
1

Network Intrusion Detection System (NIDS) Based
on Pseudo-Siamese Stacked Autoencoders in Fog

Computing
Shanshan Tu, Member, IEEE, Muhammad Waqas, Senior Member, IEEE,
Akhtar Badshah, Mingxi Yin, Ghulam Abbas, Senior Member, IEEE

Abstract—The proliferation of Internet of Things (IoT) devices
in the 5G era has resulted in increased security vulnerabilities
and zero-day attacks, underscoring the importance of network
intrusion detection systems (NIDS). However, existing NIDS have
limitations in terms of accuracy, recall rates, false alarm rates,
and generalization capabilities, and they cannot meet the IoT’s
requirements for low latency and limited computing resources.
To overcome these challenges, we propose a NIDS based on a
pseudo-siamese stacked autoencoder (PSSAE), deployed in the
fog computing layer. Our system uses unsupervised training of
stacked autoencoders (SAEs) to extract deep semantic features
of normal and abnormal traffic, followed by supervised learning
with labels to improve characterization and classification capa-
bilities. The results show that our proposed method’s accuracy
and detection rate (DR) is 2% to 15% and 1%-14% higher than
the existing techniques using the KDDTest+ dataset, respectively.
Our proposed method outperformed the existing methods by 1%
to 4% using the KDDTest+ dataset. The F1-Score is higher by 3%
- 11.55% using the KDDTest+ dataset. On the other hand, using
the KDDTest-21 dataset, the accuracy of our proposed method
also outperformed the existing technique by 6.09% - 13.81%. The
DR and F1-Score are higher by 7.02% and 5.57%, respectively,
using the KDDTest+ dataset. This is due to the fact that each layer
of the network trained by SAEs is more capable of extracting
the semantic features of the data than the DNN-trained network
directly.

Index Terms—Intrusion detection, IoT, fog computing, autoen-
coder, pseudo-siamese neural network.

I. INTRODUCTION

Internet of Things (IoT) devices usually collect and process
spatiotemporal information about specific events to complete
various tasks. Therefore, the IoT plays a pivotal role in
various industrial fields, such as logistics tracking, energy
distribution, smart cities, and healthcare [1]. However, the
rapid commercialization of the IoT has caused its security

S. Tu and M. Yin are with the Engineering Research Center of Intelligent
Perception and Autonomous Control, Faculty of Information Technology, Bei-
jing University of Technology, Beijing, China (e-mail: yinmx.3@gmail.com,
sstu@bjut.edu.cn).

M. Waqas is with the Computer Engineering Department, College of
Information Technology, University of Bahrain, 32038, Bahrain and School
of Engineering, Edith Cowan University, Perth WA 6027, Australia and also
with the Faculty of Computer Science and Engineering, Ghulam Ishaq Khan
Institute of Engineering Sciences and Technology, Topi 23460, Pakistan (e-
mail: engr.waqas2079@gmail.com).

A. Badshah is with the Department of Software Engineering, University of
Malakand, Dir Lower, Pakistan. (e-mail: akhtarbadshah@uom.edu.pk).

G. Abbas is with the Faculty of Computer Science and Engineering, Ghulam
Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23460,
Pakistan (e-mail: abbasg@giki.edu.pk).

issues to be seldom paid attention to due to the diversity
of devices, communication protocols, interfaces, and services.
As a result, the IoT has become one of the weakest links in
cyber security, and smart devices are connected to the Internet.
Therefore, the security attack can affect the security of the
IoT ecosystem and threaten the entire Internet ecosystem. For
example, in 2016, service provider DYN was attacked by up to
620 Gbps traffic, which caused hundreds of websites, such as
Twitter, Netflix, Reddit, and GitHub, to shut down for several
hours [2]. Therefore, the analysis and detection of attacks
should be taken seriously.

The IoT also has the characteristics of low latency, re-
source constraints, distribution, scalability, and mobility [3].
In addition, IoT devices face the challenges of low computing
power, smaller bandwidth, power, and storage. Therefore, fog
computing emerges as a new type of distributed computing
paradigm that extends the cloud to the edge of the network [4].
It can provide adequate data access, computing, networking,
and storage for IoT devices and support mobility, location
awareness, heterogeneity, and low latency [5]. The linkage
between IoT devices, fog computing, and cloud architecture
is shown in Fig. 1. We can deploy the intrusion detection
system (IDS) to the fog layer and provide security services
to IoT devices, effectively reducing the computing, storage,
power consumption, and cloud server load of IoT devices.
Considering the low latency of the IoT and the limited com-
puting resources, if the IDS is deployed in the fog computing
layer, the IDS requires less computing power and minimizes
hardware costs.

