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A B S T R A C T   

Powder segregation can cause severe issues in processes of pharmaceutical drugs for control of content unifor-
mity if the powder is likely to be free or easy flowing. Assessing segregation intensity of formulated powders in a 
process is challenging at the formulation stage because of the limited availability of samples. An advanced 
segregation evaluation using small bench-scale testers can be useful for formulation decisions and suggestions of 
operation conditions in the process, which has not been practically investigated before. In this study, eight 
formulations (two co-processed excipients blended with one active pharmaceutical ingredient at different ratios) 
were used for the segregation study on two types of bench-scale testers (air-induced and surface rolling segre-
gation tester), and a pilot simulation process rig as a comparative study. The results show that segregation 
measured on the bench-scale testers can give a good indication of the segregation intensity of a blend if the 
segregation intensity is not more than 20%. The comparison also shows that both the bench-scale testers have a 
good correlation to the process rig, respectively, which means either segregation tester can be used indepen-
dently for the evaluation. A linear regression model was explored for prediction of segregation in the process.   

1. Introduction 

Powder segregation in pharmaceutical manufacturing can cause 
serious problems in terms of control of content uniformity (Alyami, 
et al., 2017), which has been recognised for many years (Harnby, 2000). 
For powder-formed medicines such as tablets or capsules, segregation in 
powders leads to a change in the level of active pharmaceutical in-
gredients (APIs), which is crucial to the quality of any medicines that 
require APIs to meet the standards enforced (Deveswaran, et al., 2009, 
Robert, et al., 2022). In a process, powders with significant differences 
in particle size, shape or solid densities can segregate when the powders 
are free or easy flowing, which causes failure in the content uniformity 
control (Velez, et al., 2022, Spahn, et al., 2022). It has been extensively 
studied from batch processes to continuous blending mode with a wide 
range of co-processed drug substances (Erdemir et al., 2023; Jias et al., 
2022). However, powder segregation in a process is complicated due to 
varied material properties, mixing performance, equipment designs and 
operation methods in processes (Engisch and Muzzio, 2016). Previous 
studies particularly focused on the material properties and the blending 
methods (Jakubowska and Ciepluch, 2021, Velez, et al., 2022), but with 
less attention to the segregation in process under different mechanisms 

(Engisch and Muzzio, 2016) and operation conditions. It is hard to 
evaluate the powder segregation in a process directly (Barik, et al., 
2023), but it is important to conduct an assessment before the formu-
lated powder enters the clinical trials, so an adjustment to the formu-
lation can be applied. Evaluation of formulated powders using small 
bench-scale testers could fulfil the purposes, but comparison between 
bench-scale testers and a process has not been investigated before. In 
this study, powder segregation in a direct compression process is 
investigated as a typical example for evaluation of segregation intensity 
in a process using small bench-scale testers. 

2. Powder segregation in a direct compression process 

Moving from a traditional batch process to a continuous process was 
recommended to avoid issues such as segregation in transitions, as 
regulated by the Food and Drug Administration (FDA USA, 2004). Since 
that time, the aim has not changed, which is to promote efficient, agile, 
flexible pharmaceutical manufacturing to produce high-quality drugs. 
However, until now, the pharmaceutical sector is still struggling in the 
transition to meet the target, although the batch process has been tried 
to avoid it practically. It still suffers from either a difficult flow or high 
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segregation of powders in processes (Myerson et al., 2015, Nakamura, 
et al., 2019). 

A typical direct compaction tablet manufacturing process is shown in 
Fig. 1 (Singh, et al., 2016), which shows a combination of milling, 
blending, tablet press processes with an integrated control system. In the 
process, one of the challenges is to make a reliable powder flow without 
losing any control of content uniformity (Engisch and Muzzio, 2016). To 
avoid the flow issues in the process, powders need to be less cohesive 
(Vanarase and Badawy, 2023), however, the powders can segregate if 
cohesiveness of the powder is not enough (Deng, et al., 2021a). For 
easy/free-flowing powders, the powders can segregate in terms of par-
ticle size, shape, and density, while the powders are in movement, such 
as discharging from the blender through a dropping chute (as indicated 
in Fig. 1), and feeding into tabletting dies (Schulze, 2008). The intensity 
of powder segregation in the process can accumulate throughout mul-
tiple stages, and the segregation can be passed to the products at the end 
of production (Oka and Muzzio, 2022). Most of the segregation happens 
at the feeding chute, as shown in Fig. 1. 

