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ABSTRACT A damage mechanics-based numerical approach for the prediction of the damage evolution in 

wirebond structures of the power electronic module (PEM) is presented. A simplistic damage evolution model 

is developed in an in-house finite element code, with a demonstration focused on the analysis of the wirebond 

damage evolution by thermally induced stresses in PEM subjected to varying thermal loads. The novelty of 

the proposed methodology is the damage evolution realized at the level of each discretised mesh element of 

the finite element model of the PEM structure in the numerical approach and the associated impact of damage 

on the mechanical material properties of that element.    A simplified PEM structure is utilised as a case study 

to demonstrate the proposed damage evolution modelling. The thermal load of each discretised element of 

the PEM structure was imported from an external thermal code. From the thermally induced stresses, plastic 

strain rates were approximated and then, using these metrics a damage evolution metric was derived. The 

damage distribution plot of the wirebond structure for the applied load in the case study indicates that 

maximum damage accumulation at the heel structure reaches 2.4% of the total damage after 3 seconds. By 

extrapolating the trendline of damage evolution in wirebond, the time of the structural failure was also 

predicted. The maximum von Mises stress was observed on the busbar which reaches 64 MPa. The extreme 

stresses found at the busbar are attributed to the high value of the coefficient of thermal expansion of the 

busbar material. 

INDEX TERMS Power electronic module, wirebond, damage, fatigue failure, viscoplastic behaviour, creep 

I. INTRODUCTION 

As illustrated in Figure 1, power electronic modules 

(PEMs) play a vital role in the conversion, control of 

alternative energy generation, and distribution. PEM 

typically uses switching electronic circuits to control the 

change of voltage/current and frequency level. PEM 

devices are vital in connecting renewable energy resources 

such as wind turbines with power grids and the 

transportation of energy. PEM is an essential technology in 

all future sustainable energy scenarios. Modern PEM 

devices are everywhere, for example, in electric trains, 

motor drives, lighting equipment, etc. The global power 

electronics market size, which in 2007 was $9.8 billion, is 

expected to reach $47 billion by 2027 [1]. The percentage 

of electrical energy controlled by PEMs increased from 

40% in 2000 to 80% in 2015 [2].  

 

PEMs are highly inhomogeneous structures assembled with 

components such as semiconductors, ceramic substrates, 

copper conductors, aluminium wire/trace, and Printed 

Circuit Board (PCB) composite materials [3]. At the heart 

of the PEM device are the semiconductor devices 

(MOSFETs, diodes, IGBTs, etc.). Silicon semiconductors 

remain widely used and have been proven to be sufficiently 

reliable. Nevertheless, (a) the limitations of packaging 

technologies, (b) passive and peripheral components, (c) 

solder material reliability, and (d) the cost currently limits 

the allowable junction temperature of the PEM device to 

175⸰C [4]. In automotive drive trains, rail traction systems, 

aerospace, electric cars, renewable energy generation 

interfaces, etc., PEMs are subject to significant thermal 

load and environmental temperature cycling. Modern high-

power density PEM devices have an increased temperature 

and an increased thermal cycling range; both tend to reduce 

the reliability of PEM devices. Among the new power 
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devices, insulated gate bipolar transistor (IGBT) devices 

are widely accepted and are increasingly used in traction 

applications such as locomotives, elevators, trams, and 

subways. Higher temperature cycling of the modern power 

device can initiate thermo-mechanical failure mechanisms 

in the device due to the coefficients of thermal expansion 

(CTE) mismatch between various materials of the 

components. Widely known failure modes of modern 

power electronic modules are (a) wirebond fatigue at the 

aluminium wire/silicon chip interface, (b) solder fatigue, 

(c) cracks in silicon chip and substrate, (d) corrosion of 

interconnections [5], and finally, electromigration induced 

failure in the interconnects [6].  

 

 

In order to manage electric currents of up to 75A per chip, 

it becomes necessary to use multiple wires. Each wire is 

bonded on the chip using thin aluminium pads or a plate of 

a few μm thickness. Two major failure modes often occur 

in wirebond: (a) heel/bond crack and (b) lift-off failure 

mechanism. These two failure modes occur at the two 

weakest points (the bond heel and tail (foot)). The lifting of 

a wirebond can be regarded as a contagion effect because it 

leads to a non-homogeneous current distribution on the 

power module chip and subsequently, the higher local and 

average temperature which accelerates the lifting process 

of more wires [7]. This study addresses, from a numerical 

analysis perspective only, the wirebond failure due to 

varying thermal loads acting on a PEM structure. In this 

work, we focus on a modelling approach where the 

accumulation of the damage directly influences the material 

properties of the structure in the analysis. At each 

numerical iteration time step of the finite element analysis, 

the accumulation of damage for each mesh element of the 

modelled material domain decays the relevant mechanical 

material properties.  

II. LITERATURE REVIEW 

The two most commonly used lifetime/damage prediction 

models reported in the literature are (1) models that use 

predicted damage metric for one cycle of the repetitive load 

to predict the number of cycles to failure, and (2) models 

that predict the continuous damage accumulation for any 

loading profile over a period of time. The former model can 

normally be used for regular cyclic loading only. The latter 

model is based on damage mechanics. It predicts damage 

as a function of time. In damage mechanics-based models, 

damage parameter D is used as a metric to describe the 

extent of damage in the structure over time. D is a 

continuous scaler variable that varies from 0 when there is 

no damage to 1 when a complete failure occurs. The 

advantages of damage-based models over lifetime-based 

models for cyclic loading are that they can predict the 

process of fatigue damage for arbitrary loading profiles and 

predict lifetime in the time domain. For example, Lu et al. 

[8] applied a damage mechanics method to predict crack 

propagation in IGBT solder joints. By tracking damage 

evolution in solder joints, crack propagation paths and rates 

can be calculated.   