According to the classification of the deployed platform,
the IDS can be deployed on a single computer, known as host
intrusion detection (HIDS) [6]. On the other side, the IDS de-
ployed on large networks is called network intrusion detection
system (NIDS) [7]. According to the classification of detection
methods, IDS can be divided into anomaly-based intrusion
detection (ANIDS) and signature-based intrusion detection
(SNIDS) [8]. The former mainly calculates the deviation
between normal and abnormal behavior at a given threshold.
In comparison, an abnormal alarm is raised if the deviation
exceeds a given threshold. The latter relies on matching the
behavior model of the traffic with the known attack patterns
in the database to identify the attack quickly. ANIDS can
detect zero-day attacks. There is no specific signature pattern
for zero-day attacks. Therefore, SNIDS cannot effectively
detect new attacks. ANIDS estimation of the deviation be-

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

Fig. 1. Fog computing architecture

tween abnormal behavior and normal behavior determines the
detection performance, leading to the possibility that ANIDS
may recognize normal traffic as abnormal traffic. Therefore,
for ANIDS, in addition to the accuracy rate, the true positive
and false positive rates are also important evaluation indicators
[9]. At present, many deep learning methods have been applied
to ANIDS. Anomaly detection needs to learn the deviation
between normal and abnormal samples based on large data.
Deep learning has good performance in feature extraction;
hence, it is very suitable to be applied to anomaly detection
[10].

To improve the security of IoT devices without increasing
the amount of computing for IoT devices, this paper proposes
the IDS is deployed in the fog layer and SAE based algorithm
runs on each fog node in a distributed manner. Through
experiments, we observed that ordinary neural network models
are challenging to learn the deep semantic features of normal
and abnormal traffic and are insensitive to abnormal traffic.
This leads to lower accuracy and detection, poor generalization
ability, and a higher false-positive rate of NIDS based on
traditional deep learning methods. Therefore, we propose
NIDS based on pseudo-siamese stacked autoencoder (PSSAE).
First, using positive and negative samples for unsupervised
training, two stacked autoencoders (SAEs) that are pseudo-
siamese structures can extract the deep semantic feature space
of traffic and amplify the difference between positive and neg-
ative samples after feature reconstruction. Secondly, the ability
of PSSAE classification can be improved through supervised
training with labels. Finally, using logic operations to combine
two pseudo-siamese SAEs makes the final detection result
optimal. We built PSSAE using TensorFlow and verified the
model with the NSL-KDD dataset. The results show that our
proposed model is effective. In addition, our proposed model’s

hierarchical data format-5 (HDF5) file is only 500kb, which
has low computational power requirements for fog nodes and
will not add too much hardware cost. Our work has the
following contributions.
• We propose NIDS based on pseudo-siamese stacked

autoencoder. Using normal and abnormal data sets to train
PSSAE unsupervised separately can effectively extract
the deep semantic features of normal and abnormal traffic.
It also amplifies the difference between normal and
abnormal flow by reconstructing features.

• Supervised classification training of PSSAE based on
feedforward neural network and backward propagation
(BP) algorithm to fine-tune parameters. Hence, it further
improves the ability of PSSAE to extract deep semantic
features of data and maximize the deviation between
normal traffic and abnormal traffic.

• Use logical operations to combine the detection results of
two SAEs that are pseudo-siamese structures with each
other to obtain the optimal detection result.

• The HDF5 file of our proposed model is only about
500kb, and the total number of parameters is about
60000, which requires less computing power for hard-
ware. Therefore, building an IDS in the fog computing
layer will not increase hardware costs.

The paper is structured as follows: After the introduction in
Section I, we review related work on the subject in Section II.
In Section III, we present our proposed IDS. In Section IV,
we provide experimental verification and evaluation. Finally,
we conclude the paper in Section V.

