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Abstract This work concerns the stochastic analysis of the bending of a slen-
der cantilever beam subject to an external force with the inclusion of a stochas-
tic effect characterised by white noise. The beam deflection is governed by the
classic dynamic Euler-Bernoulli equation. Its response to the stochastic exter-
nal load is investigated by learning pattern from the simulation data which
are collected from numerical computations of ten thousand numerical experi-
ments, which are achieved by using a finite difference method coupled with a
Monte-Carlo method for the uncertainty quantification. Insightful results are
presented with visualisation techniques and discussed in detail. Of note, by
performing regression analysis to the data, the solution is shown to follow a
centred Gaussian process with a strong numerical evidence. The associated
autocovariance matrix is computed by using the sample data. Then, a mild
solution in the probability sense for the deflection at a fixed position and a
fixed time is written explicitly in a simple form. The results obtained by the
finite difference scheme were also compared to the finite element scheme and
were found to be in good agreement. Unsurprising, the finite element scheme
was found to be much more computationally expensive compared to finite
difference scheme. Hence, for such a simple structure, the stochastic analy-
sis using the finite difference scheme is preferred. Analysis of the results also
showed that some of the regression parameters converge when the number
of simulations reach five hundred and only vary subject to numerical errors
of order 10−6 if the number of simulations is further increased. While others
converge when the number of simulations exceeds two thousand showing that
depending on the level precision required fewer than ten thousand simulations
might be required.
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1 Introduction

It has been more than two centuries since the introduction of the Euler-
Bernoulli beam theory by two famous mathematicians in 1750, which is a
linear partial differential equation (PDE) in one-dimensional space and time
characterising small deflections of an uniform beam subject to a lateral load.
The simplest form is

EI
∂4w

∂y4
+ µ

∂2w

∂t2
= Q(y, t) , (1)

where w is the deflection in the lateral direction, y is the longitudinal spatial
variable, t is the time variable, Q is the load distribution, µ is the mass per
unit length, E is the Young’s modulus, I is the second moment of the area
of the beam’s cross section. The product EI is known as the flexural rigidity
denoted by D that measures the force required to bend the beam. The Euler-
Bernoulli beam theory was widely applied at different scales in many areas.
It was used to study the weight-bearing bones of human body in biomechan-
ics, as well as the design and analysis of a wide range of structures such as
cable-stayed bridges, roofs of football stadia, high-rise buildings and etc. The
research interest arose from the potential risk of the structures being dam-
aged by external strong forcing (e.g. earthquake or wind load in architectural
engineering). Therefore, an in-depth understanding of such vibration through
the use of novel mathematical tools has always been essential in the relevant
engineering designs. In particular, an important topic is modelling the effect
of wind loads on high-rise buildings in which much work has been done so far
(see e.g. [16–18] and the references therein).

Randomness is inevitable in the nature. For example, the pressure load
acting on the large-scale structure presents stochastic features due to the fluid
flow around complex structures and possible minor inhomogenity of materi-
als at different manufacturing stages. Also, physical quantities such as surface
density and material properties of a building may change gradually due to
long term weathering and erosion caused by wind and rain. Hence it is rea-
sonable, and of significant interest to include stochastic effect in the math-
ematical modelling of certain physical processes to address the randomness
in these phenomena. One usually ends up with a partial differential equation
in the presence of stochastic coefficients and source terms called stochastic
partial differential equation [12]. Over the years, the most studied cases are
the stochastic heat equation (see e.g. [1,10]), which is a linear partial differ-
ential equation with a simple explicit Green’s function usually referred to as
the heat kernel, and the stochastic Burger’s equation (see e.g. [2]) which is the
simplest nonlinear partial differential equation. Existing work and literature in
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the stochastic Euler-Bernoulli equation are limited to the author’s knowledge.
This work focuses on the investigation of a stochastic Euler-Bernoulli equation
(1) when

Q(y, t) ∝ ξ(y, t) , (2)

in which ξ(y, t) is a Gaussian white noise which can be used for the stochastic
analysis of the deflection behaviour of slender structures such as high-rises, sky
scrapers and a new kind of wind turbine, namely, the Bladeless Wind Turbine
(BWT) subjected to Gaussian excitation.