Fatigue lifetime models that are used to predict the number 

of cycles to failure for regular cyclic loadings have a 

power-law relationship that relates lifetime (cycles to 

failure) to damage metrics such as the deformation range, 

inelastic strain, and/or plastic work density. To use these 

models, the damage metric values for the temperature cycle 

need to be evaluated [9]. For irregular cyclic loading 

conditions, a widely used technique for predicting lifetime 

is to use a cycle counting algorithm to sort irregular loading 

profiles into cycles with different loading amplitudes, and 

then use a fatigue lifetime model for regular cyclic loading 

and the Miners’ linear damage accumulation rule to predict 

the damage accumulation in the solder layer. This includes 

the rainflow cycle counting method [10] for counting the 

cycles in an irregular loading, and then the Coffin Manson 

or other nonlinear fatigue models [11] for predicting the 

lifetime of each counted cycle.  An application of this 

methodology to the SnAg solder joint crack development 

and propagation process was demonstrated by Kostandyan 

et al. [12] for PEM devices. This method is useful for 

irregular loading, but it cannot predict lifetime in the time 

domain. The model does not capture the effects of loading 

rate changes over time, nor can it take into account the 

changes in material properties as damage accumulates. 

Hence, damage-based models that can capture these 

changes are required in order to predict the reliability of 

PEM devices when subjected to real environmental 

FIGURE 1: The role of power electronic module 
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temperature loadings. The damage mechanics-based 

models in the literature are functions of material physical 

behaviour (accumulated creep strain, plastic work density, 

etc.).  

 
A. DAMAGE MECHANICS BASED MODELS  

Over the years, many damage mechanics models were 

developed for mostly solder materials since solder 

interconnects are highly vulnerable to stresses exerted by 

environmental and system temperature, which resulted in a 

thermal mismatch caused by the difference in the thermal 

expansion coefficients of the PEM packaging materials.   

• The damage process due to the degradation of the 

microstructure is irreversible. Under mechanical loading, the 

extreme plastic strain and the resultant damage can 

concentrate at various locations in the material. A damage 

evolution function proposed by Tang et al. [13] for Pb37/Sn63 

solder interconnect material of the BGA electronic packages 

under thermal cyclic loading was evaluated with experimental 

data. The damage model D was defined in equation (1) 

𝑫 = 𝟏 − 𝒆−𝜟𝒆−𝜟𝝓/𝑵𝟎𝒌𝑻/𝒎𝟎                                               (1) 

Where Δe, Δϕ, N0, k, T, and m0 are respectively increments 

of internal energy, free energy, Avogadro’s constant, 

Boltzmann constant, absolute temperature, and average 

molecule quantity/mol. 

• A damage model that incorporates the cohesive zone 

constitutive model was proposed by Schreurs et al. [14]. The 

cohesive zone model is a numerical approach to model the 

crack initiation and propagation [15] of interconnect 

materials. The damage evolution rate in Schreurs’s damage 

model is defined in equation (2) 

   
𝜕𝐷(𝑡𝑗)

𝜕𝑡
= 𝑐|∆̇|(1 − 𝐷(𝑡𝑗−1) + 𝑟)

𝑚
[
|𝑘(1−𝐷(𝑡𝑗−1))∆|

(1−𝐷(𝑡𝑗−1))
− 𝜎] (2) 

where k is the initial stiffness of the cohesive zone, D(tj-1) is 

the previous damage, c is the constant that controls the 

damage accumulation, r and m are constants which control 

the decay of the reaction force, Δ is the relative opening of 

the cohesive zone, and σ is the cohesive zone endurance 

limit. Schreurs’s damage model is supplemented with an 

evolution law to account for the gradual degradation of the 

solder material and the resultant accumulation of damage 

during a mechanical cyclic process. 

• A damage model which utilised a creep–plasticity 

constitutive equation to capture the behaviour of SnAg 

solder was proposed by Stolkarts et al. [16]. Stolkart’s 

damage model is defined in equation (3)  

𝐷 = 1 − [1 − (𝑘 + 1) ∫ 𝑓𝑑𝑡
𝑡

0
]

1

𝑘+1
                                    (3) 

where k is a material constant, f is a function of stress, strain, 

and their time derivatives. This damage model can manage 

the loading with and without dwell times and incorporates 

various thermal cycling dwell times and ramp rates. For lead 

solders such as SnPb, the value of k is two [16].  

• For thermo-mechanical cyclic behaviour, Lemaitre’s 

creep fatigue model [17], is the most widely used. Based on 

Lemaitre’s creep model, a new continuum damage model 

was proposed by Xiao et al. [18] as in equation (4): 

𝐷 = 1 − (1 − 𝐷0) (1 −
𝑁

𝑁𝑓
)

𝑘

                                           (4) 

where k is the damage exponent which corresponds to the 

damage evolution rate. Nf is the number of cycles at failure, 

and D0 is the initial value of the damage. The parameters of 

Xiao’s damage model were determined by strain measured 

from the thermo-mechanical cycling experiments. For 

SnAgCu solder, Xiao’s damage model parameters Nf and k 

were 3876 and 0.154, respectively [19]. For other solder 

materials such as Sn3.5Ag, Xiao’s damage model parameter 

values k and Nf are not available in the literature. 

• Wen et al. [20] proposed a continuum-based damage 

model which includes the McDowell creep plasticity 

constitutive equation for lead-free solders. Wen’s damage 

model is defined as a function of the physical damage 

metric, ω and it holds a power law relationship with the 

damage metric ω as in equation (5)  

𝐷(𝜔) = 𝐷𝑒 (
𝜔

𝜔𝑐
)

𝜂

                       (5) 

where the parameter De is the critical damage parameter, and 

η is the mechanical characteristic of the damaged solder 

layer. The damage metric ω is a function of the number of 

cycles at which cracks are initiated and ωc is the function of 

the limit value of the number of cycles at which the solder 

layer is structurally damaged.  