II. RELATED WORK

Machine learning and deep learning have made significant
achievements in the fields of computer vision [11], speech

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

processing [12], and recommendation systems [13]. Due to the
increasing diversity and complexity of network attacks, ma-
chine learning and deep learning are gradually being applied
to NIDS [14]. For instance, the authors studied NIDS based
on deep neural networks (DNN) in [15]. The DNN comprises
an input layer, five hidden layers, and an output layer. The
detection accuracy of the two classifications in the benchmark
data set NSL-KDD is 78.9%. The authors of [16] studied an
IDS based on RNN. The accuracy of the two classifications
on KDDtest+ in the NSL-KDD data set was 83.28%, and the
accuracy on KDDTes-21 was 68.55%. In addition, the authors
of [17] studied offline IDS based on multi-layer perceptron
(MLP) in the IoT environment, which is more inclined to
detect denial of service (DoS) and distributed denial of service
(DDoS) attacks. The accuracy rate of the IDS evaluated was
99.4%, and the false alarm rate was 0.6%. The authors of [18]
proposed distributed lightweight IDS deployed in the fog layer
based on an artificial immune system (AIS). The IDS has an
accuracy rate of 98.35% and a false alarm rate of 3.51% on the
data set composed of KDD-Cup99 and ISCX. Using the KDD-
Cup99 dataset, the authors of [19] proposed intrusion detection
based on a deep learning approach using autoencoders and
isolation forests in fog computing. The method targeted the
binary classification of the incoming packets to the fog nodes
by differentiating the attacks from normal packets. Compared
to [19], we used a pseudo-siamese stacked autoencoder to
extract the data’s deep semantic features, which helped us dif-
ferentiate between positive and negative samples and normal
and abnormal records.

In [20], the authors proposed an IDS that consists of two-
dimensionality reduction layers and two classification layers
for the backbone of the IoT. The proposed work mainly targets
user-to-root and remote-to-local attacks. The accuracy of this
IDS in NSL-KDD is 84.86%. In [21], the authors studied an
unsupervised NIDS for the IoT environment based on con-
ditional variational autoencoder (CVAE). CVAE can retrieve
and reconstruct missing features from incomplete data sets.
The accuracy of the proposed IDS on NSL-KDD (KDDTest+)
is 85.97%. In [22], the authors studied distributed intrusion
detection in the IoT environment based on fog computing
and realized distribution by sharing model training parameters
by adjacent fog nodes. The authors claimed that although
training the model takes longer, it can make the detection
faster and reduce the data transmitted to the cloud server.
However, in the distributed training model, sharing parameters
between adjacent nodes may increase the network delay when
transmitting parameters. In [23], the authors proposed the fog
computing distributed IDS. The IDS is based on the online
sequential extreme learning machine (OS-ELM). The authors
used NSL-KDD as a benchmark data set to evaluate the model.
The results show that the IDS has higher accuracy and lower
response time. Compared with IDS deployed in cloud servers,
the detection speed of IDS deployed in fog nodes is increased
by 25%. At the same time, the model can learn new data
patterns online.

In [24], the authors studied the ELM-based semi-supervised
fuzzy C-means (ESFCM) distributed NIDS deployed in the fog
layer. The distributed IDS can solve the resource constraints

and delays of the IoT through the fog computing problem. The
authors used NSL-KDD as a benchmark data set to evaluate
the IDS. The results showed that the IDS has a faster detection
rate and higher accuracy than the centralized cloud IDS and
traditional machine learning methods. The authors of [25]
studied the IDS based on the asymmetrical structure of SAEs
[26]. In such IDS, the authors constructed an asymmetric
structure of SAE to extract deep semantic features and used
random forest (RF) as the classifier. The accuracy rates of
this IDS on NSL-KDD and KDD CUP 99 are 85.42% and
97.85%, respectively, and the false alarm rates are 14.58 and
2.15%, respectively. In [27], the authors studied deep CNN
based on channel boosted and residual learning for NIDS.
The authors used SAE to reconstruct the original features
and proposed channel boosted to process the original features
further. Finally, based on multi-path residual learning, CNN
is used to learn features of different levels of granularity. The
accuracy of the work on NSL-KDD is 87.28%. In [28], the
authors deployed the NIDS in the fog layer, combining neural
networks and KNN algorithms. The model includes two steps.
Firstly, DNN is used for pre-detection, and secondly, KNN is
used to detect the traffic whose predicted value is less than the
threshold in the first step. The authors claimed that the hybrid
IDS has higher detection accuracy than traditional machine
learning methods.