To reduce the complexity of the study, a beam built into a fixed foundation
base on the ground level itself may be regarded as a simplified realisation of a
large-scale architecture . Assuming there is no erosion at the ground level, the
deflection of a cantilever in the framework of the Euler-Bernoulli beam theory
subject to stochastic external loading is examined. Such a method of reducing
the order of the problem had been done, for example in [3,4] for static analysis
by using the Timoshenko beam theory, where a high-rise building is modelled
in a simplified form as a cantilever structure. Even more pertinent is the mod-
elling of a Bladeless Wind Turbine (BWT) as a cantilever structure because
the reduced model is much closer to the real world. BWT is a particularly im-
portant and interesting new class of turbine due to its simple structure which
confers advantages such as ease of manufacturing, transportation, storage and
installation. It is also easier to maintain because it lacks bearings, gears and
other moving parts. The new turbine also lacks the the environmental hazards
associated with conventional wind turbines, such as collision of birds with
blades of the turbines. It can be used offshore, in a wind farm or wherever
high intensity winds exist.

Several studies have examined the structural response of BWT turbines
using the Euler-Bernoulli beam theory. For instance, Bahadur [5] studied the
dynamics of a tunable BWT. There is an interest in tuning the frequency of
vibration of a BWT to match the vortex shedding frequency that is created
due to flow around the body of the BWT. Such tuning results in the resonant
vibration of the BWT, the so-called lock-in effect [6], thereby increasing the
power output. Another study [7] looked at the Fluid-Structure Interaction
(FSI) with the aim of developing tools needed to simulate FSI problem as it
relates to BWTs so as to reproduce experimental results for scaled models of
BWTs using the Alya system, a multi-physics code developed in the Barcelona
Supercomputing Center [8]. Chizfahm [9] studied the dynamic response as well
as the FSI of a BWT by examining the different shapes and configurations of
the BWT structure. Using the Euler-Bernoulli beam theory combined with
aero-dynamic models of the forces of the structures, Chizfahm proposed a
model for each of the configurations of the BWT. The models where validated
through comparison with a 3D CFD-FEM numerical simulation. The effects
of the wind speed on the induced lift force, deflection, and generated power of
the different shapes of the BWTs were investigated.

The aforementioned studies, have focused on the structural analysis and
the FSI studies of a BWT in a deterministic manner. Given the important
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benefit of this new class of wind turbine, and the fact that wind flow is in fact
stochastic in nature, this study sets out to analyse the deflection characteristics
of these kinds of structures using the theory of stochastic processes in the
framework of the Euler-Bernoulli equation.

The present study is restricted to two-dimensional physical space with
particular attention to the response to the forcing load applied in the lateral
direction in the presence of a stochastic effect. In spite of the simplification,
solving the stochastic Euler-Bernoulli equation is still very challenging. To dis-
cover the solution behaviour in simple form, computational data are simulated
in 10,000 numerical experiments achieved by a finite difference (FD) scheme,
and used for pattern learning by means of regression.

The paper is structured as follows. The mathematical formulation is sketched
in section 2 followed by the Finite Difference numerical scheme in 3. The com-
putational data and the machine learning are presented in section 4. The
numerical results achieved by the Finite Difference Method (FDM) are com-
pared to the ones achieved by a Finite Element Method (FEM) in section 5.
A conclusion is made in section 6.

2 Formulation

A beam of length h with uniform density and flexural rigidity is considered
under the effect of a pressure load. Its lower end is assumed to be anchored as
a fixed end at the ground floor while the top is free to move. The bending of
the beam is governed by the so-called Euler Bernoulli equation.

The problem is formulated in a two-dimensional Cartesian coordinate sys-
tem. The pressure load follows the positive x-direction. The origin O is set
at the fixed end of the beam. The displacement of the beam is denoted by
x = w(y, t). An illustrating schematic is presented in Fig. 1.

For the sake of easy notations, a prime ′ is used to denote the partial
derivative of the displacement with respect to y, and · is used to denote the
partial derivative of the displacement with respect to t. By choosing

h ,

√
µh4

D
,

D

h4
(3)

as the reference length, time and pressure respectively, the governing equation
for the bending of the beam is

w′′′′ + ẅ = q(y, t) , (4)

where q(y, t) is the scaled external load. The boundary conditions for a can-
tilever beam are

w(0, t) = w′(0, t) = w′′(1, t) = w′′′(1, t) = 0 . (5)
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Fig. 1 Schematic of the two-dimensional problem. The solid line depicts the undisturbed
slender beam. The dashed curve shows the deflection.

