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Abstract
This work concerns the stochastic analysis of the bending of a slender cantilever beam subject to an external force with the 
inclusion of a stochastic effect characterised by white noise. The beam deflection is governed by the classic dynamic Euler–
Bernoulli equation. Its response to the stochastic external load is investigated by learning pattern from the simulation data 
which are collected from numerical computations of ten thousand numerical experiments, which are achieved using a finite 
difference method coupled with a Monte Carlo method for the uncertainty quantification. Insightful results are presented 
with visualisation techniques and discussed in detail. Of note, by performing regression analysis to the data, the solution 
is shown to follow a centred Gaussian process with a strong numerical evidence. The associated autocovariance matrix is 
computed using the sample data. Then, a mild solution in the probability sense for the deflection at a fixed position and a 
fixed time is written explicitly in a simple form. The results obtained by the finite difference scheme were also compared to 
the finite-element scheme and were found to be in good agreement. Unsurprisingly, the finite-element scheme was found to 
be much more computationally expensive compared to finite difference scheme. Hence, for such a simple structure, the sto-
chastic analysis using the finite difference scheme is preferred. Analysis of the results also showed that some of the regression 
parameters converge when the number of simulations reaches five hundred and only vary subject to numerical errors of order 
10

−6 if the number of simulations is further increased. While others converge when the number of simulations exceeds two 
thousand showing that depending on the level of precision required fewer than ten thousand simulations might be required.

Keywords Euler–Bernoulli beam · Stochastic partial differential equation · Finite difference · Monte Carlo simulation · 
Stochastic process · Regression · Machine learning · Visualisation

1 Introduction

It has been more than two centuries since the introduction 
of the Euler–Bernoulli beam theory by two famous 
mathematicians in 1750, which is a linear partial differential 
equation (PDE) in one-dimensional space and time 
characterising small deflections of an uniform beam subject 
to a lateral load. The simplest form is

where w is the deflection in the lateral direction, y is the 
longitudinal spatial variable, t is the time variable, Q is 
the load distribution, � is the mass per unit length, E is the 
Young’s modulus, and I is the second moment of the area 
of the beam’s cross section. The product EI is known as 
the flexural rigidity denoted by D that measures the force 
required to bend the beam. The Euler–Bernoulli beam 
theory was widely applied at different scales in many areas. 
It was used to study the weight-bearing bones of human 
body in biomechanics, as well as the design and analysis 
of a wide range of structures, such as cable-stayed bridges, 
roofs of football stadia, high-rise buildings, etc. The research 
interest arose from the potential risk of the structures being 
damaged by external strong forcing (e.g., earthquake or wind 
load in architectural engineering). Therefore, an in-depth 
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understanding of such vibration through the use of novel 
mathematical tools has always been essential in the relevant 
engineering designs. In particular, an important topic is 
modelling the effect of wind loads on high-rise buildings in 
which much work has been done so far (see, e.g., [14–16] 
and the references therein).

Randomness is inevitable in the nature. For example, the 
pressure load acting on the large-scale structure presents 
stochastic features due to the fluid flow around complex 
structures and possible minor inhomogenity of materials at 
different manufacturing stages. Also, physical quantities, 
such as surface density and material properties of a build-
ing, may change gradually due to long-term weathering and 
erosion caused by wind and rain. Hence, it is reasonable, 
and of significant interest to include stochastic effect in the 
mathematical modelling of certain physical processes to 
address the randomness in these phenomena. One usually 
ends up with a partial differential equation in the presence 
of stochastic coefficients and source terms called stochastic 
partial differential equation [10]. Over the years, the most 
studied cases are the stochastic heat equation (see, e.g., [2, 
6]), which is a linear partial differential equation with a sim-
ple explicit Green’s function usually referred to as the heat 
kernel, and the stochastic Burger’s equation (see, e.g., [3]) 
which is the simplest nonlinear partial differential equation. 
Existing work and literature in the stochastic Euler–Ber-
noulli equation are limited to the author’s knowledge. This 
work focuses on the investigation of a stochastic Euler–Ber-
noulli Equation (1) when

in which �(y, t) is a Gaussian white noise which can be used 
for the stochastic analysis of the deflection behaviour of 
slender structures, such as high-rises, sky scrapers, and a 
new kind of wind turbine, namely, the Bladeless Wind Tur-
bine (BWT) subjected to Gaussian excitation.

