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A B S T R A C T   

Rising air temperatures are the main reason for the expected reduction in land suitability for 
coffee cultivation under climate change in Central America. One of the reasons farmers use shade 
trees is to create a cooler microclimate in coffee plantations located in warming areas; therefore, 
adjusting the shade levels could alleviate future high temperatures. Even though data on expected 
climatic changes are available, no studies have addressed the cooling potential of shading in 
coffee production systems. In this study, we use regional climate information (RCP 4.5) and a 
simple shade model to explore the potential of shading as an adaptation practice in the coffee 
areas in Central America. A model was developed to estimate the required shade levels for Coffea 
arabica L. based on mean air temperature. Modeled and observed shade data were compared. 
Results indicate that compared to 2000, an overall increment of 23 ± 18% of shading would be 
required to alleviate the warming conditions by 2050. The shading will be more beneficial to 
coffee areas at medium and high altitudes than to areas at low ones. Also, the number of coffee 
areas that require dense shade levels (shading > 60%) may double by 2050. This would lead to a 
boost in tree biomass (carbon content) but also increase the competition for the coffee plants and 
consequently affect coffee yields. Trade-offs between adaptation, mitigation, and productivity 
objectives are expected in the coffee areas in the future.   

1. Introduction 

Coffee is part of many people’s daily routines worldwide and provides livelihoods for farmers and communities in producer 
countries (Eakin et al., 2012). Coffee-producing countries on the American continent contribute more than half of worldwide pro-
duction, and most of these countries have a recognized coffee quality profile in the international market (Wilson et al., 2012; Sepúlveda 
et al., 2016). Over the last decades, however, coffee farmers in Central America have experienced recurrent crises due to low market 
prices, rising production costs, and pests and disease problems such as outbreaks of coffee rust (Avelino et al., 2015; Bacon, 2005; 
PROMECAFE, 2018). In addition, climate change has become a major risk that is expected to lead to a decrease in the area suitable for 
coffee production and, consequently, negatively affect the sustainability of coffee systems in most producer countries (Byrareddy et al., 
2021; Gay et al., 2006; Lara-Estrada et al., 2021; 2017; Pham et al., 2019; Schroth et al., 2014). 

Until 2100, simulations of the representative concentration pathway (RCP) scenario 4.5 project rising temperatures between 2.5 
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and 3.5 ◦C in most interior areas of Central America, and less precipitation in low-altitude coastal regions (Lyra et al., 2017). Most of 
the temperature changes are expected to occur in the middle of the century (Knutti and Sedláček, 2012). Since most coffee plantations 
are located inland at medium and high altitudes, rising temperatures are considered the main driver of decreasing climatic suitability 
for coffee production (Gay et al., 2006; Lara-Estrada et al., 2021). Identifying, evaluating, and promoting farming practices that 
alleviate the impacts of higher temperatures should be prioritized (Smith et al., 2014). Agroforestry is one of these practices (van 
Noordwijk et al., 2014; IPCC, 2014). The shade of trees modifies air temperature, wind speed, and relative humidity (Jose et al., 2004; 
Siles et al., 2010). Agroforestry can also help to improve physical and chemical soil properties, reduce soil losses, and diversify in-
comes. The trees in the coffee agroforestry system thus offer multiple benefits to farmers (Nair, 1993; Ombati et al., 2022; Somarriba 
1990; Staver et al., 2013). In Central America, agroforestry systems are mainly used in coffee plantations at lower and medium al-
titudes to mitigate high temperatures. At higher altitudes, shading requirements are lower, and full-sun coffee systems are used. There 
are other benefits of shade trees, such as improvement of soil conditions and coffee quality (Beer et al., 1998; Muschler, 2001), but 
there are also potential drawbacks, such as an increased occurrence of fungal diseases due to (over)shading if weather and farming 
management are inadequate (Durand-Bessart et al., 2020; Villarreyna et al., 2020). 

Studies have reported reductions in air temperature due to shading in coffee systems (Barradas and Fanjul 1986; Siles et al., 2010; 
Souza et al., 2012). However, few studies have attempted to look at the cooling effect of shading (Lin and Lin 2010; van Oijen et al., 
2010). One study examined the benefits of shading in 2050 using a fixed shade value of 50% for coffee areas at different altitudes in 
Brazil (Gomes et al., 2020). However, the shade levels for coffee plantations need to be adjusted depending on altitude, responding to 
changes in the local warming conditions (Muschler 2001). In this study, we explore the potential of the cooling effect of shading as an 
adaptation strategy to temperature increases. We estimated the shade levels according to the local warming conditions in coffee areas 
(Coffea arabica L.) in Central America for the years 2000 and 2050 (RCP 4.5). 