2.1. Segregation mechanisms in the direct compression process 

Particulate solids can segregate into different groups in terms of size, 
shape, or true density due to several mechanisms, including five primary 
mechanisms as: trajectory, sifting, air current, fluidization, and surface 
rolling (de Silva, et al., 2000, Hogg, 2009, Jian, et al., 2019). Based on 
particle size, these mechanisms can be classified as: surface rolling 
segregation including trajectory and sifting, air-induced segregation 
including fluidization and air current, and agglomeration segregation 
such as electrostatic (Tang and Puri, 2004). Pharmaceutical powders can 
have more issues because the powders contain more than one ingredient 
and the ingredients have different physical properties (Jaspers, et al., 
2021). As an example of a pharmaceutical process shown in Fig. 1, from 
the blender to the tablet press, three major types of segregation mech-
anisms can occur, out of which two mechanisms are common: air- 
induced segregation (entrainment of air) and surface rolling segrega-
tion (sifting segregation). Segregation caused by electrostatic charges 
(known as agglomeration segregation) can also play a significant role. If 
any of the ingredients in a formulation is highly chargeable, segregation 
due to electrostatic charge can be significant. Different segregation 
mechanisms may have different contributions to the total segregation 

intensity of the powders. 
Air-induced segregation of powders is a separation of particles 

caused by the aerodynamic influence (Jaklič, et al., 2015). This type of 
segregation can be caused by, either air fluidisation or air elutriation. In 
an air stream, fine particles may migrate easily to a different location 
compared to coarse particles. Also, different-sized particles have 
different responses to the counterflow of air, and the air drag effects are 
different. As a result, fines can be removed easily from original mixture 
and redeposited, more likely on the top of the powder bed. Therefore, 
this type of segregation has more effects on fines, because of the small 
mass of the particles and the high influences of the air drag force. 

Surface rolling segregation is particle reclassification during particle 
movement on an inclined surface of powder bed, where big particles can 
gain a high moving velocity and stop at the far end of the bottom 
(Drahun and Bridgwater, 1983). This type of segregation is mainly 
influenced by the size difference, the shape and the density difference, 
also the frictions between the particles (Mateo-Ortiz, et al., 2014). Fine 
particles are smaller and cohesive, which are likely to percolate in the 
voids and stop quickly, but the coarse particles can move further. So, the 
intensity of rolling segregation is subject to the mobility of coarse 
particles. 

Powder segregation in a process can be complex and can suffer from 
multiple mechanisms. In case of the process in Fig. 1, three types of 
segregation can be identified, and the total segregation in the process 
could be a combination of these types of segregations acted. 

2.2. Influential factors on the powder segregation 

The factors influencing powder segregation in a process can be var-
iations in material properties, equipment design and operational 
methods, etc. (Jakubowska and Ciepluch, 2021). The powders, including 
APIs and excipients can be significantly different in terms of size, shape, 
and true density. If any of the ingredients are non-cohesive, the intensity 
of powder segregation can increase considerably. 

Beside the material properties, design of equipment can be a signif-
icant influential factor for powder segregation in a process such as drop 
height and geometry. The feeding system of a direct compression pro-
cess in pharmaceutical industry can have different types of design. For 
example, as shown in Fig. 1, the feeding system can consist of a blender, 
a rotary feeder, a dropping chute, a sampler and a connection dropping 

Fig. 1. Flowsheet of direct compaction tablet manufacturing process (Singh, et al., 2016).  
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chute to a feeding hopper of tabletting press machine. In this case, 
blended powders can segregate in a few stages, including inside the 
dropping chute, in the sampler fitted in the chute, the connection chute, 
in the tablet press feeding hopper and in the tabletting die, which is not 
shown in the figure. In terms of the segregation risks in the process 
described here, the risk level of the segregation and the mechanisms are 
classified as likely to be appeared from low to high, as shown in Table 1, 
including air-induced, surface rolling and electrostatic segregations 
(Tang and Puri, 2004). 

Operation methods also have a significant impact on powder segre-
gation at any stage of a process whether it is a continuous process or a 
batch process (Karttunen, et al., 2019). For example, as shown in 
Table 1, the powder segregation in tablet press can be influenced by the 
feeding frequency and the feeding rate of the blended materials from the 
feeder. 

2.3. Segregation indices used in this study 

Segregation index (SI) is defined as a statistical number of standard 
deviations, variances, or variation coefficients of compositions in a 
mixture, which quantifies the variations of the species of interest from 
the homogeneously blended to segregated powder. Many segregation 
indices have been introduced previously (Dai, et al., 2020). One of the 
most common indices is the Lacey index (Lacey, 1954), which is defined 
based on the variance of number fraction of the target particles. The 
limitation of Lacey index is determining the uniformity of the particle 
sizes in the mixture without consideration of time sequence or space 
dimensions. For pharmaceutical blends in the material handling process, 
it is important to monitor the proportionate variation from the intended 
content of a component (API) in time sequence or space dimensions. For 
this purpose, a new SI was introduced using a variation ratio of the 
cumulative volumetric concentration of fine particles at a certain par-
ticle size, as shown in Eq. (1) (Deng, et al., 2021b). 

