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Abstract
The superb specificity and potency of biological toxins targeting various ion channels and receptors are of major interest 
for the delivery of therapeutics to distinct cell types and subcellular compartments. Fused with reporter proteins or labelled 
with fluorophores and nanocomposites, animal toxins and their detoxified variants also offer expanding opportunities for 
visualisation of a range of molecular processes and functions in preclinical models, as well as clinical studies. This article 
presents state-of-the-art optical probes derived from neurotoxins targeting ion channels, with discussions of their applications 
in basic and translational biomedical research. It describes the design and production of probes and reviews their applications 
with advantages and limitations, with prospects for future improvements. Given the advances in imaging tools and expanding 
research areas benefiting from the use of optical probes, described here resources should assist the discovery process and 
facilitate high-precision interrogation and therapeutic interventions.

Keywords Animal toxins · Ion channels · Fluorescent probes · ICG · Optical imaging · Visualisation · Advanced 
biomaterials

Introduction

The main objective of biological imaging is uncompro-
mised visualisation of the structure and function of living 
organisms in their unperturbed environments. In this pur-
suit, fluorescence markers and reporter proteins combined 
with precision delivery and spectral multiplexing have been 
of critical importance. Through fluorescence effects, opti-
cal imaging provides not only insights into the molecular 

content and structure of living systems but allows visualisa-
tion of dynamic processes in real-time, from macroscopic to 
subcellular and molecular levels in vitro and in vivo [1–4]. 
The use of fluorescence proteins and probes with specificity 
for various cellular and molecular interactions has greatly 
enhanced the imaging of functional processes with their 
characterisation [5–10]. These advances have been bolstered 
by endoscopic and hybrid capacities, which enabled captur-
ing multiple features at unprecedented depth, with increas-
ing precision and specificity [11–15].

Improving targeting and delivery of fluorescence probes 
to various types of cells and subcellular compartments has 
been an essential part of recent advances in optical imaging 
[16–21]. Fluor-labelled peptides, functionalized nanocom-
posites and particles are increasingly considered for a range 
of preclinical and clinical use, to improve the specificity and 
efficacy of payload delivery, and to achieve higher imaging 
sensitivity and contrast, with lower toxicity in single and 
high throughput studies [22–24]. These developments have 
pushed the limits of optical imaging to new realms, enabling 
superb visualising capabilities, from molecular and sub-
molecular to system and organism levels [4, 5, 14, 25, 26]. 
The high specificity and potency of biological toxins owed 
to a major extent to targeting distinctive sets of molecules 
are of special interest for precision delivery [27–31]. Since 
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their rise in early living forms, biological toxins have been 
continuously diversified and refined by selective pressure for 
higher potency, stability and specificity [32–35]. Due to the 
critical role of ion channels and neurotransmitter receptors 
in supporting essential mechanisms and functions of living 
organisations, they have become favourite targets of biologi-
cal toxins, including those acting on peripheral and central 
nervous systems [27, 31, 36, 37].

In pursuit of improving the delivery of fluorescence 
probes and reporter proteins to a specific cell and tissue 
type, natural toxins and their detoxified variants have pro-
duced considerable interest [30, 31, 38–40]. With a growing 
number of recombinant forms with lower toxicity, higher 
specificity and delivery capacity, the expanding portfolio of 
biological toxins offers an extensive selection of probes and 
nano-carriers for a range of applications. In this article, we 
review the state-of-the-art optical probes derived from natu-
ral and recombinant animal toxins targeting ion channels and 
using them for biological and medical imaging (Fig. 1). We 
discuss reports exploiting neurotoxin-derived probes with 
specificity for potassium, sodium, calcium, chloride, TRP, 
acid-sensing and piezo channels, in native and heterologous 
systems. We conclude our analysis with considerations of 
key advantages and limitations, with prospects for future 
improvements of the use of neurotoxin-derived probes in 
basic and translational research.

Optical Probes Targeting Potassium 
Channels

Potassium channels are one of the largest ion channel fami-
lies [41, 42]. They are present in many cell types, with 
expression level and activity altered in a variety of diseases, 
including several types of cancer [43, 44], neurological 
and psychiatric conditions [45–48], neurodegenerative dis-
eases [49, 50] and others. Due to their extensive presence 
in various cell types and biological importance,  K+ chan-
nels have been a major target of animal toxins, with many 
exquisitely adapted to bind and interfere with their activity 
and functions.

Shaker‑Related  K+ Channels

Shaker channels are the most diverse subfamily of  K+ 
channels, formed by the tetramerization of  KV1.1-1.8 sub-
units [45, 51]. Numerous reports suggest labelled toxins 
targeting these channels as useful probes for visualising 
a range of biological processes (Table 1, Fig. 2). Hongo-
toxin-1 (HgTx1) of scorpion Centruroides limbatus and its 
recombinant HgTx1-A19C variant derived by site-directed 
mutagenesis tagged with Cy and Alexa fluorophores were 
developed and proved highly effective for mapping the 

Fig. 1  An overview of animal toxins targeting ion channels used for 
biomedical imaging. A Representation of major neurotoxins with tar-
get ion channels utilised for optical imaging in basic and translational 
studies. B Illustration of general strategy and approaches used for tar-
geting neurotoxin-derived optical probes to ion channels with a rep-