To reduce the complexity of the study, a beam built 
into a fixed foundation base on the ground level itself may 
be regarded as a simplified realisation of a large-scale 
architecture. Assuming that there is no erosion at the ground 
level, the deflection of a cantilever in the framework of the 
Euler–Bernoulli beam theory subject to stochastic external 
loading is examined. Such a method of reducing the order 
of the problem had been done, for example in [7, 8] for 
static analysis using the Timoshenko beam theory, where 
a high-rise building is modelled in a simplified form as a 
cantilever structure. Even more pertinent is the modelling of 
a Bladeless Wind Turbine (BWT) as a cantilever structure, 
because the reduced model is much closer to the real world. 
BWT is a particularly important and interesting new class of 
turbine due to its simple structure which confers advantages, 
such as ease of manufacturing, transportation, storage, and 

(2)Q(y, t) ∝ �(y, t),

installation. It is also easier to maintain, because it lacks 
bearings, gears, and other moving parts. The new turbine 
also lacks the the environmental hazards associated with 
conventional wind turbines, such as collision of birds with 
blades of the turbines. It can be used offshore, in a wind farm 
or wherever high-intensity winds exist.

Several studies have examined the structural response 
of BWT turbines using the Euler–Bernoulli beam theory. 
For instance, Bahadur [1] studied the dynamics of a tun-
able BWT. There is an interest in tuning the frequency of 
vibration of a BWT to match the vortex shedding frequency 
that is created due to flow around the body of the BWT. 
Such tuning results in the resonant vibration of the BWT, the 
so-called lock-in effect [17], thereby increasing the power 
output. Another study [4] looked at the Fluid–Structure 
Interaction (FSI) with the aim of developing tools needed 
to simulate FSI problem as it relates to BWTs so as to repro-
duce experimental results for scaled models of BWTs using 
the Alya system, a multi-physics code developed in the Bar-
celona Supercomputing Center [20]. Chizfahm [5] studied 
the dynamic response as well as the FSI of a BWT by exam-
ining the different shapes and configurations of the BWT 
structure. Using the Euler–Bernoulli beam theory combined 
with aero-dynamic models of the forces of the structures, 
Chizfahm proposed a model for each of the configurations 
of the BWT. The models were validated through compari-
son with a 3D CFD-FEM numerical simulation. The effects 
of the wind speed on the induced lift force, deflection, and 
generated power of the different shapes of the BWTs were 
investigated.

The aforementioned studies have focused on the structural 
analysis and the FSI studies of a BWT in a deterministic 
manner. Given the important benefit of this new class of 
wind turbine, and the fact that wind flow is in fact stochastic 
in nature, this study sets out to analyse the deflection char-
acteristics of these kinds of structures using the theory of 
stochastic processes in the framework of the Euler–Bernoulli 
equation.

The present study is restricted to two-dimensional physi-
cal space with particular attention to the response to the 
forcing load applied in the lateral direction in the presence of 
a stochastic effect. In spite of the simplification, solving the 
stochastic Euler–Bernoulli equation is still very challenging. 
To discover the solution behaviour in simple form, compu-
tational data are simulated in 10,000 numerical experiments 
achieved by a finite difference (FD) scheme, and used for 
pattern learning by means of regression.

The paper is structured as follows. The mathematical 
formulation is sketched in Sect. 2 followed by the Finite 
Difference numerical scheme in Sect. 3. The computational 
data and the machine learning are presented in Sect. 4. 
The numerical results achieved by the Finite Difference 
Method (FDM) are compared to the ones achieved by a 



Engineering with Computers 

1 3

Finite-Element Method (FEM) in Sect. 5. A conclusion is 
made in Sect. 6.

2  Formulation

A beam of length h with uniform density and flexural rigid-
ity is considered under the effect of a pressure load. Its lower 
end is assumed to be anchored as a fixed end at the ground 
floor, while the top is free to move. The bending of the beam 
is governed by the so-called Euler Bernoulli equation.

The problem is formulated in a two-dimensional 
Cartesian coordinate system. The pressure load follows 
the positive x-direction. The origin O is set at the fixed end 
of the beam. The displacement of the beam is denoted by 
x = w(y, t) . An illustrating schematic is presented in Fig. 1.

For the sake of easy notations, a prime ′ is used to denote 
the partial derivative of the displacement with respect to y, 
and ⋅ is used to denote the partial derivative of the displace-
ment with respect to t. By choosing

as the reference length, time, and pressure, respectively, the 
governing equation for the bending of the beam is

where q(y, t) is the scaled external load. The boundary con-
ditions for a cantilever beam are

The conditions at y = 1 are based on the assumption of no 
bending moment and no shearing force at the free end of the 

(3)h,

√
�h4

D
,

D

h4
,

(4)w���� + ẅ = q(y, t),

(5)w(0, t) = w�(0, t) = w��(1, t) = w���(1, t) = 0.

beam respectively. For an initial value problem (IVP), the 
beam is assumed to be initially at rest, so