2. Material and methods 

2.1. Study area 

The study area corresponds to the coffee areas in Nicaragua, which are located in the Pacific and Northcentral zones in the country 
(Fig. 1 (CATIE and MAGFOR, 2012)). Pacific coffee areas are located at lower altitudes with low to flat slopes and drier and warmer 
conditions than the areas located in the mountainous Northcentral zone (FAO, UNESCO, 1975; Hidalgo et al., 2017; Taylor and Alfaro, 

Fig. 1. Coffee areas in Nicaragua (CATIE and MAGFOR, 2012).  
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2005). Overall, the study area is representative of other coffee areas in Central America (Bornemisza et al., 1999; Lara-Estrada et al., 
2017). 

2.2. Shade functions 

The optimal mean air temperature for coffee is around 20 ◦C, values above or below this temperature first become suboptimal and 
then unsuitable for coffee (DaMatta and Ramalho, 2006; Descroix and Snoeck, 2004; Montoya-Restrepo et al., 2009; Siles et al., 2010). 
Compared to unshaded conditions, shade trees in coffee agroforestry systems can reduce the air temperature by 1 to 5 ◦C, depending on 
the shading level (Barradas and Fanjul, 1986; Fanjul et al., 1985; Garedew et al., 2017; Mariño et al., 2016; Morais et al., 2006; Righi 
et al., 2008; Souza et al., 2012). The model Agroecological Land Suitability Evaluation for Coffea Arabica (ALECA) includes a suit-
ability function for mean air temperature (S), which is an ecological response curve that assigns a quantitative suitability score to a 
given air temperature value under unshaded conditions (Table 1) (Lara-Estrada et al., 2017). Based on this function and the parameters 
reported in the literature for the cooling potential of shading in coffee systems, a new set of empirical functions were developed to 
estimate: 1) the shade level required (Shr) for coffee based on existing annual mean air temperature; 2) the corresponding air tem-
perature reduction due to shading (Tr) compared to unshaded conditions; and 3) the air temperature suitability under shading (S’) 
(Table 1). The shade required (Shr) indicates the shade level that is needed to attain or come close to the optimal air temperature for 
coffee, and S’ scores how suitable the shade-adapted air temperature is for coffee cultivation. 

2.3. Bayesian network model 

Based on the functions in Table 1, a shade model was created using Bayesian Networks (BNs). BNs are multivariate models 
composed of 1) a graphical structure that depicts the dependencies between variables (parents → child) and defines how the infor-
mation propagates across the variables of the model and 2) conditional probabilistic tables (CPTs) that quantify the cause-effect 
relationship between variables (parameters). Each variable has its own CPT. Expert elicitation, machine learning algorithms, equa-
tions, and parameters from the literature can be used to create the graphical structure and CPTs. BNs can deal with uncertainty and 
missing information by using certain or uncertain data in the inference (e.g., exact or interval values or Gaussian distributions). 
Furthermore, the BNs’ graphical interface and the possibility of conducting what-if queries make their understanding and usage easy 
for practitioners and decision-makers (Aguilera et al., 2011; Harris et al., 2022; Uusitalo, 2007). 

Model graphical structure. A node was created for each variable and linked according to the input–output relationship described 
in the functions in Table 1; the links describe causal relationships between nodes (Fig. 2A) (Kunimitsu et al., 2023). Next, variables 
were discretized in state values (ranges) as follows: first, maximum and minimum values for each variable were estimated from the 
corresponding functions (Table 1). Next, an equal state size was determined for each variable considering agronomical and practical 
factors and literature (Marcot et al., 2006). For example, shade values <10% are similar to the error of measurement (Bellow and Nair, 
2003) and difficult to track or implement during shade pruning or shade level estimation in the field (first author personal obser-
vation); therefore, a range of 10% was used as the breakpoint for shade required. The discretization used for S in ALECA was used in the 
model for S and S’ (0–10, 20–30,…,80–90, 90–100%) (Lara-Estrada et al., 2017). 

There could be situations where potential users of the model, such as farmers, agronomists, and other practitioners, do not have 
easy access to mean annual air temperature values for their locations. For these cases, we added the variables Altitude (m.a.s.l.) and 
Department (national administrative division) as proxy variables to infer the missing air temperature (Fig. 2). Altitude has a well- 

Table 1 
Functions to estimate the air temperature suitability with and without shading and their impact on air temperature suitability.  

