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Introduction: The air puff test is a contactless tonometry test used tomeasure the
intraocular pressure and the cornea’s biomechanical properties. Limitations that
most challenge the accuracy of the estimation of the corneal material and the
intraocular pressure are the strong intercorrelation between the intraocular
pressure and the corneal parameters, either the material properties that can
change from one person to another because of age or the geometry
parameters like central corneal thickness. This influence produces inaccuracies
in the corneal deformation parameters while extracting the IOP parametric
equation, which can be reduced through the consideration of the patient-
specific air puff pressure distribution taking into account the changes in
corneal parameters. This air puff pressure loading distribution can be
determined precisely from the fluid-structure interaction (FSI) coupling
between the air puff and the eye model. However, the computational fluid
dynamics simulation of the air puff in the coupling algorithm is a time-
consuming model that is impractical to use in clinical practice and large
parametric studies.

Methods: By using a supervised machine learning algorithm, we predict the time-
dependent air puff pressure distribution for different corneal parameters via a
parametric study of the corneal deformations and the gradient boosting
algorithm.

Results: The results confirmed that the algorithm gives the time-dependent air
puff pressure distribution with an MAE of 0.0258, an RMSE of 0.0673, and an
execution time of 93 s, which is then applied to the finite elementmodel of the eye
generating the corresponding corneal deformations taking into account the FSI
influence. Using corneal deformations, the response parameters can be extracted
and used to produce more accurate algorithms of the intraocular pressure and
corneal material stress-strain index (SSI).

Discussion: Estimating the distribution of air pressure on the cornea is essential to
increase the accuracy of intraocular pressure (IOP) measurements, which serve as
valuable indicator of corneal disease. We find that the air puff pressure loading is
largely influenced by complex changes in corneal parameters unique to each
patient case. With our innovative algorithm, we can preserve the same accuracy
developed by the CFD-based FSI model, while reducing the computational time
from approximately 101000 s (28 h) to 720 s (12 min), which is about 99.2%
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reduction in time. This huge improvement in computational cost will lead to
significant improvement in the parametric equations for IOP and the Stress-
Strain Index (SSI).
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air puff pressure, intraocular pressure (IOP), ocular biomechanics, fluid-structure
interaction (FSI), reduced order modelling, machine learning (ML), Gradient Boosting
Regressor (GBR)

1 Introduction

Ophthalmology clinical practice utilizes the non-contact air puff
tonometry test to measure the human cornea’s biomechanical
properties and the Intraocular Pressure (IOP). Precise IOP is an
essential aspect in the evaluation of patients at risk for eye diseases
such as glaucoma which involves an increase in IOP above normal
levels leading to optic nerve damage. Glaucoma is one of the leading
asymptomatic causes of permanent blindness in the developed
world. A common reason for the IOP increase is the aqueous
humuor not draining properly due to blockage of the trabecular
meshwork (Stevens et al., 2013). The Ocular Response Analyzer
(ORA) (Luce, 2005) was the first tonometry device that used an air
puff to determine the ocular biomechanical properties, using a
dynamic infrared signal analysis. Then, a new development for
better visualisation of the cornea’s deformation was conducted
with the aid of the ultra-high-speed Scheimpflug camera using
the Corvis-St tonometer (Koprowski, 2014). Corvis-St tonometer
applies a concentrated air puff into the centre of the cornea, causing
deformation in the cornea’s geometry, which regains its original
configuration due to its elasticity. By using image processing, the
corneal deformation is recorded to estimate the corneal
biomechanical properties and the IOP using a programmed
parametric equation.

Another degenerative eye disease of the cornea is keratoconus,
where the cornea progressively thins over time, making the shape of
the thinned cornea a cone with protrusion (Bao et al., 2016). This is
the result of major changes in the thickness, shape, and
biomechanical properties (Read and Collins, 2011), which usually
produce irregular astigmatism with blurry vision. The tonometry
measurements of IOP in patients with keratoconus tend to be lower
due to the strong correlation between the IOP measurements and
the altered biomechanical properties, particularly the Central
corneal thickness (CCT) (Patel and McLaughlin, 1999), (Brooks
et al., 1984). Moreover, understanding the biomechanical
characteristics and structure of the cornea in keratoconic eyes
can also help to clarify the pathophysiology and aetiology of this
disorder, which can aid in its treatment (Ambekar et al., 2011).