In the presence of a stochastic disturbance characterised by 
a white noise in the external load, one may rewrite the load 
q as

in which q0 is the deterministic load and � is a standard 
Gaussian white noise with respect to time and space, where

Here, � is the Kronecker delta function defined by

And �̃� is a parameter that measures the standard deviation 
of the white noise. Due to the linearity, the response to the 
stochastic effect, denoted by w̃ , also satisfies the governing 
equation

The value of �̃� can be selected to be 1 without losing gen-
erality, and the tildes are dropped to ease the notations. It 
yields the stochastic Euler–Bernoulli equation

The rest of the work is to explore the form of the solution 
to (12). A linear theory of modal decomposition can be 
developed to solve the special case where the white noise 
is spatial invariant, i.e., it depends on time only. The detail 
is presented in Appendix 1 for readers who are interested. 
Full computations are required to investigate the general 
case. They will be achieved by a numerical scheme based 
on a Finite Difference Method (FDM) coupled with back-
ward time integration, which is to be introduced in the next 
section.

3  Numerical scheme

To investigate the stochastic feature in which thousands of 
numerical experiments are to be conducted, a fast efficient 
numerical scheme is required. To this end, FDM is prefer-
able over commonly used Finite-Element Method (FEM) 
for its less computational cost. A valid scheme to solve the 
time-dependent Euler–Bernoulli equation is presented in this 

(6)w (y, 0) = ẇ(y, 0) = 0.

(7)q (y, t) = q0(y, t) + �̃�𝜉(y, t),

(8)�
[
�(y1, t1)�(y2, t2)

]
= �y1,y2�t1,t2 .

(9)�m,n = 1, if m = n,

(10)�m,n = 0, otherwise.

(11)w̃���� + ̈̃w = �̃�𝜉(y, t).

(12)w���� + ẅ = 𝜉(y, t).

Fig. 1  Schematic of the two-dimensional problem. The solid line 
depicts the undisturbed slender beam. The dashed curve shows the 
deflection
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section. The physical domain is uniformly discretised into 
N grid points

and

In particular, y = 0 and y = 1 represent the fixed end and the 
free end atop, respectively. The discretised unknown vec-
tor is denoted by W , i.e., W = [w1,w2, ...,wN]

T . To accom-
modate the boundary conditions (5), four ghost points are 
introduced

By imposing second-order accurate FD scheme for the 
boundary conditions in (5), one obtains

A matrix of the central FD scheme for w over {yi}i=1,2,...,N 
subject to (16)–(19) can be written.

The dynamics of (4) is computed numerically using a 
backward difference in time, e.g., the Implicit Euler method, 
and a central difference of second order in space. By intro-
ducing an artificial variable v = ẇ , Eq. (4), which is second 
order in time, can be rewritten as two coupled PDEs of first 
order

where

The time domain [0, T], where T is the final time, is divided 
into n steps with �t = T

/
n . By discretising spatially in y 

and temporally in t, the discretised variables are denoted as

The backward Euler scheme can then be written in the 
matrix form

(13)yi =
i

N
, i = 1, 2, ...,N,

(14)wi = w(yi), i = 1, 2, ...,N.

(15)

y−1 = −
1

N
, y0 = 0, yN+1 = 1 +

1

N
, yN+2 = 1 +

2

N
.

(16)w0 = 0,

(17)w−1 = w1,

(18)wN+1 = 2wN − wN−1,

(19)wN+2 = wN−2 − 4wN−1 + 4wN .

(20)
�U

�t
= MU + F,

(21)U =

(
w

v

)
, M =

(
0 1

−
�4

�y4
0

)
, F =

(
0

q

)
.

(22)U
j

i
=

(
w(yi)

v(yi)

)
, at t = tj =

jT

n
.

where IN is the identity matrix and M is the matrix contain-
ing FD replacement of the fourth derivative with respect 
to s. Vector V = [v1, v2, ..., vN]

T  and Q = [q1, q2, ..., qN]
T 

are defined in a similar manner to (14). Multiplying both 
sides by the inverse of the matrix from the left-hand side 
completes one time increment of the backward scheme. 
The numerical stability is guaranteed due to the nature of 
the implicit method. For higher accuracy, �y = 0.005 and 
�t = 0.04 are chosen in all the simulations.