• Towashiraporn et al [21] proposed a continuum damage 

model for the solder layer under cyclic isothermal 

mechanical and anisothermal loadings. The damage model 

in their work was defined in equation (6)   

𝐷(𝜔) = 1 − [1 + (
𝜉𝐷

𝜉𝑐
)

𝛽

]
−𝛾

                                          (6) 

where ξc, β and γ are material constants and ξD is the 

equivalent inelastic strain. Using the critical damage value 

(0.85) for the SnPb solder layer, crack advancement is 

predicted by extrapolating the damage variable using Taylor 

expansion.  

Most of the damage mechanics. models discussed above 

were developed for solder interconnect materials. Damage 

mechanics-based models often rely on computationally 

expensive numerical modelling to predict material 

behaviour, which makes it very time-consuming. Yang et 

al. [22] proposed a time integration damage model for 

aluminium wirebond in PEM devices that does not require 

complex numerical modelling. For aluminium wirebond, 

Yang’s model is among the very few that can be found in 

the literature to the best knowledge of authors. The next 

section addresses the methodology of the proposed damage 

mechanics-based failure prediction of the wirebond 

structure.  

 

III. METHODOLOGY 
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This paper presents a theoretical methodology for the 

application of simplistic damage mechanics-based damage 

evolution model to the wirebond structure. Since Yang et 

al. [22] model for wirebond was developed based on the 

assumption that the wirebond structure is a simplified tri-

layer shape structure, Yang’s model is not suited to 

wirebond in PEM structures with complex topology. 

Therefore, we opted to use a simplistic damage mechanics-

based damage evolution model for the wirebond structure 

of a PEM device in the context of a numerical discretisation 

perspective. The novelty in this study is that the 

accumulation of the damage directly influences the material 

properties of the structure. Hence, at each numerical 

iteration time step, the accumulation of damage of each 

element decays the relevant mechanical material properties 

such as stiffness, as illustrated in Figure 2. 

 

A. UNDERLYING EQUATIONS 

The numerical discretisation scheme of the partial 

differential equation is based on the finite element analysis 

(FEA) approximation. The damage methodology was 

implemented in the software code PHYSICA [23]. The 

PHYSICA software code was designed to interact with 

other modelling codes in a co-design modelling concept. It 

read two input files: (a) a geometry file with element, node, 

and boundary condition details; and (b) a text file with 

analysis instructions called “inform.txt”. The “inform” file 

consists of material properties, boundary constraints, 

analysis details, etc. Additionally, each element of the 

model temperature data can be read by the code. Generally, 

the temperature data of each element can be generated by 

other numerical modelling codes. The PHYSICA code 

consists of mechanical constitutive laws for creep, rate-

dependent plasticity, linear elasticity and damage evolution 

model. The linear elastic equation is defined as 

𝜎 = [𝐷]𝜀𝑒𝑙                                                                      (7)                                                                               

Where  𝜎 =

[
 
 
 
 
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑧𝑥 ]
 
 
 
 
 

,          [𝐷] =

 
𝐸

(1+𝜈)(1−2𝜈)

[
 
 
 
 
 
 
 
(1 − 𝜈) 𝜈 𝜈 0 0 0

𝜈 (1 − 𝜈) 𝜈 0 0 0
𝜈 𝜈 (1 − 𝜈) 0 0 0

0 0 0
(1−2𝜈)

2
0 0

0 0 0 0
(1−2𝜈)

2
0

0 0 0 0 0
(1−2𝜈)

2 ]
 
 
 
 
 
 
 

  

and  𝜀𝑒𝑙 =

[
 
 
 
 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝜀𝑥𝑦

𝜀𝑦𝑧

𝜀𝑧𝑥 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥]
 
 
 
 
 
 
 
 
 

[

𝑢𝑥

𝑢𝑦

𝑢𝑧

] 

The total overall strain consists of elastic, plastic and 

thermal strains which are defined as 

𝜀 = 𝜀𝑒𝑙 + 𝜀𝑝𝑙 + 𝜀𝑡ℎ                                               (8) 

The thermal strain caused by the coefficient of thermal 

expansion mismatch is given as 𝜀𝑡ℎ = 𝛼∆𝑇, where α is the 

coefficient of thermal expansion and ΔT is the temperature 

difference between the reference temperature and the 

structure temperature. ɛpl is the viscoplastic strain which is 

described in section (III.C). The strain energy stored within 

a volume V is defined as 

FIGURE 2. Modelling methodology presented in this study. 
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𝑊 =
1

2
∫ 𝜀𝑇𝜎𝑑𝑉

𝑉

0
                                                            (9) 

The next section addresses the numerical discretization 

approach employed in this paper.                                                               

B. FINITE ELEMENT DISCRETIZATION 

The FEA discretization scheme utilised in the code is to 

split the entire domain of interest into nodes and elements. 

The solution of the physics of interest at each node is 

stored. As an example, in the case of elasticity, the solution 

of the displacement is stored. Two types of 3D elements 

were used in the code, such as the wedge element with six 

nodes and the brick element with 8 nodes. The values stored 

at the nodes are interpolated within each element using a 

shape function [N] = [N1, N2, …., Nn], where Ni is the 

weight associated with node i and is a function of the local 

coordinate position within the element. At nodi i the weight 

Ni must be equal to 1, and at every point in the element, the 

sum of all weights must be 1. For 8 nodes, brick element 

shape functions are defined as 

𝑁1 =
(1+𝑠)(1+𝑡)(1+𝑢)

8
                   𝑁2 =

(1−𝑠)(1+𝑡)(1+𝑢)

8
     

𝑁3 =
(1−𝑠)(1−𝑡)(1+𝑢)

8
                  𝑁4 =

(1+𝑠)(1−𝑡)(1+𝑢)

8
                                    

𝑁5 =
(1+𝑠)(1+𝑡)(1−𝑢)

8
             𝑁6 =

(1−𝑠)(1+𝑡)(1−𝑢)

8
 

𝑁7 =
(1−𝑠)(1−𝑡)(1−𝑢)

8
             𝑁8 =

(1+𝑠)(1−𝑡)(1−𝑢)

8
            (10) 

 

The local coordinates of each node are defined in Figure 3. 