resentative in vitro (CHO cells expressing  KV2.1 and  KV2.2 labelled 
with GxTx labelled with Alexa594) and in vivo (mice grafted with 
SKOV3 tumours labelled with SOR-C27-Cy5.5) data. Images are 
reproduced with permission, with detailed explanations provided in 
respective parts of the review
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distribution of  KV1.1 and  KV1.2 subunits in basket cell 
terminals of the rabbit cerebellum [52]. The high affinity 
of HgTx-A19C to the  KV1.3 subunit rendered Cy5-HgTx-
A19C also useful for 3D imaging of  KV1.3 expression 
and distribution in Jurkat cells at a single molecule level 
[53]. The location of channels has been resolved ~40 nm 
along the x and y axis, with their distribution and dynam-
ics across the cell membrane described. Selective labelling 
of  KV1.3 in Jurkat cells with Cy5-HgTx-A19C and imag-
ing of clustered channels have been confirmed by another 
report [54]. Using ATTO594-labelled Tityus toxin (TsTx) 
derived from scorpion Tityus serrulatus, it was possible 
to visualise  KV1.2 subunits of the molecular layer and 
Purkinje cells of the rat cerebellum, including the pinceau 
regions of basket cells, confirming TsTx targeting the bas-
ket cell axon terminals and Purkinje cell dendrites [55]. 
Finally, the selectivity of scorpion Leiurus quinquestriatus 
hebraeus derived agitoxin-2 (AgTx-2) for  KV1.3 subunit 
enabled visualisation of channels containing this protein 
in transfected HEK293 cells, using TAMRA labelling 
(AgTx-2-D19C-TAMRA). Through confocal imaging, the 

surface expression of  KV1.3 in HEK293 cells was con-
firmed (https:// www. alomo ne. com/p/ agito xin-2- cys- tamra/ 
RTA- 420-T). Another study used AgTx-2 labelled with 
FITC and Cy3 to elucidate the relationship of  KV2.1 and 
 KV10.2 with actin filaments, as well as the distribution 
and clustering of  KV1.1,  KV2.1 and  KV10.2 in transfected 
green monkey kidney Vero cells [56]. Whilst there was 
no association of actin filaments stained with Alexa488-
phalloidin with  KV2.1 channels, a strong co-localization 
of actin was observed with  KV10.2, supporting differential 
sorting and trafficking of these channels through interac-
tions with actin filaments [56]. The utility of quantum 
dot (QD)–tagged toxins for imaging  KV1.3 has been also 
shown using margatoxin (MgTx) obtained from the venom 
of the scorpion Centruroides margaritatus [57, 66]. MgTx 
linked via amino group-carboxylic crosslinker with QD 
CdSe-ZnS core-shell nanocrystals showed high selectiv-
ity to  KV1.3 [57]. To demonstrate the specificity and high 
quantum efficacy of QDs-MgTx, it was applied to HEK293 
cells transfected with GFP tagged  KV1.3 construct, and 
showed a strong co-localisation of QDs with GFP, yielding 

Table 1  Optical probes 
targeting potassium channels

Target, ion channel Ligand (toxin) Fluor-reporter Model Ref.

KV1.1,  KV1.2 HgTx1 Cy3, Alexa488, 546 Cerebellum, rabbit [52]
KV1.3 HgTx1 Cy5 Jurkat cell line [53]
KV1.3 HgTx1 Cy5 Jurkat cell line [54]
KV1.2 TsTx ATTO594 Cerebellum, rat [55]
KV2.1,  KV10.2 AgTx-2 FITC Vero cells [56]
KV1.1 AgTx-2 Cy3 Vero cells [56]
KV1.3 MgTx Quantum dots HEK293 cells [57]
Kv1.3 HsTx1 Cy5 CHO and BV-2 cells, mouse [58]
KV1.3 AgTx-2 TAMRA HEK293 cells AL
KV1.1, KcsA-KV1.1 HgTx1 ATTO488 E. coli [59]
KV1.3, KcsA-  KV1.3 AgTx-2 TAMRA E. coli [60]
KcsA-KV1,x (x;1,3,6) AgTx-2 Tag-RFP E. coli [61]
KcsA-KV1.x (x;1,3,6) OSK1 eGFP E. coli [61]
KV1.3, KcsA-  KV1.3 AgTx-2 GFP E. coli [62]
KV1.1, KcsA-KV1.1 HgTx1 Tag-RFP E. coli [63]
KV1.1, KcsA-  KV1.1, 

KcsA-  KV1.3
HgTx1 Tag-RFP E. coli [64]

KV1.3, KcsA-  KV1.3 MgTx GFP E. coli [65]
KV2.1 GxTx Dye550 CHO-K1 cells [70]
KV2.1 GxTx TMR Hippocampus, rat [70]
KV2.1 GxTx Alexa594 CHO cells, hippocampus, rat [71]
BKCa IbTx Alexa488 HEK293 cells [72]
BKCa IbTx Alexa488 Cochlear hair cells, mouse [73]
BKCa ChTx Texas red Neuromusc. junction, frog [74]
SKCa Apamin Alexa488, 546 Hippocampal, rat [75]
SKCa Apamin Alexa488, 546 Hippocampus, rat [76]
Kir3.1, Kir3.4 Tertiapin-Q ATTO488 HEK293 cells [77]
Kir1.1 Tertiapin-Q FTIC-AuNP PC12 cells [78]

https://www.alomone.com/p/agitoxin-2-cys-tamra/RTA-420-T
https://www.alomone.com/p/agitoxin-2-cys-tamra/RTA-420-T
https://www.alomone.com/p/agitoxin-2-cys-tamra/RTA-420-T
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a more stable and stronger QD signal [57]. A very recent 
study showed that conjugation of the scorpion Heter-
ometrus spinifer-derived HsTX1 analogue HsTX1 [R14A] 
with Cy5 allowed the visualisation of GFP-KV1.3 channels 
in CHO cells [58]. Cy5-HsTX1 enabled also imaging of 
Kv1.3 in BV-2 microglia cells of C57BL/6 mice treated 
with lipopolysaccharides (LPS), known to upregulate 
 KV1.3 subunit. The presence of fluorescence signals in the 
kidney, intestine and liver of C57BL/6 mice injected with 
Cy5-HsTX1 [R14A] implies its potential usefulness for 
biodistribution studies. Authors suggest that Cy5-HsTX1 
[R14A] is a useful probe to determine the location and 

distribution of  KV1.3 channels under physiological as well 
as autoimmune and neuroinflammatory conditions, associ-
ated with the upregulation of  KV1.3 channels [58].