– To validate the numerical scheme, we consider an 
example of deterministic pressure as follows. A time-
varying load under the form of 

 can be considered as the excitation due to vortex shed-
ding [11, 19], where the frequency �f  depends on the 
cross-sectional geometry, the flow velocity, and the 
Strouhal number. The vortex-induced vibration in the 
frequency domain is 

 in which g is the Green’s function for the Euler–Ber-
noulli equation in the frequency domain first pioneered 
by [9] and summarised by [18]. Calculating the inverse 
Fourier transform of (25) yields 

 Hence, the dynamic response of the beam to the periodic 
load oscillates with the same frequency. The parameters 
for the numerical experiments are chosen as �f = �∕5 . 
Solution (26) is evaluated up to t = 100 and compared 
with the computation by the FD scheme. The results are 
found to match well. The single-sided Fourier spectrum 
of the dynamics at the beam tip ( y = 1 ) is shown in Fig. 2 
where the dominant frequency is found to be exactly the 
same as that of the load.

The numerical test presented above demonstrated good 
agreement between the analytical and numerical results, 
which validates the code based on the numerical scheme 
for the above Euler–Bernoulli problem. We follow to 
employ the numerical scheme to compute the dynamics 
of (12).

(23)
(

IN − �tIN
�tM IN

)(
��+�

��+�

)
=

(
��

��

)
+

(
0

Q�t

)
,

(24)p(y, t) = sin(�f t),

(25)ŵ = i𝜋 ∫
1

0

g(y, 𝜂,𝜔)
(
𝛿(𝜔 − 𝜔f ) − 𝛿(𝜔 + 𝜔f )

)
d𝜂,

(26)w = sin(wf t) ∫
1

0

g(y, �,wf )d�.
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4  Computational results and analysis

The computations are achieved by employing the numerical 
scheme introduced in Sect. 3 and letting Q = [�1, ...,�N]

T in 
(23), where

(27)�j =
X√
�t

, j = 1, 2, ...,N,

is the discretised stochastic load. Here, X is a random 
variable following the standard normal distribution, i.e., 
X ∼ N(0, 1) . The uncertainties in the solution of the stochas-
tic Euler–Bernoulli Equation are quantified using the simu-
lation data obtained from the Monte Carlo method whereby 
10,000 numerical experiments are conducted. It is found that 
the statistics of the deflections remains the same from time 
t > 20 onward. Hence, it is appropriate to select T = 20 as 
the final time in the computations hereafter.

The numerical outputs at the end of the experiments are 
presented in Fig. 3 showing all the beam deflections from 
the 10,000 simulations, the mean and the variance, and 
the standard error of the Monte Carlo Method. As can be 
seen from that figure, the profiles in the top left panel are 
smooth and symmetric by the undisturbed state. The mean 
displacement is very close to zero as predicted by the linear 
theory (61) from the appendix.

To get more intuition on the solution by making full use 
of the data, machine learning by means of regression is to be 
conducted and proceeded in four steps as follows. 

1. At a fixed position and a fixed time, the behaviour of the 
beam displacement w can be described by a probability 

Fig. 2  Fourier spectrum of the response to the load (24) on the top of 
the beam with �f = �∕5 and F(y) = 1 computed by the FD scheme

Fig. 3  a Snapshots of w due to stochastic load in (12) using Monte 
Carlo method at t = 20 . b Expectation � of the stochastic process at 
t = 20 along the beam. c Variance of the stochastic process at t = 20 

along the beam. d Standard error of the Monte Carlo method at 
t = 20 along the beam
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distribution. The simulation data of 10,000 experiments 
are then fitted to different candidates, and two best fit-
tings of the deflection data at the tip of the beam at the 
final time are depicted in Fig. 4a, indicating that the data 
have a great match with a Gaussian distribution. This 
process has been repeated at different positions or differ-
ent times, and qualitatively similar results are obtained. 
It is a strong numerical evidence showing that w follows 
a normal distribution at a given time and position. The 
two Gaussian parameters �(y, t) (the mean) and �2(y, t) 
(the variance) can be both estimated by the sample data. 
The former is close to zero at all y and all t as previously 
discussed. The latter is shown in Fig. 4 when t = T  and 
for various positions on the beam.

2. As w is Gaussian at a given time and position, it can 
be shown that, in general, w is a multi-dimensional 
(centred) Gaussian process. The remaining task is to 
study the associated covariance/correlation matrix. An 
algebraic growth of the variance in y is observed from 
Fig. 4b. It suggests a model for the standard deviation 
of the following form: 

 in which � and � are the parameters to estimate by using 
the least-squares method. The result is shown in Fig. 4b, 
and the values of the estimated parameters are listed in 
Table 1. For better understanding the statistics of the 
solution, the spatial covariance and correlation matrices, 
denoted by Kyy and �yy , respectively, for various points 
along the beam at a fixed time are computed using the 
simulation data. For a direct visualisation of the spatial 

(28)�(y, t) = �y� , at t = T ,

covariance matrix, a colour-map image representation 
is introduced as in Fig.  5. The darker pixels close 
to the top right corner of the image correspond to 
higher covariance of points close to the free end of 
the beam, whereas the brighter pixels on the bottom 
left are for those in the vicinity of the fixed end with 
lower covariance. The result is very convincing as the 
covariance near the bottom is restricted to be almost zero 
due to the boundary condition imposed for an anchored 

