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1. Introduction

Throughout this study, K will denote a field of characteristic zero.
Given a non-commutative algebra A and its semiclassical limit A, an intriguing question has always been “Do the prop-

erties of A always reflect the (Poisson) properties of A?” For example, given the centre, automorphisms, endomorphisms, 
derivations, and prime ideals of A, can one successfully predict/conjecture the Poisson centre, Poisson automorphisms, Pois-
son endomorphisms, Poisson derivations and Poisson prime ideals of A? Suppose for instance that the prime spectrum of 
A reflects the Poisson prime spectrum of A. A follow-on question will be whether they are homeomorphic/isomorphic? The 
answers to these questions, in some specific cases and for some specific algebras, are affirmative. For example, Goodearl 
[7] has conjectured that the prime and primitive spectra of the quantized coordinate rings are respectively homeomor-
phic to the Poisson prime and Poisson primitive spectra of their corresponding semiclassical limits when the base field 
is algebraically closed and of characteristic zero. This conjecture has been verified for the following quantized coordinate 
rings: Oq(Kn) (see [10, Theorem 4.1]), Oq(S L2(K)) (see [7, Example 9.7]), Oq(S L3(K)) (see [6, Theorem 5.21 & Corol-
lary 5.22]) and Oq(GL2) (see [6, Corollary 5.23]). Moreover, the prime and primitive spectra of the enveloping algebra U (g)

of a solvable finite dimensional complex Lie algebra g are respectively homeomorphic to the prime and primitive spectra 
of its semiclassical limit (see [7, Theorem 8.11, Example 2.6]). From [4], we also have that the Poisson endomorphisms of 
the Poisson quantum generalized Weyl algebra are precisely the Poisson analogue of the endomorphisms of the quantum 
generalised Weyl algebra. Belov-Kanel and Kontsevich [1] have also conjectured that the group of automorphisms of an 
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nth-Weyl algebra An(K) is isomorphic to the group of Poisson automorphisms of the corresponding Poisson Weyl algebra in 
characteristic zero.

In [16], we studied a family of simple quotients

Aα,β := U+
q (G2)/〈�1 − α,�2 − β〉 (α,β) ∈K2 \ {(0,0)}

of the positive part of the quantized enveloping algebra Uq(G2), and concluded that the algebra Aα,β is a q-deformation of 
a quadratic extension of the second Weyl algebra A2(K). Since Aα,β deforms approximately to A2(K), it is considered as 
a quantum second Weyl algebra. Our goal here is to study a semiclassical limit Aα,β of Aα,β , and compare its Lie algebra of 
Poisson derivations to the Lie algebra of derivations of Aα,β studied in [16]. Another property that is also worth investigating 
is the Belov-Kanel and Kontsevich conjecture [1]. Thus, it is natural to ask if the automorphism group of Aα,β is isomorphic 
to the Poisson automorphism group of Aα,β . We will return to this problem in the near future after we have successfully 
studied the automorphism group of Aα,β . In the present case and as already mentioned, we only focus on studying the Lie 
algebra of Poisson derivations of Aα,β , and comparing them to their non-commutative counterparts in [16].

In the noncommutative world, the knowledge of the derivations of twisted group algebras, studied by Osborn and Pass-
man [20], has helped in studying the derivations of other non-commutative algebras such as the quantum second Weyl 
algebra (see [16]), quantum matrices (see [14]), generalized Weyl algebras (see [12]) and some specific examples of quan-
tum enveloping algebras (see [15], [21], and [22]). In view of this, we also study the Poisson derivations of the Poisson 
analogue of the twisted group algebras—called Poisson group algebras—and apply the results to study the Poisson deriva-
tions of a semiclassical limit Aα,β of Aα,β . The rest of the paper is organised as follows.

In Section 2, we recall some basics on Poisson algebras and semiclassical limit. We then proceed to study the Poisson 
derivations of the Poisson group algebras. Similarly to their non-commutative counterparts in [20], every Poisson derivation 
of a Poisson group algebra is the sum of an inner Poisson derivation and a central/scalar Poisson derivation.

In Section 3, we study a semiclassical limit A of the quantum algebra U+
q (G2) and establish that A is a Poisson poly-

nomial K-algebra generated by six indeterminates X1, . . . , X6. The Poisson algebra A =K[X1, . . . , X6] supports the rational 
action of a torus by Poisson automorphisms, and satisfies the conditions in [13, Hypothesis 1.7]. Hence, we can apply 
the Poisson deleting derivations algorithm [13] to study its Poisson spectrum, and its Poisson centre, a (commutative) 
polynomial ring K[�1, �2] in two variables. In Section 4, we study some Poisson H-prime ideals of A using Goodearl’s H-
stratification theory [8], and proceed to study a family (〈�1 − α, �2 − β〉)((α,β)∈K2\{(0,0)}) of maximal and primitive Poisson 
prime ideals of A. Consequently, we study their corresponding Poisson simple quotients

Aα,β := K[X1, . . . , X6]/〈�1 − α,�2 − β〉,
and conclude that the Poisson algebra Aα,β is a semiclassical limit of the quantum second Weyl algebra Aα,β . Having 
a complete description of the semiclassical limit Aα,β of Aα,β , we proceed to study its Poisson derivations in the final 
section of this paper, by following procedures similar to its non-commutative counterpart Aα,β (see [16, §5]). That is, we 
successively embed Aα,β into a suitable Poisson torus R3 via successive localizations as follows:

Aα,β = R7 ⊂ R6 = R7�
−1
6 ⊂ R5 = R6�

−1
5 ⊂ R4 = R5�

−1
4 ⊂ R3. (1)

These embeddings and localizations allow us to extend every Poisson derivation of Aα,β successively and uniquely to a 
Poisson derivation of each of the Poisson algebras Ri through to the Poisson torus R3. Since a Poisson torus is an example 
of a Poisson group algebra, we have that every Poisson derivation of R3 is the sum of an inner Poisson derivation and 
a central/scalar Poisson derivation. Given the Poisson derivations of R3, we backwardly and successively pull the Poisson 
derivations of R3 to Aα,β using the constraint that our Poisson derivation of Aα,β stabilises all Poisson algebras from (1). 
This gives a complete description of the Poisson derivations of Aα,β . Similarly to their non-commutative counterparts in 
[16], every Poisson derivation of Aα,β is an inner Poisson derivations provided αβ �= 0, and the sum of inner Poisson and 
scalar Poisson derivations whenever α or β is zero. More precisely, the first Poisson cohomology group HP1(Aα,β) is a 
one-dimensional vector space in the case where α or β is zero (but not both).

2. Poisson derivations of Poisson group algebras

This section begins with a reminder about Poisson algebras and semiclassical limits. We will then proceed to introduce 
Poisson group algebras and, consequently, study their derivations.

2.1. Poisson algebras

A Poisson algebra A is a commutative algebra over K endowed with a skew-symmetric K-bilinear map {−, −} : A ×
A −→ A which satisfies the Leibniz rule (i.e., {x, yz} = {x, y}z + y{x, z}; x, y, z ∈ A) and Jacobi identity (i.e., {x, {y, z}} +
{y, {z, x}} + {z, {x, y}} = 0; x, y, z ∈A).

The map {−, −} is called the Poisson bracket. From [17, Prop. 1.7], we have that every Poisson bracket of A extends 
uniquely to the localizations of A. A Poisson ideal of A is any ideal I such that {A, I} ⊆ I . Given a Poisson ideal I of A, it 
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is well known that the quotient algebra A/I is a Poisson algebra with an induced Poisson bracket defined by {x̄, ȳ} = {x, y}, 
where z̄ := z + I for all z ∈A. Finally, the subalgebra Z P (A) := {a ∈A | {a, x} = 0, ∀x ∈A} is called the Poisson centre of A.

Remark 2.1. If A is a Poisson algebra and {x1, . . . , xn} is a generating set for A (as an algebra), then

(1) it is always enough to define a Poisson bracket {−, −} on A by defining it on only the generating set.

(2) for all f , g ∈A, we have that { f , g} =
n∑

i, j=1

{xi, x j} ∂ f

∂xi

∂ g

∂x j
(see [7, Example 2.2(a)]).

2.2. Semiclassical limit

Given a non-commutative algebra, one can move from the ‘Non-commutative World’ to the ‘Poisson World’ through 
a process called semiclassical limit, and reverse this process through quantization. This transformation (semiclassical limit) 
and its reverse transformation (quantization) have been widely studied (for example, see [5, §§1.1.3], [2, Chapter III.5], and 
[9, §2]). In line with the presentation in [5, §§1.1.3], we present the following overview of semiclassical limit. Let R be a 
commutative principal ideal domain containing the field K and hR be a maximal ideal of R for a fixed h ∈ R . Let A be an 
algebra which is not necessarily commutative torsion-free R-algebra such that the quotient A := A/h A is a commutative 
algebra. For u, v ∈ A; we have that ū := u + h A and v̄ := v + h A are their respective canonical images in A. Since ū v̄ = v̄ ū, 
we have that [u, v] := uv − vu ∈ h A. There exists a unique element γ (u, v) of A such that [u, v] = hγ (u, v). It follows that

{ū, v̄} := γ (u, v) + h A = [u, v]
h

+ h A

defines a Poisson bracket on A (see [5, §§1.1.3] for further details). We say that A is a quantization of A, and A is a 
semiclassical limit of A. Fix λ ∈K. The algebra Aλ := A/(h −λ)A is a deformation of the Poisson algebra A = A0 if the central 
element h − λ is not invertible in A. We refer the interested reader to [9, §2] for some known examples of semiclassical 
limits of some families of quantum algebras.

2.3. Introduction to Poisson group algebras

In [20, §1&2], Osborn and Passman studied the derivations of twisted group algebras. In line with their results, we also 
study the Poisson derivations of Poisson group algebras. The results in this section will be crucial in the final section of this 
paper where we study the Poisson derivations of a semiclassical limit of the quantum second Weyl algebra Aα,β .

Let G represent a finitely generated abelian group and λ : G × G −→ K be a map such that λ(y, x) = −λ(x, y) and 
λ(x, yz) = λ(x, y) +λ(x, z). We define a Poisson group algebra Kλ

P [G] as a commutative K-algebra which has a copy G := {ḡ |
g ∈ G} of G as a basis and define the Poisson bracket via {x̄, ȳ} = λ(x, y)x̄ ȳ = λ(x, y)xy for all x, y ∈ G (note that x̄ ȳ = xy). 
Observe that λ(x, y) = 0 if and only if {x̄, ȳ} = 0.

Note that Kλ
P [Zn] = K[X±1

1 , . . . , X±1
n ] as a (commutative) K-algebra, where (e1, . . . , en) denotes the canonical basis of 

Zn and Xi := ei for all i. Moreover, the Poisson bracket is given by {Xi, X j} = λ(ei, e j)Xi X j . Conversely, if M = (μi, j) is a 
skew-symmetric matrix, we define a Poisson bracket on K[X±1

1 , . . . , X±1
n ] by setting {Xi, X j} = μi, j Xi X j for all i, j. This is 

a Poisson group algebra called the Poisson torus associated to M .
Let γ ∈Kλ

P [G]. One can write γ as γ = ∑
g∈G cg ḡ , where cg ∈K. Note that cg = 0 for almost all g . The set supp(γ ) :=

{g ∈ G | cg �= 0 in γ } is called the support of γ .
Given a subset H of G , we set

Kλ
P [H] := {γ ∈Kλ

P [G] | supp(γ ) ⊆ H} ⊆ Kλ
P [G].

Remark 2.2.

1. For x ∈ G , we have that Kλ
P [Hx] =Kλ

P [H]x̄, where Hx := {hx | h ∈ H}.
2. We deduce from [20, Sec. 1] that if H is a subsemigroup of G (with the identity e), then Kλ

P [H] is a Poisson subalgebra 
of Kλ

P [G].

The set C := {g ∈ G | {ḡ, ̄x} = 0 for all x ∈ G} and 	(x) := {g ∈ G | {ḡ, ̄x} = 0} (x ∈ G) are both subgroups of G . If 
{g1, . . . , gn} is a generating set for the group G , then C = ⋂n

i=1 	(gi).

Lemma 2.3. The Poisson centre Z P (Kλ [G]) of Kλ [G] is Kλ [C].
P P P

3
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Proof. Clearly, Kλ
P [C] ⊆ Z P (Kλ

P [G]). For the reverse inclusion, take γ = ∑
g∈G cg ḡ ∈ Z P (Kλ

P [G]). It follows that 0 = {γ , ̄x} =∑
g∈G cg{ḡ, ̄x} = ∑

g∈G cgλ(g, x)ḡ x̄, for any x ∈ G . Consequently, λ(g, x) = 0, for all g ∈ supp(γ ). This implies that supp(γ ) ⊆
C , hence γ ∈Kλ

P [C]. �
Remark 2.4. One can easily observe that Z P (Kλ

P [G]) =K if and only if C = {e}, where e is the identity element of G .

2.4. Central and inner Poisson derivations of Poisson group algebras

2.4.1. Central Poisson derivations of Poisson group algebras
Let θ : (G, ·) −→ (Kλ

P [C], +) be a group homomorphism. That is, θ(xy) = θ(x) + θ(y) for all x, y ∈ G . Define a K-linear 
operator D :=Dθ by

D(x̄) = θ(x)x̄

for all x ∈ G .

Lemma 2.5. D is a Poisson derivation of Kλ
P [G].

Proof. We need to show that D(x̄ ȳ) = D(x̄) ȳ + x̄D( ȳ) and D({x̄, ȳ}) = {D(x̄), ȳ} + {x̄, D( ȳ)} for all x, y ∈ G . Now, D(x̄ ȳ) =
θ(xy)xy = θ(xy)x̄ ȳ = θ(x)x̄ ȳ + θ(y)x̄ ȳ = D(x̄) ȳ + x̄D( ȳ). Secondly, D({x̄, ȳ}) = λ(x, y)D(x̄ ȳ) = [θ(x) + θ(y)]λ(x, y)x̄ ȳ =
[θ(x) + θ(y)]{x̄, ȳ} = θ(x){x̄, ȳ} + θ(y){x̄, ȳ} = {θ(x)x̄, ȳ} +{x̄, θ(y) ȳ} = {D(x̄), ȳ} +{x̄, D( ȳ)} (note that {θ(x), ȳ} = {x̄, θ(y)} =
0, since θ(x) and θ(y) are Poisson central elements). �

Similarly to [20], we will refer to D in Lemma 2.5 as a central Poisson derivation. However, when Z P (Kλ
P [G]) = K, then 

D shall be called scalar Poisson derivation. Observe that D(x̄) = θ(x)x̄ ∈Kλ
P [Cx] for all x ∈ G .

2.4.2. Inner Poisson derivations of Poisson group algebras
Let γ = ∑

g∈G cg ḡ ∈ Kλ
P [G], where cg ∈ K, and hamγ := {γ , −}. It is well known that hamγ : Kλ

P [G] −→ Kλ
P [G] is 

a Poisson derivation called the hamiltonian derivation associated to γ . Moreover, hamγ (x̄) = {γ , ̄x} = ∑
g∈G λ(g, x)cg ḡx̄ ∈

Kλ
P [Gx](= Kλ

P [G]x̄) for all x ∈ G . Observe that the elements of C ∩ supp(γ ) do not have any effect on the map hamγ

as hamγ = hamγ +μt̄ for all t ∈ C ∩ supp(γ ) and μ ∈K. As a result, one can always assume that C ∩ supp(γ ) = ∅. Therefore, 
hamγ (x̄) ∈Kλ

P [(G \ C)x] for all x ∈ G . We call the hamiltonian derivation hamγ an inner Poisson derivation.
We can now state our main result in this section in the theorem below.

Theorem 2.6. Every Poisson derivation of the Poisson group algebra Kλ
P [G] is uniquely the sum of an inner Poisson derivation and a 

central Poisson derivation.

Proof. Let D be a Poisson derivation of Kλ
P [G]. Then, for x ∈ G , we have that D(x̄) ∈Kλ

P [G]. Hence, D(x̄) = ∑
h∈G bh(x)h̄ =∑

h∈G bh(x)h̄x̄−1 x̄. Now, the map G → G with h → hx−1 is bijective, and so

D(x̄) =
∑
g∈G

ag(x)ḡ x̄,

where g := hx−1 and ag(x) := bgx(x). Note that ag : G −→K and ag(x) = 0 for almost all x ∈ G .
Since D is a Poisson derivation, we have that D(x̄ ȳ) =D(x̄) ȳ + x̄D( ȳ) for all x, y ∈ G . As a result,∑

g∈G

ag(xy)ḡ x̄ ȳ =
∑
g∈G

ag(x)ḡ x̄ ȳ +
∑
g∈G

ag(y)ḡ x̄ ȳ =
∑
g∈G

[ag(x) + ag(y)]ḡ x̄ ȳ.

Identifying the coefficients in the above equality reveals that

ag(xy) = ag(x) + ag(y).

Secondly, D({x̄, ȳ}) = {D(x̄), ȳ} + {x̄, D( ȳ)}. Now,

D({x̄, ȳ}) = λ(x, y)D(x̄ ȳ) =
∑
g∈G

λ(x, y)ag(xy)ḡ x̄ ȳ. (2)

On the other hand,
4
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{D(x̄), ȳ} + {x̄,D( ȳ)} =
∑
g∈G

ag(x){ḡ x̄, ȳ} +
∑
g∈G

ag(y){x̄, ḡ ȳ}

=
∑
g∈G

[ag(x)(λ(g, y) + λ(x, y)) + ag(y)(λ(x, g) + λ(x, y))]ḡ x̄ ȳ

=
∑
g∈G

[λ(x, y)ag(xy) + ag(x)λ(g, y) − ag(y)λ(g, x)]ḡ x̄ ȳ. (3)

Since D({x̄, ȳ}) = {D(x̄), ȳ} + {x̄, D( ȳ)}, comparing (2) to (3) reveals that

λ(x, y)ag(xy) = λ(x, y)ag(xy) + ag(x)λ(g, y) − ag(y)λ(g, x).

This implies that

ag(x)λ(g, y) = ag(y)λ(g, x). (4)

Suppose that g ∈ C . It follows that λ(g, y) = λ(g, x) = 0 for all x, y ∈ G . Since ag(xy) = ag(x) + ag(y), the map θ : (G, ·) −→
(Kλ

P [C], +) given by θ(x) = ∑
g∈C ag(x)ḡ is a group homomorphism. Hence, θ defines a central Poisson derivation Dθ of 

Kλ
P [G], where

Dθ (x̄) =
∑
g∈C

ag(x)ḡ x̄. (5)

Now, let g /∈ C . There exists y ∈ G such that λ(g, y) �= 0. Fix y and define

cg := ag(y)

λ(g, y)
.