Variables Equations 

Shade required (Shr) [%] 

Where Shr is the shade level required (%) and Ti is the annual mean air temperature (◦C). Ti = 20 ◦C is assumed as 
100% suitable; below this value, no shading is required. If Ti > 24, the shade level is fixed to 90 % 

Temperature reduction (Tr) [◦C] 

Where Tr is the mean air temperature reduction (◦C) due to shading. Maximum Tr = 4 ◦C 
Suitability function (S’) for Ti under the shade 

of trees [%] 

Where S′ is the suitability score (0-100 %, where 100% is excellent suitability) for a given annual mean 
temperature Ti (◦C) considering the Tr under the Shr; where Ti that has a normal distribution with mean μ = 20 
and variance σ2 = 3.89; Tμ= μ. 

Suitability function (S) for Ti under unshaded 
conditions [%](Lara-Estrada et al. 2017) Where S is the suitability score (0-100 %, where 100% is excellent suitability) for a given annual mean 

temperature Ti (◦C). that has a normal distribution with mean μ = 20 and variance σ2 = 3.89; Tμ= μ.    
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known negative correlation with air temperature (Barry, 2008) and is commonly used as a proxy for climate suitability for coffee 
cultivation (Avelino et al., 2005; ICAFE-CICAFE, 2011; Muschler, 2001; Pineda, 2001). Department captures the possible effects of 
location (latitude, longitude) and landform on air temperature. For example, the Department of Masaya is located in the flat Southeast 

Fig. 2. Shade model. S and S’ are the air temperature suitabilities under unshaded and shaded conditions (%), respectively. A) Model compiled 
using current data (2000) for coffee areas in Nicaragua (CATIE and MAGFOR, 2012; Hijmans et al., 2005). B) Inference when air temperature (Ti) is 
known. C) Inference when the air temperature is missing, and Altitude and Department information are used to infer the air temperature. 

Fig. 3. Functions shade level required (Shr), air temperature reduction (Tr), and air temperature suitability under unshaded and shaded conditions 
(S and S’, respectively). 
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region of Nicaragua and is influenced by the Pacific Ocean, whereas Jinotega, which is located in the Northwest mountain central 
region, is influenced by the Atlantic (Barry, 2008; Linacre and Geerts, 2002; Taylor and Alfaro, 2005). After selecting air temperature 
as the target variable, the structural machine learning algorithm Tree Augmented Naïve Bayes was implemented to create the links 
between the variables air temperature, altitude, and department (Friedman et al., 1997; Hijmans et al., 2005; Norsys, 2022; Sucar, 
2015). Similarly, Lara-Estrada et al. (2018) inferred relative humidity using other climate variables as proxies. The altitude and air 
temperature data used in the structural machine learning were extracted from the Worldclim dataset (1 km resolution) for the study 
area (CATIE and MAGFOR, 2012). 

Conditional probability tables. After the graphical structure was defined, the CPTs for all the variables in the model were learned 
from data and equations. For the variables altitude, department, and air temperature, the data extracted from the datasets Worldclim 
and coffee map (CATIE and MAGFOR, 2012; Hijmans et al., 2005) were used to populate the CPTs of the variables using the Counting- 
Learning Algorithm (Norsys, 2022). For the rest of the CPTs of the variables, the functions from Table 1 were implemented in each 
variable (node); then, using the feature “equation to table” available in the software Netica (Norsys, 2022), the CPTs were populated 
for each of those variables. Once all the CPTs were populated, the model was compiled and ready to use. 

Model assumptions. No shading is needed at optimal or lower temperatures. Under these conditions, S and S’ are identical (Fig. 3). 
If the air temperature rises above the optimal value, the shade level will increase to alleviate the warming conditions until the 
maximum temperature reduction (Tr) due to shading is reached. The maximum Tr is reached at an environmental air temperature of 
24 ◦C, after which S’ starts to decrease (Fig. 3). For the modeling purpose of this study, we assumed that air temperature is the only 
variable that determines the shade level, however, in reality, more factors influence a farmer’s decision on the shade levels in their 
plantation. Since Coffea arabica L. covers over 99.6% of the coffee area in Nicaragua (CATIE and MAGFOR, 2012), all suitability 
functions are based on the optimal mean air temperature for this species, and we did not include coffee varieties in our analysis. 