III. PROPOSED NIDS

Through experimental analysis, we found that the accuracy
and recall rate of IDS based on traditional neural networks
is low, and the false alarm rate is high. This is because
conventional neural networks, such as DNN and RNN, are
challenging to extract higher-order text data features, making
the model insensitive to normal and abnormal records during
classification [29]. If the model extracts deep semantic features
that better characterize the original data, the reconstruction
feature can amplify the deviation between normal and ab-
normal records. Hence, the model accurately distinguishes
between normal and abnormal records. We use SAEs to detect
abnormal traffic more efficiently by increasing the deviation
between abnormal data and normal records. The input and
output dimensions of the SAEs are the same. Deep semantic
features can be extracted from the original features by re-
constructing the same output as the original input features.
The reconstructed features can amplify the deviation between
normal and abnormal records, and SAEs can be regarded as the
deviation amplifier of normal and abnormal records. Therefore,
we propose NIDS based on pseudo-twin SAEs to solve the
above problems.

A. Background

To detect zero-day attacks more accurately, learning the
deep semantic features of existing attacks is necessary. There-
fore, we use a pseudo-siamese stacked autoencoder (PSSAE)
to learn the deep semantic features of traffic.

1) Autoencoders (AEs): The AEs are based on a feedfor-
ward neural network, as shown in Fig. 2. Its input and output
layers are usually the same, so the network can reconstruct the

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

output to make it as close to the input as possible. Since labels
are not required for training, this is an unsupervised nonlinear
feature learning algorithm.

Fig. 2. General structure of autoencoder

As shown in Fig. 2, X is the input layer of AEs. H is
the hidden layer of AEs. X̃ is the output layer of AEs. f is
the encoder and g is the decoder. The encoding and decoding
processes are shown in (1), (2), respectively.

f : x → h : hj = σ(Wei xi + bei), (1)

g : h→ x̃ : x̃i = σ(Wdjhj + bdj), (2)

where xi is the original feature. xi is converted to hj after
being encoded by the encoder. hj is converted to x̃i after being
decoded by the decoder g. We and be are the weight and bias
of the encoder of f , respectively. Wd and bd are the weight
and bias of the decoder g, respectively. σ is the activation
function. σ can make the original features nonlinear, thereby
improving the model’s ability. This study illustrates that the
model can learn the deep semantic features of normal and
abnormal traffic. Therefore, we can make the dimension of H
smaller than X . When the AEs reconstruct the output feature
x̃, which is as same as the input feature x, the hidden layer
can capture the most prominent feature h among the original
features at sparse AEs. The learning process of the AEs can
be described as minimizing the loss function. Normally, the
loss function is the mean square error as follows.

MSE =
1
2n

n∑
i=1
(xi − g(f (xi))2,

=
1
2n

n∑
i=1
(xi − x̃i)2.

(3)

2) Stacked autoencoder: As mentioned earlier, the hidden
layer of AEs can extract the most significant feature of the
original features. If multiple AEs are stacked, the feature
extracted by the previous AE hidden layer is used as the input
of the next AE. By analogy, the higher-order and abstract
features can be gradually extracted. Hence, it is more suitable
for complex classification tasks. Fig. 3 shows stacking two
AEs into SAE. As shown in Fig. 3, we can see that by
unsupervised training, AE1, first-order features h(1) can be
extracted from the original features x. Then, h(1) is used as the
input of AE2 to unsupervised training AE2, and second-order
features h(2) can be extracted from the first-order features.
Finally, the input layer X of AE1, the hidden layer H(1) of
AE1, and the hidden layer H(2) of AE2 are stacked to form
SAE. We can see that SAE only has an encoding process, not
a decoding process.