Given the value of the scalar field ϕ at each node (ϕ = ϕi at 

node i) of the element, the value of the ϕ at any location 

within the element is a linear combination of weight 

multiplied by the scalar values of each node.  

𝜙(𝑠, 𝑡, 𝑢) = ∑ 𝑁𝑖𝜙𝑖
8
𝑖=1                                                     (11) 

Furthermore, the partial derivative of a scalar field 

concerning local coordinates can be defined as  
𝜕𝜙(𝑠,𝑡,𝑢)

𝜕𝑠
= ∑

𝜕𝑁𝑖(𝑠,𝑡,𝑢)𝜙𝑖

𝜕𝑠

8
𝑖=1                                                (12) 

The derivation of the element stiffness matrix and the 

loading vector of the system are derived by utilising the 

shape functions. The next section addresses the 

plastic/creep models used in the methodology. 

C. RATE DEPENDENT PLASTICITY and CREEP 
MODELS 

The rate-dependent plasticity/creep models, implemented 

in the multi-physics simulation code PHYSICA, are listed 

below. In the case study, Section V, the rate-dependent 

plasticity, and Hyperbolic sine law creep model were 

utilized. The solder material of the PEM device has creep 

deformation characteristics. At elevated temperatures, 

solder material undergoes plastic deformation even if the 

applied stress is below the yield stress. Such deformation 

leads to creep and the creep strain is dependent on not only 

the applied stress but also on time. A material undergoes a 

permanent change in shape when the applied stress exceeds 

the yield stress limit.  

• The Perzyna plastic model is defined in the following 

form. 

 𝜀̂𝑝𝑙 = 𝛾 (
𝜎

𝜎0
− 1)

1

𝑚
                                                      (13) 

where 𝜀�̂� – equivalent plastic strain rate, m – strain rate 

hardening parameter, γ – material viscosity parameter, σ – 

equivalent stress, σ0 – static yield stress of the material.  

• Peirce model: which is defined as 

𝜀̂𝑝𝑙 = 𝛾 [(
𝜎

𝜎0
)

1

𝑚
− 1]                                                    (14) 

The parameters are as described in the Perzyna model.  

• The hyperbolic sin law creep model is defined as 

  𝜀̂𝑐𝑟 = 𝐴 (sinh (
𝜎

𝜎𝑟𝑒𝑓
))

𝑛

𝑒
−𝑄

𝑅𝑇                                       (15) 

where A -creep rate(1/s), n – stress exponent 

(dimensionless), σref – reference equivalent stress level, Q- 

activation energy (J/mol) and R is the gas constant.  

D. VISCOPLASTIC (VP) LAW 

The viscoplastic strain rate tensor is defined as  

𝜀�̂�𝑥
𝑉𝑃 = 𝑓(𝜎𝑥𝑥) or 𝜀�̂�𝑦

𝑉𝑃 = 𝑓(𝜎𝑥𝑦)                                     (16) 

where 𝜀�̂�𝑦
𝑉𝑃 is the creep strain rate or plastic strain rate tensor 

and the f(σxy) is the creep model or plastic model as described 

in Equations (13), (14) and (15). In FEA code Equation (7) 

is generalized to provide all 6 components of the strain tensor 

for each six components of the stress tensor. Hence a 

Figure 3. (a) Global coordinates (x, y, z) and (b) local coordinates (s, t, 

u) of the 8-node brick element 
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viscoplastic law as in equation (16) can be converted into a 

3D form using equation (17) 

𝜀�̂�𝑦
𝑉𝑃 = 𝑓(𝜎𝑥𝑦) = 𝑓(𝜎𝑒𝑓𝑓)

𝜎𝑥𝑦
𝐷𝑒𝑣

𝜎𝑒𝑓𝑓
                                       (17) 

Where f(σeff) is one of the creep/plasticity flow models, σeff 

is the effective stress (von Mises stress) defined as   

 𝜎𝑒𝑓𝑓 = √

2

9
[(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ (𝜎𝑦𝑦 − 𝜎𝑧𝑧)

2
+ (𝜎𝑧𝑧 − 𝜎𝑥𝑥)

2]

+
[𝜎𝑥𝑦

2+𝜎𝑦𝑧
2+𝜎𝑧𝑥

2]

3

                                                               

(18)                                                            

  and 𝜎𝑥𝑦
𝐷𝑒𝑣 is the deviatoric stress tensor defined as  

𝜎𝑥,𝑗
𝐷𝑒𝑣 =

{
𝜎𝑥𝑦 for shear stress component, j = y

2𝜎𝑥𝑥−𝜎𝑦𝑦−𝜎𝑧𝑧

3
for normal stress component, j = x

   (19) 

The simplest approach to implementing viscoplastic law is 

the explicit solution approach, where each plastic strain 

tensor is updated for each time step as 

𝜀𝑥𝑦
𝑉𝑃𝑘+1

= 𝜀𝑥𝑦
𝑉𝑃𝑘

+ 𝜀�̂�𝑦
𝑉𝑃𝑘

∆(𝑡𝑘+1 − 𝑡𝑘)                             (20) 

where 𝜀𝑥𝑦
𝑉𝑃𝑘+1

is the viscoplastic/creep strain tensor at time 

step k and tk is the time at the step k. The explicit solution 

approach is susceptible to numerical instability due to the 

exponential growth of strain with stress. To mitigate the 

numerical instability and numerical overflow a very small 

time step may be required which will increase the computing 

overhead costs. Another approach is called the implicit 

solution approach. In the implicit solution approach, the VP 

rate at the previous time step 𝜀�̂�𝑦
𝑉𝑃𝑘

 in equation (20) is 

replaced with VP rate at the current time step 𝜀�̂�𝑦
𝑉𝑃𝑘+1

 

 

1) IMPLICIT VISCOPLASTIC/CREEP APPROACH 

The implicit solution scheme starts by first calculating (a) the 

displacement and stress over the whole mesh, with an elastic 

solver, then (b) an approximation of the VP strain rate for 

each element. This continues until the amount of VP strain 

rate changes between iterations is smaller than the prescribed 

tolerance. The element VP rate solver works by assuming 

that the nodal displacements are fixed and any change in 

plastic/creep strain causes stress relaxation. The strain is 

calculated based on the relaxed stress. 