Take any arbitrary element x ∈ G . It follows that

cgλ(g, x) = ag(y)λ(g, x)

λ(g, y)
.

From (4), we have that

cgλ(g, x) = ag(y)λ(g, x)

λ(g, y)
= ag(x)λ(g, y)

λ(g, y)
= ag(x),

for all x ∈ G .
Define γ ∈Kλ

P [G] as γ := ∑
g /∈C cg ḡ . Then,

hamγ (x̄) = {γ , x̄} =
∑
g /∈C

cgλ(g, x)ḡ x̄ =
∑
g /∈C

ag(x)ḡ x̄. (6)

From (5) and (6), one can conclude that every Poisson derivation D of Kλ
P [G] can be written as D = Dθ + hamγ . This 

decomposition of D into an inner Poisson derivation (hamγ ) and a central Poisson derivation (Dθ ) is actually unique, 
because Kλ

P [Gx] = Kλ
P [G] can be decomposed as Kλ

P [Gx] = Kλ
P [Cx] ⊕Kλ

P [(G \ C)x]. Now, every central Poisson derivation 
maps x̄ to an element of the subspace Kλ

P [Cx], and every inner Poisson derivation maps x̄ to an element of the subspace 
Kλ

P [(G \ C)x]. �
Corollary 2.7. Suppose that C = {e} (equivalently, Z P (Kλ

P [G]) =K). Then, every Poisson derivation of Kλ
P [G] is uniquely the sum of 

an inner and a scalar Poisson derivation.

3. Poisson prime spectrum and Poisson deleting derivations algorithm of a semiclassical limit of U +
q (G2)

This section aims to study a semiclassical limit of the positive part U+
q (G2) of the quantized enveloping algebra of type 

G2. Given the semiclassical limit of U+
q (G2), we will study its Poisson prime spectrum using Goodearl’s H-stratification the-

ory [8], and its Poisson deleting derivations algorithm introduced in [13]. Given the data of the Poisson deleting derivations 
algorithm, we will study the Poisson centre of the semiclassical limit.
5
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3.1. Semiclassical limit of the algebra U+
q (G2)

Recall from [16, §2] that U+
q (G2) is generated by E1, . . . , E6, and satisfies the following relations:

E2 E1 = q−3 E1 E2 E3 E1 = q−1 E1 E3 − (q + q−1 + q−3)E2

E3 E2 = q−3 E2 E3 E4 E1 = E1 E4 + (1 − q2)E2
3

E4 E2 = q−3 E2 E4 − q4 − 2q2 + 1

q4 + q2 + 1
E3

3 E4 E3 = q−3 E3 E4

E5 E1 = qE1 E5 − (1 + q2)E3 E5 E2 = E2 E5 + (1 − q2)E2
3

E5 E3 = q−1 E3 E5 − (q + q−1 + q−3)E4 E5 E4 = q−3 E4 E5

E6 E1 = q3 E1 E6 − q3 E5 E6 E2 = q3 E2 E6 + (q4 + q2 − 1)E4+
E6 E3 = E3 E6 + (1 − q2)E2

5 (q2 − q4)E3 E5

E6 E4 = q−3 E4 E6 − q4 − 2q2 + 1

q4 + q2 + 1
E3

5 E6 E5 = q−3 E5 E6.

Set Ui := (q − 1)Ei for i = 1, 3, 4, 5, and Ui := f (q)(q − 1)Ei for i = 2, 6; where f (q) = q4 + q2 + 1. Then, U+
q (G2) is now 

generated by U1, . . . , U6 subject to the relations:

U2U1 = q−3U1U2 U3U2 = q−3U2U3

U3U1 = q−1U1U3 − q−3(q − 1)U2 U4U1 = U1U4 + (1 − q2)U 2
3

U4U2 = q−3U2U4 − (q + 1)2(q − 1)U 3
3 U4U3 = q−3U3U4

U5U1 = qU1U5 − (1 + q2)(q − 1)U3 U5U2 = U2U5 + f (q)(1 − q2)U 2
3

U5U3 = q−1U3U5 − f (q)(q−2 − q−3)U4 U5U4 = q−3U4U5

U6U1 = q3U1U6 − f (q)(q4 − q3)U5 U6U2 = q3U2U6 + f (q)2(q2 − q4)U3U5+
U6U3 = U3U6 + f (q)(1 − q2)U 2

5 f (q)2(q4 + q2 − 1)(q − 1)U4

U6U4 = q−3U4U6 − (q + 1)2(q − 1)U 3
5 U6U5 = q−3U5U6.

We now find a ‘new’ presentation for U+
q (G2) that allows us to introduce a quantisation of U+

q (G2). Let Û+
q (G2) be a 

K[z±1]-algebra generated by Û1, . . . , ̂U6 subject to the relations:

Û2Û1 = z−3Û1Û2 Û3Û2 = z−3Û2Û3

Û3Û1 = z−1Û1Û3 − z−3(z − 1)Û2 Û4Û1 = Û1Û4 + (1 − z2)Û 2
3

Û4Û2 = z−3Û2Û4 − (z + 1)2(z − 1)Û 3
3 Û4Û3 = z−3Û3Û4

Û5Û1 = zÛ1Û5 − (1 + z2)(z − 1)Û3 Û5Û2 = Û2Û5 + f (z)(1 − z2)Û 2
3

Û5Û3 = z−1Û3Û5 − f (z)(z−2 − z−3)Û4 Û5Û4 = z−3Û4Û5

Û6Û1 = z3Û1Û6 − f (z)(z4 − z3)Û5 Û6Û2 = z3Û2Û6 + f (z)2(z2 − z4)Û3Û5+
Û6Û3 = Û3Û6 + f (z)(1 − z2)Û 2

5 f (z)2(z4 + z2 − 1)(z − 1)Û4

Û6Û4 = z−3Û4Û6 − (z + 1)2(z − 1)Û 3
5 Û6Û5 = z−3Û5Û6,

where f (z) = z4 + z2 + 1. Fix λ ∈ K∗ . Observe that the element z − λ is central and not invertible in Û+
q (G2), hence 

we set Aλ := Û+
q (G2)/(z − λ)Û+

q (G2). Now, Aq is the non-commutative algebra U+
q (G2) and A1 = K[X1, . . . , X6] with 

Xi := Û i + (z − 1)Û+
q (G2) is a Poisson algebra with the Poisson bracket defined as follows:

{X2, X1} = −3X1 X2 {X3, X1} = −X1 X3 − X2

{X3, X2} = −3X2 X3 {X4, X1} = −2X2
3

{X4, X2} = −3X2 X4 − 4X3
3 {X4, X3} = −3X3 X4

{X5, X1} = X1 X5 − 2X3 {X5, X2} = −6X2

3

6
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{X5, X3} = −X3 X5 − 3X4 {X5, X4} = −3X4 X5

{X6, X1} = 3X1 X6 − 3X5 {X6, X2} = 3X2 X6 + 9X4 − 18X3 X5

{X6, X3} = −6X2
5 {X6, X4} = −3X4 X6 − 4X3

5

{X6, X5} = −3X5 X6.

Therefore, A1 is a semiclassical limit of the non-commutative algebra Û+
q (G2), and Aq is a deformation of the Poisson 

algebra A1. For simplicity, we set

A := A1 = K[X1, . . . , X6]
for the rest of this paper. One can write the Poisson algebra A as an iterated Poisson-Ore extension over K (see [18, 
Theorem 1.1] for the definition of iterated Poisson-Ore extension) as follows:

A = K[X1][X2;σ2]P [X3;σ3, δ3]P [X4;σ4, δ4]P [X5;σ5, δ5]P [X6;σ6, δ6]P ; (7)

where σi and δi are respectively the Poisson derivations and Poisson σi -derivations of

K[X1][X2;σ2]P [X3;σ3, δ3]P . . . [Xi−1;σi−1, δi−1]P

(2 ≤ i ≤ 6 and δ2 = 0) defined as follows:

σ2(X1) = −3X1 σ3(X1) = −X1 σ3(X2) = −3X2 σ4(X1) = 0

σ4(X2) = −3X2 σ4(X3) = −3X3 σ5(X1) = X1 σ5(X2) = 0

σ5(X3) = −X3 σ5(X4) = −3X4 σ6(X1) = 3X1 σ6(X2) = 3X2

σ6(X3) = 0 σ6(X4) = −3X4 σ6(X5) = −3X5,

and

δ3(X1) = −X2 δ3(X2) = 0 δ4(X1) = −2X2
3 δ4(X2) = −4X3

3

δ4(X3) = 0 δ5(X1) = −2X3 δ5(X2) = −6X2
3 δ5(X3) = −3X4

δ5(X4) = 0 δ6(X1) = −3X5 δ6(X2) = 9X4 − 18X3 X5 δ6(X3) = −6X2
5

δ6(X4) = −4X3
5 δ6(X5) = 0.

From [11, Eqn. 5.6], we have that the rank of A, denoted by rank(A), is given by

rank(A) := |{ j ∈ {1, . . . ,6} | δ j = 0}| = 2. (8)

Remark 3.1 ([2, Theorem I.1.13] (Hilbert’s basis theorem)). Since K is a noetherian domain, the Poisson algebra A =
K[X1][X2; σ2]P [X3; σ3, δ3]P [X4; σ4, δ4]P [X5; σ5, δ5]P [X6; σ6, δ6]P is a noetherian domain.

3.2. Poisson prime spectrum of the semiclassical limit of the algebra U+
q (G2)

We study the Poisson prime spectrum of the Poisson algebra A = K[X1, . . . , X6] in this subsection. Let P be a proper 
Poisson ideal of a Poisson algebra A. The ideal P is called Poisson prime ideal provided that for all Poisson ideals I1, I2 of A
such that P ⊇ I1 I2, we have that P ⊇ I1 or P ⊇ I2. Since the Poisson algebra A is a noetherian domain, every Poisson ideal 
which is also a prime ideal is a Poisson prime ideal and vice versa (see [8, Lemma 1.1]). The set of all the Poisson prime 
ideals of A is called the Poisson prime spectrum of A, denoted by P.Spec(A). The largest Poisson prime ideal contained in a 
given maximal ideal of A is called a Poisson primitive ideal. The set of all these Poisson primitive ideals is called the Poisson 
primitive spectrum of A, denoted by P.Prim(A).

One can easily check that the algebraic torus H := (K∗)2 acts rationally on A by Poisson automorphisms via:

(α,β) · X1 = αX1, (α,β) · X2 = α3β X2, (α,β) · X3 = α2β X3, (α,β) · X4 = α3β2 X4, (α,β) · X5 = αβ X5,

and (α,β) · X6 = β X6 for all (α,β) ∈ H.

(We refer the reader to [8, §2] for the definition of a rational torus action). A Poisson prime ideal P is H-invariant if h · P = P
for all h ∈H. Moreover, (P :H) := ⋂

h∈H h · P is the largest Poisson H-invariant ideal contained in P . Note that (P :H) is a 
prime ideal.
7
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The set

P.Spec J (A) := {P ∈ P.Spec(A) | (P : H) = J }
is called the J -stratum of P.Spec(A). The H-strata P.Spec J (A) partition P.Spec(A) into a disjoint union of strata. Hence,

P.Spec(A) = �
J∈H-P.Spec(A)

P.Spec J (A), (9)

where H-P.Spec(A) is the collection of all the Poisson H-invariant prime ideals of A. This partition is called an H-
stratification of P.Spec(A). In a similar manner, an H-stratification of P.Prim(A) is obtained as follows:

P.Prim(A) = �
J∈H-P.Spec(A)

P.Prim J (A),

where P.Prim J (A) = P.Spec J (A) ∩ P.Prim(A).
The iterated-Poisson Ore extension A has only finitely many Poisson H-primes (see [9, Theorem 1.7]), and so we deduce 

from [8, Theorem 4.3] the following result.

Proposition 3.2. Let P ∈ P.Spec J (A). Then, P is a Poisson primitive ideal of A if and only if P is maximal in P.Spec J (A).

3.3. Poisson deleting derivations algorithm of the semiclassical limit of U+
q (G2)

In [13], the authors studied a Poisson version of the well-known Cauchon’s deleting derivations algorithm (see [3]), called 
the Poisson deleting derivations algorithm (PDDA for short). In this subsection, we study the PDDA of A = K[X1, . . . , X6]. 
From (7), we have that A = K[X1][X2; σ2, δ2]p . . . [X6; σ6, δ6]P . One can easily verify that A satisfies the conditions in the 
hypothesis below.

Hypothesis 3.3.

(H1) For all 1 ≤ j < i ≤ 6, there exists μi j ∈K with μ ji := −μi j , such that σi(X j) = μi j X j .
(H2) The derivations δi are all locally nilpotent and δiσi − σiδi = ηiδi for some non-zero scalar ηi , for all 2 ≤ i ≤ 6.

As a result, the PDDA can be used to study the Poisson prime spectrum of A (see [13, Hypothesis 1.7]). Let 1 ≤ i ≤ 6 and 
2 ≤ j ≤ 7. Using the relation

Xi, j :=

⎧⎪⎨⎪⎩
Xi, j+1 if i ≥ j
+∞∑
k=0

1

ηk
jk!δ

k
j (Xi, j+1)X−k

j, j+1 if i < j,

(note that since δ j is locally nilpotent, the summation is finite), one can construct a family (X1, j , . . . , X6, j) of elements of 
the field of fractions Fract(A) of A as follows:

Xi,7 := Xi (i = 1, . . . ,6)

X1,6 = X1 − 1

2
X5 X−1

6

X2,6 = X2 + 3

2
X4 X−1

6 − 3X3 X5 X−1
6 + X3

5 X−2
6

X3,6 = X3 − X2
5 X−1

6

X4,6 = X4 − 2

3
X3

5 X−1
6

Xi,6 = Xi (i = 5,6)

X1,5 = X1,6 − X3,6 X−1
5,6 + 3

4
X4,6 X−2

5,6

X2,5 = X2,6 − 3X2
3,6 X−1

5,6 + 9

2
X3,6 X4,6 X−2

5,6 − 9

4
X2

4,6 X−3
5,6

X3,5 = X3,6 − 3

2
X4,6 X−1

5,6

Xi,5 = Xi,6 (i = 4,5,6)
8
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X1,4 = X1,5 − 1

3
X2

3,5 X−1
4,5

X2,4 = X2,5 − 2

3
X3

3,5 X−1
4,5

Xi,4 = Xi,5 (i = 3, . . . ,6)

X1,3 = X1,4 − 1

2
X2,4 X−1

3,4

Xi,3 = Xi,4 (i = 2, . . . ,6)

Ti := Xi,2 = Xi,3 (i = 1, . . . ,6).

For each 2 ≤ j ≤ 7, the algebra A( j) represents the subalgebra of Fract(A) generated by all the Xi, j . That is, A( j) =
K[X1, j, . . . , X6, j]. Since Xi,7 = Xi , 1 ≤ i ≤ 6, we have that A(7) =A. From [13, Prop. 1.11], we have that

A( j) ∼= K[X1][X2;σ2, δ2]P · · · [X j−1;σ j−1, δ j−1]P [X j;τ j]P · · · [X6;τ6]P ,

by an isomorphism that maps Xi, j to Xi , and τ j, . . . , τ6 denote the Poisson derivations defined by τl(Xi) = μli Xi for all 
1 ≤ i < l ≤ 6. With a slight abuse of notation, one can identify τ j, . . . , τ6 with σ j, . . . , σ6 respectively.

Notation 3.4. A :=A(2) =K[T1, . . . , T6].

One can easily check that A is a Poisson affine space associated to the skew-symmetric matrix

M :=

⎡⎢⎢⎢⎢⎢⎣
0 3 1 0 −1 −3

−3 0 3 3 0 −3
−1 −3 0 3 1 0
0 −3 −3 0 3 3
1 0 −1 −3 0 3
3 3 0 −3 −3 0

⎤⎥⎥⎥⎥⎥⎦ .

That is, A satisfies the relation {Ti, T j} = μi j T j T i for all 1 ≤ i, j ≤ 6, where μi j are the entries of M .

3.4. Canonical embedding

The set � j := {Xn
j, j+1 | n ∈ N} = {Xn

j, j | n ∈ N} is a multiplicative system of regular elements of A( j) and A( j+1) . More-

over, A( j)�−1
j = A( j+1)�−1

j [13, Prop. 1.11]. One can use the PDDA to relate P.Spec(A) to P.Spec(A) by constructing an 
embedding ψ j : P.Spec(A( j+1)) ↪→ P.Spec(A( j)) defined by

ψ j(P ) :=
{

P�−1
j ∩A( j) if X j, j+1 /∈ P ,

g−1
j (P/〈X j, j+1〉) if X j, j+1 ∈ P ,

for each 2 ≤ j ≤ 6 (see [13, Lemma 2.3]). The map g j is a surjective homomorphism

g j : A( j) → A( j+1)/〈X j, j+1〉
defined by

g j(Xi, j) := Xi, j+1 + 〈X j, j+1〉
(further details can be found in [13, §2]). From [13, §2.1], there exists an increasing homeomorphism from the topological 
space

{P ∈ P.Spec(A( j+1)) | X j, j+1 /∈ P }
onto the topological space

{Q ∈ P.Spec(A( j)) | X j, j /∈ P }
whose inverse is also an increasing homeomorphism (the topology being the Zariski topology). The map ψ j is injective but 
not necessarily bijective. However, ψ j induces a bijection between {P ∈ P.Spec(A( j+1)) | P ∩ � j = ∅} and {Q ∈ P.Spec(A( j)) |
Q ∩ � j = ∅} [13, Lemma 2.1]. The so-called canonical embedding

ψ := ψ2 ◦ · · · ◦ ψ6 : P.Spec(A) ↪→ P.Spec(A)
9
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is obtained by composing all the ψ j . This canonical embedding ψ helps to construct a partition, the so-called canonical 
partition, of P.Spec(A) into a disjoint union of strata via the notion of Cauchon diagrams that we recall below.

Recall that the torus H := (K∗)2 acts rationally on A by Poisson automorphisms. One can easily check that this induces 
an action of H on all A( j) (2 ≤ j ≤ 7) by Poisson automorphisms via:

(α,β) · X1, j = αX1, j, (α,β) · X2, j = α3β X2, j, (α,β) · X3, j = α2β X3, j, (α,β) · X4, j = α3β2 X4, j,

(α,β) · X5, j = αβ X5, j, and (α,β) · X6, j = β X6, j for all (α,β) ∈ H.