B. Pseudo-siamese stacked autoencoder (PSSAE)
Our proposed PSSAE is shown in Fig. 4. According to the

labels, we divide the preprocessed training set into two subsets,
the normal dataset with all normal records and the abnormal
dataset with all abnormal records. The normal and abnormal
datasets are used to train two sets of AEs with the same
number and structure layer by layer, respectively, and then
two SAEs with pseudo-siamese structures are obtained. The
two SAEs have learned the normal and abnormal states, re-
spectively, and can initially extract the deep semantic features
of the data. This step is called greedy layer-wise pre-training.
Next, we use the complete training set to perform supervised
classification training on the pseudo-twin SAE based on the
feedforward neural network and the backward propagation
algorithm to improve the model’s ability and extract deep
semantic features. Therefore, it can maximize the difference
between normal data and abnormal data. This step is called
fine-tuning. Since two SAEs with pseudo-siamese structures
are different in sensitivity to positive and negative samples, we
set a threshold to perform logical operations on the detection
results of the two SAEs to obtain the optimal detection result.

1) Greedy layer-wise pre-training: We divide the train set
into normal and abnormal datasets according to the label and
use 6 AEs to construct a pseudo-siamese SAE. Three AEs
are stacked into SAE N based on the normal subset, and
the other three AEs are stacked into SAE A. The process
of constructing SAE N and SAE A is called greedy layer-
wise pre-training. Taking the construction of SAE N as an
example, for AE(i) N, N indicates that the AE is trained based
on a normal data set, and i is the sequence number of AE N.
X , H(i) and X̃ are the input layer, hidden layer, and output
layer of AE(i) N, respectively. f (i) : X → H(i) is the encoder
for AE(i) N. g(i) : H(i) → X̃ is the decoder for AE(i) N. X is
encoded as H(i) by the encoder f (i), and then decoded as X̃ by
the decoder g(i). The encoder and the decoder are not linear, so
X and X̃ will not be the same. To make the output and the input
as similar as possible, the backward propagation algorithm is
used to minimize the loss function as in (3). Hence, the hidden
layer H(i) of AE(i) N can be obtained.

As the input layer of AE(i+1) N, H(i) continues to repeat,
the above calculation steps until the training of AE(i=3) N

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

Fig. 3. General structure of SAE

is completed and combines the hidden layers of the three
AEs into SAE N. Similarly, the same process is used for
constructing SAE A. SAEs can extract deep semantic features
of data and magnify the difference between positive and
negative samples by reconstructing features. SAE is composed
of three AEs for two reasons. The first reason is to consider
the hardware cost of the fog computing layer and the char-
acteristics of low delay. In addition, the intrusion detection
model must be simple, and the consumption of hardware
computing power should be low. The second reason is the
fitting and gradient explosion occurred after AEs increased
in the performance analysis. Through extensive simulations,
we found that the effect of SAE composed of three AEs
outperforms.

2) Fine-tune: We use the entire training set to perform
supervised classification training on the pre-trained SAE A
and SAE N. The backward propagation algorithm is also used
to fine-tune the network hyperparameters and minimize the
loss function. Hence, it improves the model’s discrimination
between normal and abnormal records and maximizes the
difference between positive and negative samples. Hence, the
loss function is

L =
1
N

N∑
i

−

[
yi log(_y i) + (1 − yi) log(1 − _

y i)
]
, (4)

yi represents the actual label of the sample, and ỹi indicates
the probability that the model predicts that the sample is a
positive label.

3) Logic operation: Since SAE N and SAE A are pre-
trained based on the normal and abnormal datasets, respec-
tively. As a result, SAE N and SAE A have different sensi-
tivity to positive and negative samples. To prevent the model
from shifting to the pre-training data set and combine the
advantages of the two pseudo-twin SAEs, we propose to use
logical operations to calculate the prediction results of SAE A

and SAE N on the same record so that the final result is
optimal. We stipulate that the attack label is positive and the
normal label is negative. The logical operation is as follows.

p =

1
2
(pa + pn), pa ≥ 0.5 ∧ pn ≥ 0.5 (5a)

pn, pa < 0.5 ∧ pn ≥ 0.5 (5b)
pa, 0.5 ≤ pa < 0.9 ∧ pn < 0.5 (5c)
pn, pa ≥ 0.9 ∧ pn < 0.5 (5d)
1
2
(pa + pn), pa < 0.5 ∧ pn < 0.5 (5e)

For a certain sample S, pa represents the probability that
SAE A predicts S is positive. pn means the probability that
SAE N predicts S is positive, and p is the probability after
using logical operation to combine pa and pn. When two SAEs
with pseudo-siamese structures each have the same predicted
label for S, i.e., pa ≥ 0.5 and pn ≥ 0.5, we think the prediction
is credible, so p ≥ 0.5. When two SAEs with pseudo-siamese
structures have a contradictory prediction, considering the
network’s security, S is more likely to be positive. We noticed
that when pa ≥ 0.9 and pn < 0.5, p = pn, i.e., S is negative,
and rest is positive.