The conditions at y = 1 are based on the assumption of no bending moment
and no shearing force at the free end of the beam respectively. For an initial
value problem (IVP), the beam is assumed to be initially at rest, so

w(y, 0) = ẇ(y, 0) = 0 . (6)

In the presence of a stochastic disturbance characterised by a white noise in
the external load, one may rewrite the load q as

q(y, t) = q0(y, t) + σ̃ξ(y, t) (7)

in which q0 is the deterministic load and ξ is a standard Gaussian white noise
with respect to time and space, where

E [ξ(y1, t1)ξ(y2, t2)] = δy1,y2δt1,t2 . (8)

Here δ is the Kronecker delta function defined by

δm,n = 1 , if m = n , (9)

δm,n = 0 , otherwise. (10)

And σ̃ is a parameter that measures the standard deviation of the white noise.
Due to the linearity, the response to the stochastic effect, denoted by w̃, also
satisfies the governing equation

w̃′′′′ + ¨̃w = σ̃ξ(y, t) . (11)
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The value of σ̃ can be selected to be 1 without losing generality, and the tildes
are dropped to ease the notations. It yields the stochastic Euler-Bernoulli
equation

w′′′′ + ẅ = ξ(y, t) . (12)

The rest of the work is to explore the form of the solution to (12). A linear
theory of modal decomposition can be developed to solve the special case where
the white noise is spatial invariant, i.e. it depends on time only. The detail is
presented in appendix A for readers who are interested. Full computations are
required to investigate the general case. They will be achieved by a numerical
scheme based on a Finite Difference Method (FDM) coupled with backward
time integration, which is to be introduced in the next section.

3 Numerical Scheme

In order to investigate the stochastic feature in which thousands of numeri-
cal experiments are to be conducted, a fast efficient numerical scheme is re-
quired. To this end, FDM is preferable over commonly used Finite Element
Method(FEM) for its less computational cost. A valid scheme to solve the time-
dependent Euler Bernoulli equation is presented in this section. The physical
domain is uniformly discretised into N grid points

yi =
i

N
, i = 1, 2, ..., N , (13)

and
wi = w(yi) , i = 1, 2, ..., N . (14)

In particular, y = 0 and y = 1 represent the fixed end and the free end
atop respectively. The discretised unknown vector is denoted by W, i.e. W =
[w1, w2, ..., wN ]T . To accommodate the boundary conditions (5), four ghost
points are introduced

y−1 = − 1

N
, y0 = 0 , yN+1 = 1 +

1

N
, yN+2 = 1 +

2

N
. (15)

By imposing second order accurate FD scheme for the boundary conditions in
(5) one obtains

w0 = 0 , (16)

w−1 = w1 , (17)

wN+1 = 2wN − wN−1 (18)

wN+2 = wN−2 − 4wN−1 + 4wN . (19)

A matrix of the central FD scheme for w over {yi}i=1,2,...,N subject to (16)–
(19) can be written.

The dynamics of (4) is computed numerically by using a backward differ-
ence in time, e.g. the Implicit Euler method, and a central difference of second
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order in space. By introducing an artificial variable v = ẇ, equation (4), which
is second order in time, can be rewritten as two coupled PDEs of first order

∂U

∂t
=MU + F , (20)

where

U =

(
w

v

)
, M =

(
0 1

− ∂4

∂y4 0

)
, F =

(
0

q

)
. (21)

The time domain [0, T ], where T is the final time, is divided into n steps with
∆t = T

/
n . By discretising spatially in y and temporally in t, the discretised

variables are denoted as

Uj
i =

(
w(yi)

v(yi)

)
, at t = tj =

jT

n
. (22)

The backward Euler scheme can then be written in the matrix form(
IN −∆tIN
∆tM IN

)(
Wj+1

Vj+1

)
=

(
Wj

Vj

)
+

(
0

Q∆t

)
, (23)

where IN is the identity matrix and M is the matrix containing FD replace-
ment of the fourth derivative with respect to s. Vector V = [v1, v2, ..., vN ]T

and Q = [q1, q2, ..., qN ]T are defined in a similar manner to (14). Multiplying
both sides by the inverse of the matrix from the left hand side completes one
time increment of the backward scheme. The numerical stability is guaranteed
due to the nature of the implicit method. For higher accuracy, ∆y = 0.005
and ∆t = 0.04 are chosen in all the simulations.