Fig. 4  a Various distribution fitted to the deflection data recorded at the beam tip at t = T  . b The variance for various points on the beam at t = T  
and the fitted curve

Table 1  The values of estimated 
parameters for the data at 

t = T

 Parametric estimations

�̃� �̃�

1.7405 0.6250

Fig. 5  Colour-map image representation of the covariance matrix at 
time t = T  (colour online)
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base. This calculation has been repeated for other times, 
and the obtained pictures are stacked up along the time 
variable t to form a three-dimensional colour-map image 
as in Fig. 6. It is observed that the spatial covariance 
decays with oscillation in time and tends to a fixed value 
in long term. On the other hand, the correlation matrix is 
found to be of a unit matrix (matrix of ones), illustrating 
that the beam deflection is (perfectly) positively spatially 
correlated at the final time. Qualitatively similar results 
have been discovered at other time.

3. Some interesting features have been observed in Fig. 6. 
For a full comprehension of the decaying oscillatory 
behaviour of the spatial covariance, the second step of 
the pattern learning is to investigate the temporal covari-
ance by conducting regression analysis to the data at a 
given position, e.g., the top end of the beam, for differ-
ent times. The sample temporal variance is plotted in 
Fig. 7 in which the nature of exponential decay with 
oscillations is confirmed. Then, a model for the standard 
deviation is proposed as follows: 

 where �∗(y) is the limit of �(y, t) for large t, and � , � , 
and � are the parameters to estimate by the least-squares 
approach. The estimations are shown in Table 2. The 
regression analysis has been also conducted at other 
positions such as y = 1∕4 , y = 1∕2 , and y = 3∕4 . It is 

(29)�(y, t) = �∗(y)
(
1 − e�t

�

cos�t
)
, at y = 1,

discovered that there is hardly any change in the estima-
tion of the three parameters at various positions, which 
indicates that � , � , and � are in fact spatial invariant. 
Then, it can be readily shown that �∗(y) takes the form 
of (28), that is 

 Next, in a manner similar to the previous step, we 
compute the temporal covariance and correlation 
matrix, denoted by Ktt and �tt , respectively, from the 
sample data at the top end for various times. The former 
is displayed as a colour-map image in Fig. 8. It can be 
clearly seen that the temporal covariance converges to 
a limit with oscillations in long term. This calculation 
has been repeated for different positions along the beam. 
Using the same visualisation technique of stacking up 
the colour-map images, a three-dimensional colour-map 

(30)�∗(y) = �y� .

Fig. 6  3D colour-map 
representation of the covariance 
matrix at discrete time t = 0 to 
t = T  (colour online)

Table 2  The values of estimated 
parameters for model (29) at the 
top end

 Parametric estimations

𝛽 �̃� �̃�

−0.6461 0.9169 3.4855

Fig. 7  Standard deviation at the top of the beam from time t = 0 to 
t = T
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representation is formed and plotted in Fig.  9 that 
provides a clear view on the overall evolution of the 
temporal covariance. On the other hand, the temporal 
correlation matrix is again found to be of a unit matrix, 
showing that the beam deflection is (perfectly) positively 
temporally correlated at a fixed position.

4. Combining the results obtained from the previous three 
steps, it can be concluded that w(y, t) follows a centred 
Gaussian process whose covariance function is written as: 

 in which the estimations of the parameters from the 
simulation data are listed in Tables 1 and 2. In particular, 
at a given time and a given position, the standard devia-
tion of the deflection is written as 

(31)C(y1, y2, t1, t2) = �2y�1y
�
2 (1 − e�t

�
1 cos�t1)(1 − e�t

�
2 cos�t2),

 or simply w(y, t) ∼ N(0, �(y, t)2) , that is a simple-form 
mild solution to the stochastic Euler–Bernoulli equation 
in the probability sense.

Figures 10 and 11 show the convergence history of the 
parameters. All the parameters are found to converge when 
the number of simulations is sufficiently large. In particular, � , 
� , � , and � converge when this number reaches 500 and only 
vary subject to numerical errors of order 10−6 if the number of 
simulations is further increased. Meanwhile, the convergences 
of � and �∗ are achieved when the number of simulations 
exceeds 2000.