IV. PERFORMANCE EVALUATION

A. Performance Indicators

In our experiments, we evaluated the performance of our
proposed method using several metrics, including accuracy
rate, detection rate, precision rate, F1-Score, false alarm rate,
receiver operating curve (ROC), area under ROC (AU-ROC),
precision-recall curve (PRC), and area under PRC (AU-PRC).
These metrics were calculated using the values obtained from
the confusion matrix, which is shown in Table I. In the
confusion matrix, TP represents true positive, FN represents

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

Fig. 4. Structure of proposed PSSAE

false negative, FP represents false positive, and TN represents
true negative [30].

TABLE I
CONFUSION MATRIX

Predicted Attack Predicted Normal
Actual Attack TP FN
Actual Normal FP TN

1) Accuracy: Accuracy is a metric that represents the
proportion of correctly classified instances to the total number
of instances evaluated. In other words, it measures the degree
to which a classifier correctly identifies both positive and
negative samples, i.e.,

Accuracy =
TP + T N

TP + T N + FP + FN
(6)

2) Detect Rate (DR): The detection rate (DR), also referred
to as recall, sensitivity, and true positive rate, measures the
proportion of relevant instances that are correctly identified
by the classifier out of the total number of actual relevant
instances. In other words, it calculates the ratio of correctly
retrieved instances to the total number of related instances,
i.e.,

DR =
TP

TP + FN
(7)

3) Precision: Precision, also known as positive predictive
value, is a measure of how accurate a model is in predicting
true positives. Specifically, precision is calculated by dividing
the number of relevant instances correctly retrieved by the total
number of retrieved instances. A high precision score indicates

that the model is making fewer false positive predictions,
which can be an important consideration in applications where
false positives are costly or have serious consequences.

Precision =
TP

TP + FP
(8)

4) F1-score: The F1 score is a metric used to evaluate
the performance of a classification model. It is computed
as the harmonic mean of the model’s precision and recall,
and provides a single value that combines both measures. By
integrating precision and recall, the F1 score can provide a
more comprehensive evaluation of a model’s effectiveness in
accurately identifying true positives while minimizing false
positives and false negatives.

F1 − Score = 2 ×
Precision × DR
Precision + DR

(9)

5) False Alarm Rate: The false alarm rate, also known as
the false positive rate, is a measure of how often an algorithm
mistakenly identifies an unrelated instance as being relevant.
Specifically, the false alarm rate is calculated by dividing the
number of unrelated instances that are incorrectly classified as
relevant by the total number of unrelated instances. A lower
false alarm rate is generally desirable, as it indicates that the
algorithm is less likely to produce irrelevant results.

F AR =
FP

FP + T N
(10)

6) ROC and AU-ROC: The ROC plots the false positive rate
(FPR) on the X-axis and the true positive rate (TPR) on the
Y-axis. Each point on the curve corresponds to a specific FPR
and TPR value obtained by varying the classification threshold.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

The AU-ROC measures the model’s overall ability to correctly
classify positive and negative samples. A higher AU-ROC
value indicates that the model is better at distinguishing
between positive and negative samples. Additionally, since
the AU-ROC is not influenced by class imbalance, it can
be used to evaluate the performance of a classifier when the
number of positive and negative samples is relatively balanced.
A smoother and more convex ROC curve indicates better
classifier performance.

7) PRC and AU-PRC: The PRC is a graphical repre-
sentation of the trade-off between precision and recall at
different classification thresholds. Recall is plotted on the X-
axis, and precision is plotted on the Y -axis. The curve shows
how the precision and recall values change as the threshold
is varied. A smoother, more convex curve indicates better
classifier performance. The AU-PRC is used to evaluate the
overall performance of the classifier. A higher AU-PRC value
indicates better classification ability. Unlike the ROC curve,
the PRC curve is more effective in reflecting the quality of a
classifier when the ratio of positive and negative samples is
unbalanced, making it a useful tool for evaluating classifier
performance in real-world scenarios.

