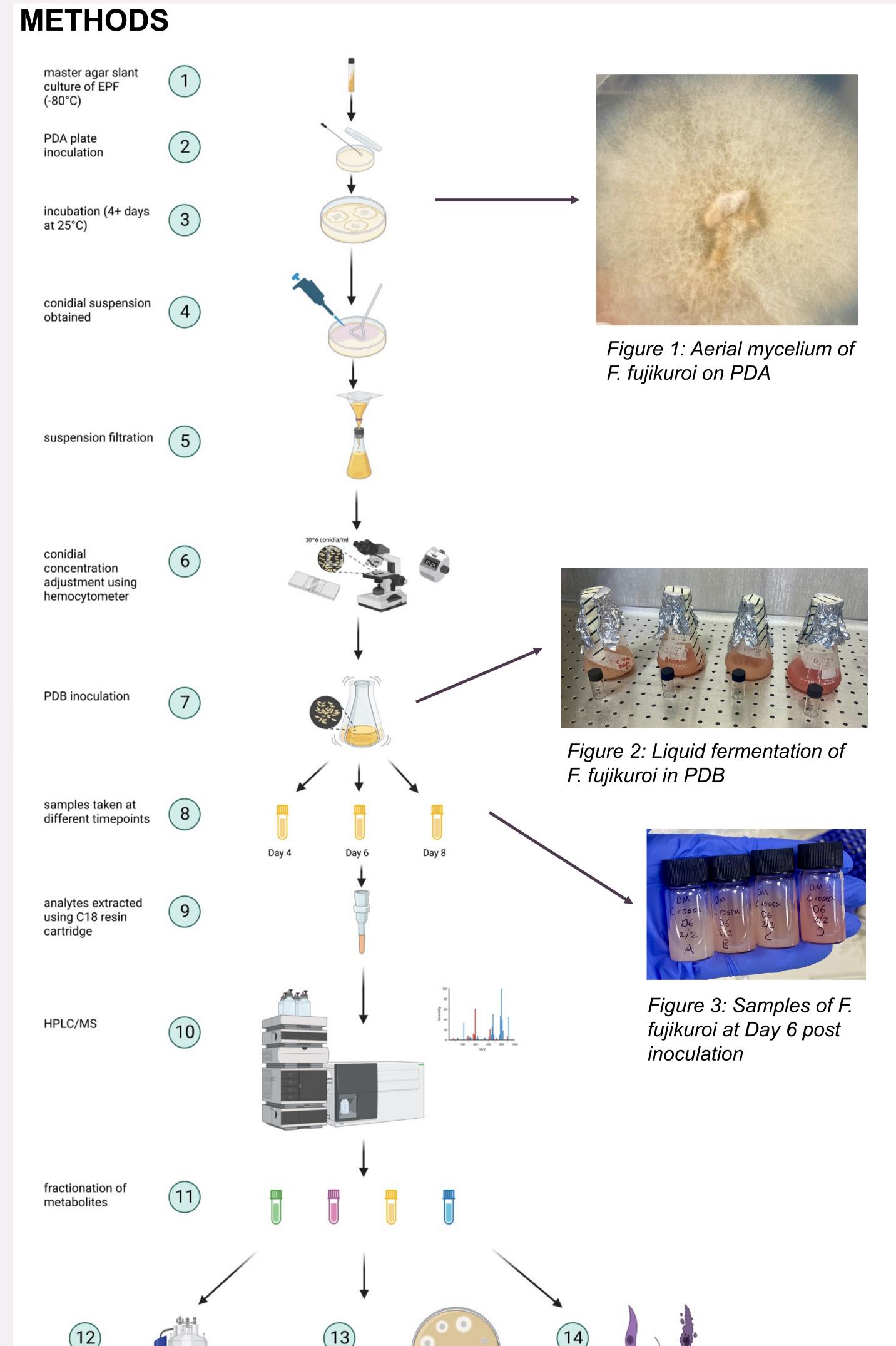
Mining the untapped chemical potential of entomopathogenic fungi

Deanna Grace Mills, Steven Harte, Prof Phil Stevenson, Andrew Armitage & **Olaide Ogunsanya**


Natural Resources Institute (University of Greenwich) & Kew Royal Botanic Gardens