– To validate the numerical scheme, we consider an example of deterministic
pressure as follows. A time-varying load under the form of

p(y, t) = sin(ωf t) , (24)

can be considered as the excitation due to vortex shedding [13,20], where
the frequency ωf depends on the cross-sectional geometry, the flow velocity
and the Strouhal number. The vortex-induced vibration in the frequency
domain is

ŵ = iπ

∫ 1

0

g(y, η, ω)
(
δ(ω − ωf )− δ(ω + ωf )

)
dη , (25)

in which g is the Green’s function for the Euler-Bernoulli equation in the
frequency domain first pioneered by [11] and summarised by [19]. Calcu-
lating the inverse Fourier transform of (25) yields

w = sin(wf t)

∫ 1

0

g(y, η, wf )dη . (26)
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Fig. 2 Fourier spectrum of the response to the load (24) on the top of the beam with
ωf = π/5 and F (y) = 1 computed by the FD scheme.

Hence the dynamic response of the beam to the periodic load oscillates
with the same frequency. The parameters for the numerical experiments
are chosen as ωf = π/5. Solution (26) is evaluated up to t = 100 and
compared with the computation by the FD scheme. The results are found
to match well. The single-sided Fourier spectrum of the dynamics at the
beam tip (y = 1) is shown in Fig. 2 where the dominant frequency is found
to be exactly the same as that of the load.

The numerical test presented above demonstrated good agreement between
the analytical and numerical results, which validates the code based on the
numerical scheme for the above Euler-Bernoulli problem. We follow to employ
the numerical scheme to compute the dynamics of (12).

4 Computational Results and Analysis

The computations are achieved by employing the numerical scheme introduced
in Section 3 and letting Q = [ψ1, ..., ψN ]T in (23), where

ψj =
X√
∆t

, j = 1, 2, ..., N, (27)

is the discretised stochastic load. Here X is a random variable following the
standard normal distribution, i.e. X ∼ N(0, 1). The uncertainties in the so-
lution of the stochastic Euler-Bernoulli Equation are quantified by using the
simulation data obtained from the Monte-Carlo method whereby 10,000 nu-
merical experiments are conducted. It is found that the statistics of the de-
flections remains the same from time t > 20 onward. Hence, it is appropriate
to select T = 20 as the final time in the computations hereafter.

The numerical outputs at the end of the experiments are presented in Fig.
3 showing all the beam deflections from the 10,000 simulations, the mean
and the variance, and the standard error of the Monte-Carlo Method. As can
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Fig. 3 (a) Snapshots of w due to stochastic load in (12) using Monte-Carlo method at
t = 20 (b) Expectation E of the stochastic process at t = 20 along the beam (c) Variance
of the stochastic process at t = 20 along the beam (e) Standard error of the Monte Carlo
method at t = 20 along the beam

be seen from that figure, the profiles in the top left panel are smooth and
symmetric by the undisturbed state. The mean displacement is very close to
zero as predicted by the linear theory (61) from the appendix. To get more
intuition on the solution by making full use of the data, machine learning by
means of regression is to be conducted and proceeded in four steps as follows.

1. At a fixed position and a fixed time, the behaviour of the beam displace-
ment w can be described by a probability distribution. The simulation data
of 10,000 experiments are then fitted to different candidates, and two best
fittings of the deflection data at the tip of the beam at the final time are
depicted in Fig. 4(a) indicating that the data has a great match with a
Gaussian distribution. This process has been repeated at different posi-
tions or different times, and qualitatively similar results are obtained. It is
a strong numerical evidence showing that w follows a normal distribution
at a given time and position. The two Gaussian parameters µ(y, t) (the
mean) and σ2(y, t) (the variance) can be both estimated by the sample
data. The former is close to zero at all y and all t as previously discussed.
The latter is shown in Fig. 4 when t = T and for various positions on the
beam.

2. As w is Gaussian at a given time and position, It can be shown that, in gen-
eral, w is a multi-dimensional (centred) Gaussian process. The remaining
task is to study the associated covariance/correlation matrix. An algebraic
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Fig. 4 (a) Various distribution fitted to the deflection data recorded at the beam tip at
t = T . (b) The variance for various points on the beam at t = T and the fitted curve.