SIs(i) =

(
Ci − Co(i)

Co(i)

)

× 100% (1)  

where Ci is an accumulated volumetric concentration of fines after 
segregation at the size i and Co(i) an accumulated volumetric concen-
tration of fines in the original material at the size i before the segrega-
tion. The size i is the upper limit of the accumulated concentration. 

The SI can be calculated up to any particle size interested. 
Commonly, the SI in Eq. (1) at the particle size of D50 for various loca-
tions can be expressed as Eq. (2). 

SID50(i) =
ΔCD50(segregated between locations)

CD50(virgin)
× 100% (2)  

where ΔCD50 is the difference between the concentrations of fines at the 
size of D50 between two locations after segregation, and CD50 is the 
concentration of fines at the size of D50 for the virgin material. The SI can 
also be calculated in a single size fraction using the concentrations in the 
size fraction before and after segregation, as shown in Eq. (3). 

SIs(i) =
ΔCi(Segregated between locations in a size fraction)

ci(virgin in the size fraction)
× 100%

(3)  

where ΔCi is the difference of the volumetric concentrations of the 
particle in the size fraction i between two locations after segregation. Ci 
is the concentration at D50 of the virgin material. 

2.4. Segregation harshness factors 

The contribution from different segregation mechanisms in a process 
is hard to evaluate. The difficulty is that segregation in a process can be 
influenced by many mechanisms, for example, the equipment design 
may lead to different levels of air-induced or surface rolling segregation. 
Also, operation conditions can change the levels of powder segregation 
in the process. On the other side, the segregation intensity of a powder 
blend based on material properties can be assessed easily using a stan-
dard bench-scale tester if the formulated powder is available even with a 
small quantity of the APIs that is enough for making the samples. 

Generally, it is impossible to take a direct measurement of the pro-
posed process for all formulations interested. If the contribution from 
each of the segregation mechanisms can be evaluated using a bench- 
scale tester, harshness of the segregation in a process could be repre-
sented as a function of contributions of each or a combination of 
different segregation mechanisms with a harshness factor (Fh) as in Eq. 
(4). The contribution of the segregation mechanism for a powder can be 
tested on a corresponding bench-scale tester. 

SIp(i) = f (Fh⋅SIs(i)) (4)  

where SIp(i) is the segregation intensity of a powder in a process, Fh is the 
harshness factor of a segregation mechanism in the process, and SIs(i) is 
the segregation intensity of the powder based on the segregation 
mechanism. To explore the segregation harshness in a process shown in 

Table 1 
Segregation risks of powders in a direct compression process.  

Table 2 
A list of the formulations studied and suppliers of the materials.  

Code Materials & Compositions Grade Supplier 

AD Acetaminophen Dense API Mallinckrodt Pharma 
EasyTab Prosolv® EasyTab SP CPE JRS Pharma 
Ludipress Ludipress® LCE CPE BASF Pharma 
AD40P 40% AD + 60% EasyTab Formulation – 
AD20P 20% AD + 80% EasyTab Formulation – 
AD10P 10% AD + 90% EasyTab Formulation – 
AD05P 05% AD + 95% EasyTab Formulation – 
AD40L 40% AD + 60% Ludipress Formulation – 
AD20L 20% AD + 80% Ludipress Formulation – 
AD10L 10% AD + 90% Ludipress Formulation – 
AD05L 05% AD + 95% Ludipress Formulation –  
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Eq. (4), eight formulation blends based on one API and two excipients 
were used in this study on a dedicated designed pilot-scale process rig 
and then compared to two types of bench-scale testers for air-induced or 
surface rolling segregation. 

3. Materials and methods 

3.1. Materials and formulations 

One API and two Co-Processed Excipients (CPEs) were used to form 
eight formulations at different mixing ratios, as shown in Table 2. The 
API/CPEs were supplied by various suppliers, as shown in Table 2, with 

the material codes used in the analysis and corresponding names with 
their formulations. Because of availability and safety, acetaminophen 
dense is selected for this study as a typical API material which is a widely 
used nonprescription analgesic and antipyretic medication for mild-to- 
moderate pain and fever. A CPE used to be a combination of two or 
more excipients obtained by physical co-processing that does not lead to 
the formation of covalent bonds (Bhatia, et al., 2022). Because of the 
functionalities that are not achievable through sample blending, 
nowadays CPEs are widely used in many pharmaceutical products to 
avoid complicated blending process (Mamatha, et al., 2017, Zhao, et al., 
2022). A mixture of an API and a CPE will be more representative for 
practical applications and simple for the study. In this study, CPEs used 
are the Ludipress® and the Prosolv® EasyTab SP. Ludipress® Polymer is 
a mixture of Lactose monohydrate (93%), Kollidon® 30 and Kollidon® 
CL supplied as white, free-flowing granules. PROSOLV® EASYtab SP is a 
lubricant-coated high functionality excipient composite, which is 
comprised of four individual components: a binder/a filler, a glidant, a 
super disintegrant, and a lubricant as Microcrystalline Cellulose (96%), 
Colloidal Silicon Dioxide, Sodium Starch Glycolate, and Sodium Stearyl 
Fumarate. 