𝝈𝑁𝑒𝑤 = 𝝈𝑂𝑙𝑑 − ∆𝑡[𝐷](𝜺�̂� − 𝜺𝑠−1̂) (6 components)     (21) 

𝜺�̂� = 𝑓(𝝈𝑁𝑒𝑤)                            (6 components)     (22) 

 

The unknown variables are in bold in equations (21) and 

(22). To obtain the new strain rate 𝜺�̂� and the new stress after 

relaxation 𝝈𝑁𝑒𝑤   a Newton Raphson scheme was utilized.  

I. Set i = 0 

II. The set 𝝈𝑵𝒆𝒘,𝒊=𝟎 = 𝝈𝑶𝒍𝒅 

III. i =i + 1 

IV. First, define Fxy to be residual of Equation (23)   

𝐹𝑥𝑦(𝜺�̂�, 𝝈𝑵𝒆𝒘 ) = 𝑓𝑥𝑦(𝝈𝑵𝒆𝒘) − 𝜺�̂�                   (23) 

Then Newton Raphson's iterative scheme was 

employed to better approximate the 𝜀�̂� subject to 

minimization of the function F (Equation (23) 

𝜺𝒔,�̂� = 𝜺𝒔,𝒊−�̂� −
𝐹(𝜺𝒔,𝒊−�̂�,𝝈𝑵𝒆𝒘,𝒊−𝟏 )

𝜕𝐹(𝜺𝒔,𝒊−𝟏̂ ,𝝈𝑵𝒆𝒘,𝒊−𝟏 )

𝜕𝜺𝒔,𝒊−𝟏̂

                        (24) 

V. Calculate the stress at the next time step. 

𝝈𝑵𝒆𝒘,𝒊 = 𝝈𝑶𝒍𝒅 − ∆𝑡[𝐷](𝜺𝒔,�̂� − 𝜺𝒔,𝒊−�̂�)               (25)       

where 𝑓(𝝈𝑵𝒆𝒘) in Equation (23) is defined as in Equation 

(17). For Pierce model 𝑓(𝝈𝑵𝒆𝒘) is defined as 

𝑓𝑥𝑦(𝜎𝑒𝑓𝑓
𝑛𝑒𝑤) = (𝛾 [(

𝜎𝑒𝑓𝑓
𝑛𝑒𝑤

𝜎0
)

1

𝑚

− 1]
3

2𝜎𝑒𝑓𝑓
𝑛𝑒𝑤)𝜎𝑥𝑦

𝑛𝑒�̂� =

𝑔(𝜎𝑒𝑓𝑓
𝑛𝑒𝑤)𝜎𝑥𝑦

𝑛𝑒�̂�                                                                 (26) 

For the hyperbolic sin law creep model (Equation (15)) 

𝑓(𝜎𝑁𝑒𝑤) is defined as 

𝑓𝑥𝑦(𝜎𝑒𝑓𝑓
𝑛𝑒𝑤) = (𝐴 (sinh (

𝜎𝑒𝑓𝑓
𝑛𝑒𝑤

𝜎𝑟𝑒𝑓
))

𝑛

𝑒
−𝑄

𝑅𝑇
3

2𝜎𝑒𝑓𝑓
𝑛𝑒𝑤) 𝜎𝑥𝑦

𝑛𝑒�̂� =

𝑔(𝜎𝑒𝑓𝑓
𝑛𝑒𝑤)𝜎𝑥𝑦

𝑛𝑒�̂�                                                                  (27) 

Where 𝜎𝑥𝑦
𝑛𝑒�̂� is the deviatoric stress component in the x-y 

plane as in Equation (19) and, 𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 is the effective stress as 

in Equation (18). One of the challenging aspects of the 

implicit solution approach is the evaluation of the 
𝜕𝐹( 𝑠,𝑖−1̂,𝜎𝑁𝑒𝑤,𝑖−1 )

𝜕 𝑠,𝑖−1̂  in Equation (24), Hence, a chain rule was 

applied which is defined as 

𝜕𝐹𝑥𝑦( 𝑠,𝑖−1̂,𝜎𝑁𝑒𝑤,𝑖−1 )

𝜕 𝑠,𝑖−1̂ = ((
𝜕𝑔(𝜎𝑒𝑓𝑓

𝑛𝑒𝑤)

𝜕𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 ) (

𝜕𝜎𝑒𝑓𝑓
𝑛𝑒𝑤

𝜕𝜎𝑥𝑦
𝑛𝑒𝑤) 𝜎𝑥𝑦

𝑛𝑒�̂� +

𝑔(𝜎𝑒𝑓𝑓
𝑛𝑒𝑤)

𝜕𝜎𝑥𝑦
𝑛𝑒𝑤̂

𝜕𝜎𝑥,𝑦
𝑛𝑒𝑤)(

𝜕𝜎𝑥𝑦
𝑛𝑒𝑤

𝜕 𝑠,𝑖−1̂) − 1                                          (28) 

By differentiating the Pierce model (equation (14)) with 

respect to effective stress (𝜕𝜎𝑒𝑓𝑓
𝑛𝑒𝑤) 

 
𝜕𝑔(𝜎𝑒𝑓𝑓

𝑛𝑒𝑤)

𝜕𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 =

3𝛾

2𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 (1 +

1

𝑚𝜎0
(

𝜎𝑒𝑓𝑓
𝑛𝑒𝑤

𝜎0
)