Parametric estimations

λ̃ α̃

1.7405 0.6250

Table 1 The values of estimated parameters for the data at t = T .

growth of the variance in y is observed from Fig. 4(b). It suggests a model
for the standard deviation of the following form

σ(y, t) = λyα, at t = T , (28)

in which λ and α are the parameters to estimate by using the least squares
method. The result is shown in Fig. 4(b), and the values of the estimated
parameters are listed in Table 1. For better understanding the statistics
of the solution, the spatial covariance and correlation matrices, denoted by
Kyy and ρyy respectively, for various points along the beam at a fixed time
are computed by using the simulation data. For a direct visualisation of the
spatial covariance matrix, a color-map image representation is introduced
as in Fig. 5. The darker pixels close to the top right corner of the image
correspond to higher covariance of points close to the free end of the beam
whereas the brighter pixels on the bottom left are for those in the vicinity
of the fixed end with lower covariance. The result is very convincing as
the covariance near the bottom is restricted to be almost zero due to the
boundary condition imposed for an anchored base. This calculation has
been repeated for other times, and the obtained pictures are stacked up
along the time variable t to form a three-dimensional colour-map image as
in Fig. 6. It is observed that the spatial covariance decays with oscillation
in time and tends to a fixed value in long term. On the other hand, the cor-
relation matrix is found to be of a unit matrix (matrix of ones), illustrating
that the beam deflection is (perfectly) positively spatially correlated at the
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Fig. 5 Colour-map image representation of the covariance matrix at time t = T (colour
online).

Fig. 6 3D colour-map representation of the covariance matrix at discrete time t = 0 to
t = T (colour online).

final time. Qualitatively similar results have been discovered at other time.

3. Some interesting features have been observed in Fig. 6. For a full compre-
hension of the decaying oscillatory behaviour of the spatial covariance, the
second step of the pattern-learning is to investigate the temporal covari-
ance by conducting regression analysis to the data at a given position, e.g.
the top end of the beam, for different times. The sample temporal variance
is plotted in Fig. 7 in which the nature of exponential decay with oscilla-
tions is confirmed. Then a model for the standard deviation is proposed as
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Parametric estimations

β̃ γ̃ Ω̃

-0.6461 0.9169 3.4855

Table 2 The values of estimated parameters for model (29) at the top end.

Fig. 7 Standard deviation at the top of the beam from time t = 0 to t = T .

follows

σ(y, t) = σ∗(y)
(
1− eβt

γ

cosΩt
)
, at y = 1 , (29)

where σ∗(y) is the limit of σ(y, t) for large t, and β, γ and Ω are the
parameters to estimate by the least squares approach. The estimations are
shown in Table 2. The regression analysis has been also conducted at other
positions such as y = 1/4, y = 1/2 and y = 3/4. It is discovered that there
is hardly any change in the estimation of the three parameters at various
positions, which indicates that β, γ and Ω are in fact spatial-invariant.
Then it can be readily shown that σ∗(y) takes the form of (28), i.e.

σ∗(y) = λyα . (30)

Next, in a manner similar to the previous step, we compute the tempo-
ral covariance and correlation matrix, denoted by Ktt and ρtt respectively,
from the sample data at the top end for various times. The former is dis-
played as a colour-map image in Fig. 8. It can be clearly seen that the
temporal covariance converges to a limit with oscillations in long term.
This calculation has been repeated for different positions along the beam.
By using the same visualisation technique of stacking up the colour-map
images, a three-dimensional colour-map representation is formed and plot-
ted in Fig. 9 that provides a clear view on the overall evolution of the
temporal covariance. On the other hand, the temporal correlation matrix
is again found to be of a unit matrix, showing that the beam deflection is
(perfectly) positively temporally correlated at a fixed position.
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Fig. 8 Colour-map image representation of the temporal covariance matrix at y = 1 (colour
online).

Fig. 9 3D colour-map representation of the temporal covariance matrix from y = 0 to y = 1
(colour online).

4. Combining the results obtained from the previous three steps, it can be
concluded that w(y, t) follows a centred Gaussian process whose covariance
function is written as

C(y1, y2, t1, t2) = λ2yα1 y
α
2 (1− eβt

γ
1 cosΩt1)(1− eβt

γ
2 cosΩt2) , (31)

in which the estimations of the parameters from the simulation data are
listed in Table 1 and Table 2. In particular, at a given time and a given
position, the standard deviation of the deflection is written as

σ(y, t) = λyα(1− eβt
γ

cosΩt) , (32)
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or simply w(y, t) ∼ N(0, σ(y, t)2), that is a simple-form mild solution to
the stochastic Euler-Bernoulli equation in the probability sense.

Figure 10 and 11 show the convergence history of the parameters. All the
parameters are found to converge when the number of simulations is sufficiently
large. In particular, α, β, γ and ω converge when this number reaches 500 and
only vary subject to numerical errors of order 10−6 if the number of simulations
is further increased. Meanwhile, the convergences of λ and σ∗ are achieved
when the number of simulations exceeds 2000.