An additional benefit of including altitude and departments to infer air temperature is that it enables users to explore the existing 
coffee temperature suitabilities of each department. For example, most coffee areas with high air temperature suitability are found in 
the departments of Matagalpa, Jinotega, Nueva Segovia, and Madriz. Coffee areas in Jinotega, e.g., are located at altitudes of 962 ±
260 m.a.s.l., with a mean annual temperature of 20.80 ± 1.50 ◦C, and require shade levels of 25.90 ± 25%. Coffee areas with lower 
temperature suitabilities due to higher air temperatures (≥24 ◦C) are located in the departments of Masaya, Carazo, Managua, and 
Granada. In Masaya, e.g., coffee areas are located at altitudes of 538 ± 160 m.a.s.l. with higher air temperatures (24 ± 1.10 ◦C) and 
require mean shade levels of 79.20 ± 14%. 

Model evaluation. We used the metric Spheric Payoff to evaluate the performance of altitude and department in predicting air 
temperature. The metric considers the predicted probabilities for the correct and the predicted state and the overall mean value for the 
cases tested. The metric values range from 0 to 1, where 1 is the best performance (Marcot, 2012). Our model scored 0.8, which 
indicates a good performance. A sensitivity analysis using the metric Variance Reduction (VR) was used to evaluate the influence of air 
temperature, altitude, and department on shade required (target variable). A sensitivity analysis shows how the variations in the 
posterior probability distribution of a given target variable are affected by changes in the states of the other variables, resulting in a 
ranking of variables (VR scores). VR values range from 0 to 100%; a value of 0% indicates that a change in the state of one variable does 
not have any impact on the target variable, meaning the variables are independent; scoring close to 100% indicates a strong influence 
on the target variable (Chen and Pollino, 2012; Marcot, 2012; Norsys, 2022). The obtained VR values indicate that the most influential 
variable on shade required is air temperature (VR = 94.20%), then altitude (80.70%), and lastly, department (30.10%). In a second 
sensitivity analysis, we evaluated the influence of altitude and department on air temperature (as the target variable), and similar 
values were obtained for altitude (82.20%) and department (29%). In BNs, knowing the states of all the parent variables enhances the 
prediction of their children; entering information on both altitude and department instead of only one will thus improve the inference 
of air temperature. 

The variable shade required was evaluated by comparing estimated and observed shade values using the metric spherical payoff. 
Observed shade values were taken from a survey conducted on coffee plantations in Northcentral coffee areas in Nicaragua (n = 66). 
The shade was measured using a spherical densiometer. The observed shade values ranged from 0 − 91% at altitudes of 630 to 1350 m. 
a.s.l. The air temperature values for each of the surveyed coffee plantations were extracted from the Worldclim dataset and used in the 
model to infer the shade values for each plantation. 

Climate scenarios and modeling. The high-resolution interpolated air temperature from the WorlClim dataset was used for 2000 
(Hijmans et al., 2005). The data on projected air temperature in the year 2050 was taken from simulations with the model MPI-ESM 
(ECHAM5) under scenario RCP 4.5 (Jungclaus et al., 2006; Ramirez-Villegas and Jarvis, 2010). Both datasets have a 1 km × 1 km 
resolution. The MPI-ESM model was selected because it has a better performance for the Central American Region than the average of 
20 other climate models (Conde et al., 2011; Fuentes-Franco et al., 2015; Maloney et al., 2013; Schaller et al., 2011). The RCP 4.5 was 
selected because it represents an intermediate warming scenario and because a previous study on shading conducted for Brazil used the 
same RCP scenario (Gomes et al., 2020), thus enabling comparability and building a knowledge base for the region. The air tem-
perature data was narrowed down to the study areas (CATIE and MAGFOR, 2012) and used to estimate shade required (Shr), air 
temperature suitability under unshaded conditions (S), and air temperature suitability under shaded conditions (S’). The inferred 
results for each variable correspond to the expected value, which is the weighted mean value of the variable’s states per their 
probability of occurrence (Norsys, 2022). 
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3. Results and discussion 

3.1. Observed vs. Estimated shade values 

We estimated the shade required for commercial coffee plantations located at different altitudes and departments in Nicaragua to 
achieve the highest possible air temperature suitability score. Observed and estimated shade levels show the same general tendency of 
increasing at higher temperatures and reducing at lower ones (Fig. 4). The comparison displays a close agreement between observed 
and estimated shade levels at the lower and higher end of the temperature range with an SP of 0.57 for Ti < 20 ◦C, and 0.50 for Ti ≥
22 ◦C. At the middle-temperature values (Ti = 20–21 ◦C), observed shade values were higher than the estimated required ones (SP =
0.06). 