Therefore, accurate measurements of both the IOP and corneal
biomechanical parameters in vivo are of utmost importance; however,
the challenge is the mutual dependence between the two making it
hard to separate the effect of IOP from the biomechanical parameters
like thickness and material stiffness on the corneal response
parameters (Liu and Roberts, 2005). The solution to the challenge
is to solve an inverse problem to assess a more accurate measurement
of the corneal material behaviour based on an improved value of the
IOP (Maklad et al., 2020a), (Eliasy et al., 2019).

This demonstrates the necessity to study the fluid-structure
interaction between the air puff and the cornea (Maklad et al.,

2021). So, in order to reduce the association between the IOP and
the corneal parameters and consequently increase the IOP estimation’s
accuracy, the air puff pressure distribution profiles on the cornea should
be taken into account when measuring the corneal deformation
(Maklad et al., 2020a). This pressure load exerted on the cornea
exhibits dynamically significant changes as a response to the shape
of the corneal deformation, which can change clinical interpretations
(Yousefi et al., 2022). This effect was called the effect of corneal load
alteration with surface shape (CLASS) by Yousefi et al. (Yousefi et al.,
2022). As a result, the air puff pressure value and distribution should be
obtained based on the patient’s corneal parameters (Maklad et al.,
2020b; Maklad et al., 2021; Yousefi et al., 2022).

While the co-simulation of the Fluid-Structure Interaction (FSI)
helped to get accurate values of the pressure distribution and the
corneal deformation (Simonini and Pandolfi, 2016; Ariza-Gracia
et al., 2018; Maklad et al., 2018), the evolution of considering the FSI
approach led to a precise estimation of the changing value and
distribution of the air jet pressure with the corneal characteristics
which led to the biomechanically corrected equations for estimating
the accurate IOP and the corneal material stress-strain index
(Maklad et al., 2020a), (Maklad et al., 2020b), (Maklad et al.,
2018). However, the correct prediction of the air puff pressure in
the CFD model for the FSI approach was a time-consuming model,
which took too long to get the accurate air puff pressure for each
patient-specific geometry.

Our primary goal in this study is to investigate how the corneal
characteristics, separately, affect the air puff pressure measurements
and produce a new algorithm that uses machine learning to reduce
the computational cost. Despite the fact that numerical models of
fluid flow have been of significant research interest in many physical
and mechanical phenomena, especially when the physical process
experiences FSI (Maklad et al., 2020b), (Maklad et al., 2018), (Ariza-
Gracia et al., 2015), some recent works (Kutz, 2017; Brunton et al.,
2020; Usman et al., 2021) indicated that machine learning (ML) have
the potential to be used as a replacement for some of the time-
consuming numerical solvers providing reduced-order models,
improved optimization performance, and reduced computational
cost. Thus, we have established a supervised regression ML
algorithm using the Gradient Boosting Regressor (GBR) to
estimate the time-dependent air puff corneal pressure
distribution profiles to be used as a replacement for the CFD
model in the FSI co-simulation of Maklad et al. (Maklad et al.,
2020b) to reduce the computational cost and hence update a new
version of the algorithms of the IOP and the corneal material
estimation. The primary contribution of the current study is to
examine the effect of changing the corneal parameters: the IOP,
CCT, and material stiffness coefficient (μ) on the air puff pressure
profiles, propose a GBR machine learning algorithm for estimating
patient-specific air puff pressure loading, and apply the predicted
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pressure loading to the FEmodel of the eye in the ABAQUS software
to produce the corneal deformation without the need for the CFD
time-consuming model.

The organization of the paper is as follows. In Section 2, the
processing of the input dataset with the proposed regression
algorithm and methods of its evaluation are introduced. Section

FIGURE 1
Flowchart of the data processing in the current study.