1

𝑚
−1

− (
𝜎𝑒𝑓𝑓

𝑛𝑒𝑤

𝜎0
)

1

𝑚

)        (29) 

By differentiating the hyperbolic sine law (equation (15)) 

with respect to effective stress (𝜕𝜎𝑒𝑓𝑓
𝑛𝑒𝑤) 

 
𝜕𝑔(𝜎𝑒𝑓𝑓

𝑛𝑒𝑤)

𝜕𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 =

3

2𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 𝐴𝑒

−𝑄

𝑅𝑇 (
𝑛

𝜎𝑟𝑒𝑓
(sinh (

𝜎𝑒𝑓𝑓
𝑛𝑒𝑤

𝜎𝑟𝑒𝑓
))

𝑛−1

cosh (
𝜎𝑒𝑓𝑓

𝑛𝑒𝑤

𝜎𝑟𝑒𝑓
) −

(sinh(
𝜎𝑒𝑓𝑓
𝑛𝑒𝑤

𝜎𝑟𝑒𝑓
))

𝑛

𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 )                                                                    (30) 

By differentiating the effective stress (equation (18)) 

with respect to the stress component 
𝜕𝜎𝑒𝑓𝑓

𝑛𝑒𝑤

𝜕𝜎𝑥,𝑗
𝑛𝑒𝑤 =

{

3𝜎𝑥𝑦
𝑛𝑒𝑤

𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 for shear stress component (j = y)

2𝜎𝑥𝑥
𝑛𝑒𝑤−𝜎𝑦𝑦

𝑛𝑒𝑤−𝜎𝑧𝑧
𝑛𝑒𝑤

𝜎𝑒𝑓𝑓
𝑛𝑒𝑤 for normal stress component (j = x) 

    (31) 

 By differentiating the equation (21) with respect to the 

current strain rate component 
𝜕𝜎𝑥𝑗

𝑛𝑒𝑤

𝜕𝜺𝑥𝑗
𝑠,𝑗−1̂ =

{

−∆𝑡𝐸

2(1−2𝜐)
for shear stress/strain component (j = y)

−∆𝑡𝐸(1−𝜐)

(1+𝜐)(1−2𝜐)
for normal stress/strain component (j = x) 

 (32) 
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Deviatoric stress component (Equation (19)) differentiation 

with respect to stress component 
𝜕𝜎𝑥𝑦

𝑛𝑒𝑤̂

𝜕𝜎𝑥,𝑗
𝑛𝑒𝑤 = 1 −

𝛿𝑥𝑗

3
    

where Δt, E, ν, and δxj are respectively time, Young's 

modulus, Poisson ratio and Kronecker delta. By substituting 

equations (30), (31), and (32) in equation (28) the partial 

derivative of F for the strain rate can be evaluated.                                 

IV. DAMAGE LAW 

Damage is the value taken between 0 and 1 as the material 

undergoes transformation due to strain and stresses. A 

damage methodology is implemented in the PHYSICA code 

to allow materials with non-linear properties, degradation, 

and cracking to be captured. The methodology is based on 

the concept that each element of the material is composed of 

two parts: an undamaged part and a damaged part. In FEA, 

the entire domain of the PEM device is discretised into 

elements. Each element of the materials stores an internal 

variable D in the mesh system, and the D value of each 

element starts with 0 (completely intact) and gradually 

increases to 1 (completely damaged) as damage accumulates 

due to inelastic strain as in Figure 4.  

 

 
FIGURE 4. The evolution from intact material to damaged material based 
on damage D. 

The intact material and the damaged material have different 

material properties depending on the D value as illustrated in 

Figure 4. An increment in the D value causes the stiffness 

of the element to decrease.   For each element, material 

stiffness property (Young’s modulus) is interpolated based 

on their D value, such as 

 φ = (1- D) φintact + D φdamaged                                              (33) 

where φ is the Young’s modulus. Unfortunately, in 

numerical computation, Young’s modulus cannot be 

reduced to zero since this can cause a singular stiffness 

matrix with no unique solution. Hence, the lower bound of 

the damaged element’s Young's modulus (E) is set to 1, then 

E is defined as  

E = (1 – D)Eintact                                                              (34) 

Assuming the elastic strain is consistent throughout the 

element, then stress in the intact part is given by.  

𝜎𝐼𝑛𝑡𝑎𝑐𝑡 = [𝐷]𝜀𝑒𝑙                                                            (35) 

where [𝐷] is elasticity matrix as defined in equation (8), 

dependent on Eintact instead of E, hence stress of the intact 

element magnifies with Eintact value as 

𝜎𝑖𝑛𝑡𝑎𝑐𝑡 =σ/ (1- D)                                                           (36) 

where σ is the stress tensor as in equation (7). A completely 

damaged element is equal to the element that no longer exists 

in the mesh. A better way of dealing with removing the 

damaged element from the mesh is to remove the associated 

nodes from the mesh. The damage evolution D is based on 

the accumulated effective inelastic/creep strain φacc which is 

defined as 

𝜀𝑎𝑐𝑐 = ∑ 𝜀�̇�𝑓𝑓Δ𝑡𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠                                                 (37) 

where the effective strain rate is given by 

𝜀�̇�𝑓𝑓 = √

2

9
[(𝜀�̇�𝑥 − 𝜀�̇�𝑦)

2
+ (𝜀�̇�𝑦 − 𝜀�̇�𝑧)

2
+ (𝜀�̇�𝑧 − 𝜀�̇�𝑥)

2] +

[ ̇𝑥𝑦
2+ ̇𝑦𝑧

2+ ̇𝑧𝑥
2]

3

                                                        

(38) 

The following law is used to calculate the damage index D. 