The observed agreement between the estimated and observed shade levels under warmer and colder conditions was expected. Full- 
sun coffee systems are mostly recommended at colder high altitudes, whereas higher shade levels are used at low altitudes to decrease 
temperatures to more suitable levels, extend the lifetime of the coffee plants, and improve coffee quality (Bertrand et al., 2012; 
Muschler, 2001). At mid-level altitudes with temperatures from 20 to 21 ◦C (optimal for coffee plants), farmers have more freedom in 
the shade usage. We believe that the differences in shading between the estimated and observed values under these conditions are due 
to agronomical, socio-economical, and financial factors that influence farmers’ decision-making (Bacon, 2005). For example, farmers 
may increase the shading to control fungal diseases (e.g., Cercospora coffeicola), reduce the abundance of weeds (Soto-Pinto et al., 
2002; Staver et al., 2001), or increase the density of some tree species (e.g., musaceas and timber trees) for income diversification 
(Somarriba 1990; Staver et al., 2013). If coffee prices are low, farmers increase the shading to reduce the fertilizer requirements of the 
coffee plants and reduce maintenance costs (Bacon, 2005). This high shade/low input strategy has been reported for coffee plantations 
in Central America (Méndez et al., 2009; Meylan et al., 2013; Villarreyna et al., 2020) and is the most likely reason for the differences 
observed here, as the shade survey was conducted in 2005 when the coffee sector was at the end of a price-crisis (Wilson, 2010). 

3.2. Required shade levels and temperature suitability under climate change 

We estimated the shade required and the air temperature suitability under unshaded and shaded conditions for coffee areas in 
Nicaragua for the years 2000 and 2050 (Fig. 5). At the country level, the temperature suitability under unshaded conditions will 
decrease from 82% in 2000 to 66% in 2050. Consequently, the required shade levels will need to increase from 44% in 2000 to 68% in 
2050. Under shade conditions, the temperature suitability will improve by 17% (2000) and 31% (2050) in comparison to the tem-
perature suitability under unshaded conditions (Fig. 6). This downgrade in the air temperature suitability will negatively affect the 
quantity and quality of the coffee produced in the country. In a climate change impact study, Gay et al. (2006) found a negative 
correlation between high summer air temperatures and coffee yields in coffee plantations in Mexico, setting the coffee production 
equal to zero at temperatures greater or equal to 28.29 ◦C. Organoleptic and physical coffee quality are also negatively correlated to 
temperatures (Bertrand et al., 2012; Kath et al., 2021; Pham et al., 2020). Bertrand et al., found that coffee plantations cultivated under 
unshaded conditions at higher temperatures negatively affect the development of the coffee beans and, therefore, the final organo-
leptic quality. In this sense, another benefit of shading coffee plants under higher temperatures – and even temperatures closer to the 
optimal temperature – is that the physical and organoleptic coffee quality is improved compared to unshaded plantations under the 

Fig. 4. Comparison of observed and estimated shade levels in coffee plantations. Error bars indicate standard error.  
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same conditions (Muschler, 2001; Vaast et al., 2005). 
A matrix of change is provided in Table 2 to track the changes in the shade required between the two periods. The shade values for 

2000 describe a quasi-uniform distribution with peaks at the lowest and highest shade levels. For 2050, a dominant peak occurs only at 
the highest shade level. Areas requiring high shading (Shr ≥ 60 %) increased from 36% in 2000 to 67% of the total coffee areas by 2050. 
Coffee areas requiring no or low shading (Shr ≤ 10%) decreased from 22% to 5% (Table 2). If we observe the changes for coffee 
plantations that needed shade ≤ 10% in 2000, from the 100% of those plantations, only 21.11 % still need shade ≤ 10% by 2050. This 
value corresponds to the number of plantations that in 2000 had lower than the optimal air temperature and did not require any or only 
low levels of shading (Table 2 and Fig. 5). On these plantations, the rising in air temperature under climate change is still not enough to 
require higher shade levels. Most of the other coffee areas will have to adjust their shade levels by 2050 (Fig. 5). 