3.2. Material characteristics 

Characteristics of the materials and the formulations studied are 
given in Table 3, which include particle sizes at D10, D50 and D90 (volume 
% measured on a Malvern MasterSizer 3000) and other physical prop-
erties, including size span, and angle of repose (AoR) measured using a 
heap on the flat surface created by a fixed funnel according to ASTM 
C1444-00. Particle size span is defined in Eq. (5) to demonstrate the 
particle size range that can significantly influence the powder flow. 

Sspan = (D90 − D10)/D50 (5)  

where, D50 represents the particle size where the percentage of powder 
is less or equal to 50% in volume. D10 and D90 are the sizes where 10% 
and 90% of the powder are below the size, respectively. 

Table 3 
Material physical properties of the ingredients and the formulations.  

Code Particle Size (μm) Size Span 
(D90-D10)/ 
D50 

AoR 
(̊) 

D10 D50 D90 

AD 5.9 ± 0.3 38.0 ± 2.0 177.0 ± 2.0  4.50 53.1 ±
0.8 

EasyTab 38.0 ±
1.0 

122.0 ±
3.0 

246.0 ± 9.0  1.70 37.4 ±
0.9 

Ludipress 43.0 ±
0.8 

161.0 ±
6.0 

491.0 ±
30.0  

2.78 36.2 ±
0.3 

AD40P 12.5 ±
0.2 

79.0 ± 0.9 198.0 ± 2.0  2.35 51.3 ±
1.0 

AD20P 21.5 ±
0.4 

98.6 ± 0.3 226.4 ± 0.8  2.08 49.3 ±
0.5 

AD10P 26.4 ±
0.2 

106.0 ±
1.0 

232.0 ± 8.0  1.94 42.3 ±
0.5 

AD05P 31.0 ±
0.4 

111.0 ±
1.0 

229.0 ± 3.0  1.78 38.8 ±
0.3 

AD40L 12.6 ±
0.6 

85.0 ± 5.0 294.0 ±
10.0  

3.32 48.8 ±
0.8 

AD20L 21.0 ±
0.3 

119.0 ±
3.0 

411.0 ±
15.0  

3.28 44.2 ±
0.2 

AD10L 26.2 ±
0.6 

129.0 ±
5.0 

420.0 ±
20.0  

3.05 37.1 ±
0.6 

AD05L 36.7 ±
0.3 

160.0 ±
3.0 

490.0 ± 9.0  2.83 35.6 ±
0.3  

Fig. 2. (a) Air-induced segregation tester, (b) Surface rolling segregation tester.  
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3.3. Experimental methods 

3.3.1. Bench-scale segregation testers 
Air-induced segregation of the formulated blends was studied on a 

fluidization segregation tester (ASTM D6941) built at the Wolfson 
Centre, as shown in Fig. 2(a). The air-induced segregation tester consists 
of a feeding hopper to allow the powder sample to be fed from the top, a 
vertical sectional column made from acrylic, and an air supply chamber 
at the base fitted with a permeable membrane. The column has 3 sec-
tions, each section is 31 mm in height and 24 mm in diameter, plus a top 
and a bottom section. A controlled airflow (about 5 L/min to 10 L/min 
depending on test materials) is introduced from the air chamber at the 
base of the column to the powder in the test column at a fluidization 
condition (just above the minimum fluidized air velocity) for one min-
ute. The air was stopped gradually to allow particles to settle. The 
hopper and the upper section were cleaned of any spouted fines. The test 
sections were emptied into sample containers (approximately 7 g in each 
section). The experiments were undertaken under ambient conditions at 

temperature of 20 ◦C and 40–60% Relative Humidity (RH). In this study, 
5 sample sections were used, which are named Top, Top Centre, Centre, 
Bottom Centre and Bottom section, as shown in Fig. 2(a). 