D = 1 − 𝑒−𝐵 𝑎𝑐𝑐                                                                       (39) 

where B is the damaged material constant 

V. SIMPLIFIED POWER ELECTRONIC STRUCTURE 

The numerical damage evolution model as described in 

Section III was deployed on the simplified PEM specimen 

structure as in Figure 5. The dimensions of the PEM 

structure are illustrated in Figure 6. A thermo-mechanical 

analysis was undertaken to analyse the effect of varying 

thermal loads and subsequent residual stress in the PEM 

structure. The simplified PEM structure consists of the 

typical layout of PEM devices such as wirebond 

connection, copper trace, silicon chip, SnAg solder 

interconnect between chip and copper trace, substrate, 

copper base plate, and copper busbar. The thickness 

dimensions of each layer are listed in Table 1. Ten 

wirebonds provide the electrical connection between the 

chip and the copper trace as illustrated in Figure 6. 

FIGURE 4. Simplified PEM specimen test vehicle 
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A. MATERIAL PROPERTIES OF THE 
COMPONENTS IN PEM 

The mechanical material properties of the components are 

listed in Table 2. Copper material and solder interconnect 

materials have a high coefficient of thermal expansion 

(CTE) compared to other components, hence large 

expansion, and contraction to varying thermal loads. An 

alumina substrate has the highest Young’s modulus, which 

implies that the substrate is mechanically stiffer than other 

components. Solder material has temperature-dependent 

material properties such as Young’s modulus and CTE. 

Young’s modulus of the solder material is inversely 

proportional to the temperature, which implies that if the 

temperature increases in the structure, then the solder material 

stiffness decreases. In contrast, the CTE value is proportional 

to the temperature. Hence, at elevated temperatures, the CTE 

of the solder material has a very high value in comparison with 

other materials. 
TABLE 1 

PEM SPECIMEN COMPONENTS LAYER THICKNESS 

Components Layer Thickness (mm) 

Copper Trace 0.3 
Chip 0.5 

Substrate 1 

Solder 0.1 
Wirebond 0.375 

Copper Base Plate 0.25 

 

Solder materials hyperbolic sine creep law model (Equation 

(15) parameters are defined in Table 3. The rate-dependent 

plasticity models are a function of strain rate (or time). The 

Pierce model is a rate-dependent plasticity model, as 

described in Equation (14). The copper plates and the 

aluminium wire are assumed to obey the Pierce plasticity 

model. The Pierce model coefficients of the copper plates 

and the aluminium wire are in Table 4. To summarise, the 

solder, copper plate, and aluminium wire have rate-

dependent plasticity properties in the modelling. For the 

aluminium wire structure, damage parameter B as in 

Equation (39) is assigned as fifteen. The 3-dimensional 

structural boundary condition was imposed on the model. A 

vertical movement restriction was imposed on the base of the 

copper plate. Furthermore, at one corner of the copper base 

plate, total movement restriction was applied in all 

directions. 
 

TABLE 2 

MECHANICAL MATERIAL PROPERTIES OF THE COMPONENTS 
IN THE PEM SPECIMEN 

Material 

Young’s 

Modulus 
(GPa) 

Poisson’

s Ratio 

Coefficient of 
Thermal 

Expansion 

(×10-6) 

Copper 
(Copper Trace and 

Base Plate) 

127.7 0.36 17.3 

Alumina 

(Substrate) 

300 0.21 8.1 

SnAg (Solder) 54.05-

0.193*T(⸰C

) 

0.4 23.89+0.02*T(⸰C) 

Silicon (Chip) 112.4 0.29 2.6 

Aluminium 

(wirebond) 

68.9 0.3 2.4 

 
 

TABLE 3 

SNAG SOLDER MATERIAL’S HYPERBOLIC SIN LAW CREEP 
MODEL (EQUATION (5) COEFFICIENTS 

FIGURE 5. Simplified PEM structure sideview dimensions 
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A (Pa-1 s-1) 1/σref  (PA
-1

 

S
-1) 

n Q/R (K) 

9×105 6.527×10-8 5.5 8690 

 

              TABLE 4 

COPPER TRACE AND ALUMINIUM WIREBOND MATERIAL’S 

PIERCE MODEL (EQUATION (4)) COEFFICIENTS 

Pierce Coefficients 

 
Material 

γ σ0 1/m 

Copper 1×10-4 100×106 20 

Aluminium (Wirebond) 1×10-4 12×106 20 

 

VI. COMPARISON OF PHYSICA AND ANSYS FOR 
CREEP ANALYSIS 

 

The creep analysis was undertaken in PHYSICA software and 

the widely used commercial software ANSYS (Mechanical 

APDL) to compare and validate the accuracy of our implicit 

creep solution approach presented in Section (III.D.1)).  The 

creep solder interconnect material with creep model 

parameters as in Section (V.A) was utilised in the PHYSICA 

software as well as ANSYS software. The rest of the 

component’s material properties of the PEM structure consist 

of elastic properties. Additionally, the solder material’s 

mechanical properties are temperature-dependent. The 

boundary conditions of the PEM structure were similar in both 

software. The temperature loading imposed on both models 

was the cyclic load, with a dwell time of 760 seconds, a ramp 

time of 140 seconds, lower and upper temperatures of 0⸰C, 

100⸰C respectively, and a total cycle time of 1800 seconds. 

The cyclic load was imposed on the model for four cycles 

(7200 seconds). 

Figure (7) illustrates the resultant displacement [m] of the 

PEM structure in the PHYSICA code and the commercial 

software ANSYS Mechanical APDL. In ANSYS, the solid185 

element was utilised to build the model. The generalised 

Corner Node  

(a) 

(b) 

FIGURE 8. (a) Accumulated creep strain on the corner node of the 
solder interconnect by ANSYS and PHYSICA software, (b) corner node 
of the solder layer 

(a) 

(b) 

(c) 

(d) 

FIGURE 7. The resultant displacement [m] after 1.5 cycles (2700s) in (a) 
PHYSICA code, and (b) ANSYS software. (c) meshed PEM structure in 
PHYSICA and (d) meshed PEM in ANSYS. 0.00E+00
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FIGURE 9 Effective stress (N) prediction on the corner of the solder 
interconnect by ANSYS and PHYSICA software. 
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Garofalo implicit creep model is used in ANSYS APDL. It can 

be concluded that both models have nearly identical values for 

displacement [m]. Furthermore, the effective stress [N] and 

the accumulated creep strain at a node located at the corner of 

the solder interconnect were analysed from PHYSICA 

software as well as ANSYS software at the time steps and 

plotted in Figure 8. The PHYSICA software is slightly 

underpredicting the effective stress ( as in Figure 9) and creep 

strain for the implicit scheme approach in comparison with 

ANSYS software prediction, hence the accumulated creep 

strain is slightly higher in Ansys as in Figure 8. 