FIGURE 2
(A) The model of the eye and the air puff with the deformation and pressure values respectively, and (B) The FSI coupled model of the air puff test in
ABAQUS software (Maklad, 2019).
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3 presents the results of the GBR fitted algorithm, investigating the
effect of each corneal parameter on the estimation of the air puff
corneal pressure load, with a graphical user interface of the GBR
algorithm. Moreover, the predicted corneal deformation based on
the predicted air puff pressure, with a full validation of the algorithm
with the clinical data is presented. Section 4 concludes the paper and
introduces our future work.

2 Materials and methods

The current section begins by presenting the data set used in our
approach and the algorithm used in the learning and predicting process.
Then, we introduce the evaluation matrices used to evaluate our model’s
performance, and the section ends by constructing a validation study
between the clinical data extracted from patients’ cases and our current
algorithm. Figure 1 depicts the data processing steps in our algorithm,
which will be described in detail in the following sub-sections.

2.1 Data collection and processing

In this section, we explain the input dataset of our algorithm of
the fully coupled FSI simulation of the air jet CFDmodel and the FE
model of the eye obtained from the model of (Maklad et al., 2020b).
Figure 2 shows the coupled FSI model from the ABAQUS
6.14 software. Due to the rotational symmetry of the results of
the parametric study of (Maklad et al., 2020b) in both domains, a
quarter of the two domains were simulated to save running time as
shown in Figure 2A, while Figure 2B shows the deformation values
of the whole ocular vessel with the air puff’s velocity values shown in
(mm/s) on the left, while the eye model’s deformation values are
shown in (mm) on the right.

The parameters included in the study are the IOP, the CCT, and
the material stiffness coefficient (μ). The selection of the six values of
the material stiffness coefficient is based on the relation with age as
obtained by (Elsheikh et al., 2010) with μ = 0.0328 representing age =
30 years and μ = 0.1082 representing age = 100 years. The influence
of each parameter on the estimation of the pressure distribution on
the cornea is studied while the other parameters are fixed. First, the
pressure distribution on the cornea is estimated using the range of
the IOP values from 10 to 25 mmHg at CCT of 445 μm, andmaterial
stiffness coefficient of 0.0541. Then, at IOP = 15 mmHg andmaterial
stiffness coefficient = 0.0541, the influence of different values of the
CCT in the range from 445 to 645 µm is tested on the calculation of
the pressure on the cornea. Likewise, the pressure distribution on the
cornea is estimated against the variations of the material stiffness
coefficient in the range from 0.0328 to 0.1082 at the same IOP of
15 mmHg and the CCT of 545 µm. Finally, to estimate and evaluate
the pressure distribution on the cornea for different corneal
parameters, a complete simulation of 17 different new cases of

the FSI model of Maklad et al. (Maklad et al., 2020b) in the ABAQUS
6–14 software has been performed. Table 1 summarises the corneal
parameters that have been included in the study.

2.2 The Gradient Boosting Regressor (GBR)
algorithm

GBM or Gradient Boosting Machine is a popular machine
learning algorithm used for both regression and classification
tasks. Using the GBM algorithms to solve regression problems is
called the Gradient Boosting Regressor (GBR) technique, which is
based mainly on the loss function, the base learner, and the additive
model (Friedman, 2001). GBR ensemble model contains a series of
tree models arranged sequentially, allowing each subsequent model
to learn from the errors of its predecessor, and the predictions are
generated by boosting the weak models, typically decision trees, to
create a more powerful and robust predictive model (Friedman et al.,
2000). To implement the GBR algorithm, it is necessary to specify
the hyperparameters, which are an integral part of the learning
algorithm and significantly affect its performance and accuracy. The
parameters used in our algorithm are the squared-loss function, a
learning rate of 0.3, 2,700 boosting stages, max_depth of 6, and the
min_samples_split of 5. In gradient descent, the loss function is
optimized for model generalization and the default option is the
squared error that defines the calculated error as the residual.