Surface rolling segregation tests were undertaken on a surface rolling 
segregation tester (Bridle, et al., 2004), as shown in Fig. 2(b), which can 
quantify segregation intensity in a heap formation where particles 
segregate due to surface rolling (including percolation) mechanism. The 
segregation tester consists of a cubic mixer and an adjustable inclined 
trough. In this study, the cubic mixer was not in use because some of the 
blends were cohesive and not suitable for the cubic mixer. In the ex-
periments, the samples were blended in a tumble blender, as described 
in Section 3.3.3. The sample was discharged using a screw feeder at 
about 15 g/s feed rate with a drop height of about 10 cm above the first 
compartment (the same height as the cubic mixer outlet). The trough 
was placed at an angle equivalent to the angle of repose (AoR) for the 
powder to create a smooth and consistent heap of powder. The sample 
formed a slope of a heap with segregated patterns. Six equally sized 
compartments by sliding gates were discharged individually, and the 

Fig. 3. (a) Sketch of a simulation pilot rig at the Wolfson Centre, and (b) a photo.  

Fig. 4. Photo of the tumble blender (a) and 5 sampling points for analysis (b).  
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sample was collected for further analysis. The section is named from top 
to bottom of the trough, as shown in Fig. 2(b). The trough is about 380 
mm long, and the cross-section is 55 mm wide by 55 mm high. A sample 
of approximately 0.5 L bulk material was used for the test. All test 
samples were subdivided using a mechanical riffler splitter, so appro-
priate samples (about 10 g) could be obtained for size analysis to 
minimise random errors. Duplicate segregation tests were repeated. 

3.3.2. Pilot simulation rig at the Wolfson Centre 
To study powder segregation in direct compression process of 

pharmaceutical formulations, with Roche’s support an industrial scale 
simulation facility was constructed at the Wolfson Centre for segregation 
assessment in process. A sketch of the rig (not in scale) without the 

sampling section is shown in Fig. 3(a), and a photo of the pilot simula-
tion rig with the sampling section is shown in Fig. 3(b). 

The pilot simulation rig was designed according to a practical design 
in industry, including a blender, a feeding hopper, a rotary valve, and a 
dropping chute replicating a sampling device used in practice. The rig 
simulates a feeding section for direct compression process of multiple 
blended batches. The drop height of the chute is about 1.06 m with an 
inclined section of about 0.27 m in length and 45◦ degree located in the 
middle of the chute. The pipe diameter is 50 mm. Five sampling points at 
the top and the bottom of the 4 samplers (0.5 m in total) are used for the 
segregation check, which is named as Top, Top Centre, Centre, Bottom 
Centre, and Bottom, as indicated in Fig. 3(b). 

Fig. 5. (a) The method of the SI calculated at the D50 of the blend, (b) The SI calculated at the D50 for the EasyTab only at the five sampling points.  
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3.3.3. Sample blending 
A tumble blender was used for blending the samples, as shown in 

Fig. 4(a), which was closely based on a common design used in phar-
maceutical manufacturing and had a total working capacity of about 2 L. 
However, for sample mixing, every time, only about 0.5-litre sample was 
mixed in one sample preparation. In the blending process, sample 
powders were mixed at a rotational speed of 50 rpm for about 23 min for 
all blending processes. For validation of homogeneity, samples were 
taken from five different sampling points in the blender for measure-
ments of Particle Size Distributions (PSDs), as shown in Fig. 4(b). The 
averaged result of the PSDs was used as the data for virgin samples in the 
calculation of the SI. 

3.3.4. Particle size analysis 
Particle size distributions (PSDs) were measured using the laser 

diffraction method (Malvern Mastersizer 3000). About 7–10 g sample 
taken from the segregation tests was introduced into a dry dispersion 
unit and formed five repeated measurements. For the measurement 
settings, the air dispersion pressure was 2.5 bars with a vibration feed 
rate of 40% at a gate gap of 1.5 mm for all the tests. The particle volume 
distribution was calculated using the ‘general-purpose model’ in the 

Mastersizer software. PSD of each sample was measured with all the 
repeats, and the average with standard deviation was reported and used 
for data analysis. With this method, volumetric concentrations of the 
PSDs were given, and particle sizes at D10, D50 and D90 were also found. 

3.3.5. Averaged and maximum SI 
In this study, the SI is calculated based on the median size of a virgin 

blend (D50) and a segregated sample of the blend. The procedure is 
exemplified in Fig. 5(a) for the formulation with 5% AD and 95% 
Ludipress, which has the D50 of 160 μm. The dotted blue line indicates 
the volumetric concentration of the virgin at the D50, which is about 
47.7%. In contrast, the plain blue line corresponds to the volumetric 
concentration of the segregated material at the D50 is about 53.1%. Thus, 
the SID50 for this sample is about 11.3%, calculated using Eq. (1). 

The SID50 have been calculated for the segregated materials in the 
five regions (Top, Top Centre, Centre, Bottom Centre, and Bottom) of the 
pilot rig and bench-scale testers. An average, and a maximum SI can be 
calculated according to Eq. (6) and (7) using the SI values in the different 
regions, as shown in Fig. 5(b) for the process rig. In this example, the 
values for the average and the maximum SI are 4.7% and 15.6%, 
respectively. 