One can easily check that the canonical embedding is H-equivariant.
The H-invariant Poisson prime ideals of A have generally been described in [13, §2.2] as follows. For any subset C of 

{1, . . . , 6}, let KC denote the Poisson H-invariant prime ideal of A generated by the Ti with i ∈ C . We deduce from [13, 
§2.2] that

KC = 〈Ti | i ∈ C〉,
and

H-P.Spec(A) = {KC | C ⊆ {1, . . . ,6}},
so that

ψ(H-P.Spec(A)) ⊆ {KC | C ⊆ {1, . . . ,6}}.
A subset C of {1, . . . , 6} is called a Cauchon diagrams provided KC ∈ ψ(H-P.Spec(A)).

3.5. Poisson centre of A

The monomials �1 := T1T3T5 and �2 := T2T4T6 are Poisson central elements of the Poisson affine space A, since 
{�i, T j} = 0 for all i = 1, 2, and 1 ≤ j ≤ 6. We now want to successively pull �1 and �2 from A into A using the data of 
the PDDA of A. Through a direct computation, one can confirm that

�1 = T1T3T5

= X1,3 X3,3 X5,3

= X1,4 X3,4 X5,4 − 1

2
X2,4 X5,4

= X1,5 X3,5 X5,5 − 1

2
X2,5 X5,5

= X1,6 X3,6 X5,6 − 3

2
X1,6 X4,6 − 1

2
X2,6 X5,6 + 1

2
X2

3,6

= X1 X3 X5 − 3

2
X1 X4 − 1

2
X2 X5 + 1

2
X2

3,

and

�2 = T2T4T6

= X2,4 X4,4 X6,4

= X2,5 X4,5 X6,5 − 2

3
X3

3,5 X6,5

= X2,6 X4,6 X6,6 − 2

3
X3

3,6 X6,6

= X2 X4 X6 − 2

3
X3

3 X6 − 2

3
X2 X3

5 + 2X2
3 X2

5 − 3X3 X4 X5 + 3

2
X2

4 .

We proceed to show that the Poisson centre of A( j) (2 ≤ j ≤ 7) is a polynomial ring in two variables: �1 and �2, for each 
j. That is, Z P (A( j)) =K[�1, �2], for each j. The following discussions will lead us to the proof.

The set S j := {λT
i j

j T
i j+1
j+1 . . . T i6

6 | i j, . . . , i6 ∈N} is a multiplicative system of non-zero divisors of A( j) for each 2 ≤ j ≤ 6. 
One can therefore localize A( j) at S j as follows:

R j := A( j)S−1.
j

10
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Recall from [13, Prop. 1.11] that

A( j)�−1
j = A( j+1)�−1

j ,

with � j := {T n
j | n ∈N}. One can easily verify that

R j = R j+1�
−1
j , for all 2 ≤ j ≤ 6.

Moreover, we set

R1 := R2[T −1
1 ].

R1 is the Poisson torus associated to the Poisson affine space A, that is R1 = K[T ±1
1 , . . . , T ±1

6 ], where {Ti, T j} = μi j T j T i

for all 1 ≤ i, j ≤ 6. The PDDA helps to construct the following chain of embeddings:

A := R7 ⊂ R6 = R7�
−1
6 ⊂ R5 = R6�

−1
5 ⊂ R4 = R5�

−1
4

⊂ R3 = R4�
−1
3 ⊂ R2 = R3�

−1
2 ⊂ R1. (10)

Note that the family (Xk1
1, j . . . Xk6

6, j), where ki ∈ N if i < j and ki ∈ Z otherwise is a PBW-basis of R j for all 2 ≤ j ≤ 7. In 

addition, the family (T k1
1 . . . T k6

6 )k1,...,k6∈Z is a basis of R1.

Lemma 3.5.

1. Z P (R1) =K[�±1
1 , �±1

2 ].
2. Z P (R3) =K[�1, �2].
3. Z P (A) =K[�1, �2].
4. Z P (A) = Z P (R6) = Z P (R5) = Z P (R4) =K[�1, �2].

Proof. First, observe that �1 = T1T3T5 and �2 = T2T4T6 are algebraically independent. This easily follows from the fact 
that the monomials in T1, . . . , T6 are linearly independent.

1. Obviously, K[�±1
1 , �±1

2 ] ⊆ Z P (R1). For the reverse inclusion, let y ∈ Z P (R1). Then, y can be written in terms of 
the basis of R1 as y = ∑

(i,...,n)∈Z6 a(i,...,n)T i
1T j

2 T k
3 T l

4T m
5 T n

6 . One can verify that {y, T1} = (−3 j − k + m + 3n)yT1. Since 
y ∈ Z P (R1), it follows that −3 j − k + m + 3n = 0. Following the same pattern for T2, T3, T4, T5 and T6, one can confirm 
that 3i − 3k − 3l + 3n = 0, i + 3 j − 3l − m = 0, 3 j + 3k − 3m − 3n = 0, −i + k + 3l − 3n = 0, and −3i − 3 j + 3l + 3m = 0. 
Solving this system of six equations will reveal that i = k = m and j = l = n. One can therefore write

y =
∑

(i, j)∈Z2

a(i, j)T i
1T j

2 T i
3T j

4 T i
5T j

6 =
∑

(i, j)∈Z2

a(i, j)T i
1T i

3T i
5T j

2 T j
4 T j

6 =
∑

(i, j)∈Z2

a(i, j)�
i
1�

j
2 ∈K[�±1

1 ,�±1
2 ].

2. A similar argument as in (1) will prove the result.
3. Observe that K[�1, �2] ⊆ Z P (A) ⊆ Z P (R3) =K[�1, �2]. Hence, Z P (A) =K[�1, �2].
4. Clearly, K[�1, �2] ⊆ Z P (A). Since Ri is a localization of Ri+1 (see (10)), it follows that Z P (Ri+1) ⊆ Z P (Ri). Hence, 

K[�1, �2] ⊆ Z P (A) ⊆ Z P (R6) ⊆ Z P (R5) ⊆ Z P (R4) ⊆ Z P (R3) = K[�1, �2]. Consequently, Z P (A) = Z P (R6) = Z P (R5) =
Z P (R4) =K[�1, �2]. �

Recall that R j = A( j) S−1
j . Since �1 and �2 are both elements of A( j) and Z P (R j), we have the following immediate 

corollary.

Corollary 3.6. Z P (A( j)) =K[�1, �2] for each 3 ≤ j ≤ 6.

4. Maximal and primitive Poisson ideals and simple quotients of the semiclassical limit of U +
q (G2)

This section studies the height one Poisson H-invariant prime ideals of A = K[X1, . . . , X6]. Obviously, 〈0〉 is the only 
height zero Poisson H-invariant prime ideal of A. Now, the Poisson H-invariant prime ideals of at most height one will 
enable us to study a family of primitive and maximal Poisson ideals of A, and consequently study a family of simple 
quotients of A.
11
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4.1. Height one Poisson H-invariant prime ideals of A

In this subsection, we study the height one Poisson H-invariant prime ideals of A = K[X1, . . . , X6]. We will begin by 
showing that 〈�1〉 and 〈�2〉 are Poisson prime ideals. Note that 〈�〉R will denote the ideal generated by the element � in 
the commutative ring R . Where no doubt arises, we will simply write 〈�〉.

Recall from Subsection 3.4 that there exists a bijection between {P ∈ P.Spec(A( j+1)) | P ∩� j = ∅} and {Q ∈ P.Spec(A( j)) |
Q ∩ � j = ∅}. Observe that 〈T1〉 and 〈T2〉 are both elements of P.Spec(A). The following result shows that 〈T1〉 ∈ Im(ψ), 
and that 〈�1〉 is the Poisson prime ideal of A such that ψ(〈�1〉) = 〈T1〉 (note that we could have used the results of [11]
to obtain these results, however we will need some of the intermediate steps here to study the Poisson derivations of the 
Poisson simple quotients of A).

Lemma 4.1. 〈�1〉 is the Poisson prime ideal of A such that ψ(〈�1〉) = 〈T1〉.

Proof. We will prove this result in several steps by showing that:

1. 〈T1〉 ∈ P.Spec(A(3)).
2. 〈T1〉[T −1

3 ] ∩A(4) = 〈X1,4T3 − 1
2 T2〉, so that 〈X1,4T3 − 1

2 T2〉 ∈ P.Spec(A(4)).

3. 〈X1,4T3 − 1
2 T2〉[T −1

4 ] ∩A(5) = 〈X1,5T3 − 1
2 X2,5〉, so that 〈X1,5T3 − 1

2 X2,5〉 ∈ P.Spec(A(5)).

4. 〈X1,5T3 − 1
2 X2,5〉[T −1

5 ] ∩A(6) = 〈�1〉A(6) , so that 〈�1〉A(6) ∈ P.Spec(A(6)).

5. 〈�1〉A(6) [T −1
6 ] ∩A = 〈�1〉A , so that 〈�1〉A ∈ P.Spec(A).

We proceed to prove the above claims.
1. One can easily verify that A(3)/〈T1〉 is isomorphic to a Poisson affine space of rank 5. Hence, 〈T1〉 is a Poisson prime 

ideal in A(3) .
2. Set I := 〈X1,4T3 − 1

2 T2〉. One can verify that {Xi,4, I} ⊆ I for all i = 1, . . . , 6. Therefore, I is a Poisson ideal in A(4) . In 
addition, A(4)/I is isomorphic to a polynomial ring in 5 variables which is a domain, hence I is a prime ideal. Since I is 
both Poisson and prime ideal, it is a Poisson prime ideal in A(4) .

3. Similarly to 2.
4. Observe that �′

1 := X1,5T3 − 1
2 X2,5 = �1T −1

5 in A(5)[T −1
5 ] = A(6)[T −1

5 ]. Since 〈�′
1〉 ∈ P.Spec(A(5)), we want to show 

that 〈�′
1〉[T −1

5 ] ∩ A(6) = 〈�1〉A(6) . Observe that 〈�1〉A(6) ⊆ 〈�′
1〉[T −1

5 ] ∩ A(6) . We establish the reverse inclusion. Let y ∈
〈�′

1〉[T −1
5 ] ∩ A(6) . Then, y ∈ 〈�′

1〉[T −1
5 ]. There exists i ∈ N such that yT i

5 ∈ 〈�′
1〉. Hence, yT i

5 = �′
1 v , for some v ∈ A(5) . 

Furthermore, since A(5)[T −1
5 ] = A(6)[T −1

5 ], there exists j ∈N such that vT j
5 = v ′ for some v ′ ∈ A(6) . It follows from yT i

5 =
�′

1 v that yT i+ j
5 = �′

1 vT j
5 = �′

1 v ′ . Hence, yT δ
5 = �′

1T5 v ′ = �1 v ′ , where δ = i + j + 1 (note that �′
1T5 = �1 in A(6)). Let 

S = {s ∈N | ∃v ′ ∈ A(6) : yT s
5 = �1 v ′}. Since δ ∈ S , we have that S �= ∅. Let s = s0 be the minimum element of S such that 

yT s0
5 = �1 v ′ for some v ′ ∈ A(6) . We want to show that s0 = 0. Suppose that s0 > 0. Since T5 = X5,6 is irreducible in A(6) , 

yT s0
5 = �1 v ′ implies that T5 is a factor of �1 or v ′ . Clearly, T5 is not a factor of �1 in A(6) . Hence, there exists v ′′ ∈ A(6)

such that v ′ = T5 v ′′ . This implies that yT s0
5 = �1 v ′ = �1T5 v ′′ , so that yT s0−1

5 = �1 v ′′ and so s0 − 1 ∈ S , a contradiction! 
Therefore, s0 = 0 and y = �1 v ′ ∈ 〈�1〉A(6) . Hence, 〈�′

1〉[T −1
5 ] ∩A(6) ⊆ 〈�1〉A(6) as expected.

5. The proof is similar to 4. �
Following similar procedures, one can also prove that 〈T2〉 ∈ Im(ψ), and that 〈�2〉 is the Poisson prime ideal of A such 

that ψ(〈�2〉) = 〈T2〉 (the interested reader can check out the details of the proof in [19]). We state only the result in the 
following lemma.

Lemma 4.2. 〈�2〉 is the Poisson prime ideal of A such that ψ(〈�2〉) = 〈T2〉.

Observe that 〈T1, T2〉 and 〈T2, T3〉 are Poisson prime ideals of A. In the next lemma, we will show that 〈T1, T2〉, 〈T2, T3〉 ∈
ψ(P.Spec(A)). In other words, we prove that {1, 2} and {2, 3} are Cauchon diagrams of A.

Lemma 4.3. 〈T1, T2〉, 〈T2, T3〉 ∈ ψ(P.Spec(A)).

Proof. We only prove that 〈T1, T2〉 ∈ ψ(P.Spec(A)) as the other case is similar.
Set J (3)

1,2 := 〈T1, T2〉 ∈ P.Spec(A(3)). Observe that T3 /∈ J (3)
1,2. Therefore, J (4)

1,2 := J (3)
1,2[T −1

3 ] ∩ A(4) belongs to P.Spec(A(4)). 
Suppose that T4 ∈ J (4)

1,2. Then, since J (3)
1,2[T −1

3 ] = J (4)
1,2[T −1

3 ], we have that T4 ∈ J (3)
1,2[T −1

3 ] ∩ A(4) = J (4)
1,2[T −1

3 ] ∩ A(3) = J (3)
1,2, 

a contradiction! Therefore, T4 /∈ J (4)
1,2. Hence, J (5)

1,2 := J (4)
1,2[T −1

4 ] ∩A(5) belongs to P.Spec(A(5)). Suppose that T5 ∈ J (5)
1,2. Then, 

T5 ∈ J (4) [T −1] ∩A(5) = J (5) [T −1] ∩A(4) = J (4) , a contradiction! Therefore, T5 /∈ J (5) . Hence, J (6) := J (5) [T −1] ∩A(6) belongs 
1,2 4 1,2 4 1,2 1,2 1,2 1,2 5

12
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to P.Spec(A(6)). Similarly, one can show that T6 /∈ J (6)
1,2. Hence, J1,2 := J (6)

1,2[T −1
6 ] ∩ A = J1,2 belongs to P.Spec(A), and one 

can easily check that, by construction, ψ( J1,2) = 〈T1, T2〉. �
Recall that �1 = T1T3T5 and �2 = T2T4T6 in A. Observe that �1, �2 are both elements of 〈T1, T2〉 and 〈T2, T3〉. From 

Lemma 4.3, we know that there exist Poisson prime ideals J1,2 and J2,3 of A such that ψ( J1,2) = 〈T1, T2〉 and ψ( J2,3) =
〈T2, T3〉. In the next lemma, we show that J1,2 and J2,3 both contain �1 and �2.

Lemma 4.4. �1 and �2 are elements of J1,2 and J2,3 .

Proof. Recall that �1 and �2 are central elements of A( j) for each 2 ≤ j ≤ 7. We know that �1 and �2 are elements of 
J (3)

1,2 = 〈T1, T2〉. With the notation of the proof of Lemma 4.3, observe that this implies that

�1,�2 ∈ J (3)
1,2[T −1

j ] ∩A(4) = J (4)
1,2.

By induction on j, we conclude that �1, �2 ∈ J1,2.
Similarly, one can also show that �1, �2 ∈ J2,3. �
We now want to find the height one Poisson H-invariant prime ideals of A, and show that the height two Poisson 

H-invariant prime ideals of A contain those of height one.
One can easily observe that 〈�1〉, 〈�2〉, J1,2 and J2,3 are all H-invariant. From [11, Sec. 5.2], we have that the total 

number of height 1 Poisson H-invariant prime ideals of A is equal to rank(A) = 2 (see (8)). We are therefore certain that 
〈�1〉 and 〈�2〉 are the only height 1 Poisson H-invariant prime ideals of A.

The next result will allow us to describe height 2 Poisson H-invariant prime ideals of A.

Lemma 4.5. Let P ∈ ψ(P.Spec(A)). If T j ∈ P , then T j−1, . . . , T2 ∈ P for all 3 ≤ j ≤ 6.

Proof. This is an easy consequence of the following observations:

T2 = X2,4 = −{X3,4, X1,4} − X1,4 X3,4 ∈ 〈X3,4〉 = 〈T3〉A(4);
T 2

3 = X2
3,5 = −1

2
{X4,5, X1,5} ∈ 〈X4,5〉 = 〈T4〉A(5) (⇒ T3 ∈ 〈T4〉A(5) );

T4 = X4,6 = −1

3
X3,6 X5,6 − 1

3
{X5,6, X3,6} ∈ 〈X5,6〉 = 〈T5〉A(6);

T5 = X5 = X1 X6 − 1

3
{X6, X1} ∈ 〈X6〉 = 〈T6〉A. �

Recall from Lemma 4.3 that there exist J1,2 and J2,3 of P.Spec(A) such that ψ( J1,2) = 〈T1, T2〉 and ψ( J2,3) = 〈T2, T3〉. 
As a consequence of Lemma 4.5, the Poisson ideals 〈T1, T2〉 and 〈T2, T3〉 are the only height two Poisson H-invariant prime 
ideals of ψ(P.Spec(A)). Since ψ preserves Poisson H-invariant prime ideals and the height of a Poisson prime ideal, this 
implies that J1,2 and J2,3 are the only height two Poisson H-invariant prime ideals of A. We conclude from Lemma 4.4
that the height two Poisson H-invariant prime ideals of A contain both �1 and �2.

Proposition 4.6. Every non-zero Poisson H-invariant prime ideal of A contains �1 or �2 . Moreover, every Poisson H-invariant prime 
ideal of A of height at least two contains both �1 and �2 .

4.2. Some maximal and primitive Poisson ideals of A

We begin this subsection by finding the H-strata corresponding to 〈0〉, 〈�1〉 and 〈�2〉. Note that, in this subsection, we 
write 〈�1, . . . , �d〉 for 〈�1, . . . , �d〉A , where �1, . . . , �d ∈A.

Proposition 4.7. Assume that K is algebraically closed. Let P be the set of those monic irreducible polynomials P (�1, �2) ∈
K[�1, �2] with P (�1, �2) �= �1 and P (�1, �2) �= �2 . Then P.Spec〈0〉(A) = {〈0〉} ∪ {〈P (�1, �2)〉 | P (�1, �2) ∈ P} ∪ {〈�1 −
α, �2 − β〉 | α, β ∈K∗}.