Another crucial parameter is the learning rate, which indicates the
rate at which the contribution of each tree shrinks. Careful selection of
the learning rate is vital; a lower choice results in a slower learning
process but increases the reliability and efficiency of the model. The
number of estimators’ parameters represents the number of boosting
stages to execute, and the higher the number, the better the
performance. Then, there is the max-depth parameter, which
constrains the nodes in each tree, and the final parameter is the
minimum number of samples needed to split an internal node
(sklearn.ensemble.GradientBoostingRegressor, 2020). In each
subsequent run of the algorithm, the dataset was randomly split
into 70% for training and 20% for testing, with the remaining data
allocated for validation. Simulations were performed on an Intel Core
i7 8550U processor with 8 GB RAM. A detailed discussion of the
mathematical formulation of GBR models will follow.

For an additive model with a given input xi and prediction ŷi,
the form of the model of GBR is of the following form
(sklearn.ensemble.GradientBoostingRegressor, 2020):

ŷi � FM xi( ) � ∑M
m�1

ϑhm xi( ) (1)

The constant M denotes the n_estimators parameter, ϑ is the
learning rate parameter, and hm is the basic function that is known as
the weak learner’s estimator. As is known, the GBR algorithm is built

TABLE 1 The values of the corneal parameters used to test our regression model.

IOP (mmHg) 10 13 15 17 20 22 24 25

CCT (µm) 445 495 545 595 645

μ 0.0328 0.0541 0.0683 0.0811 0.1082
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in a greedy fashion (sklearn.ensemble.GradientBoostingRegressor,
2020):

Fm x( ) � Fm−1 x( ) + ϑhm x( ) (2)
The newly inserted tree hm is fitted at each iteration to reduce a

sum of losses Lm, given the previous ensemble Fm−1:

hm � arg min
h

Lm � arg min
h

∑n
i�1
l yi, Fm−1 xi( ) + h xi( )( ) (3)

As a result, with the loss parameter l(yi, F(xi)), the model
formula is now:

Fm x( ) � Fm−1 x( ) + ϑ arg min
h

∑n
i�1
l yi, Fm−1 xi( ) + h xi( )( ) (4)

By default, for the least-squares loss, the initial model F0

is selected as the mean of the target values, which is the

constant that minimizes the loss. So, with a first-order
Taylor approximation, the value of l can be approximated as
follows (sklearn.ensemble.GradientBoostingRegressor, 2020):

l yi, Fm−1 xi( ) + h xi( )( ) ≈ l yi, Fm−1 xi( )( ) + h xi( ) ∂l yi, F xi( )( )
∂F xi( )[ ]

F�Fm−1

(5)
The quantity −[∂l(yi,F(xi))

∂F(xi) ]
F�Fm−1

represents the negative
gradient −gi, which is calculated using a gradient descent
method, and by removing the constant terms, it approximately
results in:

hm ≈ arg min
h

∑n
i�1
h xi( )gi (6)

The gradients are updated at each iteration until convergence is
achieved and this can be considered some kind of gradient descent in

TABLE 2 The corneal parameters of the four clinical cases used in the validation.

Corneal parameter/Case id Case 1 (Age = 73) Case 2 (Age = 54) Case 3 (Age = 63) Case 4 (Age = 40)

IOP (mmHg) 17.5 18 15 24

CCT (µm) 560 579 548 582

μ 0.061 0.054 0.057 0.051

FIGURE 3
The Finite Element model of the eye along with the applied boundary conditions.
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a functional space (sklearn.ensemble.GradientBoostingRegressor,
2020).

To assess the effectiveness of the GBR algorithm, it is essential
to quantify the model error. We used the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) criteria to measure
the error in our approach. The MAE provides insight into the
difference between observed and actual data, calculated
mathematically as follows:

MAE � ∑n

i�1
Predicted − Actual| |

n
(7)

By calculating the standard deviation of the prediction errors,
the RMSE can be estimated, which is represented as:

RMSE �
																						∑n

i�1
Predicted − Actual( )2

n

√
(8)

Additionally, as the computational cost is our research concern,
another significant consideration is the computational time which

represents the time the model has taken to learn and produce
predictions from the input data.