Fig. 6. Segregation Index at the 5 sampling points for the EasyTab and the formulations on: (a) the air-induced segregation tester and (b) the surface rolling 
segregation tester. 
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SIavg =
1
n
∑n

i=1
|SIi|(n = 5as5positions) (6)  

SImax = |Max(SIi) − Min(SIi) | (7)  

4. Results and discussion 

For this study, two CPEs and eight formulations formed with one API 
(Acetaminophen Dense) and the CPEs were used for segregation study 
on bench-scale tests and a pilot simulation process test rig. The results on 
the bench-scale testers and the pilot simulation rig are compared for 
correlation determination. 

4.1. Segregation tests on the bench-scale testers 

The results of the SI at the sample positions of Top, Top Centre, 
Centre, Bottom Centre, and Bottom (see Fig. 2) for the air-induced and 
surface rolling segregation tests are shown in Figs. 6 and 7, for the 

formulations formed with Prosolv® EasyTab and Ludipress®, respec-
tively. The SI for the CPE only is also included in the results. 

From the results, it is hard to differentiate the air-induced segrega-
tion tester and surface rolling segregation tester, although the segrega-
tion mechanisms for the testers are different. The results in Fig. 6 show 
the same trend of the segregation in terms of sample locations, where the 
fines are enriched in the top section and deficient in the bottom section, 
if the powder or the formulation is less cohesive in nature. With an 
increased API content, the materials tend to become more cohesive, 
resulting in less segregation. However, further increased API content 
does not prevent the segregation completely, but it tends to lose some 
fine contents in all the sections. This is because, sometimes, that could be 
significant due to other segregation mechanisms, such as electrostatic 
charge, which has not been evaluated here. 

The results in Fig. 7 are for the Ludipress and the formulations, which 
show a similar tendency as the formulations of the EasyTab, but a much 
stronger effect of the segregation. For the Ludipress and the formula-
tions, the levels of segregation for the two testers are also similar, but 
air-induced segregation is slightly higher than the surface rolling 

Fig. 7. Segregation Index at the 5 sampling points for the Ludipress and the formulations on: (a) the air-induced segregation tester, and (b) the surface rolling 
segregation tester. 
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segregation. Compared the CPEs, the Ludipress has a wider particle size 
range and less cohesiveness. The material properties for the CPEs also 
strongly influence the material properties of the formulations. As shown 
in Table3, the Ludipress contains quite significantly large particles with 
a D90 of 491 μm, compare to the EasyTab which has a D90 of 246 μm. 
However, they have a similar angle of repose (37.4◦ for EasyTab and 
36.2◦ for Ludipress). 

4.2. Segregation tests on the pilot simulation rig 

The CPEs and the formulations have been tested on the pilot simu-
lation process rig. Taking the samples at the five location points (shown 
in Fig. 3(b)), the PSD of the samples was measured, and SI at the sam-
pling points was calculated according to the virgin sample prepared. The 
results of the segregations for the pilot simulation rig are shown in Fig. 8 
in terms of the CPE used in the formulations. 

The results show a clear decreasing trend of the segregation in the 
process rig, when the content of API is increased, and the powder be-
comes more cohesive. Compared to what has been seen on the bench- 

scale testers, the segregations are much similar, but the behaviour of 
the Ludipress formulations is different (Fig. 8(b)). For the Ludipress and 
the formulations, in the process, it loses fine particles in the top section 
rather than accumulating the fines (as the SI is a negative number, which 
means the percentage of fines is reduced). This could be due to a 
stronger effect of electrostatic charge for Ludipress where the fines 
which contains more charge are easily coated onto the metal surface of 
the equipment, and the fines removed from the blends are remained on 
the equipment surface. It is noticed that from Table 3 the API (Acet-
aminophen Dense) is much finer than the CPEs. If the CPE contains more 
charges, the charges can easily be passed to the API material and then 
influence the segregation of the formulations. 

Also, the Ludipress has a large size range compared to the EasyTab, 
so more segregation found in the formulations of Ludipress but not as 
much as that found in bench-scale testers. 

4.3. Influences of size span and angle of repose 

The SIavg of the CPEs and formulations on the bench-scale testers are 

Fig. 8. Segregation Index, SID50 at the five sampling points on the pilot rig for (a) the EasyTab and the formulations, and (b) the Ludipress and the formulations.  
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calculated using Eq. (6), which are compared with the particle size span 
(using Eq. (5) and the angle of repose measured. The results in Fig. 9(a) 
show the influences of particle size span clearly, but it is hard to 
correlate them. Normally, a higher size span gives a higher risk of 

particle segregation, but it really depends on the cohesiveness of the 
powders. The angle of repose for a powder can represent the cohesive-
ness of the powder. The results in Fig. 9(b) show a sharp drop of the 
segregation when the angle of repose reaches about 37–38◦, which is 
slightly bigger than the value obtained in the previous work (about 
33–34◦) (Deng, et al., 2021b). 