Fig. 10 Convergence history of the spatial regression parameters

Fig. 11 Convergence history of the temporal regression parameters
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5 Result Verification

In this section, we compare the results obtained by the FDM to FEM. To
achieve this, we seek an approximate solution to the Euler-Bernoulli equation
of the form

w(y, t) =

N∑
j

wj(t)ηj(y), (33)

where the ηj(y) terms are some bases or interpolation functions at the nodes j.

Suppose the Euler-Bernoulli PDE operator is written as L(w) = ∂4w
∂y4 + ∂2w

∂t2 −
q = 0, then, the residual of the approximate solution is

R = L(
N∑
j

wjηj). (34)

Using the Galerkin Method∫
Rη dy = 0 , ∀η ∈ V

where V is the so called finite-dimensional test space containing the interpola-
tion functions, applying the boundary conditions and simplifying, one obtains
the FEM formulation of the Euler-Bernoulli equation for a cantilever beam
written in inner product notation as

N∑
j

⟨ηi, ηj⟩ ẅj +

N∑
j

〈
η′′i , η

′′
j

〉
wj = ⟨ηi, q⟩ i = 0, . . . , N ; (35)

The normalised basis functions for a 1D beam elements are

η1(y) = 1− 3y2 + 2y3 (36)

η2(y) = y − 2y2 + y3 (37)

η3(y) = 3y2 − 2y3 (38)

η4(y) = y3 − y2 (39)

For a one element FEM beam problem with two nodes, η1 and η2 correspond
to the interpolation functions for the displacement and rotation respectively
at the first node, while η3 and η4 correspond to the interpolation functions for
the displacement and rotation respectively at the second node. Equation (35)
written in matrix notation is

Aẅ +Bw = F (40)
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where

Ai,j = ⟨ηi, ηj⟩
Bi,j =

〈
η′′i , η

′′
j

〉
Fi = ⟨ηi, qi⟩
w = {wi} i = 0, . . . , N

ẅ = {ẅi} i = 0, . . . , N

We solve for the term ẅ as

ẅ = −A−1Bw +A−1F. (41)

From here, we can then apply a similar numerical scheme for the time integra-
tion as was done for the FD scheme by introducing the variable v = ẇ. Thus,
(40) can be rewritten as a first order ODE

∂U

∂t
= MU + F , (42)

where

U =

(
w

v

)
, M =

(
0 1

−A−1B 0

)
, F =

(
0

A−1F

)
. (43)

Using the discretisations for the time and spatial variables equivalent to that
applied to the FDM scheme, that is equation (23), we then conduct Monte-
Carlo simulations to obtain results for comparison with the FDM scheme. The
result was filtered for the deflection as this research is not interested in the
rotation at the nodes. To simplify the matter, we only compare the regression
parameters in equation (32) as all other results can be derived from this.

Parameters FEM FDM

λ̃ 1.740502 1.740524

α̃ 0.625017 0.625038

β̃ -0.530752 -0.646000

γ̃ 1.083184 0.916860

Ω̃ 3.277590 3.485483

Table 3 Comparison of the values of estimated parameters between FEM and FDM for
the data at t = T .

Table 3 shows the comparison of the regression parameters. One can see
the very close agreement between these results. It should be noted that while
the results are comparable, the FEM scheme is much more computationally
expensive than the FDM scheme. It is easy to see this by comparing the coupled
PDE for the FDM scheme to that of FEM scheme, that is, equations (20) and
(42). One can see that theM matrix only requires assemblage once in the FDM
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scheme before the initiation of the MC simulations, while the FEM scheme
requires an assemblage of matrices A and B once before MC simulation, the
computation of the matrix multiplication of A−1B once before MC simulation
and then the computation of A−1F for each MC simulation.These are the
major differences in the implementation code for the MC simulations. For the
same operating conditions, the run time of the FD scheme for ten thousand
simulations is about 2hrs 20 mins while that of the FE scheme is about 15hrs
which is much more than that of the FDM scheme.

6 Conclusion

The response of an Euler-Bernoulli beam subject to a stochastic disturbance
in form of a white noise was investigated. The deflection was governed by
the Stochastic Euler-Bernoulli Equation. A numerical approach based on a fi-
nite difference method was introduced and coupled with Monte-Carlo method
to solve an initial value problem of the stochastic partial differential equa-
tion. Ten thousand simulations were conducted to evaluate the statistics of
the unknown beam deflection. The computational data were used for learning
the solution behaviour by regression. There was a strong numerical evidence
showing that the beam displacement follows a centred Gaussian process whose
associated covariance function was computed from the samples and visualised
in colour-map representations. Hence, it is concluded that a mild solution to
the Stochastic Euler-Bernoulli Equation in the probability sense has been de-
duced by the designed approach that can be applied to other stochastic partial
differential equations in the future. In practice, the engineering safety assess-
ment of a beam structure subject to a stochastic disturbance of white noise
can be proceeded by considering the probability of the long-term deflection at
the tip being no greater than 1% of the total beam length, i.e.