2.3 Validation of the GBR algorithm

To validate our algorithm against the literature, the normalised
air puff pressure was compared to the studies by Kling et al. (Kling
et al., 2014) and Muench et al. (Muench et al., 2019) at two different
time steps at T = 10 and 16 m. Then, to clinically validate our
algorithm, a set of clinical data with a wide range of corneal
parameters for four healthy patients provided by Vincieye Clinic
in Milan, Italy, and Rio de Janeiro Corneal Tomography and
Biomechanics Study Group, Brazil, was selected to be the input
data for our GBR algorithm to predict their air puff loading and
compare the corneal deformations. The ethical standards set out in
the 1964 Declaration of Helsinki and their revision in 2013 were
observed and all patients provided written informed consent before

FIGURE 4
Pressure distribution on the cornea at T = 16 m. (A) At CCT = 445 µm and µ = 0.0541, (B) At IOP = 15 mmHg and µ = 0.0541, and (C) At IOP = 15
mmHg and CCT = 545 µm.
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using their de-identified data in research. The selected clinical cases
are summarised in Table 2.

After predicting the air puff pressure loading with the GBR
algorithm, we applied it to the FE model of the eye in ABAQUS
6–14. The three-dimensional eye FEmodel consisted of 10,000 fifteen-
nodded continuum elements (C3D15H) with nine integration points,
arranged in two layers, and distributed along 15 rings in the cornea

and 35 rings in the sclera. The rigid body motion of the FE model of
the eye was prevented in the Z-direction at the equatorial nodes, while
the motions in the X and Y directions of the posterior and anterior
pole nodes were restricted with free movement in the Z-direction, as
shown in Figure 3, which is the same as applied in (Maklad et al.,
2020a), (Eliasy et al., 2019), (Maklad, 2019).

3 Results and discussion

After building the GBR model, we used it to obtain the pressure
distribution on the cornea at different time steps of the test for the
corresponding patent-specific corneal parameters: IOP, CCT, and
material stiffness coefficient (μ). A graphical user interface of the
GBR algorithm was built inMATLAB to make it easier to change the
corneal parameters and generate new predictions of the air puff
pressure distribution.

3.1 Effect of the corneal parameters (IOP,
CCT, and μ)

The GBR model has been analysed to see the effect of changing
the IOP on the pressure distribution estimation. The pressure
distribution on the cornea is obtained at the corneal surface for
eight different values of the IOP (10, 13, 15, 17, 20, 22, 24, and
25 mmHg), while the other parameters are the same at a CCT of
445 µm and a material stiffness coefficient of 0.0541. The results of
the comparison between the fitted GBR algorithm and the numerical
values obtained from the FSI model show a good agreement with
MAE = 0.0212, RMSE = 0.0682, and an execution time of 12 s. Then,
we demonstrated the influence of different values of the CCT in the
range (445, 495, 545, 595, and 645 µm) on the pressure distribution
on the cornea at an IOP of 15 mmHg and a material stiffness
coefficient of 0.0541, and the fitted algorithm shows high

TABLE 3 The RMSE estimated the pressure load by changing each corneal
parameter separately.

Corneal parameter RMSE

IOP (mmHg) 10 0.0186

13 0.0453

15 0.0511

17 0.0530

20 0.0769

25 0.0894

CCT (µm) 445 0.0322

495 0.1021

545 0.0467

595 0.0458

645 0.0759

µ 0.0328 0.0201

0.0541 0.0340

0.0683 0.0119

0.0811 0.0362

0.1082 0.0533

FIGURE 5
(A) The comparison between the numerical ABAQUSmodel and the fitted GBR algorithm of the pressure distribution on the cornea at T = 16 mwith
a different corneal parameter of IOP, CCT, and μ. (B) The pressure distribution on the cornea at different time steps for IOP = 15 mmHg, CCT = 445 µm,
and µ = 0.0683.
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agreement with the numerical ABAQUS model with MAE = 0.0171,
RMSE = 0.0578, and an execution time of 10 s. Finally, the variations
of the material stiffness coefficient in the range (0.0328, 0.0541,
0.0683, 0.0811, and 0.1082) to represent the age effect are tested at

IOP of 15 mmHg and CCT of 545 μm, and the fitted pressure
distribution agrees well with the numerical ABAQUS model with
anMAE of 0.0113, an RMSE of 0.0491, and an execution time of 12 s.
Figure 4 shows the effect of changing each corneal parameter

FIGURE 6
Comparison of the normalized pressure distribution with two studies from previous literature: (A) Kling et al. (Kling et al., 2014) and (B)Muench et al.
(Muench et al., 2019).