Recombinant  KV Channels with Shaker Channel 
Binding Domains

In addition to visualising native channels, venom toxins 
were used also for imaging chimeric  K+ channel proteins 
(KcsA-KV1,x; x=1,3,6) made by transfer of the eukary-
otic  (KV) S5-S6 linker region within the pore domain in 
bacterial homologues (KcsA) [67]. The specific binding 

Fig. 2  Animal toxin-derived optical probes targeting ion channels for 
biomedical research and clinical application. List of ion channel tar-
gets (left column) of animal toxins (middle column) used for research 
tagged with fluorophores, reporter proteins and nanomaterials (right 
column). Fluorophores and reporter proteins are aligned against the 
visible spectrum bar (top) to illustrate their peak absorbance. Fluo-
rescence labels and reporters used for targeted toxins with a wide 

absorbance range or with a peak absorbance outside of the visible 
spectrum are listed on the left and right margins of the right column, 
respectively. QD, quantum dots; NG, nanogold; PBD, polymer-blend 
dots; DOX, doxorubicin; DIR, dye R; cFND, fluorescent nanodia-
monds with carboxyl; ICG, indocyanine green; IRD800CW, infrared 
dye 800CW
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of ATTO488-labelled HgTx [59] and TAMRA-tagged 
AgTx-2 [60] with KcsA-KV1.1 and KcsA-KV1.3 chimaeras 
expressed in E. coli spheroplasts enabled their visualisation 
using confocal imaging. Likewise, in E. coli with and with-
out recombinant KcsA-KV1.x (1,3,6), OSK1-eGFP (toxin 
derived from scorpion Orthochirus scrobiculosus) and 
AgTx-2-TagRFP were reported to be effective for selec-
tive labelling  KV1 channels [61]. Notably, AgTx-2 with 
GFP at its N-terminus exhibits high specificity for chimeric 
 KV1.3 channels over  KV1.1 and  KV1.6 in spheroplasts, and 
KcsA-KV1.3 transfected HEK293 cells [62]. Similar studies 
with the fusion of HgTx with Tag-RFP showed maintained 
specificity and utility for targeting KcsA-KV1.1 [63] as well 
as both KcsA-KV1.1 and KcsA-KV1.3 [64]. Finally, GFP-
MgTx fusion protein revealed specific labelling of the  KV1.3 
subunits of the KcsA-KV1.3 hybrid channels expressed in 
E. coli spheroplasts, whilst control experiments with non-
transfected material showed no fluorescence signal [65].

Shab  K+ Channels

Two members of this family,  KV2.1 and  KV2.2 multimer-
ize to form functional channels mediating delayed rectifier 
currents [68, 69]. Genetically modified (S13C) and fluor-
labelled guangxitoxin (GxTX) variants from tarantula Ple-
siophrictus guangxiensis venom were used to study  KV2.1 
channels of transfected CHO cells and visualise endogenous 
 KV2.1 channels of rat hippocampal pyramidal neurons [70, 
71]. Tetramethylrhodamine (TMR, known also as TRITC) 
and Dye550-labelled GxTx enabled imaging of  KV2.1 
channel localization and expression, with binding activity 
depending on voltage changes in CHO-K1 cells [71], whilst 
Alexa Fluor 594-GxTx has been used to visualise the expres-
sion of  KV2.1 in transfected CHO cells, demonstrating a cor-
relation of fluorescence signal with membrane voltage. Also, 
Alexa594-GxTx enabled surface labelling of  KV2.1-GFP 
transfected rat CA1 pyramidal neurons [70].

Ca2+‑Activated  K+ Channels

For mapping of big conductance calcium-activated potas-
sium channels  (BKCa) on the surface of living HEK293 
cells, the venom of scorpion Mesobuthus tamulus ibe-
riotoxin (IbTx) has been chemically modified and linked 
with Alexa488. Alexa488-IbTx showed a strong signal on 
the membrane surface of  BKCa-expressing HEK293 cells, 
whereas no fluorescence was observed in non-transfected 
HEK293 cells [72]. Application of a recombinant iberio-
toxin (IbTx-D19C) tagged with Alexa488 in mouse inner 
hair cells revealed the strong expression of  BKCa [73]. Ear-
lier work with the use of a similar approach showed the 
utility of the Streptavidin-Texas Red-labelled biotinylated-
charybdotoxin (ChTx) derived from the venom of scorpion 

Leiurus quinquestriatus hebraeus as an imaging probe for 
 BKCa channels, which were enriched in proximity to pre-
synaptic  Ca2+ channels at synaptic terminals of frog neuro-
muscular junctions (NMJ) [74]. Abiraman and co-workers 
used Alexa488- and Alexa546-streptavidin-tagged apamin 
isolated from the bee venom to map the distributions of 
Small Conductance  KCa channels  (SKCa

+2) in somatoden-
dritic compartments of hippocampal neurons in culture [75]. 
Imaging of channels with fluor-labelled biotinylated-apamin 
confirmed the hypothesis that SK channels of hippocampal 
neurons are enriched in the initial segment of axons [76].

Inward Rectifier  K+ Channels

Isolated from honeybee venom, tertiapin-Q shows high 
selectivity for inward rectifier  K+ (Kir) channels. Fluor-
labelled tertiapin-Q-ATTO488 was used as a tool to visual-
ise the localization and monitor the dynamics of Kir3.1 and 
Kir3.4 in HEK293 cells in a study of the effects of small 
molecule (drug chloroquine) blocker of Kir channels in atrial 
fibrillation [77]. Another example of the successful use of 
fluor-labelled tertiapin-Q is FITC fluorescein-labelled gold 
nanoparticle conjugated with tertiapin-Q (TPN-Q-AuNP/
FITC), which helped to visualise the Kir1.1 channel upregu-
lation in pheochromocytoma cell (PC12) by nerve growth 
factor (NGF) [78]. Results of imaging studies confirmed the 
specificity of TPN-Q-AuNP to various Kir channels in PC12 
cells, with the potential utility for a wide range of research 
applications.