Proof. Observe first that it follows from the H-stratification of P.Spec(A) (see (9)) and Proposition 4.6 that P.Spec〈0〉(A) =
{Q ∈ P.Spec(A) | �1, �2 /∈ Q }.

Set R := A[�−1
1 , �−1

2 ]. The above observation shows that φ : Q → Q [�−1
1 , �−1

2 ] is an increasing bijection from 
P.Spec〈0〉(A) onto P.Spec(R).
13
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Before describing P.Spec(R), observe that the action of H on A extends to an action of H on R by Poisson automor-
phisms since �1 and �2 are H-eigenvectors. The map φ is H-equivariant and it follows from Proposition 4.6 that R is 
Poisson H-simple, that is, 〈0〉R is the only unique Poisson H-invariant proper ideal of R .

As R is Poisson H-simple, we deduce from [8, Theorem 4.2] that the extension and contraction maps provide mutually 
inverse bijections between P.Spec(R) and Spec(Z P (R)). From Lemma 3.5, Z P (A) =K[�1, �2], and so Z P (R) =K[�±1

1 , �±1
2 ]. 

Since K is algebraically closed, we have that Spec(Z P (R)) = {〈0〉Z P (R)} ∪{〈P (�1, �2)〉Z P (R) | P (�1, �2) ∈P} ∪{〈�1 −α, �2 −
β〉Z P (R) | α, β ∈ K∗}. All these show that P.Spec(R) = {〈0〉R} ∪ {〈P (�1, �2)〉R | P (�1, �2) ∈ P} ∪ {〈�1 − α, �2 − β〉R | α, β ∈
K∗}. It follows that P.Spec〈0〉(A) = {〈0〉R ∩A} ∪ {〈P (�1, �2)〉R ∩A | P (�1, �2) ∈P} ∪ {〈�1 − α, �2 − β〉R ∩A | α, β ∈K∗}.

Undoubtedly, 〈0〉R ∩ A = 〈0〉. We now have to show that 〈P (�1, �2)〉R ∩ A = 〈P (�1, �2)〉, ∀P (�1, �2) ∈ P , and 〈�1 −
α, �2 − β〉R ∩A = 〈�1 − α, �2 − β〉, ∀α, β ∈K∗ , in order to complete the proof.

Fix P (�1, �2) ∈ P . Clearly, 〈P (�1, �2)〉 ⊆ 〈P (�1, �2)〉R ∩ A. To show the reverse inclusion, let y ∈ 〈P (�1, �2)〉R ∩ A. 
Since y ∈ 〈P (�1, �2)〉R , it implies that y = dP (�1, �2) for some d ∈ R . Also, d ∈ R implies that there exists i, j ∈ N
such that d = a�−i

1 �
− j
2 , where a ∈ A. Therefore, y = a�−i

1 �
− j
2 P (�1, �2), which implies that y�i

1�
j
2 = aP (�1, �2). Choose 

(i, j) ∈ N2 minimal (in the lexicographic order on N2) such that y�i
1�

j
2 ∈ 〈P (�1, �2)〉. Without loss of generality, let us 

suppose that i > 0, then aP (�1, �2) ∈ 〈�1〉. Since 〈�1〉 is a prime ideal, it implies that a ∈ 〈�1〉 or P (�1, �2) ∈ 〈�1〉. Given 
that P (�1, �2) ∈ P , we have that P (�1, �2) /∈ 〈�1〉. Hence, a ∈ 〈�1〉, which implies that a = t�1 for some t ∈ A. Return-
ing to y�i

1�
j
2 = aP (�1, �2), we have that y�i

1�
j
2 = t�1 P (�1, �2). Therefore, y�i−1

1 �
j
2 = t P (�1, �2) ∈ 〈P (�1, �2)〉. This 

clearly contradicts the minimality of (i, j), hence (i, j) = (0, 0). As a result, y = aP (�1, �2) ∈ 〈P (�1, �2)〉. Consequently, 
〈P (�1, �2)〉R ∩A = 〈P (�1, �2)〉 for all P (�1, �2) ∈P as desired.

Similarly, we show that 〈�1 − α, �2 − β〉R ∩A = 〈�1 − α, �2 − β〉; ∀α, β ∈K∗ . Fix α, β ∈K∗ . Obviously, 〈�1 − α, �2 −
β〉 ⊆ 〈�1 −α, �2 −β〉R ∩A. We now establish the reverse inclusion. Let y ∈ 〈�1 −α, �2 −β〉R ∩A. Since y ∈ 〈�1 −α, �2 −
β〉R , we have that y = m0(�1 − α) + n0(�2 − β), where m0, n0 ∈ R . Also, m0, n0 ∈ R implies that there exists i, j ∈N such 
that m0 = m�−i

1 �
− j
2 and n0 = n�−i

1 �
− j
2 for some m, n ∈ A. Therefore, y = m�−i

1 �
− j
2 (�1 − α) + n�−i

1 �
− j
2 (�2 − β), which 

implies that y�i
1�

j
2 = m(�1 − α) + n(�2 − β). Choose (i, j) ∈ N2 minimal (in the lexicographic order on N2) such that 

y�i
1�

j
2 ∈ 〈�1 − α, �2 − β〉. Without loss of generality, suppose that i > 0. Let f : A −→ A/〈�2 − β〉 be a canonical sur-

jection onto the domain A/〈�2 − β〉. We have that f (y) f (�1)
i f (�2)

j = f (m) f (�1 − α). It follows that f (m) f (�1 − α) ∈
〈 f (�1)〉. This implies that f (m) ∈ 〈 f (�1)〉 since α �= 0. Therefore, ∃λ ∈ A such that f (m) = f (λ) f (�1). Consequently, 
f (y) f (�1)

i f (�2)
j = f (λ) f (�1) f (�1 − α). Since f (�1) �= 0, it implies that f (y) f (�1)

i−1 f (�2)
j = f (λ) f (�1 − α). There-

fore, there exists λ′ ∈A such that y�i−1
1 �

j
2 = λ(�1 −α) +λ′(�2 −β) ∈ 〈�1 −α, �2 −β〉. This contradicts the minimality of 

(i, j). Hence, (i, j) = (0, 0) and so y = m(�1 − α) + n(�2 − β) ∈ 〈�1 − α, �2 − β〉. In conclusion, 〈�1 − α, �2 − β〉R ∩A =
〈�1 − α, �2 − β〉; ∀α, β ∈K∗ . �

One can also prove the following results in a similar manner. The details of the proof can be deduced from [19, §2.4].

Proposition 4.8. Assume that K is algebraically closed.

1. P.Spec〈�1〉(A) = {〈�1〉} ∪ {〈�1, �2 − β〉 | β ∈K∗}.
2. P.Spec〈�2〉(A) = {〈�2〉} ∪ {〈�1 − α, �2〉 | α ∈K∗}.

Corollary 4.9. Assume that K is algebraically closed. The Poisson ideal 〈�1 − α, �2 − β〉 is Poisson primitive in A for each (α, β) ∈
K2 \ {(0, 0)}.

Proof. Since the Poisson ideal 〈�1 − α, �2 − β〉 is maximal in its respective strata for each (α, β) ∈ K2 \ {(0, 0)}, it is also 
Poisson primitive (see Proposition 3.2). �

While we assumed that K is algebraically closed in Propositions 4.7 and 4.8, Corollary 4.9 is still true when we drop 
this assumption (with the same proof).

Proposition 4.10. Let (α, β) ∈K2 \ {(0, 0)}. The Poisson prime ideal 〈�1 − α, �2 − β〉 is maximal in A.

Proof. Suppose that there exists a maximal Poisson ideal I of A such that 〈�1 − α, �2 − β〉 � I �A. Let J be the Poisson 
H-invariant prime ideal in A such that I ∈ P.Spec J (A). By Propositions 4.7 and 4.8, J cannot be 〈0〉, 〈�1〉 or 〈�2〉, since 
either of these will lead to a contradiction. Every non-zero Poisson H-invariant prime ideal contains only �1 or only �2
or both (Proposition 4.6). Since J �= 〈�1〉, 〈�2〉, this implies that J contains both �1 and �2. Moreover, since J ⊆ I , this 
implies that �1, �2 ∈ I . Given 〈�1 − α, �2 − β〉 � I , we have that �1 − α, �2 − β ∈ I . It follows that α, β ∈ I , hence I = A, 
a contradiction! This confirms that 〈�1 − α, �2 − β〉 is a maximal Poisson ideal in A. �
14
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4.3. Simple quotients of the semiclassical limit of U+
q (G2)

Given that �1 − α and �2 − β generate a maximal Poisson prime ideal of A, the factor algebra

Aα,β := A
〈�1 − α,�2 − β〉

is a Poisson-simple noetherian domain for all (α, β) ∈ K2 \ {(0, 0)}. Denote the canonical image of Xi by xi := Xi + 〈�1 −
α, �2 − β〉 for each 1 ≤ i ≤ 6. The algebra Aα,β is commutative, and satisfies the following two relations:

x1x3x5 − 3

2
x1x4 − 1

2
x2x5 + 1

2
x2

3 = α, (11)

x2x4x6 − 2

3
x3

3x6 − 2

3
x2x3

5 + 2x2
3x2

5 − 3x3x4x5 + 3

2
x2

4 = β. (12)

We also have the following extra relations in Aα,β , which can be verified through direct computations.

Lemma 4.11.

(1) x2
3 =2α + 3x1x4 + x2x5 − 2x1x3x5.

(2) x2
4 =2

3
β + 8

9
αx3x6 + 4

3
x1x3x4x6 + 4

9
x2x3x5x6 − 16

9
αx1x5x6 − 8

3
x2

1x4x5x6

+ 16

9
x2

1x3x2
5x6 − 8

9
x2x3

5 − 8

3
αx2

5 − 4x1x4x2
5 + 8

3
x1x3x3

5 + 2x3x4x5 − 2

3
x2x4x6

− 8

9
x1x2x2

5x6.

(3) x2
3x4 =2αx4 + x2x4x5 + 2βx1 + 8

3
αx1x3x6 + 4x2

1x3x4x6 + 4

3
x1x2x3x5x6

− 8x3
1x4x5x6 − 8

3
x2

1x2x2
5x6 + 16

3
x3

1x3x2
5x6 − 8

3
x1x2x3

5 − 8αx1x2
5 − 12x2

1x4x2
5

+ 8x2
1x3x3

5 + 4x1x3x4x5 − 2x1x2x4x6 − 16

3
αx2

1x5x6.

(4) x3x2
4 =2

3
βx3 + 16

9
α2x6 + 16

3
αx1x4x6 + 16

9
αx2x5x6 + 16

9
αx1x3x5x6 + 4

9
x2

2x2
5x6

+ 8

9
x1x2x3x2

5x6 − 64

9
αx3

1x5x2
6 − 160

9
αx2

1x2
5x6 − 80

3
x3

1x4x2
5x6 − 64

9
x2

1x2x3
5x6

− 8

9
x2x3x3

5 − 8

3
αx3x2

5 + 4x1x3x4x2
5 + 160

9
x3

1x3x3
5x6 − 16x2

1x4x3
5 − 8

3
x1x2x4

5

− 4

3
x1x2x4x5x6 + 8

3
βx2

1x6 + 32

9
αx2

1x3x2
6 + 16

3
x3

1x3x4x2
6 + 16

9
x2

1x2x3x5x2
6

− 32

3
x4

1x4x5x2
6 − 8

3
x2

1x2x4x2
6 + 4αx4x5 + 2x2x4x2

5 + 4βx1x5 + 64

9
x4

1x3x2
5x2

6

− 2

3
x2x3x4x6 − 32

3
αx1x3

5 + 32

3
x2

1x3x4
5 + 32

3
x2

1x3x4x5x6 − 32

9
x3

1x2x2
5x2

6.

Now, the commutative algebra Aα,β is a Poisson K-algebra with the Poisson bracket defined as follows:

{x2, x1} = −3x1x2 {x3, x1} = −x1x3 − x2 {x3, x2} = −3x2x3

{x4, x1} = −2x2
3 {x4, x2} = −3x2x4 − 4x3

3 {x4, x3} = −3x3x4

{x5, x1} = x1x5 − 2x3 {x5, x2} = −6x2
3 {x5, x3} = −x3x5 − 3x4

{x5, x4} = −3x4x5 {x6, x1} = 3x1x6 − 3x5 {x6, x2} = 3x2x6 + 9x4 − 18x3x5

{x6, x3} = −6x2
5 {x6, x4} = −3x4x6 − 4x3

5 {x6, x5} = −3x5x6.

Remark 4.12. The Poisson algebra Aα,β is the semiclassical limit of the quantum second Weyl algebra Aα,β studied in [16].

In the remainder of this section, we study a Poisson torus arising from a localization of Aα,β , and a linear basis of Aα,β , 
both of which will be useful in computing the Poisson derivations of Aα,β in the final section.
15
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4.3.1. A Poisson torus
Let α, β �= 0. Recall from Subsection 3.5 that �1 = T1T3T5 and �2 = T2T4T6 in A. From [13, Corollaries 3.3 & 3.4], there 

exists a multiplicative set Sα,β such that

Aα,β S−1
α,β

∼= Pα,β := R1

〈T1T3T5 − α, T2T4T6 − β〉R1

,

where R1 = K[T ±1
1 , . . . , T ±1

6 ] is the Poisson torus associated to the Poisson affine space A (that is, the Poisson torus 
associated to the matrix M = (μi, j) ∈ M6(K) defined after Notation 3.4). Let ti := Ti + 〈T1T3T5 − α, T2T4T6 − β〉R1 denote 
the canonical image of Ti in Pα,β for each 1 ≤ i ≤ 6. The algebra Pα,β is generated by t±1

1 , . . . , t±1
6 subject to the relations:

t1 = αt−1
3 t−1

5 and t2 = βt−1
4 t−1

5 .

One can easily verify that Pα,β
∼= K[t±1

3 , t±1
4 , t±1

5 , t±1
6 ], and that the isomorphism holds whether α or β is zero. As a 

consequence, Pα,β is the Poisson torus associated to the matrix M obtained from M by deleting its first two rows and 
columns.

4.3.2. Linear basis for Aα,β

Set Aβ := A/〈�2 − β〉, β ∈K. Denote the canonical image of Xi in Aβ by x̂i := Xi + 〈�2 − β〉 for each 1 ≤ i ≤ 6. It can 
be verified that Aα,β

∼=Aβ/〈�̂1 − α〉. Note that Aβ satisfies the relation:

x̂4
2 = 2

3
β − 2

3
x̂2 x̂4 x̂6 + 4

9
x̂3

3x̂6 + 4

9
x̂2 x̂5

3 − 4

3
x̂3

2x̂5
2 + 2x̂3 x̂4 x̂5. (13)

Proposition 4.13. The set F = {x̂1
i x̂2

j x̂3
kx̂4

ξ x̂5
l x̂6

m | (ξ, i, j, k, l, m) ∈ {0, 1} ×N5} is a K-basis of Aβ .

Proof. Since (�6
s=1 Xis

s )is∈N is a basis of A over K, we have that (�6
s=1 x̂s

is )is∈N is a spanning set of Aβ over K. We want 
to show that F is a spanning set of Aβ . It is sufficient to do that by showing that x̂1

i1 x̂2
i2 x̂3

i3 x̂4
i4 x̂5

i5 x̂6
i6 can be written as 

a finite linear combination of the elements of F over K for all i1, . . . , i6 ∈N . We do this by an induction on i4. The result 
is clear when i4 = 0. For i4 ≥ 0, suppose that

x̂1
i1 x̂2

i2 x̂3
i3 x̂4

i4 x̂5
i5 x̂6

i6 =
∑

(ξ,v)∈I

a(ξ,v)x̂1
i x̂2

j x̂3
kx̂4

ξ x̂5
l x̂6

m,

where v := (i, j, k, l, m) ∈N5, I is a finite subset of {0, 1} ×N5, and the a(ξ,v) are scalars. It follows that

x̂1
i1 x̂2

i2 x̂3
i3 x̂4

i4+1x̂5
i5 x̂6

i6 =
∑

(ξ,v)∈I

a(ξ,v) x̂1
i x̂2

j x̂3
kx̂4

ξ+1x̂5
l x̂6

m.

We have to show that x̂1
i x̂2

j x̂3
kx̂4

ξ+1 x̂5
l x̂6

m ∈ Span(F) for all (ξ, v) ∈ I . The result is obvious when ξ = 0. For ξ = 1, using 
(13), one can verify that x̂1

i x̂2
j x̂3

kx̂4
2 x̂5

l x̂6
m ∈ Span(F). Consequently, x̂1

i1 x̂2
i2 x̂3

i3 x̂4
i4+1 x̂5

i5 x̂6
i6 ∈ Span(F) as desired. There-

fore, F spans Aβ .
Before we continue the proof, the following ordering <4 needs to be noted.

♣ Let (i′, j′, k′, l′, m′, n′), (i, j, k, l, m, n) ∈N6. We say that (i, j, k, l, m, n) <4 (i′, j′, k′, l′, m′, n′) if [l < l′] or [l = l′ and i < i′]
or [l = l′, i = i′ and j < j′] or [l = l′, i = i′, j = j′ and k < k′] or [l = l′, i = i′, j = j′, k = k′ and m < m′] or [l = l′, i =
i′, j = j′, k = k′, m = m′ and n ≤ n′].
Note that the square brackets [ ] are just to differentiate the options.

We proceed to show that F is a linearly independent set. Suppose that∑
(ξ,v)∈I

a(ξ,v) x̂1
i x̂2

j x̂3
kx̂4

ξ x̂5
l x̂6

m = 0.

It follows that∑
(ξ,v)∈I

a(ξ,v) Xi
1 X j

2 Xk
3 Xξ

4 Xl
5 Xm

6 = ν(�2 − β),

where ν ∈ A. Write ν = ∑
(i,...,n)∈ J b(i,...,n) Xi

1 X j
2 Xk

3 Xl
4 Xm

5 Xn
6 , where J is a finite subset of N6, and b(i,...,n) are scalars. From 

Subsection 3.5, we have that

�2 = X2 X4 X6 − 2
X3

3 X6 − 2
X2 X3

5 + 2X2
3 X2

5 − 3X3 X4 X5 + 3
X2

4 .