FIGURE 7
The apical deformation resulting from the GBR + FE algorithm compared against its clinical data reference for four clinical cases.
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separately on the fitted pressure load at T = 16 m. The plots for
minimum and maximum values for the parameters are shown to feel
the influence of changing the corneal parameters on the predicted
pressure load. They show how the algorithm predictions agreed very
much with the numerical values obtained from the FSI model from
the ABAQUS software, and Table 3 shows the RMSE estimated
between them for all cases at T = 16 m. It is clear from the
comparison how the maximum value for the pressure at the apex
is different between the two models. Moreover, the difference is not
only in the maximum value of the pressure at the apex but also is in
the pressure distribution, and this is what we want the ML algorithm
to learn and apply to the different models with patient-specific
corneal parameters.

3.2 Estimation of the air pressure distribution
on the cornea

We analysed the effect of considering all the previous corneal
parameters combined on the pressure loading and tested it with
the numerical data model to evaluate its effectiveness. To build
our model, 17 new different cases were simulated on ABAQUS
6–14 to get their results as the input dataset to our algorithm. The
results of the pressure profile in Figure 5A show that changing
one parameter of the corneal parameters can change the whole
pressure profile and Figure 5B shows the pressure distribution on
the cornea at the different time steps. The fitted algorithm with
the numerical data model shows a good agreement with an MAE

FIGURE 8
Comparison of the corneal deformation results from the fitted algorithm with the four clinical cases. (A) Case 1: IOP = 17.5 mmHg, CCT = 560 µm,
µ = 0.061, (B) Case 2: IOP = 18 mmHg, CCT = 579 µm, µ = 0.054, (C) Case 3: IOP = 15 mmHg, CCT = 548 µm, µ = 0.057, (D) Case 4: IOP = 24 mmHg,
CCT = 582 µm, µ = 0.051.

TABLE 4 The RMSE estimated between the clinical cases with the GBR + FE model and the numerical FE model only for the apical deformation (Maklad, 2019).

Clinical case RMSE (GBR + FE model vs. clinical) RMSE (FE model only vs. clinical)

Case 1 0.0533 0.6393

Case 2 0.0979 0.3655

Case 3 0.1305 0.4263

Case 4 0.0751 0.4403
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of 0.0258, an RMSE of 0.0673, and an execution time of 93 s, and
the RMSE estimated between them for each case is calculated and
provided in Supplementary Table S1 in the Supplementary
Material. The findings show that there is no systematic
relationship between changing the air puff pressure loading
with each parameter separately because the pressure
distribution on the cornea is affected by the other parameters,
all of which must be considered to obtain an accurate air puff
pressure.

3.3 Validation of the GBR algorithm

First, the normalised air puff pressure was compared to that in the
studies by Kling et al. (Kling et al., 2014) and Muench et al. (Muench
et al., 2019) at two different time steps at T = 10 and 16 m with an

acceptable agreement as shown in Figure 6. From this comparison, we
believe that the distribution reported by Muench et al. (Muench et al.,
2019) is closer to reality since it takes the fluid-structure interaction
into account. However, the distribution reported by Kling et al. (Kling
et al., 2014) is based on a completely rigid cornea which does not take
the FSI influence into account as we have proven that the air puff
pressure distribution is significantly affected by the corneal
biomechanical parameters.

