the
pROM. The MOR approach PRIMA has been utilised here to
reduce computational time requirements. A new matrix inter-
polation technique, based on the Lagrange interpolation, which
provides a better process of matrix interpolation for multiple
sampled-parametric points compared to the linear/multilinear
approach, has been offered here to build the pROM. The
pROM requires 85.5% less computing time with only a
0.1% disparity vs FOM-ANSYS in stress results. The pMOR
method can help reduce the time requirements of reliability
analysis-based design explorations for large-scale models. Fu-
ture studies will focus on applying this method to models with
rate-dependent material nonlinearities.
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