4.4. Comparison between the bench-scale testers and the process rig 

The segregation indices SIavg and the SImax of the CPEs and formu-
lations on the bench-scale testers and on the pilot simulation rig using 
Eq. (6) and (7) are shown in Table 4. The standard deviation of the SI for 
each bench-scale tester point can be found in Fig. 10. 

The comparison of the SI measured on the testers and the process rig 
used in this study is shown in Fig. 10. A good agreement is observed 
between the bench-scale testers and the process rig for the SIavg lower 
than 5% and the SImax less than 20%. Also, it is almost a linear rela-
tionship between the small bench-scale testers and the process rig. For 
the measurements using the bench-scale testers, the SIs measured are 

Fig. 9. The averaged SIavg measured on the bench-scale testers versus (a) size span of particles, (b) the angle of repose for all formulations and CPEs.  

Table 4 
Segregation index measured for the CPEs and the formulations studied.  

Materials Surface Rolling Seg. Air Induced Seg. In the Pilot Rig 

SIavg SImax SIavg SImax SIavg SImax 

EasyTab  5.5%  18.2%  4.2%  16.7%  4.7%  15.6% 
AD05P  3.0%  9.0%  3.3%  12.5%  2.3%  6.9% 
AD10P  2.1%  8.0%  2.1%  6.1%  2.6%  7.0% 
AD20P  1.5%  2.2%  1.4%  3.6%  0.9%  0.8% 
AD40P  3.4%  2.8%  2.2%  5.0%  1.8%  4.4% 
Ludipress  19.8%  57.9%  18.9%  57.9%  8.7%  21.1% 
AD05L  17.2%  38.2%  11.8%  41.4%  6.5%  20.7% 
AD10L  4.4%  12.8%  7.4%  23.1%  4.0%  11.9% 
AD20L  2.7%  5.1%  1.5%  6.0%  2.1%  5.9% 
AD40L  0.8%  2.0%  0.1%  5.3%  1.5%  4.1%  
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only subject to the materials properties without the influence of the test 
equipment. However, in the process rig, the segregation intensity of a 
powder is limited to a constant level due to limited kinetic energy 
applied to the powder. It is thought that with the solids flow rate used 
the drop height is not enough to produce aerodynamic effect on the 
powders, so the segregation intensity is limited even if the material is 
more segregable. This phenomenon is clearly shown for the maximum 
segregation index shown in Fig. 10(b), where the SImax in the pilot rig is 
limited to about 20% for the powders, while the SImax is higher than 20% 
as measured in the bench-scale testers. 

By taking the range of the SImax < 20% in Fig. 10(b), a linear cor-
relation of the SImax is recognised between the bench-scale testers and 
the process rig (see Fig. 11), although a lot of scatters of the data to the 
fitted line are shown. It shows the bench-scale testers give a slightly 
higher measured segregation compared to the process rig overall by the 
gradient of the fitted lines. This can be because the segregation of 
powders in a process may suffer from different types of segregation or a 
combination of different mechanisms. Nevertheless, the results in 

Fig. 11 indicate that powder segregation in a process can be evaluated by 
a small bench-scale tester, whatever the segregation mechanism is. 
However, there could be a combination of different mechanisms. 

Taking the data in Table 4, the correlation coefficients of the SIs 
between the bench-scale testers and the pilot simulation rig are obtained 
and shown in Table 5. It shows that the correlations between the bench- 
scale testers and the pilot simulation rig are strong, and always over 
90%. The results in Fig. 10 (a) show that both the bench-scale testers 
give almost identical correlations to the process, although the powder in 
a process can suffer from multiple types of segregation. Thus, the bench- 
scale testers can be used for the segregation assessment of a process 
individually. 

4.5. Linear regression model for segregation mechanisms 

The results in Fig. 11 highlighted that there is a possibility to develop 
a predictive model for a process using harshness factors in Eq. (4) based 
on the segregation mechanisms. Taking the assumption as a linear 

Fig. 10. (a) The SIavg and (b) the SImax measured on the bench-scale testers versus the SIavg and the SImax on the pilot process rig, for all formulations and CPEs.  
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regression, the Eq. (4) can be expressed as: 