3 3 2

16
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It follows that∑
(ξ,v)∈I

a(ξ,v) Xi
1 X j

2 Xk
3 Xξ

4 Xl
5 Xm

6 =
∑

(i,...,n)∈ J

b(i,...,n) Xi
1 X j

2 Xk
3 Xl

4 Xm
5 Xn

6(�2 − β)

=
∑

(i,...,n)∈ J

3

2
b(i,...,n) Xi

1 X j
2 Xk

3 Xl+2
4 Xm

5 Xn
6 + LT<4 ,

where LT<4 contains lower order terms with respect to <4 (see item ♣). Moreover, LT<4 vanishes when b(i,...,n) = 0 for all 
(i, . . . , n) ∈ J . One can easily confirm this when the previous line of equality (right hand side) is fully expanded.

Suppose that there exists (i, j, k, l, m, n) ∈ J such that b(i, j,k,l,m,n) �= 0. Let (i′, j′, k′, l′, m′, n′) be the greatest element 
of J with respect to <4 such that b(i′, j′,k′,l′,m′,n′) �= 0. Identifying the coefficients of Xi′

1 X j′
2 Xk′

3 Xl′+2
4 Xm′

5 Xn′
6 , we have 

3
2 b(i′, j′,k′,l′,m′,n′) = 0 (note that the family (Xi

1 X j
2 Xk

3 Xl
4 Xm

5 Xn
6)i,...,n∈N is a basis for A and LT<4 contains lower order terms). 

Therefore, b(i′, j′,k′,l′,m′,n′) = 0, a contradiction! As a result, b(i, j,k,l,m,n) = 0 for all (i, j, k, l, m, n) ∈ J , and∑
(ξ,v)∈I

a(ξ,v) Xi
1 X j

2 Xk
3 Xξ

4 Xl
5 Xm

6 = 0.

Consequently, a(ξ,i, j,k,l) = 0 for all (ξ, i, j, k, l) ∈ I . �
We are now ready to find a basis for Aα,β .

Proposition 4.14. The set P = {xi
1x j

2xε1
3 xε2

4 xk
5xl

6 | (ε1, ε2, i, j, k, l) ∈ {0, 1}2 ×N4} is a K-basis of Aα,β .

Proof. Since the set F = {x̂1
i1 x̂2

i2 x̂3
i3 x̂4

ξ x̂5
i5 x̂6

i6 | (ξ, i1, i2, i3, i5, i6) ∈ {0, 1} ×N5} is a K-basis of Aβ (Proposition 4.13) and 
Aα,β is identified with Aβ/〈�̂1 − α〉, the family (xi1

1 xi2
2 xi3

3 xξ
4xi5

5 xi6
6 )(ξ,i1,i2,i3,i5,i6)∈{0,1}×N5 is a spanning set of Aα,β over K. 

We want to show that P spans Aα,β by showing that xi1
1 xi2

2 xi3
3 xξ

4xi5
5 xi6

6 can be written as a finite linear combination of the 
elements of P over K for all (ξ, i1, i2, i3, i5, i6) ∈ {0, 1} ×N5. By Proposition 4.13, it is sufficient to do this by an induction 
on i3. The result is obvious when i3 = 0 or 1. For i3 ≥ 1, suppose that

xi1
1 xi2

2 xi3
3 xξ

4xi5
5 xi6

6 =
∑

(ε1,ε2,v)∈I

a(ε1,ε2,v)xi
1x j

2xε1
3 xε2

4 xk
5xl

6,

where v := (i, j, k, l) ∈N4, and the a(ε1,ε2,v) are all scalars. Moreover, I is a finite subset of {0, 1}2 ×N4. It follows from the 
inductive hypothesis that

xi1
1 xi2

2 xi3+1
3 xξ

4xi5
5 xi6

6 =
∑

(ε1,ε2,v)∈I

a(ε1,ε2,v)xi
1x j

2xε1+1
3 xε2

4 xk
5xl

6.

We need to show that xi
1x j

2xε1+1
3 xε2

4 xk
5xl

6 ∈ Span(P) for all (ε1, ε2, v) ∈ I . The result is obvious when (ε1, ε2) = (0, 0), (0, 1). 
Using Lemma 4.11(1), (3); one can also show that xi

1x j
2xε1+1

3 xε2
4 xk

5xl
6 ∈ Span(P) for all (ε1, ε2) = (1, 0), (1, 1); and i, j, k, l ∈

N . Therefore, xi1
1 xi2

2 xi3+1
3 xξ

4xi5
5 xi6

6 ∈ Span(P) as expected. As a result, P spans Aα,β .
We proceed to show that F is a linearly independent set. Suppose that∑

(ε1,ε2,v)∈I

a(ε1,ε2,v)xi
1x j

2xε1
3 xε2

4 xk
5xl

6 = 0.

Then, ∑
(ε1,ε2,v)∈I

a(ε1,ε2,v) x̂1
i x̂2

j x̂3
ε1 x̂4

ε2 x̂5
kx̂6

l = (�̂1 − α)ν (14)

in Aβ , where ν ∈ Aβ . Set w := (i, j, k, l, m) ∈ N5, and let J1, J2 be finite subsets of N5. One can write ν in terms of the 
basis F of Aβ as:

ν =
∑

w∈ J1

bw x̂1
i x̂2

j x̂3
kx̂4 x̂5

l x̂6
m +

∑
w∈ J2

cw x̂1
i x̂2

j x̂3
kx̂5

l x̂6
m,

where bw and cw are scalars. Note that �̂1 = x̂1 x̂3 x̂5 − 3
2 x̂1 x̂4 − 1

2 x̂2 x̂5 + 1
2 x̂3

2. Given this expression, and the relation (13), 
one can express (14) as follows:
17
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∑
(ε1,ε2,v)∈I

a(ε1,ε2,v) x̂1
i x̂2

j x̂3
ε1 x̂4

ε2 x̂5
kx̂6

l =
∑

w∈ J1

bw x̂1
i x̂2

j x̂3
kx̂4 x̂5

l x̂6
m(�̂1 − α)

+
∑

w∈ J2

cw x̂1
i x̂2

j x̂3
kx̂5

l x̂6
m(�̂1 − α)

=
∑

w∈ J1

1

2
bw x̂1

i x̂2
j x̂3

k+2x̂4 x̂5
l x̂6

m

−
∑

w∈ J1

2

3
bw x̂1

i+1x̂2
j x̂3

k+3x̂5
l x̂6

m+1

−
∑

w∈ J2

3

2
cw x̂1

i+1x̂2
j x̂3

kx̂4x̂5
l x̂6

m

+
∑

w∈ J2

1

2
cw x̂1

i x̂2
j x̂3

k+2 x̂5
l x̂6

m + ϒ,

where

ϒ :=
∑

w∈ J1

r1bw x̂1
i+1x̂2

j x̂3
kx̂5

l x̂6
m +

∑
w∈ J1

r2bw x̂1
i+1x̂2

1+ j x̂3
kx̂4 x̂5

l x̂6
m+1

+
∑

w∈ J1

r3bw x̂1
i+1x̂2

j+1x̂3
kx̂5

l+3x̂6
m +

∑
w∈ J1

r4bw x̂1
i+1x̂2

j x̂3
k+2 x̂5

l+2x̂6
m

+
∑

w∈ J1

r5bw x̂1
i+1x̂2

j x̂3
k+1x̂4 x̂5

l+1x̂6
m +

∑
w∈ J1

r6bw x̂1
i x̂2

j+1x̂3
kx̂4 x̂5

l+1x̂6
m

+
∑

w∈ J1

r7bwβ x̂1
i x̂2

j x̂3
kx̂4x̂5

l x̂6
m +

∑
w∈ J1

r8bw x̂1
i+1x̂2

j x̂3
k+1 x̂4x̂5

l+1x̂6
m

+
∑

w∈ J2

r9cw x̂1
i+1x̂2

j x̂3
k+1x̂5

l+1x̂6
m +

∑
w∈ J2

r10cw x̂1
i x̂2

j+1x̂3
kx̂5

l+1x̂6
m

+
∑

w∈ J2

r11cwαx̂1
i x̂2

j x̂3
kx̂5

l x̂6
m.

Note that r1, . . . , r11 are some non-zero rational numbers.
Before we continue the proof, the following ordering <3 needs to be noted.

♠ Let (ϑ1, ϑ2, ϑ3, ϑ5, ϑ6), (ς1, ς2, ς3, ς5, ς6) ∈ N5. We say that (ς1, ς2, ς3, ς5, ς6) <3 (ϑ1, ϑ2, ϑ3, ϑ5, ϑ6) if [ϑ3 > ς3] or 
[ϑ3 = ς3 and ϑ1 > ς1] or [ϑ3 = ς3, ϑ1 = ς1 and ϑ2 > ς2] or [ϑ3 = ς3, ϑ1 = ς1, ϑ2 = ς2 and ϑ5 > ς5] or [ϑ3 =
ς3, ϑ1 = ς1, ϑ2 = ς2, ϑ5 = ς5 and ϑ6 ≥ ς6].

Observe that ϒ contains lower order terms with respect to <3 in each monomial type (note that there are two different 
types of monomials in the basis of Aβ : one with x̂4 and the other without x̂4). Now, suppose that there exists (i, j, k, l, m) ∈
J1 and (i, j, k, l, m) ∈ J2 such that b(i, j,k,l,m) �= 0 and c(i, j,k,l,m) �= 0. Let (v1, v2, v3, v5, v6) and (w1, w2, w3, w5, w6) be the 
greatest elements of J1 and J2 respectively with respect to <3 such that b(v1,v2,v3,v5,v6) and c(w1,w2,w3,w5,w6) are non-zero. 
Since F is a linear basis for Aβ and ϒ contains lower order terms with respect to <3, we have the following: if w3 − v3 < 2, 
then identifying the coefficients of x̂1

v1 x̂2
v2 x̂3

v3+2 x̂4 x̂5
v5 x̂6

v6 implies that 1
2 b(v1,v2,v3,v5,v6) = 0, a contradiction! Finally, if 

w3 − v3 ≥ 2, then identifying the coefficients of x̂1
w1 x̂2

w2 x̂3
w3+2 x̂5

w5 x̂6
w6 implies that 1

2 c(w1,w2,w3,w5,w6) = 0, another 
contradiction! Therefore, either all b(i, j,k,m,n) or all c(i, j,k,m,n) are zero. Without loss of generality, suppose that there exists 
(i, j, k, m, n) ∈ J2 such that c(i, j,k,m,n) is not zero. Then, b(i, j,k,m,n) are all zero. Let (w1, w2, w3, w5, w6) be the greatest 
element of J2 such that c(w1,w2,w3,w5,w6) �= 0. Identifying the coefficients of x̂1

w1 x̂2
w2 x̂3

w3+2 x̂5
w5 x̂6

w6 in the above equality 
implies that 1

2 c(w1,w2,w3,w5,w6) = 0, a contradiction! We can therefore conclude that b(i, j,k,m,n) and c(i, j,k,m,n) are all zero. 
Consequently,∑

(ε1,ε2,v)∈I

a(ε1,ε2,v) x̂1
i x̂2

j x̂3
ε1 x̂4

ε2 x̂5
kx̂6

l = 0.

Since F is a basis for Aβ , this implies that a(ε1,ε2,v) = 0 for all (ε1, ε2, v) ∈ I . Therefore, P is a linearly independent set. �
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The following corollary will be useful later on.

Corollary 4.15. Let v = (i, j, k, l) ∈ N2 ×Z2 , let I represent a finite subset of {0, 1}2 ×N2 ×Z2 , and let (a(ε1,ε2,v))(ε1,ε2,v)∈I be a 
family of scalars. If∑

(ε1,ε2,v)∈I

a(ε1,ε2,v)xi
1x j

2xε1
3 xε2

4 tk
5tl

6 = 0,

then a(ε1,ε2,v) = 0 for all (ε1, ε2, v) ∈ I .

Proof. The result is obvious when k, l ≥ 0 due to Proposition 4.14. When k (resp. l) is negative, then one can multiply the 
above equality enough times by x5 = t5 (resp. x6 = t6) to kill all the negative powers and then apply Proposition 4.14 to 
complete the proof. �
5. Poisson derivations of the semiclassical limit of the quantum second Weyl algebra Aα,β

This section focuses on studying the Poisson derivations of the Poisson algebra Aα,β .

5.1. Preliminaries and strategy

Let 2 ≤ j ≤ 7 and (α, β) ∈K2 \ {(0, 0)}. Set

A( j)
α,β := A( j)

〈�1 − α,�2 − β〉A( j)
,

where A( j) is defined in Subsection 3.3, and �1 and �2 are the generators of the centre of A( j) for 3 ≤ j ≤ 7 (see Lemma 3.5
and Corollary 3.6). Recall that A(7) =A =K[X1, . . . , X6] and so A(7)

α,β =Aα,β is a domain. Actually A( j)
α,β is a domain for all 

2 ≤ j ≤ 7. This is easy to prove using the expressions of �1 and �2 as elements of A( j) , at least when j �= 6. For j = 6, this 
can be done for instance by proving that 〈�1 −α, �2 −β〉A(6) = 〈�1 −α, �2 −β〉A[T −1

6 ] ∩A(6) . In particular, we have that:

〈�1 − α,�2 − β〉A( j) = ψ j ◦ · · · ◦ ψ6 (〈�1 − α,�2 − β〉A) ,

where the embeddings ψ j : P.Spec(A( j+1)) ↪→ P.Spec(A( j)) have been defined in Section 3.4.

For each 2 ≤ j ≤ 7, denote the canonical images of the generators Xi, j of A( j) in A( j)
α,β by xi, j for all 1 ≤ i ≤ 6. Further-

more, from [13], one can deduce the following data of Aα,β from the PDDA of A (see Subsection 3.3) as follows:

xi,7 := xi (i = 1, . . . ,6)

x1,6 = x1 − 1

2
x5x−1

6

x2,6 = x2 + 3

2
x4x−1

6 − 3x3x5x−1
6 + x3

5x−2
6

x3,6 = x3 − x2
5x−1

6

x4,6 = x4 − 2

3
x3

5x−1
6

xi,6 = xi (i = 5,6)

x1,5 = x1,6 − x3,6x−1
5,6 + 3

4
x4,6x−2

5,6

x2,5 = x2,6 − 3x2
3,6x−1

5,6 + 9

2
x3,6x4,6x−2

5,6 − 9

4
x2

4,6x−3
5,6

x3,5 = x3,6 − 3

2
x4,6x−1

5,6

xi,5 = xi,6 (i = 4,5,6)

x1,4 = x1,5 − 1

3
x2

3,5x−1
4,5

x2,4 = x2,5 − 2

3
x3

3,5x−1
4,5

xi,4 = xi,5 (i = 3, . . . ,6)
19
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x1,3 = x1,4 − 1

2
x2,4x−1

3,4

xi,3 = xi,4 (i = 2, . . . ,6)

ti := xi,2 = xi,3 (i = 1, . . . ,6).

For simplicity, we will refer to the above data as the PDDA of Aα,β . Note that the ti are the canonical images of Ti in 
A(2)

α,β for all 1 ≤ i ≤ 6. For each 2 ≤ j < 7, set S j := {λt
i j

j t
i j+1
j+1 . . . ti6

6 | i j, . . . , i6 ∈ N, λ ∈ K∗}. One can observe that S j is 

a multiplicative system of non-zero divisors (or regular elements) of A( j)
α,β . As a result, the Poisson algebras A( j)

α,β can be 
localised at S j as follows:

R j := A( j)
α,β S−1

j .

Again, the set � j := {tk
j | k ∈N} is a multiplicative set in both A( j)

α,β and A( j+1)
α,β for each 2 ≤ j ≤ 6, and one can easily check 

that

A( j)
α,β�−1

j = A( j+1)
α,β �−1

j .

It follows that

R j = R j+1�
−1
j , (15)

for all 2 ≤ j ≤ 6, with the convention that R7 :=Aα,β . Similarly to (10), we construct the following embeddings:

R7 = Aα,β ⊂ R6 = R7�
−1
6 ⊂ R5 = R6�

−1
5 ⊂ R4 = R5�

−1
4 ⊂ R3. (16)

Observe that R3 =A(3)
α,β S−1

3 =R4�
−1
3 is the Poisson torus Pα,β =K[t±1

3 , t±1
4 , t±1

5 , t±1
6 ] from Subsection 4.3.

Strategy to compute the Poisson derivations of Aα,β = R7. Thanks to (16), we can extend the Poisson derivations of 
Aα,β to Poisson derivations of R3. From Corollary 2.7, we know that the Poisson derivations of the Poisson torus R3 is 
the sum of an inner and a scalar Poisson derivations. We will then ‘pull back’ the Poisson derivations of R3 sequentially 
through the Poisson algebras in (16) to the Poisson derivations of Aα,β . This will give us a complete description of the 
Poisson derivations of Aα,β . This process will be carried out in steps, and the linear bases for Ri will play crucial role. We 
will therefore compute these bases in the subsequent subsection.

The embeddings in (16) present an opportunity to compute the centre of each of the algebras Ri , which will be helpful 
in studying the Poisson derivations of Aα,β .

Lemma 5.1. As usual, let Z P (Ri) denote the Poisson centre of Ri . Then Z P (Ri) =K for each 3 ≤ i ≤ 7.

Proof. It is easy to verify that Z P (R3) = K since the matrix associated to this Poisson torus is invertible. Note that R7 =
Aα,β . Since Ri is a localization of Ri+1, we have that K ⊆ Z P (R7) ⊆ Z P (R6) ⊆ · · · ⊆ Z P (R3) = K. Therefore, Z P (R7) =
Z P (R6) = · · · = Z P (R3) =K. �
5.2. Linear bases for R3, R4 and R5

We aim to find a basis for R j for each j = 3, 4, 5. Since R3 is a Poisson torus generated by t±1
3 , . . . , t±1

6 over K, the set 
{ti

3t j
4tk

5tl
6 | i, j, k, l ∈Z} is a basis of R3.

For simplicity, we set

f1 : = x1,4 F1 : = X1,4

z1 : = x1,5 Z1 : = X1,5

z2 : = x2,5 Z2 : = X2,5.

5.2.1. Basis for R4

Observe that

A(4)
α,β = A(4)

〈�1 − α,�2 − β〉 ,

where �1 = F1T3T5 − 1
2 T2T5 and �2 = T2T4T6 in A(4) (Subsection 3.3). Set

A(4)
β S−1

4 := A(4) S−1
4 ,
〈�2 − β〉
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where β ∈K. We will denote the canonical images of Xi,4 (resp. Ti) in A(4)
β by x̂i,4 (resp. ̂ti) for all 1 ≤ i ≤ 6 (resp. 3 ≤ i ≤ 6). 