At the local level, increasing the shading under climate change will be more effective for coffee plantations at altitudes ≥ 700 m.a.s. 
l. than for plantations at low altitudes of < 700 m.a.s.l. At low altitudes, coffee areas require high shade levels to mitigate the warmer 
temperatures even in 2000, leaving little margin to increase the shade level (Fig. 7A). This seems to be the main reason that the 
temperature suitability under shaded conditions S’ is lower in 2050 than in 2000 (Fig. 7C). Coffee areas at medium altitudes will need 
to increase their shade levels, and the areas at higher altitudes (>1100 m.a.s.l.) that did not require shading in 2000 will do in 2050 
(Fig. 7A). It can be observed that at these altitudes, the temperature suitability is lower in 2000 than 2050 (Fig. 7B and C). The reason is 
that in 2000, average temperatures were lower than 20 ◦C (suboptimal because of the coldest conditions), whereas, in 2050, tem-
peratures come closer to the optimal coffee growing temperature of 20 ◦C, so the air temperature suitability increases. 

Fig. 5. Required shade levels (Shr) for coffee areas in Nicaragua for 2000 and 2050 (RCP 4.5).  
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The increment in the shade required for 2050 implies a rise in tree biomass per area and, therefore, in the carbon stock of the coffee 
plantations. This higher biomass could be achieved by reducing the number and severity of the prunings on the existing shade trees, 
planting more trees, changing tree species, or a combination of all of them. The rise of the shade levels or tree planting density is likely 
to lead to an increment in the competition between trees and coffee plants for light, water, and nutrients and, consequently, a decline in 
annual coffee productivity (Haggar et al., 2021; Méndez et al., 2009; Vaast et al., 2005). Coffee quality, however, is generally increased 
by shading, but it is unclear if the change in shading levels will allow coffee plantations to keep their 2000 s coffee quality profile in the 
future; more research needs to be done on this. 

It is important to note that our results on required shade levels are based on mean annual air temperature only. The locally optimal 
decision on the implemented shade level should also consider factors such as the farmer’s production strategy (high or low intensi-
fication, diversification, coffee quality), and the coffee plantation conditions (e.g., prevalence of pest and diseases, soil conditions, 
coffee plantation age). If a higher shade level is implemented, agroforestry design and planning will play a relevant role in optimizing 
the additional tree biomass by selecting tree species that increase the land profitability, which may compensate for the drawbacks of 
higher competition between trees and coffee plants. Diversification or specialization of the coffee tree component can provide multiple 
goods such as fruit, fuelwood, or timber to generate more income from coffee plantations (Peeters et al., 2003; Somarriba 1990; Staver 
et al., 2013). Also, shade systems can be adjusted to favor conservation objectives and secure better coffee prices by farmers joining 
sustainable certification schemes like Rainforest Alliance, Fairtrade, Organic, and others. Haggar et al. (2017) found that coffee farms 
with Rainforest Alliance certification have a high density of trees, basal tree area, carbon stock, and coffee prices, but also that there is a 
negative correlation between tree density and tree species diversity with coffee productivity. However, the farmers were able to 
compensate for the negative tree-crop competition effects by achieving higher prices for their coffee due to the certification. Another 
alternative could be to use coffee varieties better adapted to shaded conditions that can compete more efficiently for light and 

Fig. 6. Mean air temperature suitability under unshaded (S) and shaded conditions (S’) and the required shade levels (Shr) for 2000 and 2050 (RCP 
4.5) for coffee areas in Nicaragua. 

Table 2 
Matrix of changes between different required shade levels (Shr) from 2000 to 2050 (RCP 4.5). The bold values indicate the remaining amount of area 
under the same shade level class by 2050. The other values show which proportion of coffee areas moved from the shade class observed in 2000 to the 
new shade class. In the first line, e.g., 28.24% of areas with a shade level of 0–10% in 2000 will require a shade level of 30–40% in 2050. The total 
coffee area shares (%) for each shade level in 2000 and 2050 are given in the last column and last row, respectively.   