5  Result verification

In this section, we compare the results obtained by the FDM 
to FEM. To achieve this, we seek an approximate solution to 
the Euler–Bernoulli equation of the form

where the �j(y) terms are some bases or interpolation func-
tions at the nodes j. Suppose the Euler–Bernoulli PDE oper-
ator is written as L(w) = �4w

�y4
+

�2w

�t2
− q = 0 , and then, the 

residual of the approximate solution is

(32)�(y, t) = �y�(1 − e�t
�

cos�t),

(33)w(y, t) =

N∑

j

wj(t)�j(y),

(34)R = L

(
N∑

j

wj�j

)
.

Fig. 8  Colour-map image representation of the temporal covariance 
matrix at y = 1 (colour online)

Fig. 9  3D colour-map 
representation of the temporal 
covariance matrix from y = 0 to 
y = 1 (colour online)
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Using the Galerkin method

∫ R� dy = 0, ∀� ∈ V ,

where V is the so-called finite-dimensional test space 
containing the interpolation functions; applying the 
boundary conditions and simplifying, one obtains the FEM 
formulation of the Euler–Bernoulli equation for a cantilever 
beam written in inner product notation as

Fig. 10  Convergence history of the spatial regression parameters s

Fig. 11  Convergence history of the temporal regression parameters
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The normalised basis functions for a 1D beam elements are

For a one element FEM beam problem with two nodes, �1 
and �2 correspond to the interpolation functions for the dis-
placement and rotation, respectively at the first node, while 
�3 and �4 correspond to the interpolation functions for the 
displacement and rotation, respectively, at the second node. 
Equation (35) written in matrix notation is

where

We solve for the term ẅ as

From here, we can then apply a similar numerical scheme 
for the time integration as was done for the FD scheme by 
introducing the variable v = ẇ . Thus, (40) can be rewritten 
as a first-order ODE

where

Using the discretisations for the time and spatial variables 
equivalent to that applied to the FDM scheme, that is Eq. 
(23), we then conduct Monte Carlo simulations to obtain 
results for comparison with the FDM scheme. The result was 
filtered for the deflection as this research is not interested in 
the rotation at the nodes. To simplify the matter, we only 

(35)

N�

j

�
𝜂i, 𝜂j

�
ẅj +

N�

j

�
𝜂��
i
, 𝜂��

j

�
wj = ⟨𝜂i, q⟩ i = 0,… ,N.

(36)�1(y) = 1 − 3y2 + 2y3,

(37)�2(y) = y − 2y2 + y3,

(38)�3(y) = 3y2 − 2y3,

(39)�4(y) = y3 − y2.

(40)Aẅ + Bw = F,

Ai,j =
�
𝜂i, 𝜂j

�

Bi,j =
�
𝜂��
i
, 𝜂��

j

�

Fi = ⟨𝜂i, qi⟩
w = {wi} i = 0,… ,N

ẅ = {ẅi} i = 0,… ,N.

(41)ẅ = −A−1Bw + A−1F.

(42)
�U

�t
= MU + F,

(43)

U =

(
w

v

)
, M =

(
0 1

−A−1B 0

)
, F =

(
0

A−1F

)
.

compare the regression parameters in Eq. (32) as all other 
results can be derived from this.

Table 3 shows the comparison of the regression param-
eters. One can see the very close agreement between these 
results. It should be noted that while the results are com-
parable, the FEM scheme is much more computationally 
expensive than the FDM scheme. It is easy to see this by 
comparing the coupled PDE for the FDM scheme to that of 
FEM scheme, that is, Eqs. (20) and (42). One can see that 
the M matrix only requires assemblage once in the FDM 
scheme before the initiation of the MC simulations, while 
the FEM scheme requires an assemblage of matrices A and 
B once before MC simulation, the computation of the matrix 
multiplication of A−1B once before MC simulation and then 
the computation of A−1F for each MC simulation. These are 
the major differences in the implementation code for the MC 
simulations. For the same operating conditions, the run time 
of the FD scheme for ten thousand simulations is about 2 h 
20 mins while that of the FE scheme is about 15 h which is 
much more than that of the FDM scheme.

6  Conclusion

The response of an Euler–Bernoulli beam subject to a sto-
chastic disturbance in form of a white noise was investi-
gated. The deflection was governed by the Stochastic 
Euler–Bernoulli Equation. A numerical approach based 
on a finite difference method was introduced and coupled 
with Monte Carlo method to solve an initial value problem 
of the stochastic partial differential equation. Ten thousand 
simulations were conducted to evaluate the statistics of the 
unknown beam deflection. The computational data were 
used for learning the solution behaviour by regression. There 
was a strong numerical evidence showing that the beam dis-
placement follows a centred Gaussian process whose associ-
ated covariance function was computed from the samples 
and visualised in colour-map representations. Hence, it is 
concluded that a mild solution to the Stochastic Euler–Ber-
noulli Equation in the probability sense has been deduced by 
the designed approach that can be applied to other stochastic 
partial differential equations in the future. In practice, the 