P (w (y = 1, t = T ) < 0.01) (44)

which is computed by making use of (30). This value can be controlled to sat-
isfy a confidence interval by restoring the standard deviation σ̄ from (7) which
in fact depends on the physical parameters from the original equation (1) in the
non-dimensionalisation. Inversely, some intuitions regarding the requirements
of the material properties are obtained.

The result was also compared to that obtained by the FEM scheme from
which it was revealed that the FD scheme is much faster in terms of run time,
easier to implement if one is coding from scratch and that results are compa-
rable. Hence it can be concluded that for such a simple structure, stochastic
analysis using the FDM scheme is preferred.

As it relates to a BWT, the standard deviation σ̂ can inform the design
and layout of turbines in a wind farm since it gives an indication of the deflec-
tion range. This is particularly important because the vortices formed around
each BWT further affects the other BWTs around it which can be beneficial
or detrimental to the energy conversion depending on layout design. Future
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Fig. 12 The first five natural modes of the beam structure.

studies can be conducted to examine the optimum power extraction by study-
ing the allowable deflection range which then informs the arrangement of the
BWTs in a wind farm.

Appendix

A Modal composition

By the linear theory in which a separation of variables is conducted, the general solution to
(4) can be written as

w(y, t) =

∞∑
i=1

ai(t)ϕi(y) , (45)

where ai(t) are the unknowns and ϕi(y) are the eigenfunctions (also called normal modes)
of Euler-Bernoulli equation for free vibration. These eigenfunctions take the form of

ϕi(y) = bi cos
√
ωiy + ci sin

√
ωiy + di cosh

√
ωiy + ei sinh

√
ωiy , (46)

where the coefficients are determined by imposing the cantilever boundary conditions and ωi

are the natural frequencies. The first five natural modes are sketched in Fig. 12. By making
use of the orthogonality, the ai must satisfy

äi + ω2
i ai =

⟨ϕi, q⟩
⟨ϕi, ϕi⟩

, (47)
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where ⟨ · , · ⟩ is an inner product defined by

⟨f1, f2⟩ =
∫ 1

0
f1(ỹ)f2(ỹ)dỹ . (48)

If the load q is y-independent, the right hand side of (47) can be further simplified. In
the homogeneous case where q = 0, it can be easily found that ai = sinωit by imposing
the initial conditions. In practice, the series (45) is truncated after two terms for a good
approximation.

It is noted that the Green’s function for the second harmonic equation (47) is written
as

G(t) =
sin(ωit)

ωi
Θ(t) , (49)

with Θ(t) being the Heaviside step function, i.e. Θ(t) = 1 if t > 0 and zero otherwise. Now
we consider the special case where q = ξ(t) that is a Gaussian white noise only with respect
to time. By making use of the Green’s function (49), then the coefficient ai(t) takes the form
of

ai =
Γi

ωi

∫ t

0
sin

(
ωi

(
t− t′

))
ξ(t′)dt′ , (50)

in which ξ is the generalised time derivative of a Wiener process, i.e. ξ = dW/dt, and

Γi =
⟨ϕi,1⟩
⟨ϕi, ϕi⟩

, (51)

with 1 being the unity function. The solution (50) can be rewritten in Itô’s sense as

dai = −
Γi

ωi
sin (ωit) dW . (52)

Substituting (52) back into the series solution (45) yields the solution of w

dw = A(y, t)dW , (53)

A(y, t) = −
∞∑
i=1

Γi

ωi
sin (ωit)ϕi(y) . (54)

It can be readily shown from (53) that w follows a Gaussian process. The remaining task is
to figure out its mean and autocovariance function. After some algebra, it is obtained that
the ai are all zero-mean and the covariance function of Ci,j(t1, t2) = E [ai(t1)aj(t2)] for
t1 ≤ t2 is

Ci,j(t1, t2) =
ΓiΓj

ωiωj(ω2
i − ω2

j )

[
ωj sin(ωit1) cos(ωjt2)

− ωi cos(ωit1) sin(ωjt2) + sin(ωj(t1 − t2))
]
. (55)