Then, to clinically validate our algorithm, a set of clinical data
with a wide range of corneal parameters for four healthy patients was
selected. After predicting the air puff pressure loading with the GBR
algorithm, we applied it to the FE model of the eye in ABAQUS
6–14. The FE model took 10 min to finish and generate the corneal
deformation from the predicted air puff pressure loading, and these
deformations were then compared with the clinical deformation to
complete the full validation of our algorithm and be used as an

FIGURE 9
Graphical user interface of the GBR algorithm to estimate the air puff pressure.
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alternative approach to the CFD model to reduce its computational
time within minutes (720 s = 12 min) instead of waiting many hours
in the FSI model (101,000 s = 28 h), which is approximately 99.2%
reduction in time. Figure 7 shows the comparison of the temporal
profile of the apical deformation with the clinical cases and Figure 8
presents the comparison of the spatial corneal deformation based on
the predicted air puff pressure loading with their clinical data, and
this comparison shows that this algorithm can produce a good and
close behaviour to the real corneal behaviour. Additionally, to show
the improvement caused by using the GBR algorithm with the FE
model instead of using the FE model only to predict the apical
deformation, the RMSE calculated for both cases was compared and
presented in Table 4.

There is a hysteresis effect that causes some delay for the cornea
to return back to the original geometry due to the visco-elastic
material behaviour of the cornea in clinical cases. This effect is not
considered in the material model of the eye in the ABAQUS co-
simulation data set, which can cause some changes in the
comparison between the clinical and fitted data after the air puff
hits the cornea. Moreover, the fatty tissue surrounding the eye and
the shooting angle of the air puff have an influence on the induced
loading which was not applied in our model.

3.4 The graphical user interface of the GBR
algorithm

To easily manage the interaction between the steps of the GBR
algorithm to conduct our study effectively, a graphical user interface
was built. Figure 9 depicts the GBR algorithm’s main sections, which
are summarized as follows: The input file is imported from its
directory, which contains the input data and their labelled outputs.
The input data set includes the corneal parameters: the IOP, CCT, and
μ, with the time of the test, and the node number of the air puff
pressure profile. Their labelled output, which is our desired outcome,
is the air puff pressure load. This data set is divided into training and
testing sets with a test size of 0.25 and a random state of 50. The hyper-
parameters used in our model are shown in Figure 9, which are then
used to fit our algorithm by improving the weak learner. Then, the
patient-specific corneal parameters are inserted to generate their
predictions within up to 2 min.

4 Conclusion

Estimating the distribution of air pressure on the cornea is
essential to increasing the accuracy of intraocular pressure (IOP)
measurements, which serve as valuable indicators of corneal disease.
The accuracy of these measurements directly affects the accuracy of
the evaluation of the corneal material. While the Fluid-Structure
Interaction (FSI) method has successfully provided accurate
corneal compressive load predictions based on corneal
deformation, it is a time-consuming model that takes too many
hours (nearly 28 h) to produce results. In this study, we developed
a supervised regression ML algorithm aimed at estimating corneal
pressure distribution from corneal parameters while optimizing both
accuracy and computational time. The primary result of our research
is the creation of a more practical algorithm, namely, the Gradient

Boosting Regressor (GBR) model, capable of predicting corneal
pressure load considering the influence of the corneal parameters;
IOP, central corneal thickness (CCT), material coefficient
(representing patient’s age), and the test time step. Our findings
show that the air puff pressure loading is largely influenced by
complex changes in corneal parameters unique to each patient
case. Moreover, this innovative algorithm significantly reduces the
computational time compared to the CFD-based FSI approach from
approximately 101,000 s (28 h) to 720 s (12 min), which is
approximately 99.2% reduction in time, while preserving the same
accuracy developed by the FSI algorithm. This huge improvement in
computational cost will lead to significant improvement in the
parametric equation for IOP and the Stress-Strain Index (SSI) by
considering a larger number of full-eye patient-specific models with
dynamic topography, which is our plan for further research. These
algorithms hold great promise for clinical tonometry measurements
due to their accuracy and efficiency.
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Nomenclature

IOP Intraocular Pressure

CCT Central Corneal Thickness

FE Finite Element

CFD Computational Fluid Dynamics

FSI Fluid-Structure Interaction

ORA Ocular Response Analyser

CorVis-ST Corneal Visualisation Scheimpflug Technology

ALE Arbitrary Lagrangian-Eulerian

ML Machine Learning

GBM Gradient Boosting Machines

GBR Gradient Boosting Regressor
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