Optical Probes Targeting Sodium Channels

The sodium channel family is the second most diverse group 
of ion channels, playing a key role in membrane excitability, 
and the generation and propagation of action potentials in 
neurons, muscle cells and other excitable tissue [79, 80]. 
Because of the critical importance of  Na+ channels in cel-
lular activity, they have been a favourite target of many bio-
logical toxins [81, 82], which present significant interest as 
probes for selective labelling of various cell types and their 
functional processes, as well as for delivery of therapeutic 
candidates (Table 2, Fig. 2).

Pan‑Na Channels

Animal toxins have been critical in the characterisation of 
the structure and function of  Na+ channels [83, 84], with tet-
rodotoxin (TTX) and saxitoxin (STX) playing an important 
role in describing the channel properties, structure of the 
selective filter and toxin binding [85, 86]. A wide variety of 
animal toxins targeting  Na+ channels have been described, 
with some successfully used for imaging. Angelides and 
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Nutter were the first to use fluorescence tetrodotoxin of 
pufferfish Takifugu obscurus, and 2,6-dimethylnitrobenzene 
(DNB) conjugated LqqV toxin of scorpion Leiurus quin-
questriatus venom to target  Na+ channels, mapping their 
expression in nodal regions of myelinated fibres of mouse 
sciatic nerves, enhanced by immunohistochemical staining 
[87]. A follow-up report with tetramethylrhodamine dextran 
(TmRhd)-LqqV showed enrichment of  Na+ channels at the 
NMJ of embryonic chick myotubes with co-cultured spinal 
cord neurons [88]. To identify regions where  Na+ channels 
are densely expressed, neurons were treated with neurotoxin 
conjugates NBD-LqqV, TmRhd-LqqV, CPM-Css II, NBD-
TTX and TmRhd-Tityus-γ [89]. It was found that in cortical 
neurons,  Na+ channels are enriched in the neuronal soma and 
reach the highest density in the axon hillock, in agreement 
with the latter as the site of initiation of action potentials. 
Another study investigated the mobility of sodium channels 
during myelination, using TmRhd-Tityus-γ application to 
cultured dorsal root ganglion neurons in the presence and 
absence of Schwann cells (SCs), which change the distribu-
tion of  Na+ channels in axons from diffuse to clustered in 
the nodal region [90]. Fluorescence photobleaching recovery 
measurements in this model showed that SCs did not affect 
sodium channel lateral mobility in the membrane.

In addition to labelling neurons, TsTx (α-type) and 
TiTX-γ (β-type) of scorpion Tityus serrulatus venom con-
jugated with Alexa488 and Alexa568 fluorophores, respec-
tively, were used to target  NaV channels in living GH3 cells, 
to visualise their distribution [91]. The specificity of label-
ling was proven by the preincubation of cells with naive tox-
ins or treatment of non-transfected HEK293 cells with the 
labelled toxin. Like in Tityus serrulatus toxins studies, STX 
of paralytic shellfish poison labelled with N-hydroxysuccin-
imde (NHS) derivatives of Cy5 and DCDHF fluorophores 
enabled mapping of  NaV distributions in NGF differentiated 
PC12 cells, with antibody labelling of  Na+ channels verify-
ing the staining specificity [92]. Finally, STX-Cy5 allowed 

the visualisation of channel distributions in living cells at 
the single molecule level, whilst the use of super-resolution 
methods made possible STX-Cy5 imaging of neuritic spines 
and filopodia in NGF-differentiated PC12 cells [92].

NaV1.7 Channels

To visualise surface expression and distribution of  NaV1.7 
channels in neurons, fluorescence labelling of Protoxin 
II (ProTx II) from the venom of tarantula spider Thrix-
opelma pruriens with selectivity to  NaV1.7 was used 
[93]. ATTO488-tagged ProTxII was applied on CHO cells 
expressing human  NaV1.7, on naïve CHO cells lacking 
 NaV1.7 channels, and on dorsal root ganglion (DRG) neu-
rons expressing endogenous  NaV1.7. These experiments 
resulted in the labelling of  NaV1.7 channel expressing CHO 
cells, as well as the proximal neurite parts and soma of DRG 
neurons [93]. The inability of ATTO488-ProTxII to bind 
labeled CHO cells pre-incubated with non-labelled ProTxII 
proved the toxin specificity for  NaV1.7 channels. Another 
report used BODIPY-FL-NHS ester dye-conjugated Hsp1a 
peptide toxin from the venom of the tarantula Homoeomma 
spec, known for its selectivity for  NaV1.7 channels [94]. 
Injection of this probe in mice resulted in high-intensity 
fluorescence signals of sciatic nerves tested in vivo and ex 
vivo [94]. Similarly, labelling a recombinant peptide ana-
logue of Hs1a isolated from the venom of the Chinese bird 
spider Haplopelma schmidti with the Cy7.5 made visible 
 NaV1.7 expressed in mouse sciatic nerves and enabled their 
near-infrared imaging in nodes of Ranvier [95].

Optical Probes Targeting Calcium Channels

Calcium channels are a family of proteins forming  Ca2+ 
selective pores, which play a key role in a wide range of 
biochemical and electrophysiological processes in neurons 

Table 2  Optical probes 
targeting sodium channels

Target, ion channel Ligand (toxin) Fluor-reporter Model Ref.