Table 3  Comparison of the values of estimated parameters between 
FEM and FDM for the data at 

t = T

Parameters FEM FDM

�̃� 1.740502 1.740524
�̃� 0.625017 0.625038
𝛽 −0.530752 −0.646000
�̃� 1.083184 0.916860
�̃� 3.277590 3.485483
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engineering safety assessment of a beam structure subject to 
a stochastic disturbance of white noise can be proceeded by 
considering the probability of the long-term deflection at the 
tip being no greater than 1% of the total beam length, that is

which is computed by making use of (30). This value can be 
controlled to satisfy a confidence interval by restoring the 
standard deviation �̄� from (7) which in fact depends on the 
physical parameters from the original equation (1) in the 
non-dimensionalisation. Inversely, some intuitions regard-
ing the requirements of the material properties are obtained.

The result was also compared to that obtained by the 
FEM scheme from which it was revealed that the FD scheme 
is much faster in terms of run time, easier to implement if 
one is coding from scratch and that results are comparable. 
Hence, it can be concluded that for such a simple structure, 
stochastic analysis using the FDM scheme is preferred.

As it relates to a BWT, the standard deviation �̂� can 
inform the design and layout of turbines in a wind farm, 
since it gives an indication of the deflection range. This is 
particularly important because the vortices formed around 
each BWT further affects the other BWTs around it which 
can be beneficial or detrimental to the energy conversion 
depending on layout design. Future studies can be conducted 
to examine the optimum power extraction by studying the 
allowable deflection range which then informs the arrange-
ment of the BWTs in a wind farm.

(44)ℙ(w(y = 1, t = T) < 0.01)

Appendix

A modal composition

By the linear theory in which a separation of variables is con-
ducted, the general solution to (4) can be written as

where ai(t) are the unknowns and �i(y) are the eigenfunc-
tions (also called normal modes) of Euler–Bernoulli equa-
tion for free vibration. These eigenfunctions take the form of

where the coefficients are determined by imposing the 
cantilever boundary conditions and �i are the natural 
frequencies. The first five natural modes are sketched in 
Fig. 12.

By making use of the orthogonality, the ai must satisfy

where ⟨ ⋅, ⋅ ⟩ is an inner product defined by

(45)w(y, t) =

∞∑

i=1

ai(t)�i(y),

(46)
�i(y) = bi cos

√
�iy + ci sin

√
�iy + di cosh

√
�iy + ei sinh

√
�iy,

(47)äi + 𝜔2

i
ai =

⟨𝜙i, q⟩
⟨𝜙i,𝜙i⟩

,

(48)⟨f1, f2⟩ = ∫
1

0

f1(ỹ) f2 (ỹ)dỹ.

Fig. 12  The first five natural 
modes of the beam structure



 Engineering with Computers

1 3

If the load q is y-independent, the right-hand side of (47) can 
be further simplified. In the homogeneous case where q = 0 , 
it can be easily found that ai = sin�it by imposing the initial 
conditions. In practice, the series (45) is truncated after two 
terms for a good approximation.

It is noted that the Green’s function for the second harmonic 
equation (47) is written as

with �(t) being the Heaviside step function, i.e., �(t) = 1 
if t > 0 and zero otherwise. Now, we consider the special 
case where q = �(t) that is a Gaussian white noise only with 
respect to time. By making use of the Green’s function (49), 
then the coefficient ai(t) takes the form of

in which � is the generalised time derivative of a Wiener 
process, i.e., � = dW∕dt , and

with 1 being the unity function. The solution (50) can be 
rewritten in Itô’s sense as

Substituting (52) back into the series solution (45) yields 
the solution of w

It can be readily shown from (5354) that w follows a Gauss-
ian process. The remaining task is to figure out its mean and 
autocovariance function. After some algebra, it is obtained 
that the ai are all zero-mean and the covariance function of 
Ci,j(t1, t2) = �

[
ai(t1)aj(t2)

]
 for t1 ≤ t2 is

We follow to use (55) evaluate the following quantities:

– when i = j , it is obtained that 

(49)G(t) =
sin(�it)

�i

�(t),

(50)ai =
�i

�i
∫

t

0

sin
(
�i

(
t − t�

))
�(t�)dt�,

(51)�i =
⟨�i,1⟩
⟨�i,�i⟩

,

(52)dai = −
�i

�i

sin
(
�it

)
dW.

(53)dw = A(y, t)dW,

(54)A(y, t) = −

∞∑

i=1

�i

�i

sin
(
�it

)
�i(y).

(55)

Ci,j(t1, t2) =
�i�j

�i�j(�
2

i
− �2

j
)

[
�j sin(�it1) cos(�jt2)

− �i cos(�it1) sin(�jt2) + sin(�j(t1 − t2))
]
.