Observe that t̂2 = β t̂6
−1t̂4

−1 in A(4)
β S−1

4 . As usual, one can identify R4 with A(4)
β S−1

4 /〈�̂1 − α〉.

Proposition 5.2. The set P4 = { f i1
1 ti4

4 ti5
5 ti6

6 | (i1, i4, i5, i6) ∈N ×Z3} ∪ {ti3
3 ti4

4 ti5
5 ti6

6 | (i3, i4, i5, i6) ∈N ×Z3} is a K-basis of R4 .

Proof. One can easily verify that 
(

f̂1
k1 t̂3

k3 t̂4
k4 t̂5

k5 t̂6
k6

)
(k1,k3,k4,k5,k6)∈N2×Z3

is a basis of A(4)
β S−1

4 . Since A(4)
β S−1

4 =
A(4) S−1

4 /〈�2 − β〉, the family ( f k1
1 tk3

3 tk4
4 tk5

5 tk6
6 )(k1,k3,k4,k5,k6)∈N2×Z3 spans R4. We show that P4 is a spanning set of R4 by 

showing that f k1
1 tk3

3 tk4
4 tk5

5 tk6
6 can be written as a finite linear combination of the elements of P4 for all (k1, k3, k4, k5, k6) ∈

N2 ×Z3. It is sufficient to do this by an induction on k1. The result is clear when k1 = 0. Assume that the statement is true 
for k1 ≥ 0. That is,

f k1
1 tk3

3 tk4
4 tk5

5 tk6
6 =

∑
i∈I1

ai f i1
1 ti4

4 ti5
5 ti6

6 +
∑
j∈I2

b jt
i3
3 ti4

4 ti5
5 ti6

6 ,

where i = (i1, i4, i5, i6) ∈ I1 ⊂N ×Z3 and j = (i3, i4, i5, i6) ∈ I2 ⊂N ×Z3. Note that the ai and b j are all scalars.

f k1+1
1 tk3

3 tk4
4 tk5

5 tk6
6 = f1( f k1

1 tk3
3 tk4

4 tk5
5 tk6

6 ) =
∑
i∈I1

ai f i1+1
1 ti4

4 ti5
5 ti6

6 +
∑
j∈I2

b j f1ti3
3 ti4

4 ti5
5 ti6

6 .

Clearly, the monomial f i1+1
1 ti4

4 ti5
5 ti6

6 ∈ Span(P4). We have to also show that f1ti3
3 ti4

4 ti5
5 ti6

6 ∈ Span(P4) for all i3 ∈ N and 
i4, i5, i6 ∈Z. This can easily be achieved by induction on i3 and the use of the relation f1t3 = αt−1

5 + 1
2 βt−1

4 t−1
6 . Therefore, 

by the principle of mathematical induction, P4 is a spanning set of R4 over K.
We prove that P4 is a linearly independent set. Suppose that∑

i∈I1

ai f i1
1 ti4

4 ti5
5 ti6

6 +
∑
j∈I2

b jt
i3
3 ti4

4 ti5
5 ti6

6 = 0

for finite sets I1 ⊂N ×Z3 and I2 ⊂N ×Z3, and scalars ai (i ∈ I1) and b j ( j ∈ I2).

It follows that there exists ν ∈A(4)
β S−1

4 such that∑
i∈I1

ai f̂1
i1 t̂4

i4 t̂5
i5 t̂6

i6 +
∑
j∈I2

b jt̂3
i3 t̂4

i4 t̂5
i5 t̂6

i6 = (
�̂1 − α

)
ν.

Write ν =
∑
l∈ J

cl f̂1
i1 t̂3

i3 t̂4
i4 t̂5

i5 t̂6
i6 , with l = (i1, i3, i4, i5, i6) ∈ J ⊂ N2 × Z3 and cl ∈ K. One can easily deduce that �̂1 =

f̂1t̂3t̂5 − 1
2 t̂2t̂5 = f̂1t̂3t̂5 − 1

2 β t̂6
−1t̂4

−1t̂5 (note that t̂2 = β t̂6
−1t̂4

−1). It follows that∑
i∈I1

ai f̂1
i1 t̂4

i4 t̂5
i5 t̂6

i6 +
∑
j∈I2

b jt̂3
i3 t̂4

i4 t̂5
i5 t̂6

i6 =
∑
l∈ J

cl f̂1
i1+1

t̂3
i3+1t̂4

i4 t̂5
i5+1t̂6

i6

−
∑
l∈ J

1

2
βcl f̂1

i1 t̂3
i3 t̂4

i4−1t̂5
i5+1t̂6

i6−1

−
∑
l∈ J

αcl f̂1
i1 t̂3

i3 t̂4
i4 t̂5

i5 t̂6
i6 .

Suppose that there exists (i1, i3, i4, i5, i6) ∈ J such that c(i1,i3,i4,i5,i6) �= 0. Let (w1, w3, w4, w5, w6) ∈ J be the greatest ele-
ment (in the lexicographic order on N2 ×Z3) of J such that c(w1,w3,w4,w5,w6) �= 0. Since(

f̂1
k1 t̂3

k3 t̂4
k4 t̂5

k5 t̂6
k6

)
(k1,k3,k4,k5,k6)∈N2×Z3

is a basis of A(4) S−1
4 , we can identify the coefficients of f̂1

w1+1
t̂3

w3+1t̂4
w4 t̂5

w5+1t̂6
w6 in the above equality to be 

c(w1,w3,w4,w5,w6) = 0, a contradiction! Therefore, c(i1,i3,i4,i5,i6) = 0 for all (i1, i3, i4, i5, i6) ∈ J . This further implies that∑
i∈I1

ai f̂1
i1 t̂4

i4 t̂5
i5 t̂6

i6 +
∑
j∈I2

b jt̂3
i3 t̂4

i4 t̂5
i5 t̂6

i6 = 0.

Consequently, ai and b j are all zero. In conclusion, P4 is a linearly independent set. �
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5.2.2. Basis for R5

We will identify R5 with A(5)
α S−1

5 /〈�̂2 − β〉, where A(5)
α S−1

5 =A(5) S−1
5 /〈�1 −α〉. Note that the canonical images of Xi,5

(resp. Ti ) in A(5)
α will be denoted by x̂i,5 (resp. t̂i ) for all 1 ≤ i ≤ 6 (resp. 3 ≤ i ≤ 6). We now find a basis for A(5)

α S−1
5 . 

Recall from Subsection 3.3 that �1 = Z1T3T5 − 1
2 Z2T5 and �2 = Z2T4T6 − 2

3 T 3
3 T6 in A(5) (remember that Z1 := X1,5

and Z2 := X2,5). Since z2t4t6 − 2
3 t3

3t6 = β and ẑ1t̂3t̂5 − 1
2 ẑ2t̂5 = α in R5 and A(5)

α S−1
5 respectively, we have the relation 

ẑ2 = 2ẑ1t̂3 − 2αt̂5
−1 in A(5)

α S−1
5 and, in R5, we have the following two relations:

z2 = 2(z1t3 − αt−1
5 ). (17)

t3
3 = 3

2
(z2t4 − βt−1

6 ) = 3z1t3t4 − 3

2
βt−1

6 − 3αt4t−1
5 . (18)

Proposition 5.3. The set P5 =
{

zi1
1 tξ

3ti4
4 ti5

5 ti6
6 | (ξ, i1, i4, i5, i6) ∈ {0,1,2} ×N2 ×Z2

}
is a K-basis of R5 .

Proof. One can easily show that the family 
(

ẑ1
k1 t̂3

k3 t̂4
k4 t̂5

k5 t̂6
k6

)
(k1,k3,k4,k5,k6)∈N3×Z2

is a basis of A(5)
α S−1

5 /〈�̂2 − β〉. Since 

R5 is identified with A(5)
α S−1

5 /〈�̂2 − β〉, we show that zk1
1 tk3

3 tk4
4 tk5

5 tk6
6 can be written as a finite linear combination of the 

elements of P5 for all (k1, k3, k4, k5, k6) ∈ N3 ×Z2. It is sufficient to do this by an induction on k3. The result is obvious 
when k3 = 0, 1, 2. For k3 ≥ 2, suppose that

zk1
1 tk3

3 tk4
4 tk5

5 tk6
6 =

∑
(ξ,i)∈I

a(ξ,i)zi1
1 tξ

3ti4
4 ti5

5 ti6
6 ,

where I is a finite subset of {0, 1, 2} ×N2 ×Z2, and the a(ξ,i) are all scalars. It follows that

zk1
1 tk3+1

3 tk4
4 tk5

5 tk6
6 =

(
zk1

1 tk3
3 tk4

4 tk5
5 tk6

6

)
t3 =

∑
(ξ,i)∈I

a(ξ,i)zi1
1 tξ+1

3 ti4
4 ti5

5 ti6
6 .

Now, zi1
1 tξ+1

3 ti4
4 ti5

5 ti6
6 ∈ Span(P5) when ξ = 0, 1. For ξ = 2, one can easily verify that zi1

1 t3
3ti4

4 ti5
5 ti6

6 ∈ Span(P5) by using the 
relation in (18). Therefore, by the principle of mathematical induction, P5 spans R5.

We now prove that P5 is a linearly independent set. Suppose that∑
(ξ,i)∈I

a(ξ,i)zi1
1 tξ

3ti4
4 ti5

5 ti6
6 = 0

for a finite subset I ⊂ {0, 1, 2} ×N2 ×Z2 and scalars a(ξ,i) . Since R5 is identified with A(5)
α S−1

5 /〈�̂2 − β〉, we have that∑
(ξ,i)∈I

a(ξ.i) ẑ1
i1 t̂3

ξ t̂4
i4 t̂5

i5 t̂6
i6 = 〈�̂2 − β〉ν,

where ν ∈ A(5)
α S−1

5 . Write ν = ∑
j∈ J b j ẑ1

i1 t̂3
i3 t̂4

i4 t̂5
i5 t̂6

i6 , with j = (i1, i3, i4, i5, i6) ∈ J ⊂ N3 ×Z2 and b j ∈ K. Given �2 =
Z2T4T6 − 2

3 T 3
3 T6 in A(5) and the relation (17), one can deduce that

�̂2 = ẑ2t̂4t̂6 − 2

3
t̂3

3t̂6 = 2ẑ1t̂3t̂4t̂6 − 2αt̂4t̂5
−1t̂6 − 2

3
t̂3

3t̂6.

Therefore,∑
(ξ,i)∈I

a(ξ.i) ẑ1
i1 t̂3

ξ t̂4
i4 t̂5

i5 t̂6
i6 =

∑
j∈ J

2b j ẑ1
i1+1t̂3

i3+1t̂4
i4+1t̂5

i5 t̂6
i6+1

−
∑
j∈ J

2

3
b j ẑ1

i1 t̂3
i3+3t̂4

i4 t̂5
i5 t̂6

i6+1

−
∑
j∈ J

2αb j ẑ1
i1 t̂3

i3 t̂4
i4+1t̂5

i5−1t̂6
i6+1

−
∑
j∈ J

βb j ẑ1
i1 t̂3

i3 t̂4
i4 t̂5

i5 t̂6
i6 .

Suppose that there exists (i1, i3, i4, i5, i6) ∈ J such that b(i1,i3,i4,i5,i6) �= 0. Let (w1, w3, w4, w5, w6) ∈ J be the greatest ele-
ment (in the lexicographic order on N3 ×Z2) of J such that b(w1,w3,w4,w5,w6) �= 0. Given that
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(
ẑ1

k1 t̂3
k3 t̂4

k4 t̂5
k5 t̂6

k6
)

(k1,k3,...,k6)∈N3×Z2

is a basis of A(5)
α S−1

5 , one can identify the coefficients of ẑ1
w1+1t̂3

w3+1t̂4
w4+1t̂5

w5 t̂6
w6+1 in the above equality as 

2b(w1,w3,w4,w5,w6) = 0. Hence, b(w1,w3,w4,w5,w6) = 0, a contradiction! Therefore, b(i1,i3,i4,i5,i6) = 0 for all (i1, i3, i4, i5, i6) ∈ J . 
Consequently,∑

(ξ,i)∈I

a(ξ.i) ẑ1
i1 t̂3

ξ t̂4
i4 t̂5

i5 t̂6
i6 = 0.

It follows that a(ξ,i) = 0 for all (ξ, i) ∈ I . As a result, P5 is a linearly independent set. �
As an easy consequence of Proposition 5.3 we obtain:

Corollary 5.4. Let I be a finite subset of {0, 1, 2} ×N ×Z3 and let (a(ξ,i))i∈I be a family of scalars. If∑
(ξ,i)∈I

a(ξ.i)zi1
1 tξ

3ti4
4 ti5

5 ti6
6 = 0,

then a(ξ,i) = 0 for all (ξ, i) ∈ I .

Remark 5.5.

1. Since R7 =Aα,β , we already have a basis for R7 (see Proposition 4.14).
2. We were not successful in finding a basis for R6. However, this will not prevent us to compute the Poisson derivations 

of Aα,β in the next subsection.

5.3. Poisson derivations of Aα,β

We are now (almost) ready to study the Poisson derivations of Aα,β . We will begin with the case where both α and β
are non-zero, and subsequently state our results in the case where either α or β is zero (but not both). Before we proceed, 
we note the following relations between elements of the various Poisson algebras involved. These relations can easily be 
obtained through direct computation.

Lemma 5.6.

f1 = t1 + 1

2
t2t−1

3 x3,6 = t3 + 3

2
t4t−1

5

z1 = f1 + 1

3
t2

3t−1
4 x1 = x1,6 + 1

2
t5t−1

6

z2 = t2 + 2

3
t3

3t−1
4 x3 = x3,6 + t2

5t−1
6

x1,6 = z1 + x3,6t−1
5 − 3

4
t4t−2

5 x4 = t4 + 2

3
t3

5t−1
6 .

5.3.1. Poisson derivations of Aα,β (α, β �= 0)

Throughout this subsection, we assume that α and β are non-zero. Let DerP (A) be the collection of all the Poisson K-
derivations of Aα,β , and D ∈ DerP (A). Now, D extends uniquely to a Poisson derivation of each of the algebras in (16) via 
localization. Hence, D is a Poisson derivation of the Poisson torus R3 = K[t±1

3 , t±1
4 , t±1

5 , t±1
6 ]. It follows from Corollary 2.7

that D can be written as

D = hamx + ρ,

where ρ is a scalar Poisson derivation of R3 defined by ρ(ti) = λiti, i = 3, 4, 5, 6; with λi ∈ Z P (R3) = K, and hamx =
{x, −} :R3 →R3 with x ∈R3 (see Corollary 2.7).

We aim to describe D as a Poisson derivation of Aα,β . We do this in several steps. We first describe D as a Poisson 
derivation of R4.

Lemma 5.7.

1. x ∈R4 .
2. λ5 = λ4 + λ6 , ρ( f1) = −(λ3 + λ5) f1 and ρ(t2) = −λ5t2 .
3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5 . Then, D(xκ,4) = hamx(xκ,4) + λκ xκ,4 for all κ ∈ {1, . . . , 6}.
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Proof. 1. Recall that R3 = R4[t−1
3 ]. Observe that Q := K[t±1

4 , t±1
5 , t±1

6 ] is a subalgebra of both R3 and R4. One can easily 
verify that z := t4t−1

5 t6 is a Poisson central element of Q. Since R3 is a Poisson torus, it can be presented as a free Q-

module with basis (t j
3) j∈Z . One can therefore write x ∈ R3 as x = ∑

j∈Z b jt
j
3, where b j ∈ Q. Decompose x as x = x− + x+ , 

where x+ := ∑
j≥0 b jt

j
3 and x− := ∑

j<0 b jt
j
3. Clearly, x+ ∈R4. We now want to show that x− ∈R4. Write x− = ∑−m

j=−1 b jt
j
3

for some m ∈N>0.
Now, D(z) = hamx(z) + ρ(z) = hamx− (z) + hamx+ (z) + (λ4 − λ5 + λ6)z ∈R4. We have that hamx+ (z) + (λ4 − λ5 + λ6)z ∈

R4, hence hamx− (z) ∈ R4. Note that {t3, z} = 2zt3, and {γ , z} = 0 for all γ ∈ Q since z is Poisson central in Q. One can 
therefore express hamx− (z) as follows:

hamx−(z) = {x−, z} =
−m∑

j=−1

b j{t j
3, z} =

−m∑
j=−1

2 jb j zt j
3 ∈ R4.

Let n ∈N>0, and set

�(n) := {{. . . {︸ ︷︷ ︸
n−times

x−, z}, z}, . . . , z}︸ ︷︷ ︸
n−times

∈ R4.

We claim that

�(n) =
−m∑

j=−1

(2 j)nznb jt
j
3,

for all n ∈N>0. Observe that

�(1) = hamx−(z) =
−m∑

j=−1

2 jb j zt j
3,

hence the result is true for n = 1. Suppose that the result is true for n ≥ 1. Then,

�(n+1) = {�(n), z} =
−m∑

j=−1

(2 j)nznb j{t j
3, z} =

−m∑
j=−1

(2 j)n+1zn+1b jt
j
3

as expected. By the principle of mathematical induction, the claim is proved.
Given that �(n) = ∑−m

j=−1(2 j)nznb jt
j
3, it follows that

μn := �(n)z−n =
−m∑

j=−1

(2 j)nb jt
j
3 ∈ R4.

The above equality can be written as a matrix equation:⎡⎢⎢⎢⎢⎢⎣
−2 −4 −6 · · · −2m

(−2)2 (−4)2 (−6)2 · · · (−2m)2

(−2)3 (−4)3 (−6)3 · · · (−2m)3

...
...

...
. . .

...

(−2)m (−4)m (−6)m · · · (−2m)m

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
b−1t−1

3
b−2t−2

3
b−3t−3

3
...

b−mt−m
3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
μ1
μ2
μ3
...

μm

⎤⎥⎥⎥⎥⎥⎦ .

One can observe that the coefficient matrix⎡⎢⎢⎢⎢⎢⎣
−2 −4 −6 · · · −2m

(−2)2 (−4)2 (−6)2 · · · (−2m)2

(−2)3 (−4)3 (−6)3 · · · (−2m)3

...
...

...
. . .

...