NaV LqqV DNB Sciatic nerve, mouse [87]
NaV LqqV TmRhd Myotubes, chick [88]
NaV LqqV TmRhd Spinal cord, rat [89]
NaV TiTx- γ TmRhd Cortex, rat [89]
NaV TiTx- γ TmRhd Dorsal root ganglion, rat [90]
NaV TiTx- γ Alexa568 GH3 cells [91]
NaV TsTx Alexa488 GH3 cells [91]
NaV STX Cy5 PC12 cells [92]
NaV STX DCDHF PC12 cells [92]
NaV1.7 ProTx II ATTO488 CHO cells [93]
NaV1.7 Hsp1a BODIPY Sciatic nerve, mouse [94]
NaV1.7 Hs1a Cy7.5 HEK293 cells [95]
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and other cells, including control of molecular signalling, 
regulation of secretory processes, excitability and action 
potentials, gene regulation and others [96, 97]. Like other 
prevalent ion channels,  Ca+2 channels have been a major tar-
get for a range of biological toxins [36, 98]. Due to the high 
affinity and selectivity of some of the toxins for  Ca+2 chan-
nels, their labelling has been utilized for studies of channel 
distribution and function in situ and heterologous expression 
models (Table 3, Fig. 2).

P/Q Type Channels

Derived from the funnel-web spider Agelenopsis apera 
venom, ω-agatoxin IVA (ω-Aga IVA) has superb affinity 
and selectivity for P/Q type voltage-gated  Ca2+ channels 
[99–101]. Using confocal microscopy of mouse brain tis-
sue, biotinylated ω-Aga IVA labelled with FITC-avidin D 
enabled mapping of the distribution of P/Q  Ca2+ channels 
in the mouse brain, particularly in the cerebellum and hip-
pocampal region [102]. Based on the imaging results, it was 
concluded that P/Q  Ca2+ channels are expressed in soma and 
dendrites of Purkinje cells, granule cells and interneurons 
in the cerebellum, as well as pyramidal cells of the CA1 
and CA4 regions of the hippocampus. These results agree 
with electrophysiological data on P/Q-type  Ca2+ channels 
in described neuron types and brain regions. Biotinylated 
ω-Aga IVA tagged with Alexa Fluor488-streptavidin nano-
gold (NG) was also applied to mouse auditory brainstem 
slices, demonstrating distinctive labelling of binding sites 
[103]. High-power microscopic analysis allowed visualisa-
tion of the distribution of P/Q channels, with no labelling 
observed in slices treated with Alexa Fluor488-streptavidin 
nanogold alone in P/Q channel knockout mice, confirming 
the selectivity of the probe [103].

N‑Type Channels

Like ω-Aga IVA, labelled ω-conotoxin (ω-CgTx) of the 
venom of Pacific cone snail Conus geographus has been 
used for describing the distribution of N-type  Ca2+ channels 

in cells. In hippocampal CA1 neurons of rats, the applica-
tion of ω-CgTx labelled with a colloidal gold particle and 
TmRdh enabled visualisation of N-type  Ca2+ channels of the 
soma and dendrites of neurons with clustering on synaptic 
terminals [104]. The feasibility of imaging of  Ca2+ channels 
in nerve terminals of frog NMJ and their interactions with 
acetylcholine receptors was shown using ω-CgTx conjugated 
with Texas red [105]. It was found that  Ca2+ channels at 
NMJ colocalize with acetylcholine receptors, verified also by 
α-bungarotoxin staining. Similarly, conjugation of ω-CgTx 
with the succinimidyl ester of TmRhD strongly labelled 
 Ca2+ channels clustered at active zones of presynaptic ter-
minals in frog motor nerves [106].

Microscopic analysis with TmRhd-ω-CgTx revealed the 
presence of N-type  Ca2+ channels on the surface of post-
mitotic granule cells in developing mouse cerebellar slices, 
with their expression maintained in migrating and maturat-
ing neurons [107]. Studies of living rat hippocampal brain 
slices labelled with fluorescein-ω-CgTx conjugate allowed 
visualisation of N-type  Ca2+ channels in all hippocampal 
regions, along with their distribution in various neuronal 
compartments and dendritic spines [108]. The distribution of 
N-type  Ca2+ channels was also analysed during the develop-
ment of rat brains [109]. Finally, the same approach using 
ω-CgTx-Cy3 allowed the detection of the changes in the 
expression of N-type  Ca2+ channels in hippocampal slices 
of the kindling model of rat epilepsy [110]. Analysis of the 
labelling of dendrites of CA1 and CA3 neurons in epilepsy 
rat models with CgTx-Cy3 showed alterations in signal 
intensity compared to controls, suggesting changes in the 
prevalence of N-type  Ca2+ channel in epilepsy disorders.

Optical Probes Targeting Chloride Channels

Chloride channels are a functionally and structurally diverse 
group of anion-selective proteins involved in the regulation 
of a range of functions in cells, including membrane poten-
tial, cell volume and cycle and apoptosis [111, 112].  Cl- 
channels are classified into several subfamilies [113], which 

Table 3  Optical probes 
targeting calcium channels

Target, ion channel Ligand (toxin) Fluor-reporter Model Ref.

P/Q-type ω-Aga IVA FTIC Hippocampus and cerebellum, mouse [102]
P/Q-type ω-Aga IVA Alexa488-nanogold Brainstem, mouse [103]
N-type ω-CgTx TmRdh Hippocampus, rat [104]
N-type ω-CgTx TexasRed Neuromuscular junction, frog [105]
N-type ω-CgTx TmRhd Motor nerve, frog [106]
N-type ω-CgTx TmRhd Cerebellum, mouse [107]
N-type ω-CgTx Fluorescein Hippocampus, rat [108]
N-type ω-CgTx Fluorescein Hippocampus, rat [109]
N-type ω-CgTx Cy3 Hippocampus, rat [110]
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are differentially expressed in various cell types under phys-
iological and disease conditions [114, 115]. Like  K+ and 
other cation channels, specific enrichment of some  Cl- chan-
nels has been observed in neoplastic tissue, which renders 
them useful for molecular imaging and targeting therapies.