Shr (%) 2050 (RCP 4.5) Total area 
(2000)  

0 to 10 10 to 20 20 to 30 30 to 40 40 to 50 50 to 60 60 to 70 70 to 80 80 to 90  

Changes in this direction →  
0 to 10 21.11 7.13 19.17 28.24 20.42 3.46 0.48   22.14  
10 to 20  0.00 0.31 7.10 51.23 32.10 8.64 0.62  4.96  
20 to 30   0.00 1.39 11.98 42.53 37.50 5.03 1.56 8.83  
30 to 40    0.00 1.64 8.74 53.01 32.42 4.19 8.41 

2000 40 to 50     0.14 1.70 16.17 48.23 33.76 10.80  
50 to 60      0.00 1.33 14.58 84.09 8.09  
60 to 70       0.32 1.42 98.26 9.70  
70 to 80        0.40 99.60 7.65  
80 to 90         100.00 19.41 

Total area (2050) 4.67 1.58 4.26 6.73 8.27 7.03 10.19 9.76 47.50 100.00  
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Fig. 7. Required shade levels (Shr) and air temperature suitability under unshaded and shaded conditions (S and S’, respectively) for coffee areas in 
Nicaragua. A) Average required shade levels in 2000 and 2050, B) Average temperature suitability for coffee under unshaded conditions in 2000 and 
2050, and C) Average temperature suitability for coffee under shaded conditions in 2000 and 2050. 
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nutrients. This could stabilize or increase yields under the expected increase in required shade levels, which would, in turn, lead to 
sustainable intensification of coffee production by increasing coffee productivity without losing the services and goods that trees 
provide (Bertrand et al., 2011; Haggar et al., 2021). In areas where shading is not enough to deal with warmer conditions, switching to 
coffee varieties better adapted to warming conditions is an option. This includes changing to other coffee species like Coffea canephora 
or Coffea stenophylla; the first is more productive, and the second has better quality (Davis et al., 2021). 

4. Conclusions 

In this study, we introduce a simple shade model that uses climate information to generate agronomical information for coffee 
systems. The tool uses mean air temperature to estimate the required shade levels and the air temperature suitability for coffee under 
shaded and unshaded conditions. Under RCP 4.5, increasing the required shade level has the potential to alleviate the warming 
conditions in coffee areas by 2050. Coffee areas at different altitudes need different shade levels; the changes are of such magnitude 
that coffee areas under dense shade levels (Shr ≥ 60%) may double by 2050. Even though a higher density of shading trees can 
negatively affect coffee yields due to light and resource competition, increasing the shade levels is also an opportunity to diversify 
income via a judicious selection of tree species, enabling farmers and communities to build coffee production systems more resilient to 
crises and unexpected events. An increment in shade levels can furthermore increase carbon stocks and biodiversity in coffee systems, 
thus synergizing adaptation and mitigation to climate change and biodiversity conservation objectives. 

The challenge climate change poses to the coffee areas is an opportunity to rethink, redesign, and plan more resilient and sus-
tainable coffee systems, and knowing the shading needs is essential in these processes. 

Even if other adaptation practices or technologies, such as better-adapted coffee varieties, may become available on time, not all 
farmers will have the financial resources to take advantage of them. Adjusting or planting shade trees thus remains the first response 
practice against upcoming warming conditions. This paper provides information on and a tool to explore shade requirements to be 
used by coffee institutions, agronomists, and farmers. 
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index.php/atm/article/view/23806. 
DaMatta, F.M., Ramalho, J.D.C., 2006. Impacts of drought and temperature stress on coffee physiology and production: a review. Braz. J. Plant Physiol. 18, 55–81. 

https://doi.org/10.1590/S1677-04202006000100006. 
Davis, A.P., Mieulet, D., Moat, J., Sarmu, D., Haggar, J., 2021. Arabica-like flavour in a heat-tolerant wild coffee species. Nat. Plants 7, 413–418. https://doi.org/ 

10.1038/s41477-021-00891-4. 
de Souza, H.N., de Goede, R.G.M., Brussaard, L., Cardoso, I.M., Duarte, E.M.G., Fernandes, R.B.A., Gomes, L.C., Pulleman, M.M., 2012. Protective shade, tree diversity 

and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agr Ecosyst Environ 146, 179–196. https://doi.org/10.1016/j. 
agee.2011.11.007. 

Descroix, F., Snoeck, J., 2004. Enviromental Factors Suitable for Coffee Cultivation. In: Wintgens, J.N. (Ed.), Coffee: Growing, Processing, SustAinAble Production: A 
Guidebook for Growers, Processors, TrAders, and ReseArchers. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp. 164–177. https://doi.org/10.1002/ 
9783527619627.ch6. 

Durand-Bessart, C., Tixier, P., Quinteros, A., Andreotti, F., Rapidel, B., Tauvel, C., Allinne, C., 2020. Analysis of interactions amongst shade trees, coffee foliar diseases 
and coffee yield in multistrata agroforestry systems. Crop Prot. 133, 105137 https://doi.org/10.1016/j.cropro.2020.105137. 