B. Dataset and data preprocessing

1) NSL-KDD: NSL-KDD is an improvement of the KDD
Cup99 dataset by Tavallaee et al. [31]. KDD Cup99 is based
on the DARPA 1998 TCP/IP data set created for the 1999
KDD Cup Challenge. After a comprehensive analysis of the
KDD Cup99 data set, the Tavallaee et al. [31] found that the
data set has many redundant records, fuzzy attack, and partial
overlap of the training and testing sets. Therefore, they created
the NSL-KDD data set based on KDD Cup99. The authors
removed the redundant part, abnormal data, and the overlap
between the training and testing sets in the original data. Next,
the authors record the times each sample is correctly classified
through multiple experiments and divide the data set into five
subsets according to the number of correct classifications.
Finally, a new data set named NSL-KDD is constructed by
selecting records from the subsets inversely proportion to the
total number of records in the subsets. There is no overlap
between the training and testing sets of NSL-KDD. Some
attack types in the test set are not in the training set, so the data
set can effectively evaluate the model’s generalization ability.
NSL-KDD has become one of the most widely used data sets.
Although this data set still has some problems, most NIDS still
use this data set as a benchmark data set. Therefore, we also
use NSL-KDD to evaluate our method to facilitate comparison
with other NIDS.

NSL-KDD contains four types of attacks and normal
records. The four attacks, i.e., DoS, Probe, U2R, and R2L,
are divided into 39 specific attacks. We use KDDTrain+,
KDDTest+ and KDDTest+21 in NSL-KDD to perform the
experiments. KDDTrain+ is a train set that contains 22 attack
records. Both KDDTest+ and KDDTest+21 are test sets with
37 attack records, of which 17 attacks did not appear in
KDDTrain+. The difference from KDDTest+ is that KDDTest-
21 does not contain records. Therefore, we assume that the

records in KDDTest+21 are challenging to detect correctly.
The data set composition and distribution are shown in Table
II.

TABLE II
DATA SET COMPOSITION AND DISTRIBUTION.

Class KDDTrain+ KDDTest+ KDDTest-21
Attacks 58630 12833 9698
Normal 67343 9711 2152
Total 125973 22544 11850

2) Data preprocessing: Each record in NSL-KDD has 41
characteristics. After analysis, we found that the value of the
feature named num outbound cmds R© in each record is 0.
Hence, we deleted this feature from each record. Among the
remaining 40 features, “protocol type”, “service”, and “flag”
are symbol features with a total number of symbols more
significant than 2. To make the same distance between each
value in the symbol feature, we convert these three symbol
features to one-hot code. After the processing, the number of
features in each record is converted from 41 to 121. It is also
indicated that the value range of different continuous features
in the data set is very diverse. To eliminate the influence of
dimensions between features and results and make the gradient
descent algorithm converge faster, we have performed feature
scaling so that each feature is in the same order of magnitude.
We use the Z-score feature scaling method to scale the feature
value to near 0 without changing the data distribution. The
feature scaling is as follows.

x ′ =
x − mean(x)

σ
(11)

x is the original feature. mean(x) is the mean value of feature,
and σ is the standard deviation.

C. Simulation environment and implementation

1) Simulation environment: The simulation environment is
shown in Table III.

TABLE III
EXPERIMENTAL ENVIRONMENT CONFIGURATION

Software Hardware
Ubuntu 16.04 Intel Xeon E5-2683 v3

Python 3.6 NVIDIA GeForce GTX Titan X
Keras 2.3.1 128GB RAM

Tensorflow 2.0 512GB ROM
Visual Studio Code 1.51.1

2) Implementation details: The specific structure of the
model described in Section III is shown in Table IV, where
we set batch size = 40 for all AEs during layer-by-layer pre-
training. In the fine-tuning stage, batch size = 64 and dropout
rate = 0.3. In the two stages, the optimizer is Adam R©, and the
learning rate is initialized to 0.001. The Batch Normalization
between any two layers of all models is also added. The HDF5
file size of our model is 500 KB, and the total number of
parameters is about 60000.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