Small Conductance Chloride Ion Channels

Chlorotoxin (CTX) of the deathstalker scorpion Leiurus 
quinquestriatus [116, 117] is a selective ligand for  Cl- chan-
nels, also known to bind matrix metalloproteinase-2 (MMP-
2) and annexin-2 on the cell membrane [118–120] (Table 4, 
Fig. 2). Cy5.5 conjugation with NHS ester to CTX allowed 
imaging of the 9L rat glioma cells in vitro and glioma xeno-
graft mice, as well as in brain slices of ND2:SmoA1 medul-
loblastoma model [121]. The specificity of labelling was 
verified using a competitive assay with nonlabelled CTX. 
CTX-Cy5.5 also enabled imaging of prostate cancer in epi-
thelium and lymph nodes, lung metastases and sarcoma in 
mouse cancer models. Substitution of lysine 15 and lysine 
23 residues of CTX (K15A K23ACTX:Cy5.5 or K15R 
K23RCTX:Cy5.5) allowed prevention of mono-, di-, tri-
labelling, which causes complications with quantitative 
imaging, and enables mono- lysine 27 labelling [122]. In the 
same report, cyclized CTX has been developed and used to 
optimise the serum stability of CTX bioconjugates [122]. It 
has been found that substituted and cyclized Cy5.5 labelled 

CTX retained the specificity and displayed the ability to 
selectively label tumour regions in ND2:SmoA1 medullo-
blastoma models [122].

The utility of peptide fluorophore CTX-indocyanine 
green (ICG), known also as BLZ-100, for surgical guidance 
and resection of malignant tissue was reported by numer-
ous studies [123, 124]. BLZ-100 accumulated in the neo-
plastic area of LN229 human glioblastoma grafted mice, 
allowing NIR imaging, whereas ICG alone did not produce 
specific labelling of the pathological tissue [123]. The abil-
ity of BLZ-100 to differentiate healthy and malignant tissue 
was tested also in dog models of tumours [125]. Baik and 
co-workers used BLZ-100 for imaging mouse xenografts of 
head and neck squamous cell carcinoma (HCSCC) and ham-
ster xenografts of high- and low-risk oral dysplasia [126]. 
In PCI-15B xenografts expressing GFP, uptake of free ICG 
alone did not produce fluorescent signals, confirming the 
tumour-specificity of BLZ-100. Recently, human clinical tri-
als of BLZ-100 were performed in patients with skin cancer, 
demonstrating specific and concentration-dependent label-
ling of neoplastic tissue [127]. In neuroimaging applica-
tions, CTX conjugated with infrared dye 800 CW (IRD-
800CW) labelled the U87MG glioblastoma xenografts in 
mice, strongly colocalizing with MMP-2 expression [128]. 
In the same study, brain slices of ND2:SmoA1 genetically 
modified medulloblastoma mice treated with IRD-800CW-
CTX exhibited a higher fluorescence than in tumour-free 

Table 4  Optical probes targeting chloride channels

Target, ion channel Ligand (toxin) Fluor-reporter Model Ref.

MMP-2  (Cl-) CTX Cy5.5 9L cells (in vitro); glioma, prostate, lung metastases 
xenograft mice, ND2SmoA1 medulloblastoma mice

[121]

MMP-2  (Cl-) CTX Cy5.5 ND2:SmoA1 medulloblastoma mice [122]
MMP-2  (Cl-) CTX ICG LN229 xenograft mice [123]
MMP-2  (Cl-) CTX ICG Dog models with various solid tumours [125]
MMP-2  (Cl-) CTX ICG Head and neck squamous carcinoma [126]
MMP-2  (Cl-) CTX ICG Human skin cancer lesions [127]
MMP-2  (Cl-) CTX IRD-800CW U87MG xenograft mice, NS2:SmoA1 mice [128]
MMP-2  (Cl-) CTX PEG-iron oxide-Cy5.5 ND2:SmoA1 medulloblastoma mice [129]
MMP-2  (Cl-) CTX Magnetic iron oxide-FTIC U251MG, C6 cells [130]
MMP-2  (Cl-) CTX NaYF(4):Yb,Er/Ce C6 cells, C6 xenograft mice [131]
MMP-2  (Cl-) CTX DOX-liposomes U251MG, U87 and C6 cells [132]
MMP-2  (Cl-) CTX Dir-liposomes U87, xenograft mouse [132]
MMP-2  (Cl-) CTX DOX-liposomes 4T1 cells [133]
MMP-2  (Cl-) CTX Dir-liposomes 4T1, xenograft mice [133]
MMP-2  (Cl-) CTX AIS/Zns QD/PLGA-PEG MI U87 cells [134]
MMP-2  (Cl-) CTX C-6 loaded PLGA, nano GI-1, U87 cells [135]
MMP-2  (Cl-) CTX Nano-agent, ICG U87MG, xenograft mouse [136]
MMP-2  (Cl-) CTX Polymer-blend dot ND2:SmoA1 medulloblastoma mice [137]
MMP-2 GCC BmKcT Cy5.5 C6 cells [142]
MMP-2 GCC BmKcT Carboxylated-ND C6 cells [143]
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mice [128]. Using PEG-iron oxide-CTX-Cy5.5 nanoprobes 
as NIR optical imaging tool, Veiseh and co-workers visual-
ised medulloblastoma in ND2:SmoA1 model mice, with the 
utility for intraoperative tumour resection verified through 
histological analysis [129].