Eakin, H., Benessaiah, K., Barrera, J.F., Cruz-Bello, G.M., Morales, H., 2012. Livelihoods and landscapes at the threshold of change: disaster and resilience in a Chiapas 
coffee community. Reg. Environ. Chang. 12, 475–488. https://doi.org/10.1007/s10113-011-0263-4. 

Fanjul, L., Arreola-Rodriguez, R., Mendez-Castrejon, M.P., 1985. Stomatal Responses to Environmental Variables in Shade and Sun Grown Coffee Plants in Mexico. 
Exp. Agric. 21, 249–258. https://doi.org/10.1017/S0014479700012606. 

FAO, UNESCO, 1975. Soil map of the world (1:5 000 000): Mexico and Central America. UNESCO, Paris, France. https://www.fao.org/publications/card/es/c/ 
fdfe1bed-38d0-5260-803e-93cfc6129f05/.  

Friedman, N., Geiger, D., Goldszmidt, M., 1997. Bayesian Network Classifiers. Mach. Learn. 29, 131–163. https://doi.org/10.1023/A:1007465528199. 
Fuentes-Franco, R., Coppola, E., Giorgi, F., Pavia, E.G., Diro, G.T., Graef, F., 2015. Inter-annual variability of precipitation over Southern Mexico and Central America 

and its relationship to sea surface temperature from a set of future projections from CMIP5 GCMs and RegCM4 CORDEX simulations. Clim. Dyn. 45, 425–440. 
https://doi.org/10.1007/s00382-014-2258-6. 

Garedew, W., Hailu, B.T., Lemessa, F., Pellikka, P., Pinard, F., 2017. Coffee Shade Tree Management: An Adaptation Option for Climate Change Impact for Small Scale 
Coffee Growers in South-West Ethiopia, in: Leal Filho, W., Belay, S., Kalangu, J., Menas, W., Munishi, P., Musiyiwa, K. (Eds.), Climate Change Adaptation in 
Africa. Springer International Publishing, Cham, pp. 647–659. https://doi.org/10.1007/978-3-319-49520-0_40. 

Gay, C., Estrada, F., Conde, C., Eakin, H., Villers, L., 2006. Potential Impacts of Climate Change on Agriculture: A Case of Study of Coffee Production in Veracruz, 
Mexico. Clim. Change 79, 259–288. https://doi.org/10.1007/s10584-006-9066-x. 

Gomes, L.C., Bianchi, F.J.J.A., Cardoso, I.M., Fernandes, R.B.A., Filho, E.I.F., Schulte, R.P.O., 2020. Agroforestry systems can mitigate the impacts of climate change 
on coffee production: A spatially explicit assessment in Brazil. Agr Ecosyst Environ 294, 106858. https://doi.org/10.1016/j.agee.2020.106858. 

Haggar, J., Soto, G., Casanoves, F., de Virginio, E., M.,, 2017. Environmental-economic benefits and trade-offs on sustainably certified coffee farms. Ecol. Ind. 79, 
330–337. https://doi.org/10.1016/j.ecolind.2017.04.023. 

Haggar, J., Casanoves, F., Cerda, R., Cerretelli, S., Gonzalez-Mollinedo, S., Lanza, G., Lopez, E., Leiva, B., Ospina, A., 2021. Shade and Agronomic Intensification in 
Coffee Agroforestry Systems: Trade-Off or Synergy? Frontiers in Sustainable Food Systems 5. https://doi.org/10.3389/fsufs.2021.645958. 

Harris, R., Furlan, E., Pham, H.V., Torresan, S., Mysiak, J., Critto, A., 2022. A Bayesian network approach for multi-sectoral flood damage assessment and multi- 
scenario analysis. Clim. Risk Manag. 35, 100410 https://doi.org/10.1016/j.crm.2022.100410. 

Hidalgo, H.G., Alfaro, E.J., Quesada-Montano, B., 2017. Observed (1970–1999) climate variability in Central America using a high-resolution meteorological dataset 
with implication to climate change studies. Clim. Change 141, 13–28. https://doi.org/10.1007/s10584-016-1786-y. 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 
1965–1978. https://doi.org/10.1002/joc.1276. 

ICAFE-CICAFE, 2011. Guía Técnica para el Cultivo del Café, 1st ed. Heredia, Costa Rica.  
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