(−2)m (−4)m (−6)m · · · (−2m)m

⎤⎥⎥⎥⎥⎥⎦
is similar to a Vandermonde matrix (since the terms in each column form a geometric sequence) which is well known to 
be invertible. This therefore implies that each b jt

j
3 is a linear combination of the μn ∈ R4. As a result, b jt

j
3 ∈ R4 for all 

j ∈ {−1, . . . , −m}. Consequently, x− = ∑−m b jt
j ∈R4 as desired.
j=−1 3
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2. Recall that ρ(tκ ) = λκ tκ for all κ ∈ {3, 4, 5, 6} and λκ ∈ K. From Lemma 5.6, we have that f1 = t1 + 1
2 t2t−1

3 . Again, 
recall from Subsection 4.3.1 that t1 = αt−1

3 t−1
5 and t2 = βt−1

4 t−1
6 in R3 = Pα,β . As a result, f1 = αt−1

3 t−1
5 + 1

2 βt−1
3 t−1

4 t−1
6 . 

Therefore,

ρ( f1) = − (λ3 + λ5)αt−1
3 t−1

5 − 1

2
(λ3 + λ4 + λ6)βt−1

3 t−1
4 t−1

6 . (19)

Also, ρ( f1) ∈R4 implies that ρ( f1) can be written in terms of the basis P4 of R4 (Proposition 5.2) as

ρ( f1) =
∑
r>0

ar f r
1 +

∑
s≥0

bst
s
3, (20)

where ar and bs belong to Q =K[t±1
4 , t±1

5 , t±1
6 ]. Note that

f r
1 =

(
αt−1

3 t−1
5 + 1

2
βt−1

3 t−1
4 t−1

6

)r

=
r∑

i=0

(
r

i

)
αi(β/2)r−1t−r

3 ti−r
4 t−i

5 ti−r
6

= crt−r
3 , (21)

where

cr :=
r∑

i=0

(
r

i

)
αi(β/2)r−iti−r

4 t−i
5 ti−r

6 ∈ Q \ {0}. (22)

Substitute (21) into (20) to obtain

ρ( f1) =
∑
r>0

arcrt−r
3 +

∑
s≥0

bst
s
3. (23)

One can rewrite (19) as

ρ( f1) = dt−1
3 , (24)

where d = −(λ5 + λ3)αt−1
5 − 1

2 (λ6 + λ4 + λ3)βt−1
4 t−1

6 ∈ Q. Comparing (23) to (24) shows that bs = 0 for all s ≥ 0, and 
arcr = 0 for all r �= 1. Therefore, ρ( f1) = a1c1t−1

3 . Moreover, from (22), c1 = 1
2 βt−1

4 t−1
6 + αt−1

5 . Hence,

ρ( f1) = a1c1t−1
3 = a1

(
1

2
βt−1

4 t−1
6 + αt−1

5

)
t−1

3 = a1αt−1
3 t−1

5 + 1

2
a1βt−1

3 t−1
4 t−1

6 . (25)

Comparing (25) to (19) reveals that a1 = −(λ5 + λ3) = −(λ6 + λ4 + λ3). Consequently, λ5 = λ6 + λ4. Hence, ρ( f1) = −(λ5 +
λ3)αt−1

3 t−1
5 − 1

2 (λ5 + λ3)βt−1
3 t−1

4 t−1
6 = −(λ5 + λ3) f1. Finally, since t2 = βt−1

4 t−1
6 in R4, it follows that

ρ(t2) = −(λ6 + λ4)βt−1
4 t−1

6 = −(λ6 + λ4)t2 = −λ5t2.

3. The result easily follows from the previous points since f1 = x1,4 and ti = xi,4 (2 ≤ i ≤ 6). �
We now proceed to describe D as a Poisson derivation of R5.

Lemma 5.8.

1. x ∈R5 .
2. λ4 = 3λ3 + λ5 , λ6 = −3λ3 , ρ(z1) = −(λ3 + λ5)z1 and ρ(z2) = −λ5z2 .
3. D(xκ,5) = hamx(xκ,5) + λκ xκ,5 for all κ ∈ {1, . . . , 6}.

Proof. In this proof, we denote υ := (i, j, k, l) ∈N ×Z3.
1. We already know that x ∈ R4 = R5[t−1

4 ]. Given the basis P5 of R5 from Proposition 5.3, x can be written as x =∑
(ξ,υ)∈I

a(ξ,υ)zi
1tξ

3t j
4tk

5tl
6, where I is a finite subset of {0, 1, 2} ×N ×Z3 and the a(ξ,υ) are scalars. Write x = x− + x+ , where

x+ =
∑

(ξ,υ)∈I
j≥0

a(ξ,υ)zi
1tξ

3t j
4tk

5tl
6 and x− =

∑
(ξ,υ)∈I

j<0

a(ξ,υ)zi
1tξ

3t j
4tk

5tl
6.

Suppose that x− �= 0. Then, there exists a minimum j0 < 0 such that a(ξ,i, j0,k,l) �= 0 for some (ξ, i, j0, k, l) ∈ I and a(ξ,i, j,k,l) =
0 for all (ξ, i, j0, k, l) ∈ I with j < j0. Given this assumption, write
25
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x− =
∑

(ξ,υ)∈I
j0≤ j≤−1

a(ξ,υ)zi
1tξ

3t j
4tk

5tl
6.

We aim to show that x− = 0. Let s ∈ {3, 6}. Then, D(ts) = hamx+ (ts) + hamx− (ts) +ρ(ts) ∈R5. This implies that hamx− (ts) ∈
R5, since hamx+ (ts) +ρ(ts) = hamx+ (ts) +λsts ∈R5. Set w := (i, j, k, l) ∈N2 ×Z2. One can therefore write hamx− (ts) ∈R5

in terms of the basis P5 of R5 as:

hamx−(ts) =
∑

(ξ,w)∈ J

b(ξ,w)zi
1tξ

3t j
4tk

5tl
6, (26)

where J is a finite subset of {0, 1, 2} ×N2 ×Z2 and the b(ξ,w) are scalars.
When s = 6, we deduce from Remark 2.1(2) that one can also express hamx− (t6) as:

hamx−(t6) =
∑

(ξ,υ)∈I
j0≤ j≤−1

3(k + j − i)a(ξ,υ)zi
1tξ

3t j
4tk

5tl+1
6 .

Comparing this expression for hamx− (t6) to (26) (when s = 6), we have that∑
(ξ,υ)∈I

j0≤ j≤−1

3(k + j − i)a(ξ,υ)zi
1tξ

3t j
4tk

5tl+1
6 =

∑
(ξ,w)∈ J

b(ξ,w)zi
1tξ

3t j
4tk

5tl
6.

As P5 is a basis for R5 by Proposition 5.3, we deduce from Corollary 5.4 that 
(

zi
1tξ

3t j
4tk

5tl
6

)
(i∈N; j,k,l∈Z;ξ∈{0,1,2}) is a basis 

for R5[t−1
4 ]. Now, at j = j0, denote υ = (i, j, k, l) by υ0 := (i, j0, k, l). Since v0 ∈N ×Z3 (with j0 < 0) and w = (i, j, k, l) ∈

N2 ×Z2 (with j ≥ 0), it follows from the above equality that, at υ0, we must have:

3(k + j0 − i)a(ξ,υ0) = 0.

From our initial assumption, we have that a(ξ,υ0) are all not zero. Therefore,

k = i − j0, (27)

for some (ξ, v0) ∈ I .
Similarly, when s = 3, then using Remark 2.1(2), one can also express hamx− (t3) as:

hamx−(t3) = −
∑[

3

2
β(3i − k − 3 j0)a2,i, j0,k,l+1 + 2(i + 1)αa(0,i+1, j0,k+1,l)

]
zi

1t j0
4 tk

5tl
6

+
∑[

(3i − k − 3 j0)a(0,i, j0,k,l) − 2(i + 1)αa(1,i+1, j0,k+1,l)
]

zi
1t3t j0

4 tk
5tl

6

+
∑[

(3i − k − 3 j0)a(1,i, j0,k,l) − 2(i + 1)αa(2,i+1, j0,k+1,l)
]

zi
1t2

3t j0
4 tk

5tl
6 +K,

where K ∈ Span
(
P5 \ {zi

1tξ
3t j0

4 tk
5tl

6 | (ξ, i, j0,k, l) ∈ {0,1,2} ×N ×Z3}
)

(note that one needs the following two expressions 

z2 = 2(z1t3 − αt−1
5 ) and t3

3 = 3z1t3t4 − 3αt4t−1
5 − 3β

2
t−1

6 from (17) and (18) to express some of the monomials in terms of 
the basis P5 of R5). Comparing this expression for hamx− (t3) to (26) (when s = 3) reveals that∑

(ξ,w)∈ J

b(ξ,w)zi
1tξ

3t j
4tk

5tl
6 =

−
∑[

3

2
β(3i − k − 3 j0)a(2,i, j0,k,l+1 + 2(i + 1)αa(0,i+1, j0,k+1,l)

]
zi

1t j0
4 tk

5tl
6

+
∑[

(3i − k − 3 j0)a(0,i, j0,k,l) − 2(i + 1)αa(1,i+1, j0,k+1,l)
]

zi
1t3t j0

4 tk
5tl

6

+
∑[

(3i − k − 3 j0)a(1,i, j0,k,l) − 2(i + 1)αa(2,i+1, j0,k+1,l)
]

zi
1t2

3t j0
4 tk

5tl
6 +K.

We have already established that 
(

zi
1tξ

3t j
4tk

5tl
6

)
(i∈N; j,k,l∈Z;ξ∈{0,1,2}) is a basis for R5[t−1

4 ]. Since v0 = (i, j0, k, l) ∈ N × Z3

(with j0 < 0) and w = (i, j, k, l) ∈N2 ×Z2 (with j ≥ 0), it follows from the above equality that, at υ0, we must have:
26
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3

2
β(3i − k − 3 j0)a(2,i, j0,k,l+1) + 2(i + 1)αa(0,i+1, j0,k+1,l) = 0, (28)

(3i − k − 3 j0)a(0,i, j0,k,l) − 2(i + 1)αa(1,i+1, j0,k+1,l) = 0, (29)

(3i − k − 3 j0)a(1,i, j0,k,l) − 2(i + 1)αa(2,i+1, j0,k+1,l) = 0. (30)

Suppose that there exists (ξ, i, j0, k, l) ∈ I such that (3i − k − 3 j0)a(ξ,i, j0,k,l) = 0. Then, a(ξ,i, j0,k,l) = 0. Otherwise, we shall 
have:

k = 3(i − j0). (31)

Comparing (31) to (27) clearly shows that i − j0 = 0 which implies that i = j0 < 0, a contradiction (note that i ≥ 0)!
Now, observe that if there exists ξ ∈ {0, 1, 2} such that a(ξ,i, j0,k,l) = 0 for all (i, j0, k, l) ∈ N × Z3, then one can easily 

deduce from equations (28), (29) and (30) that a(ξ,i, j0,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I . This contradicts our initial assumption. 
Therefore, for each ξ ∈ {0, 1, 2}, there exists some (i, j0, k, l) ∈ N ×Z3 such that a(ξ,i, j0,k,l) �= 0. Without loss of generality, 
let (u, j0, v, w) be the greatest element in the lexicographic order on N ×Z3 such that a(0,u, j0,v,w) �= 0 and a(0,i, j0,k,l) = 0
for all i > u.

From (29), at (i, j0, k, l) = (u, j0, v, w), we have:

(3u − v − 3 j0)a(0,u, j0,v,w) − 2(u + 1)αa(1,u+1, j0,v+1,w) = 0.

From (30), at (i, j0, k, l) = (u + 1, j0, v + 1, w), we have:

(3u − v − 3 j0)a(1,u+1, j0,v+1,w) − 2(u + 1)αa(2,u+2, j0,v+2,w) = 0.

Finally, from (28), at (i, j0, k, l) = (u + 2, j0, v + 2, w − 1), we have:

3

2
β(3u − v − 3 j0)a(2,u+2, j0,v+2,w) + 2(u + 1)αa(0,u+3, j0,v+3,w−1) = 0.

Since u + 3 > u, it follows from the above three displayed equations (beginning from the last one) that

a(0,u+3, j0,v+3,w−1) = 0 ⇒ a(2,u+2, j0,v+2,w) = 0 ⇒ a(1,u+1, j0,v+1,w) = 0 ⇒ a(0,u, j0,v,w) = 0,

a contradiction (remember that (3i − k − 3 j0)a(ξ,i, j0,k,l) = 0 implies that a(ξ,i, j0,k,l) = 0)! Hence, a(0,i, j0,k,l) = 0 for all 
(i, j0, k, l) ∈ N × Z3. From (28), (29) and (30), one can then conclude that a(ξ,i, j0,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I . This is 
a contradiction to our assumption, hence x− = 0. Consequently, x = x+ ∈R5 as desired.

2. It follows from Lemma 5.6 that z2 = t2 + 2
3 t3

3t−1
4 . Since ρ(tκ ) = λκ tκ , κ ∈ {2, . . . , 6}, with λ2 = −λ5 (see Lemma 5.7), 

it follows that

ρ(z2) = − λ5t2 + 2

3
(3λ3 − λ4)t

3
3t−1

4 = −λ5z2 + 2

3
(3λ3 − λ4 + λ5)t

3
3t−1

4 .

Furthermore,

D(z2) = hamx(z2) + ρ(z2) = hamx(z2) − λ5z2 + 2

3
(3λ3 − λ4 + λ5)t

3
3t−1

4 ∈ R5.

We have that (3λ3 − λ4 + λ5)t3
3t−1

4 ∈ R5, since hamx(z2) − λ5z2 ∈ R5. This implies that (3λ3 − λ4 + λ5)t3
3 ∈ R5t4. Set 

w := 3λ3 − λ4 + λ5. Suppose that w �= 0. From (18), we have:

t3
3 = 3z1t3t4 − 3

2
βt−1

6 − 3αt4t−1
5 .

It follows that

wt3
3 = 3wz1t3t4 − 3wαt4t−1

5 − 3

2
wβt−1

6 ∈ R5t4.

Since t3
3, t4t−1

5 and z1t3t4 are all elements of R5t4, this implies that t−1
6 ∈ R5t4. Hence, 1 ∈ R5t4t6, a contradiction (see 

the basis P5 of R5 (Proposition 5.3)). Therefore, w = 3λ3 − λ4 + λ5 = 0, and so λ4 = 3λ3 + λ5. This further implies that 
ρ(z2) = −λ5z2 as desired.

Again, from Lemma 5.7, we have that ρ( f1) = −(λ3 +λ5) f1. Recall from Lemma 5.6 that z1 = f1 + 1
3 t2

3t−1
4 . It follows that

ρ(z1) = − (λ3 + λ5) f1 + 1

3
(2λ3 − λ4)t

2
3t−1

4 = −(λ3 + λ5)z1 + 1

3
(3λ3 − λ4 + λ5)t

2
3t−1

4

= − (λ3 + λ5)z1 + 1

3
(3λ3 − (3λ3 + λ5) + λ5)t

2
3t−1

4 = −(λ3 + λ5)z1.
27
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Finally, we know that ρ(t6) = λ6t6, and

t3
3 = 3z1t3t4 − 3αt4t−1

5 − 3β

2
t−1

6 .

This implies that

t−1
6 = 2

3β
(3z1t3t4 − 3αt4t−1

5 − t3
3).

Apply ρ to this relation to obtain

−λ6t−1
6 = 3λ3

(
2

3β

(
3z1t3t4 − 3αt4t−1

5 − t3
3

))
.

Clearly, λ6 = −3λ3 as desired.
3. Recall that λ1 = −(λ3 + λ5) and λ2 = −λ5. The result easily follows from the previous points since z1 = x1,5 and 

z2 = x2,5. �
We are now ready to describe D as a Poisson derivation of Aα,β .

Lemma 5.9.

1. x ∈Aα,β .
2. ρ(xκ ) = 0 for all κ ∈ {1, . . . , 6}.
3. D = hamx.

Proof. In this proof, we set υ := (i, j, k, l) ∈N2 ×Z2. Recall from the PDDA for Aα,β that t5 = x5 and t6 = x6.
1. Given the basis P of Aα,β from Proposition 4.14, one can write x ∈R5 =Aα,β [t−1

5 , t−1
6 ] as

x =
∑

(ε1,ε2,υ)∈I

a(ε1,ε2,υ)xi
1x j

2xε1
3 xε2

4 tk
5tl

6, (32)

where I is a finite subset of {0, 1}2 ×N2 ×Z2 and a(ε1,ε2,υ) are scalars. Write x = x− + x+ , where

x+ =
∑

(ε1,ε2,υ)∈I
k, l≥0

a(ε1,ε2,υ)xi
1x j

2xε1
3 xε2

4 tk
5tl

6,

and

x− =
∑

(ε1,ε2,υ)∈I
k<0 or l<0

a(ε1,ε2,υ)xi
1x j

2xε1
3 xε2

4 tk
5tl

6.

Suppose that x− �= 0. Then, there exists a minimum negative integer k0 or l0 such that a(ε1,ε2,i, j,k0,l) �= 0 or a(ε1,ε2,i, j,k,l0) �=
0 for some (ε1, ε2, i, j, k0, l), (ε1, ε2, i, j, k, l0) ∈ I , and a(ε1,ε2,i, j,k,l) = 0 whenever k < k0 or l < l0. Write

x− =
∑

(ε1,ε2,υ)∈I
k0≤k≤−1 or l0≤l≤−1

a(ε1,ε2,υ)xi
1x j

2xε1
3 xε2

4 tk
5tl

6.

Now D(x3) = hamx+ (x3) + hamx− (x3) + ρ(x3) ∈ Aα,β . From Lemma 5.6, we have that x3 = x3,6 + t2
5t−1

6 and x3,6 = t3 +
3
2 t4t−1

5 . Putting these two together gives:

x3 = t3 + 3

2
t4t−1

5 + t2
5t−1

6 .

Again, from Lemma 5.6, we also have that t4 = x4 − 2
3 t3

5t−1
6 . Note that ρ(tκ ) = λκ tκ , κ = 3, 4, 5, 6.