BACKGROUND

- Given the immense fungal biodiversity (with an estimated 2.2 to 3.8 million species of fungi worldwide [1]) and broad range of fungal habitats, fungi are one of the best sources of natural bioactive compounds, with huge industrial and medicinal potential.
- Entomopathogenic fungi (EPF) are fungi that infect and kill arthropods.
- EPF produce unique secondary metabolites and rapidly adjust their metabolic outputs in response to changes in environmental conditions. [2] These metabolites are usually produced transiently, in low quantities or not at all under laboratory conditions.
- With the market for commercial EPF biopesticides growing considerably in recent years, EPF secondary metabolites present an understudied and biotechnologically valuable opportunity for the pharmaceutical and agricultural industries.

PROJECT AIM:

Develop liquid culturing techniques of EPF to optimise metabolite production that facilitates structural elucidation and biological activity testing

RESULTS

Exploration liquid fermentation experiments in *Fusarium fujikuroi* were performed. F. fujikuroi is a fungal plant pathogen that causes bakanae disease in rice seedlings, it has been found to exhibit natural entomopathogenicity. [3]

HPLC/MS on time course samples demonstrated a change in metabolite production over time, with major peaks noted on Day 10 (Fig 4:2) compared to Day 6 (Fig 4:1), at m/z (Da) of 721 (Fig 4:A), 765 (Fig 4:B) and 707 (Fig 4:C).