SIp = Fh(0) +Fh(sr)⋅SIs(sr) +Fh(ai)⋅SIs(ai) (6)  

where SIp is a segregation level in a process, Fh(0) is the constant harsh 
level of segregation in the process, Fh(sr) is the harshness factor for the 
surface rolling segregation, and Fh(ai) is the harshness factor for the air- 
induced segregation. Using the method of least squares for multiple 
regression for the data shown in Table 4, the harshness factors in Eq. (6) 
can be obtained as 0.0133 (Fh(0)), 0.1369 (Fh(sr)) and 0.2537 (Fh(ai)) 
respectively for the averaged SI. The Eq. (6) can be expressed as: 

SIp = 0.0133+ 0.1369⋅SIs(sr) + 0.2537⋅SIs(ai) (7) 

The statistical analysis of this model is shown in Table 6: 
Using the model of Eq. (7), the predictions of the SIp based on the 

measured SI for surface rolling and air-induced segregation are 
compared to the measurements for the averaged SI of the process rig. 
The line fit plot of the predictions is shown in Fig. 12 compared to the 

measurements, which shows that the model can give a good prediction if 
multiple linear regression is used. The correlation coefficient (R2) be-
tween the predictions and the measurements is 0.977. The standard 
error of the predictions is about 5.2%. The predicted SIp values based on 
the measured SI on the bench-scale testers are directly compared and 
shown in Fig. 13. 

The model shows some significant errors in the predictions of the 
EasyTab only and the blends with a high ratio of API. Particularly for 
EasyTab and the AD20P formulation, the errors of predictions are about 
33% and 52% respectively. For the Ludipress and the blends, the pre-
dictions are very good to match the experimental results. It reveals that 
the concept of harshness factors and the model may work subject to the 
material and the process. In this study, the linear regression model 
works well with Ludipress and blended formulations, but the model 
shows more significant errors for the predictions of EasyTab and blends. 
Also, it is noticed that the coefficients for the mechanism factors are 
about 0.14 and 0.25, which means the mechanism factors may not be so 
important as the material properties. 

5. Conclusions 

Segregations of eight formulated pharmaceutical powders were 
studied using two types of small bench-scale testers (air-induced and 
surface rolling segregation) and a pilot simulation process rig for a direct 
compress process. 

Fig. 11. Comparison of the SImax between the process rig and the bench-scale 
tester for the formulations where the SImax is less than 20%. 

Table 5 
Correlation coefficients of the SIs between the testers and the process rig.   

Average SI Maximum SI 

Rolling Air- 
induced 

Pilot 
rig 

Rolling Air- 
induced 

Pilot 
rig 

Rolling 1   1   
Air- 

induced 
0.9309 1  0.9771 1  

Pilot rig 0.9145 0.9420 1 0.9050 0.9001 1  

Table 6 
Statistic analysis of the segregation harshness model in the process.  

Regression Statistics 

Multiple R R Square Adjusted R Square Standard Error Observations 

0.9882 0.9765 0.8654 0.0068 10  

ANOVA        

df SS MS F Significance F  

Regression 1 0.01742 0.0174 373.36 5.3403E-08  
Residual 9 0.00042 4.667E-05    
Total 10 0.01784       

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 
Intercept 0 N/A N/A N/A N/A N/A 
Prediction of Rig 1 0.0518 19.322 1.23E-08 0.8829 1.1171  

Fig. 12. Line fit plot for the averaged SIp between the measurements on the 
process rig and the prediction from the model of Eq. (7) for the formula-
tions tested. 
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The results show that the segregation intensity measured by segre-
gation index on the bench-scale testers is linearly correlated to that in 
the process if the maximum segregation index (SImax) for the powders is 
less than 20%. The correlation coefficients of the segregation intensity 
between the bench-scale testers and the process are all higher than 0.9. 
Therefore, it can be concluded that either of the small bench-scale testers 
can be used for the evaluation of powder segregation in a process. 

Also, it shows that the segregation in the process does have a limit for 
the powders with high segregation intensity on the small bench-scale 
testers (SImax > 20%). This is believed that the powder with high 
segregation intensity on the small bench-scale testers cannot gain 
enough kinetic energy in the process, so the segregation of the powder is 
limited to a constant level of segregation intensity in the process even if 
the powder has a high segregation intensity on the small bench-scale 
testers. The bench-scale testers measure the segregation intensity of a 
powder only based on material properties. 

For the powders, a consistent linear relationship was obtained be-
tween the bench-scale testers and the process equipment regardless of 
the segregation mechanisms. Based on the segregation harshness factors, 
a linear regression model was developed to predict the segregation in a 
process. The model shows good predictions, but some large errors for the 
EasyTab and the AD20P formulation. Correlation analysis shows that the 
segregation mechanisms do not play an important role in the segregation 
of a process, although the powders can suffer from multiple types of 
segregations in the process, such as air-induced and surface rolling 
segregation. This study indicated that any of the small bench-scale tes-
ters could provide an advanced segregation evaluation for formulated 
powders in processes. 
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