Now,

ρ(x3) = λ3t3 + 3

2
(λ4 − λ5)t4t−1

5 + (2λ5 − λ6)t
2
5t−1

6

= λ3

(
x3,6 − 3

t4t−1
5

)
+ 3

(λ4 − λ5)t4t−1
5 + (2λ5 − λ6)t

2
5t−1

6
2 2

28
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= λ3x3,6 − 3

2
(λ3 − λ4 + λ5)t4t−1

5 + (2λ5 − λ6)t
2
5t−1

6

= λ3(x3 − t2
5t−1

6 ) − 3

2
(λ3 − λ4 + λ5)

(
x4 − 2

3
t3

5t−1
6

)
t−1

5 + (2λ5 − λ6)t
2
5t−1

6

= λ3x3 + α1x4t−1
5 + α2t2

5t−1
6 , (33)

where α1 = 3
2 (λ4 − λ3 − λ5) and α2 = (3λ5 − λ4 − λ6). Therefore, D(x3) = hamx+ (x3) + hamx− (x3) + λ3x3 + α1x4t−1

5 +
α2t2

5t−1
6 ∈ Aα,β . It follows that D(x3)t5t6 = hamx+ (x3)t5t6 + hamx− (x3)t5t6 + λ3x3t5t6 + α1x4t6 + α2t3

5 ∈ Aα,β . Hence, 
hamx− (x3)t5t6 ∈Aα,β , since hamx+ (x3)t5t6 + λ3x3t5t6 + α1x4t6 + α2t3

5 ∈Aα,β .
One can also verify that

hamx−(x3)t5t6 =
∑

(ε1,ε2,v)∈I

a(ε1,ε2,v)

(
(i + 3 j − 3ε2 − k)xi

1x j
2xε1+1

3 xε2
4 tk+1

5 tl+1
6

− 3kxi
1x j

2xε1
3 xε2+1

4 tk
5tl+1

6 + ixi−1
1 x j+1

2 xε1
3 xε2

4 tk+1
5 tl+1

6

−6lxi
1x j

2xε1
3 xε2

4 tk+3
5 tl

6

)
. (34)

Assume that there exists l < 0 such that a(ε1,ε2,i, j,k,l) �= 0. It follows from our initial assumption that a(ε1,ε2,i, j,k,l0) �= 0. 
Now, at l = l0, denote υ = (i, j, k, l) by υ0 := (i, j, k, l0). From (34), we have that

hamx−(x3)t5t6 = −
∑

(ε1,ε2,υ0)∈I

6l0a(ε1,ε2,υ0)xi
1x j

2xε1
3 xε2

4 tk+3
5 tl0

6 +J1,

where J1 ∈ Span
(
P \ {xi

1x j
2xε1

3 xε2
4 tk

5tl0
6 | ε1, ε2 ∈ {0,1}, k ∈Z and i, j ∈N}

)
.

One can also write hamx− (x3)t5t6 ∈Aα,β in terms of the basis P of Aα,β from Proposition 4.14 as:

hamx−(x3)t5t6 =
∑

(ε1,ε2,w)∈ J

b(ε1,ε2,w)xi
1x j

2xε1
3 xε2

4 tk
5tl

6, (35)

where J is a finite subset of {0, 1}2 ×N4 and b(ε1,ε2,w) ∈K, with w := (i, j, k, l) ∈N4. It follows that∑
(ε1,ε2,w)∈ J

b(ε1,ε2,w)xi
1x j

2xε1
3 xε2

4 tk
5tl

6 = −
∑

(ε1,ε2,υ0)∈I

6l0a(ε1,ε2,υ0)xi
1x j

2xε1
3 xε2

4 tk+3
5 tl0

6 +J1.

As P is a basis for Aα,β , we deduce from Corollary 4.15 that 
(

xi
1x j

2xε1
3 xε2

4 tk
5tl

6

)
((ε1,ε2,v)∈{0,1}2×N2×Z2)

is a basis for 

Aα,β [t−1
5 , t−1

6 ]. Since v0 = (i, j, k, l0) ∈N2 ×Z2 (with l0 < 0) and w = (i, j, k, l) ∈N4 (with l ≥ 0) in the above equality, we 
must have

6l0a(ε1,ε2,υ0) = 0.

Note that, since l0 �= 0, it follows that a(ε1,ε2,υ0) = a(ε1,ε2,i, j,k,l0) are all zero, a contradiction! Therefore, there is no negative 
exponent of t6 appearing in the decomposition of x in (32).

Given that l ≥ 0, it follows from our initial assumption that there exists k = k0 < 0 such that a(ε1,ε2,i, j,k0,l) �= 0. The rest 
of the proof will show that this is also impossible.

Set υ0 := (i, j, k0, l) ∈N2 ×Z ×N . From (34), we have that

hamx−(x3)t5t6 = −
∑

(ε1,ε2,υ0)∈I

3ka(ε1,ε2,υ0)xi
1x j

2xε1
3 xε2+1

4 tk0
5 tl+1

6 + V ,

where V ∈J2 := Span
(
P \ {xi

1x j
2xε1

3 xε2
4 tk0

5 tl
6 | ε1, ε2 ∈ {0,1} and i, j, l ∈N}

)
. It follows that

hamx−(x3)t5t6 =
−

∑
(0,0,v)∈I

3k0a(0,0,v)xi
1x j

2x4tk0
5 tl+1

6 −
∑

(1,0,v)∈I

3k0a(1,0,v)xi
1x j

2x3x4tk0
5 tl+1

6

−
∑

(0,1,v)∈I

3k0a(0,1,v)xi
1x j

2x2
4tk0

5 tl+1
6 −

∑
(1,1,v)∈I

3k0a(1,1,v)xi
1x j

2x3x2
4tk0

5 tl+1
6 + V . (36)

Write the relations in Lemma 4.11(2), (4) as follows:
29
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x2
4 =2

3
β − 2

3
x2x4x6 + 8

9
αx3x6 + 4

3
x1x3x4x6 + L1, (37)

x3x2
4 =2

3
βx3 − 2

3
x2x3x4x6 + 16

9
α2x6 + 16

3
αx1x4x6 + 8

3
βx2

1x6

− 8

3
x2

1x2x4x2
6 + 32

9
αx2

1x3x2
6 + 16

3
x3

1x3x4x2
6 + L2, (38)

where L1 and L2 are some elements of the left ideal Aα,βt5 ⊆J2. Substitute (37) and (38) into (36) and simplify to obtain:

hamx−(e3)t5t6 =
∑

[λ1,1βa(0,1,i, j,k0,l−1) + λ1,2α
2a(1,1,i, j,k0,l−2)

+ λ1,3βa(1,1,i−2, j,k0,l−2)]xi
1x j

2tk0
5 tl

6

+
∑

[λ2,1αa(0,1,i, j,k0,l−2) + λ2,2βa(1,1,i, j,k0,l−1)

+ λ2,3αa(1,1,i−2, j,k0,l−3)]xi
1x j

2x3tk0
5 tl

6

+
∑

[λ3,1a(0,1,i, j−1,k0,l−2) + λ3,2αa(1,1,i−1, j,k0,l−2)

+ λ3,3a(1,1,i−2, j−1,k0,l−3) + λ3,4a(0,0,i, j,k0,l−1)]xi
1x j

2x4tk0
5 tl

6

+
∑

[λ4,1a(0,1,i−1, j,k0,l−2) + λ4,2a(1,1,i, j−1,k0,l−2)

+ λ4,3a(1,1,i−3, j,k0,l−3) + λ4,4a(1,0,i, j,k0,l−1)]xi
1x j

2x3x4tk0
5 tl

6 + V ′, (39)

where V ′ ∈J2. Also, λs,t := λs,t( j, k0, l) are some families of scalars which are non-zero for all s, t ∈ {1, 2, 3, 4} and j, l ∈N , 
except λ1,4 and λ2,4 which are assumed to be zero since they do not exist in the above expression. Note that although each 
λs,t depends on j, k0, l, we have not made this dependency explicit in (39), since the minimum requirement we need to 
complete the proof is for all the λs,t existing in the above expression to be non-zero, which we already have.

Observe that (39) and (35) are equal, hence∑
(ε1,ε2,w)∈ J

b(ε1,ε2,w)xi
1x j

2xε1
3 xε2

4 tk
5tl

6 =
∑

[λ1,1βa(0,1,i, j,k0,l−1) + λ1,2α
2a(1,1,i, j,k0,l−2)

+ λ1,3βa(1,1,i−2, j,k0,l−2)]xi
1x j

2tk0
5 tl

6

+
∑

[λ2,1αa(0,1,i, j,k0,l−2) + λ2,2βa(1,1,i, j,k0,l−1)

+ λ2,3αa(1,1,i−2, j,k0,l−3)]xi
1x j

2x3tk0
5 tl

6

+
∑

[λ3,1a(0,1,i, j−1,k0,l−2) + λ3,2αa(1,1,i−1, j,k0,l−2)

+ λ3,3a(1,1,i−2, j−1,k0,l−3) + λ3,4a(0,0,i, j,k0,l−1)]xi
1x j

2x4tk0
5 tl

6

+
∑

[λ4,1a(0,1,i−1, j,k0,l−2) + λ4,2a(1,1,i, j−1,k0,l−2)

+ λ4,3a(1,1,i−3, j,k0,l−3) + λ4,4a(1,0,i, j,k0,l−1)]xi
1x j

2x3x4tk0
5 tl

6 + V ′.

We have previously established that 
(

xi
1x j

2xε1
3 xε2

4 tk
5tl

6

)
((ε1,ε2,v)∈{0,1}2×N2×Z2)

is a basis of Aα,β [t−1
5 , t−1

6 ] (remember that 

l ≥ 0 in this part of the proof).
Since v0 = (i, j, k0, l) ∈N2 ×Z ×N (with k0 < 0) and w = (i, j, k, l) ∈N4 (with k ≥ 0) in the above equality, it follows 

that

λ1,1βa(0,1,i, j,k0,l−1) + λ1,2α
2a(1,1,i, j,k0,l−2) + λ1,3βa(1,1,i−2, j,k0,l−2) = 0, (40)

λ2,1αa(0,1,i, j,k0,l−2) + λ2,2βa(1,1,i, j,k0,l−1) + λ2,3αa(1,1,i−2, j,k0,l−3) = 0, (41)

λ3,1a(0,1,i, j−1,k0,l−2) + λ3,2αa(1,1,i−1, j,k0,l−2) + λ3,3a(1,1,i−2, j−1,k0,l−3)

+ λ3,4a(0,0,i, j,k0,l−1) = 0, (42)

λ4,1a(0,1,i−1, j,k0,l−2) + λ4,2a(1,1,i, j−1,k0,l−2) + λ4,3a(1,1,i−3, j,k0,l−3)

+ λ4,4a(1,0,i, j,k0,l−1) = 0. (43)

From (40) and (41), one can easily deduce that
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a(0,1,i, j,k0,l) = −α2λ1,2

βλ1,1
a(1,1,i, j,k0,l−1) − λ1,3

λ1,1
a(1,1,i−2, j,k0,l−1), (44)

a(1,1,i, j,k0,l) = −αλ2,1

βλ2,2
a(0,1,i, j,k0,l−1) − αλ2,3

βλ2,2
a(1,1,i−2, j,k0,l−2). (45)

Note that a(ε1,ε2,i, j,k0,l) := 0 whenever i < 0, j < 0 or l < 0 for all ε1, ε2 ∈ {0, 1}.

Claim. The coefficients a(0,1,i, j,k0,l) and a(1,1,i, j,k0,l) are all zero for all l ≥ 0.

We justify the claim by an induction on l. From (44) and (45), the result is true when l = 0. For l ≥ 0, assume that 
a(0,1,i, j,k0,l) = a(1,1,i, j,k0,l) = 0. Then, it follows from (44) and (45) that

a(0,1,i, j,k0,l+1) = −α2λ1,2

βλ1,1
a(1,1,i, j,k0,l) − λ1,3

λ1,1
a(1,1,i−2, j,k0,l),

a(1,1,i, j,k0,l+1) = −αλ2,1

βλ2,2
a(0,1,i, j,k0,l) − αλ2,3

βλ2,2
a(1,1,i−2, j,k0,l−1).

From the inductive hypothesis, a(1,1,i, j,k0,l) = a(1,1,i−2, j,k0,l) = a(0,1,i, j,k0,l) = a(1,1,i−2, j,k0,l−1) = 0. Hence, a(1,1,i, j,k0,l+1) =
a(0,1,i, j,k0,l+1) = 0. By the principle of mathematical induction, a(0,1,i, j,k0,l) = a(1,1,i, j,k0,l) = 0 for all l ≥ 0 as desired. Given 
that the families a(0,1,i, j,k0,l) and a(1,1,i, j,k0,l) are all zero, it follows from (42) and (43) that a(0,0,i, j,k0,l) and a(1,0,i, j,k0,l) are 
also zero for all (i, j, k0, l) ∈ N2 ×Z ×N . This contradicts our assumption. Hence, x− = 0. Consequently, x = x+ ∈ Aα,β as 
desired.

2. From Lemma 5.6, we have that x4 = x4,6 + 2
3 t3

5t−1
6 = t4 + 2

3 t3
5t−1

6 . Again, from Lemma 5.9, we have that λ4 = 3λ3 + λ5

and λ6 = −3λ3. Therefore,

ρ(x4) = λ4t4 + 2

3
(3λ5 − λ6)t

3
5t−1

6

= (3λ3 + λ5)x4,6 + 2(λ3 + λ5)t
3
5t−1

6

= (3λ3 + λ5)

(
x4 − 2

3
t3

5t−1
6

)
+ 2(λ3 + λ5)t

3
5t−1

6

= (3λ3 + λ5)x4 + 4

3
λ5t3

5t−1
6 .

Hence,

D(x4) = hamx(x4) + ρ(x4) = hamx(x4) + (3λ3 + λ5)x4 + 4

3
λ5t3

5t−1
6 ∈ Aα,β .

It follows that λ5t3
5t−1

6 ∈ Aα,β , since hamx(x4) + (3λ3 + λ5)x4 ∈ Aα,β . Consequently, λ5t3
5 ∈ Aα,βt6. Using the basis of Aα,β

from Proposition 4.14, we easily have that λ5 = 0. Therefore, ρ(x4) = 3λ3x4 and ρ(t5) = 0. We already know from Lemma 5.9
that ρ(t6) = −3λ3t6. From (33), we have ρ(x3) = λ3x3 + 3

2 (λ4 − λ3 − λ5)x4t−1
5 + (3λ5 − λ4 − λ6)t2

5t−1
6 . Given that λ4 =

3λ3, λ5 = 0 and λ6 = −3λ3, we have that ρ(x3) = λ3x3 + 3λ3x4t−1
5 . Now, D(x3) = hamx(x3) + ρ(x3) = hamx(x3) + λ3x3 +

3λ3x4t−1
5 ∈ Aα,β . Observe that hamx(x3), λ3x3 ∈ Aα,β . Hence, λ3x4t−1

5 ∈ Aα,β implies that λ3x4 ∈ Aα,βt5. Similarly, λ3 = 0. 
We now have that ρ(x3) = ρ(x4) = ρ(x5) = ρ(x6) = 0. We finish the proof by showing that ρ(x1) = ρ(x2) = 0. Recall from 
(12) that

x2x4x6 − 2

3
x3

3x6 − 2

3
x2x3

5 + 2x2
3x2

5 − 3x3x4x5 + 3

2
x2

4 = β.

Apply ρ to this relation to obtain ρ(x2)x4x6 − 2
3 ρ(x2)x3

5 = 0. This implies that ρ(x2) 
(

x4x6 − 2
3 x3

5

)
= 0. Since x4x6 − 2

3 x3
5 �= 0, 

it follows that ρ(x2) = 0. Similarly, from (11), we have that

x1x3x5 − 3

2
x1x4 − 1

2
x2x5 + 1

2
x2

3 = α.

Apply ρ to this relation to obtain ρ(x1) 
(

x3x5 − 3
2 x4

)
= 0. Since x3x5 − 3

2 x4 �= 0, we must have: ρ(x1) = 0. In conclusion, 
ρ(xκ ) = 0 for all κ ∈ {1, . . . , 6}.

3. This easily follows from the previous points. �
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5.3.2. Poisson derivations of Aα,0 and A0,β

Following procedures similar to the previous case (i.e. Aα,β with αβ �= 0), one can also compute the Poisson derivations 
of Aα,0 and A0,β . The computations have been done, however, for the avoidance of redundancy, we are not going to include 
them here. We only summarize the results here. Before we do that, we compute explicitly some scalar Poisson derivations 
of Aα,0 and A0,β .

Lemma 5.10. Let (α, β) ∈K2 \ {(0, 0)}. Suppose that ϑ and ϑ̃ are linear maps on Aα,0 and A0,β respectively, and are defined by:

ϑ(x1) = −x1, ϑ(x2) = −x2, ϑ(x3) = 0, ϑ(x4) = x4, ϑ(x5) = x5, ϑ(x6) = 2x6,

and

ϑ̃(x1) = −2x1, ϑ̃(x2) = −3x2, ϑ̃(x3) = −x3, ϑ̃(x4) = 0, ϑ̃(x5) = x5, ϑ̃(x6) = 3x6.

Then, ϑ and ϑ̃ extended to Aα,0 and A0,β respectively using the Leibniz rule are K-Poisson derivations of Aα,0 and A0,β respectively.

Proof. The interested reader is referred to [19, Lemma 6.3.6]. �
As usual, we denote by H P 1(Aα,β) the first Poisson cohomology group of the Poisson algebra Aα,β . Recall that

H P 1(Aα,β) := DerP (Aα,β)/InnDerP (Aα,β),

where DerP (Aα,β) is the set of all the Poisson K-derivations of Aα,β , and InnDerP (Aα,β) := {hamx | x ∈ Aα,β} ⊆
DerP (Aα,β). For a Poisson derivation d of Aα,β , we denote by [d] its class modulo InnDerP (Aα,β).

We are now ready to summarize our main results regarding the Poisson derivations of Aα,β .

Theorem 5.11.

1. If α, β �= 0; then every Poisson derivation D of Aα,β is a Poisson inner derivation. In particular, H P 1(Aα,β) = {[0]}.
2. If α �= 0 and β = 0, then every Poisson derivation D of Aα,0 can uniquely be written as D = hamx + λϑ , where λ ∈ K and 

x ∈Aα,0 . Thus H P 1(Aα,0) =K[ϑ].
3. If α = 0 and β �= 0, then every Poisson derivation D of A0,β can uniquely be written as D = hamx + λϑ̃ , where λ ∈ K and 

x ∈A0,β . Thus H P 1(A0,β ) =K[ϑ̃].

Let (α, β) ∈ K2 \ {(0, 0)}. One can easily conclude that the first Poisson cohomology group HP1(Aα,β) is isomorphic to 
the first Hochschild cohomology group HH1(Aα,β) studied in [16, Theorem 5.12].

It is natural to ask whether higher Poisson cohomology groups of Aα,β are isomorphic to higher Hochschild cohomology 
groups of Aα,β , that is, do we have HPi(Aα,β) ∼= HHi(Aα,β) for all i?
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