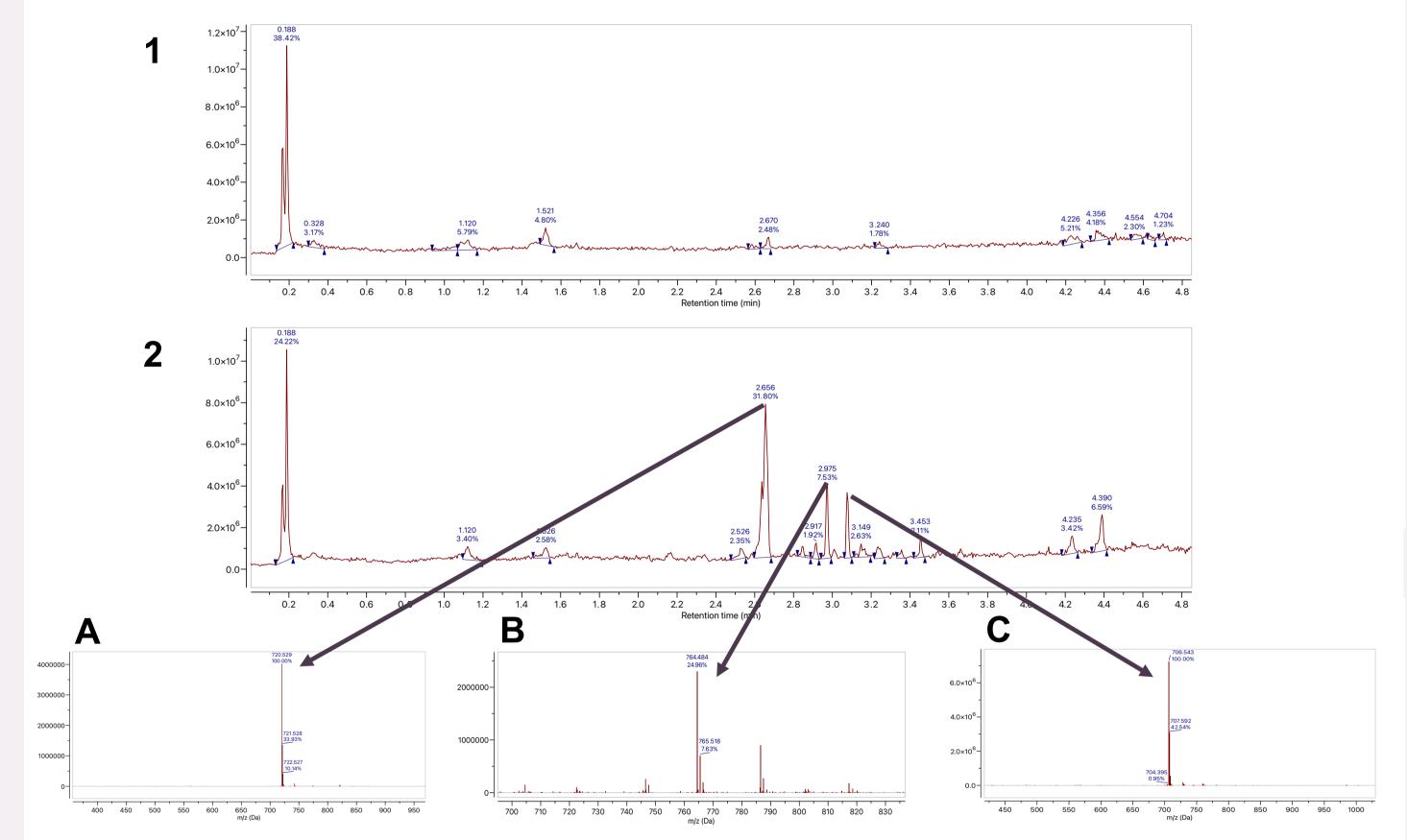


Figure 4: Total ion chromatogram from HPLC/MS of F. fujikuroi in acetonitrile at Day 6 (1) and Day 10 (2) post inoculation. Negative-ion mode electrospray ionisation mass spectra major peaks isolated as secondary metabolites (A, B and C).

Matchalita	рт	Lla:abt	A == =		Total Area		m/z	Metabolite	F. oxysporum compound	Molecular weight	Molecular formula	Host	Place
Metabolite	RI	Height	Area	%	%	Width	(Da)	Α	Fumonisin B ₁	721	$C_{34}H_{59}NO_{15}$	Asparagus officinalis	Wester n
Α	2.656	737088	4.4E+07	22.89	31.8	0.021	721						Poland
В	2.975	351465	1E+07	10.91	7.53	0.012	765	В	N-Acetylated OH- fumonisin C ₁	765	$C_{35}H_{59}NO_{17}$	Dianthus caryophyllus	Taejon, Korea
с	3.076	314854	916245	9.78	6.61	0.014	707	C	Fumonisin C ₁	707	$C_{33}H_{57}NO_{15}$	Dianthus caryophyllus	Taejon, Korea

Table 1: Retention times (RT), peak height, area, width and mass (m/z in Da) of metabolites A, B and C Table 2: Top three predicted molecular formulae for metabolites A, B & C

Literature search revealed *Fusarium oxysporum* secondary metabolites

References

with identical molecular weights [4], suggesting the metabolites could be mycotoxic fumonisins (Table 2).

FUTURE WORK

- Repeat fermentation and metabolite profiling with the EPF and rare hyphal parasite Clonostachys rosea.
- Develop new liquid fermentation methodologies to replicate the biochemical conditions in insect hosts (eg: culture with insect-derived antimicrobials, identified in Table 3), and analyse differences in secondary metabolite profile.
- Isolate metabolites by fractionation of crude extracts, to enable structural elucidation by NMR spectroscopy and microbiological activity testing.
- Isolate genes responsible for metabolite production using DNA and RNA sequencing, to enlighten our understanding of EPF modes of infection.

Antifungal	Produced by
Drosomycin	fruit fly Drosophila melanogaster
Termicin	termite Pseudacanthotermes spiniger
Heliomycin	tobacco budworm Heliothis virescens
Gallerimycin	greater wax moth larvae Galleria mellonella
Cecropin A	giant silk moth Hyalopora cecropia
Cecropin B	giant silk moth Hyalopora cecropia
Thanatin	spined soldier bug Podisus maculiveris
Spinigerin	termite Pseudacanthotermes spiniger
Stomoxyn	stable fly Stomoxys calcitrans
Defensin-like antifungal peptide	whitefly Bemisia tabaci

Table 3: Insect-derived antimicrobials

	References.
Contact Details:	[1] Hawkswo spectrum, 5(4
Email: deanna.mills@ucl.ac.uk	[2] Hyde, K.D 97, pp.1-136

orth, D.L. and Lücking, R., 2017. Fungal diversity revisited: 2.2 to 3.8 million species. *Microbiology* (4), pp.5-4.

D et al, 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97, pp.1-136

[3] Sharma, L. and Marques, G., 2018. Fusarium, an entomopathogen—A myth or reality?. Pathogens, 7(4), p.93.

[4] Ibrahim, S.R et al 2021. Bright side of Fusarium oxysporum: secondary metabolites bioactivities and industrial