– when t1 = t2 , it is obtained that 

– when t1 = t2 and i = j , the variance of a(t) is found to be 

For computing the autocovariance of w, we approximate 
the solution by truncating the series after two terms, i.e., 
w = a1�1 + a2�2 . Then, the autocovariance function is writ-
ten as

In particular, when t1 = t2 and y1 = y2 , (59) is reduced to the 
variance of w(y, t)

Since �[ai] = 0 , it can be easily deduced that the mean of 
the deflection over time t is zero, that is

We have developed a simple valid theory for predicting the 
mean and the covariance of the unknown w, that has been 
shown to follow a Gaussian process, in the special case 
where the random external force has no spatial variation. 
For the general case where � depends on both y and t, the 
calculation turns out to be tedious, and the solution becomes 
much more complex which makes it impractical for theoreti-
cal estimations. Instead, the regression model, i.e., Eq. (31), 
presented in Sect. () derived from the numerical method 
presented is a preferred alternative.
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(61)�[w(y, t)] = 0.



Engineering with Computers 

1 3

article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Bahadur I (2022) Dynamic modeling and investigation of a 
tunable vortex bladeless wind turbine. Energies 15(18):6773

 2. Bertini L, Cancrini N (1995) The stochastic heat equation: 
Feynman-Kac formula and intermittence. J Stat Phys 
78(5–6):1377–1401

 3. Bertini L, Cancrini N, Jona-Lasinio G (1994) The stochastic 
Burgers equation. Commun Math Phys 165(2):211–232

 4. Cajas JC, Shah S, Houzeauxa G, Yáñez DJ, Mier-Torrecilla M 
(2016) SHAPE project vortex bladeless: parallel multi-code 
coupling for fluid-structure interaction in wind energy generation, 
EU’s Horizon 2020 research and innovation programme. Available 
online at www. prace- ri. eu

 5. Chizfahm A, Yazdi EA, Eghtesad M (2018) Dynamic modeling 
of vortex induced vibration wind turbines. Renew Energy 
121:632–643

 6. Da Prato G, Debussche A, Temam R (1994) Stochastic Burgers’ 
equation. Nonlinear Differ Equ Appl 1(4):389–402

 7. Davari SM, Malekinejad M, Rahgozar R (2019) Static analysis of 
tall buildings based on Timoshenko beam theory. Int J Adv Struct 
Eng 11(4):455–461

 8. Davari SM, Rahgozar R, Maleknejad M (2019) A simple method 
for static analysis of tubular high-rise buildings using Timoshenko 
beam theory. Int J Eng Technol 11(3):563–575

 9. Foda MA, Abduljabbar Z (1998) A dynamic green function 
formulation for the response of a beam structure to a moving 
mass. J Sound Vib 210(3):295–306

 10. Gikhman II, Skorohod AV (1972) Stochastic differential 
equations. Springer

 11. Giosan I, Eng P (2013) Vortex shedding induced loads on free 
standing structures. Structural Vortex Shedding Response 
Estimation Methodology and Finite Element Simulation, 42

 12. Higham DJ (2001) An algorithmic introduction to numerical 
simulation of stochastic differential equations. SIAM Rev 
43(3):525–546

 13. Ortner N, Wagner P (1990) The Green’s functions of clamped 
semi-infinite vibrating beams and plates. Int J Solids Struct 
26(2):237–249

 14. Rajmani A, Guha PP (2015) Analysis of wind & earthquake load 
for different shapes of high rise building. Int J Civ Eng Technol 
6(2):38–45

 15. Stafford Smith B, Coull A (1991) Tall building structures: analysis 
and design

 16. Takabatake H, Kitada Y, Takewaki I, Kishida A (2019) Simplified 
dynamic analysis of high-rise buildings: applications to simplified 
seismic diagnosis and retrofit using the extended rod theory. 
Springer

 17. Tandel R, Shah S, Tripathi S (2021) A state-of-art review on 
Bladeless Wind Turbine. J Phys Conf Ser 1950:012058

 18. Watanabe K (2015) Green’s functions for beam and plate. Integral 
transform techniques for green’s function. Springer, Cham, pp 
139–152

 19. Williamson CHK, Govardhan R (2004) Vortex-induced vibrations. 
Annu Rev Fluid Mech 36:413–455

 20. www. bsc. es

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.prace-ri.eu
http://www.bsc.es

	Response of an Euler–Bernoulli beam subject to a stochastic disturbance
	Abstract
	1 Introduction
	2 Formulation
	3 Numerical scheme
	4 Computational results and analysis
	5 Result verification
	6 Conclusion
	Appendix
	A modal composition
	References