Meng and co-workers showed that CTX functionalized 
iron oxide nanoparticles linked with FITC allow the label-
ling of U251MG and C6 rat glioma cells [130]. Another 
example of functionalizing nanoparticles with CTX for 
imaging was the use of hexagonal-phase NaYF(4):Yb,Er/Ce 
(up-conversion, UCNP) labelling of root C6 rat glioma cells, 
which showed that in addition to enhanced accumulation of 
CTX-UCNP nanoprobe, the signal was specifically localised 
to the tumour region of C6 glioma-bearing xenograft mice 
[131]. Successful use of CTX-targeted liposomes (LP) has 
been also shown for the delivery of fluorescence load to 
glioma cells, allowing their visualisation with optical imag-
ing [132]. In U251MG, U87 human and C6 rat glioma cell 
lines, doxorubicin (DOX)-loaded CTX-LP emitted a stronger 
fluorescence signal compared to non-targeted DOX-loaded 
LP. Unlike free DIR and blank LP, targeted DIR-loaded LP 
showed enhanced accumulation in U87 cell-bearing armpit 
and orthopaedic mouse tumour models, including in brains 
[132]. DOX-LP functionalised with CTX (DOX-SSL-CTX) 
was also utilized as an imaging probe in 4T1 murine breast 
cancer cells, to evaluate the uptake of liposomes [133]. As 
a result, higher fluorescence intensity was observed with 
DOX-SSL-CTX compared with CTX-free DOX-SSL. 
Finally, modification of Dir-loaded liposomes with CTX 
(Dir-SSL-CTX) was used to investigate the targeting effi-
ciency of liposomes in 4T1 cells bearing BALB/c mice in 
vitro. Authors conclude that CTX enhances the LP targeting 
and cargo internalisation in metastatic breast tumours [133].

CTX has been also successfully utilised for functional-
izing AIS/ZnS quantum dots (QD) with Polylactide-co-
glycolide (PLGA)-polyethylene glycol (PEG) micelles to 
U87 brain tumour cells [134]. Pre-treatment of the U87 
cells with MMP-2 inhibitor before AIS/ZnS QDs treatment 
resulted in a decrease in fluorescence signal. These results 
demonstrated the effectiveness of CTX as a tool for targeted 
imaging of biological specimens using AIS/ZnS QDs. CTX 
has also been shown to enhance the targeting of PLGA 
nanoparticles loaded with anti-cancer mourisin (MOR) to 
glioma cells [135]. Nanoparticles loaded with coumarin-6 
(C-6) conjugated to CTX (instead of MOR) and free nano-
particles were applied in HCN-1A, GI-1 and U87 cells in 
culture. Results of these studies show that whilst human 
neuronal cell line HCN-1A displayed a weak fluorescence 
signal due to lack of MMP-2 receptor, the fluorescence sig-
nal was stronger in glioma GI-1 and U87 cell lines. Patil and 
co-workers developed polymalic acid (PLMA) nanoparticle 
platform with tri-leucine peptide (LLL) and ICG, with CTX 
used for their targeting [136]. Selective labelling of U87MG 

glioma-bearing xenograft by PLMA-LLL-ICG-CTX was 
observed in a mouse brain, but not in tumour-free tissue. 
CTX and tri-leucine peptide-free PLGA-ICG showed little 
or no signal, whilst tri-leucine peptide-free agents showed 
a lower signal than PLMA-LLL-ICG-CTX [136]. Finally, 
Wu and co-workers applied CTX targeting to polymer-blend 
dots (Pbdot, PBD), which are ~15 times brighter than QDs at 
655nm and show significantly higher stability in serum, with 
no toxicity. Authors report strong and specific Pdot-CTX 
ND2:SmoA1 labelling of medulloblastoma of mouse brain 
ex vivo. Contrary to this, there was no signal in ND2:SmoA1 
with control Pbdot-PEG and in C57BL/6 wild-type mice 
lacking brain tumours [137].

Glia‑Specific  Cl‑ Channel

There have been reports of the expression of a specific  Cl- 
channel (GCC) in human astrocytoma cells, which could be 
blocked by CTX [138, 139]. Some studies have shown that 
chlorotoxin-like toxin BmKcT derived from the cDNA of 
the Chinese scorpion Mesobuthus martensii Karsch's sali-
vary glands bind specifically to this channel [140, 141]. Like 
CTX, Cy5.5 conjugated BmKcT was tested in a glioma rat 
model produced by grafting C6 cells [142] (Fig. 2). BmKcT 
targeting caused a much stronger labelling of tumour tissue 
compared to non-targeted Cy5.5 [142]. Another report tested 
BmKCT functionalized fluorescent nanodiamonds with car-
boxyl (cFND) in C6 cells, and showed stronger labelling of 
the malignant tissue, compared to non-targeted cFND [143].

Optical Probes Targeting TRP Channels

Over 30 transient receptor potential (TRP) channel homo-
logues have been identified in mammals, which are divided 
into six subfamilies [144]. One of these, TRPV consists of 
six members: TRPV1-TRPV6. TRPV1-TRPV4 are enriched 
in the sensory system, playing a key role in detecting various 
stimuli such as heat, stretch, acidity and pain, and have low 
selectivity for  Ca2+, whilst TRPV5-6 are highly selective 
for  Ca2+ and regulate molecular signalling and housekeeping 
functions in a wide variety of cells [145–150].

TRPV1 Channels

To visualise the expression and distribution of TRPV1 chan-
nels, double-knot-toxin (DkTx) from tarantula Ornithocto-
nus huwena venom [151] conjugated with fluorescein via 
sortase at the C-terminus was applied to Xenopus leaves 
oocytes transfected with rat TRPV1 channels [152] (Table 5; 
Fig. 2). Because DkTx contains a large number of cysteine 
residues, cysteine-mediated bioconjugation caused a high 
level of misfolding of the toxin. Nevertheless, the authors 
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report that their approach enabled successful and selective 
labelling of rat TRPV1 in the oocyte model [152].

TRPV6 Channels

TRPV6 has been implicated in neoplasia, with its level 
enhanced in the ovary, breast, colon, prostate and thyroid 
cancers [153, 154]. In prostate cancer, TRPV6 mRNA levels 
are positively correlated to tumour progression and aggres-
siveness, pathological stages and extra-prostatic metasta-
ses, with poor prognosis [155, 156]. Bowen and co-workers 
used soricidin (accession number P0C2P6)—a paralytic 
peptide isolated from the submaxillary saliva glands of the 
northern short-tailed shrew Blarina brevicauda, known to 
inhibit  Ca2+ influx via TRPV6 channels [157]. Two C-ter-
minus peptide sequences of soricidin (SOR-C13 and SOR-
C27) were shown to bind specifically TRPV6 in ovarian 
cancer cells [157] as well as ovarian cancer xenografts in 
mouse models. Conjugation of C-terminus SOR-27 peptide 
sequence of soricidin with Cy5.5 and superparamagnetic 
iron oxide, when applied in vivo, accumulated in the ovar-
ian tumour regions of xenograft mice and could be visu-
alised with fluorescence imaging [157]. Authors conclude 
that SOR peptides may be useful for detecting tumours and 
delivering diagnostic or therapeutic payloads, via targeting 
TRPV6 channels.