We follow to use (55) evaluate the following quantities

– when i = j, it is obtained that

Ci,i(t1, t2) =
Γ 2
i [ωit1 cos (ωi(t1 − t2))− cos(ωit2) sin(ωit1)]

2ω3
i

; (56)

– when t1 = t2, it is obtained that

Ci,j(t, t) =
ΓiΓj [ωj sin (ωit) cos (ωjt)− ωi cos (ωit) sin (ωjt)]

ωiωj(ω2
i − ω2

j )
. (57)
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– when t1 = t2 and i = j, the variance of a(t) is found to be

Var[ai] = Ci,i(t, t) =
Γ 2
i (ωit− cos (ωit) sin (ωit))

2ω3
i

. (58)

For computing the autocovariance of w, we approximate the solution by truncating the series
after two terms, i.e. w = a1ϕ1 + a2ϕ2 . Then the autocovariance function is written as

E[w(y1, t1)w(y2, t2)] = ϕ1(y1)ϕ1(y2)C1,1(t1, t2) + ϕ2(y1)ϕ2(y2)C2,2(t1, t2)

+ ϕ1(y1)ϕ2(y2)C1,2 (t1, t2) + ϕ1(y2)ϕ2(y1)C1,2 (t2, t1) . (59)

In particular when t1 = t2 and y1 = y2, (59) is reduced to the variance of w(y, t)

E[w(y, t)2] = ϕ1(y)
2Var[a1] + ϕ2(y)

2Var[a2] + 2ϕ1(y)ϕ2(y)C1,2(t, t) . (60)

Since E[ai] = 0, it can be easily deduced that the mean of the deflection over time t is zero,
i.e.

E[w(y, t)] = 0 . (61)

We have developed a simple valid theory for predicting the mean and the covariance of
the unknown w, that has been shown to follow a Gaussian process, in the special case
where the random external force has no spatial-variation. For the general case where ξ
depends on both y and t, the calculation turns out to be tedious, and the solution becomes
much more complex which makes it impractical for theoretical estimations. Instead, the
regression model, i.e. equation (31), presented in section (4) derived from the numerical
method presented is a preferred alternative.
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Project Vortex Bladeless: Parallel multi-code coupling for Fluid-Structure Interaction
in Wind Energy Generation, EU’s Horizon 2020 research and innovation programme.
Available online at www.prace-ri.eu.

8. www.bsc.es
9. Chizfahm, A., Yazdi, E., A., Eghtesad, M. (2018). Dynamic modeling of vortex induced

vibration wind turbines. Renewable Energy 121, 632 - 643.



Response of an Euler-Bernoulli beam subject to a stochastic disturbance 21

10. Da Prato, G., Debussche, A., & Temam, R. (1994). Stochastic Burgers’ equation. Non-
linear Differential Equations and Applications, 1(4), 389–402.

11. Foda, M. A., & Abduljabbar, Z. (1998) A dynamic green function formulation for the
response of a beam structure to a moving mass. Journal of sound and vibration, 210(3),
295–306.

12. Gikhman, I. I., & Skorohod, A. V. (1972) Stochastic differential equations, Springer.
13. Giosan, I., & Eng, P. (2013) Vortex shedding induced loads on free standing structures.

Structural Vortex Shedding Response Estimation Methodology and Finite Element Sim-
ulation, 42.

14. Higham, D. J. (2001) An algorithmic introduction to numerical simulation of stochastic
differential equations. SIAM review, 43(3), 525–546.

15. Ortner, N., & Wagner, P. (1990) The Green’s functions of clamped semi-infinite vibrat-
ing beams and plates. International journal of solids and structures, 26(2), 237–249.

16. Rajmani, A., & Guha, P. P. (2015) Analysis of wind & earthquake load for different
shapes of high rise building. International Journal of Civil Engineering and Technology,
6(2), 38–45.

17. Stafford Smith, B., & Coull, A. (1991) Tall building structures: analysis and design.
18. Takabatake, H., Kitada, Y., Takewaki, I., & Kishida, A. (2019) Simplified Dynamic

Analysis of High-rise Buildings: Applications to Simplified Seismic Diagnosis and
Retrofit Using the Extended Rod Theory. Springer.

19. Watanabe, K. (2015) Green’s Functions for Beam and Plate. In Integral Transform
Techniques for Green’s Function, 139–152. Springer, Cham.

20. Williamson, C. H. K., & Govardhan, R. (2004) Vortex-induced vibrations. Annu. Rev.
Fluid Mech., 36, 413–455.