VII. DAMAGE ANALYSIS AND DISCUSSION 

For damage analysis, as noted earlier, the time-dependent 

temperature profile of each discretised element was 

generated by a thermal modeler. A time-dependent 

temperature profile of each element of the discretised model 

is set as the initial thermal boundary condition of the 

structural analysis.  

 
 

FIGURE 10. The temperature profile of elements in the components of the 
PEM specimen structure. 

Figure 10 illustrates the time-dependent temperature profile 

for one element from each component. The element's 

temperature profile in Figure 10 consists of the temperature 

profile along with the time steps (0.01 second) of elements 

for each component (chip, solder, copper plates, substrate, 

and wire). The temperature distribution of the components is 

not uniform at any time step. The transient analysis was 

undertaken in the PHYSICA code for three seconds. The 

post-process results generated through the numerical 

simulation, such as damage, strain, and stress, were saved in 

a suitable software plotting format.  

Since the damage of the wirebond is the primary interest in 

this modelling and the parameter of damage was only 

provided for the aluminium wirebond, the plot of damage 

accumulation in the wirebond along the time steps is in 

Figure 11. From the numerical modelling, the critical 

locations at which damage accumulation is extreme can be 

identified. Critical damage accumulation in the wirebond 

was occurring at the heel locations, as illustrated in Figure 

13(a). At the end of 0.5 seconds, the maximum damage 

accumulation at the wirebond is 1.9%, and at the end of 3 

seconds, the maximum damage accumulation at the 

wirebond is 2.4%. From a theoretical perspective, once the 

damage accumulation reaches 100%, the wirebond structure 

is completely damaged. The damage accumulation in the 

wirebond affects the stiffness of the aluminium wire since 

Young’s modulus (E) of the aluminium wire decreases as a 

result of the damage increment as in Equation (34). As a 

result, the decrease in Young's modulus value accelerates the 

accumulation of damage in the wirebond. The effective 

stress (von Mises) distribution of the PEM structure for every 

one-second time interval is in Figure 12. The copper busbars 

were subjected to extremely high effective stresses. At the end 

of the 3-second time simulation, the maximum effective stress 

on the busbar reaches 62 MPa. One of the reasons for the 

higher effective stresses on the busbar is the copper material’s 

high CTE value compared to other materials' CTE values. The 

high CTE value of the copper busbar causes higher contraption 

and expansion on the free-standing copper structure. 

VIII. CONCLUSION 

This paper reported the development and implementation of a 

methodology for damage mechanics-based prediction of 

damage accumulation in the wirebond of a PEM structure in 

the context of a numerical modelling approach. The 

methodology consists of finite element numerical 

discretization of the linear elastic equation for the mechanical 

boundary constraint and thermal load at each discretized 

element along with the time steps. The thermal load for each 

element of the discretised model was generated from a thermal 

modelling code. With thermal load and the structural boundary 

condition, a structural analysis was undertaken and the 

resulting stresses were utilised to evaluate the viscoplastic 

strain rate. An implicit viscoplastic solution approach was 

implemented in the code to approximate the viscoplastic strain 

rate.  

For the wirebond structure, the Pierce plastic model was 

utilized. Then a damage model was utilised to predict the 

damage index of each element of the wirebond structure. The 

novelty in the proposed methodology is that the accumulation 

of the damage in the material directly influences the material 

properties of the structure. The above methodology was 

developed in an in-house software, PHYSICA, and then 

demonstrated in a case study. 

A PEM structure with a simplified layout, consisting of 

wirebond connections, copper traces, silicon chip, solder 

interconnect, copper busbar, substrate, and copper base plate, 

was used in this study. For modelling simplicity, wirebond 

structures were modelled as rectangular blocks rather than 

cylindrical solids. The components, such as the copper base 

plate, aluminium wirebond, and solder interconnect, have rate-

dependent plasticity and creep properties at elevated 
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temperatures. The damage plot of the wirebond structure 

indicates that after 0.5 seconds, maximum damage 

accumulation at the heel of the wirebond reaches 1.9% and 

after 3 seconds, maximum damage accumulation at the wire 

reaches 2.4%. By projecting the trendline of the plot, the 

wirebond structure will structurally fail for the continued 

thermal load as in Figure (13b) after 491 seconds. The 

maximum von Mises stress in the copper busbar is 62 MPa 

after 3 seconds of temperature loading. The higher effective 

stresses in the busbar in comparison to other components are 

due to the higher CTE value of copper materials. 

The numerical framework detailed in this paper enables us to 

account directly for the effect of damage accumulation on the 

material properties, thus allowing for more accurate and 

representative analysis and prediction of the material 

degradation and failure. 

(a) 

(b) 

(c) (d) 

FIGURE 11. The accumulated damage (a scaler value between 0 and 1) on PEM structure (a) after 0.5 second (b) after 1 second, (c) after 2 seconds, 
and (d)after 3 seconds  

(a) 

(b) 

(c) 

(d) 

FIGURE 12. Effective stress (von Mises stress [N]) on PEM structure (a) after 0.5 seconds, (b) after 1 seconds, (c) after 2 seconds, (d) after 
3seconds 
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FIGURE 13. (a) The plot of damage accumulation (a scaler value between 0 and 1) at critical location versus time (s), (b) Critical locations of the 
wirebond at which Damage accumulation are extreme 
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