Optical Probes Targeting Other Ion Channels

In addition to demonstrating the successful use of labelled 
toxins derived from animal venom for visualisation of main 
cation and anion-selective channels, some of the toxins were 
recently also successfully utilised as probes for imaging 
acid-sensing ion channels (ASIC) and Piezo receptor chan-
nels [158–160] (Table 5, Fig. 2).

Piezo1 Channel

To visualise the distribution and activity of mechanorecep-
tive channels, Lee and co-workers tailored recombinant 
Piezo1 protein containing α-bungarotoxin (α-BTX) bind-
ing site, which was visualised by α-BTX conjugated with 
Alexa555 (BTX-Alexa555) [159]. Exposure of N2A cells 

transfected with Piezo1-13 residue BTX binding site to 
Alexa555-BTX revealed strong and specific labelling. The 
construct has been used for addressing functional questions 
related to trafficking and regulation of Piezo1/2 channels 
[159]. Another study used α-BTX-Alexa647 for visualising 
HEK293 cells transfected with Piezo1 channels containing 
α-BTX binding sites, to determine the mechanically sensi-
tive domains of Piezo1 channels and their response to mag-
netic nanoparticles [160].

ASIC1a Channel

A recent report by Bychkov and co-workers used modified 
mambalgin-2 for imaging the expression and distribution of 
ASIC1a channels [158]. Derived from black mamba Den-
droaspis polylepis venom, mambalgin-2 specifically and 
reversibly blocks the pathological upregulation of ASIC1a 
in melanoma cancer associated with acidification of tumour 
tissue [161]. When applied on metastatic skin melanoma mel 
P cells, mambalgin-2 with Leu32Ala mutation labelled with 
the CF647 dye revealed a strong presence of ASIC1a subunit 
as well as colocalization with epithelial  Na+ channel family 
members (α-ENaC and γ-ENaC), an observation verified 
with immunofluorescence microscopy [162]. Using a mutant 
variant of mambalgin-2 with reduced binding activity for 
ASIC1a, it was confirmed that the principal molecular target 
of mambalgin-2 in melanoma cells is the ASIC1a subunit 
[158].

Summary and Future Directions

Over millennia, severe pain, intoxication and death were 
what drew our respect and curiosity to venomous animals. 
The lethal power of animal toxins demanded not only rever-
ence, but more recently, also systematic research and under-
standing, which with scientific progress and technological 
advances facilitated the harnessing of their ability to treat 
an expanding range of conditions and diseases. The plethora 
of biologically active compounds produced by venomous 
animals capable of targeting receptors and ion channels, 
as shown here, are not only relevant to pharmacology and 
toxicology but also molecular imaging, offering means for 
tackling major research and translational questions.

Table 5  Optical probes 
targeting TRPV1, PIEZO1 and 
ASIC1a channels

Target, ion channel Ligand (toxin) Fluor-reporter Model Ref.

TRPV1 DkTx Fluorescein Xenopus laevis oocytes [152]
TRPV6 Soricidin Cy5.5 SKOV-3 xenografts, mouse [157]
Piezo 1 α-BTX Alexa647 HEK293T [158]
Piezo 1 α-BTX Alexa555 Neuro2A [159]
ASIC1a Mambalgin-2 CF647 Mel P cells [162]

https://www.ncbi.nlm.nih.gov/protein/P0C2P6
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Since the first demonstration of the block of action 
potentials by TTX and inhibition of  NaV currents in 
nerves and muscles [163, 164], biological  toxins have 
played an increasing role in elucidating important facets 
of the molecular biology and functions of ion channels and 
receptors, aiding their isolation, cloning and pharmacolog-
ical characterisation [86, 165–167]. Combined with revo-
lutionary advances in fluorescence probes and nanomateri-
als and imaging technologies, the expanding portfolio of 
neurotoxins and their detoxified forms have been recently  
applied for a wide range of applications for preclinical and 
clinical imaging (Fig. 3). As reviewed herein, advances 
in harnessing the potential of neurotoxins for biological 
imaging have also revealed considerable limitations. These 
are largely attributed to remarkable potency and harmful 
effects of toxins, owing to their specific interference with 
important biological functions of their targets, as well as 
challenges related to immunological incompatibility and 
bioavailability. Non-specific interactions with a wide range 

of other functional proteins, and potential off-site effects, 
are also of major concern, along with the release of harm-
ful products of fluorophore degradation with phototoxic-
ity. In addition to the limitations associated with biological 
factors, the widespread use of toxin-based optical probes 
is also restrained by the physical properties of light and 
its interactions with the specimen, resulting in attenuation 
of fluorescence signals, confining high-resolution optical 
interrogation to the surface of the biological specimen.

 In summary, along with well-recognised ecological, evo-
lutionary and therapeutic dimensions, the ultimate weap-
ons of nature, animal venoms, are becoming of increasing 
research and diagnostic relevance. Harnessing the full poten-
tial of animal toxins and their detoxified forms for biomedi-
cal imaging, through systematic research and optimization, 
is anticipated to improve the efficacy and specificity of toxin-
based optical probes utilized in future research.

Fig. 3  Representation of basic and translational research areas of the 
use of animal toxin-derived optical probes targeting ion channels. List 
of ion channels (left column) targeted by labelled animal toxins (mid-

dle column) utilised for various research and translational applica-
tions (red circle). The details of the applications of each optical probe 
are described in corresponding sections of the review
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