TABLE IV
DETAILS OF PROPOSED MODEL

Module Layers Loss function Activation Train epoch

Pre-train
AE1 N&AE1 A 121×80×121 MSE ReLU 100
AE2 N&AE2 A 80×60×80 MSE ReLU 100
AE3 N& AE3 A 60×40×60 MSE ReLU 100

Fine tune SAE N& SAE A 121×80×60×40×1 Binary cros-sentropy

121→ 80: ReLU
80→ 60: ReLU
60→ 40: ReLU
40→ 1: Sigmoid

500

D. Ablation studies

We conduct an ablation experiment to evaluate our model
by comparing our results with several baselines on NSL-KDD
Dataset. First, we describe our baseline models. Then, we
present our results on the NSL-KDD Dataset.

1) DNN: The model’s structure and training details are
the same as those in the fine-tuning, as shown in Table IV.
For example, KDDTrain+ is the train set. KDDTest+ and
KDDTest-21 are the test sets. In the experiment, we referred
to this model as DNN3 for short.

2) Single SAE: The SAE comprises a stack of 3 AEs with
the same structure as AE1 N, AE2 N, and AE3 N, as shown
in Table IV. The configuration of layer-by-layer pre-training
and fine-tuning is the same as in Table IV. The model is based
on KDDTrain+ for unsupervised layer-by-layer pre-training
and supervised fine-tuning. KDDTest+ and KDDTest-21 are
test sets. In the experiment, we referred to this model as SAE3
for short.

3) Single SAE pre-trained based on normal data: This
model is composed of three stacks of AEs with the same
structure as AE1 N, AE2 N, and AE3 N, as depicted in Table
IV. The configuration of layer-by-layer pre-training and the
fine-tuning is the same as in Table IV. We divide KDDTrain+
into the normal record data set named KDDTrain+ normal and
the abnormal record data set named KDDTrain+ abnormal.
The pre-train is based on KDDTrain+ normal, and the fine-
tuning is based on KDDTrain+. KDDTest+ and KDDTest-21
are test sets. In the experiment, we referred to SAE N for
short.

4) Single SAE pre-trained based on abnormal data: The
model consists of three stacks of AEs with the same structure
as AE1 A, AE2 A, and AE3 A, as illustrated in Table IV. The
configuration of layer-by-layer pre-training and fine-tuning
is the same as the configuration in Table IV. It is based
on KDDTrain+ abnormal during pre-training and based on
KDDTrain+ during fine-tuning. KDDTest+ and KDDTest-21
are test sets. In the experiment, we referred to this model as
SAE A for short.

5) Pseudo-siamese SAE: The model combines the third
baseline and the fourth as a pseudo-twin SAE and combines
its classification results through logical operations to optimize
the final result.

E. Ablation studies on the NSL-KDD

In this section, we present the results of ablation studies
on NSL-KDD. Since the attacks contained in NSL-KDD
are relatively comprehensive, the train set KDDTrain+ is
quite different from the test sets KDDTest+ and KDDTest-
21. Therefore, the data sets can comprehensively evaluate the
model attack detection and generalization abilities. In Table
V, the classification results on KDDTest+ of our proposed
architecture are compared with the baselines.

We used the fully connected layer network, B1-DNN3, for
IDS experiments. The experiment showed that the DR is low,
FAR is high, and the overall accuracy is slightly lower. This
is because ordinary neural networks find it difficult to learn
the data’s deep semantic features, making them insensitive
to the normal and abnormal state of the network. Therefore,
based on B1, we also use B2-SAE for IDS experiments.
The results show that the DR of this model has increased
by 1.52%, and the FAR has decreased by 3.46%, indicating
that SAE can learn the deep semantic features of the data.
To further prove that SAE can extract the deep semantic
subspace of original features, we use B3-SAEN and B4-SAEA
to conduct experiments. The experimental results show that B3
pre-trained based on normal data has a 0.92% increase in DR
and a decrease in FAR by 1.3% compared to B2. Compared
to B2, the DR of B4 pre-trained based on abnormal data
increased by 13.84%, but the FAR also increased by 5.6%.
It shows that B3 and B4 are more sensitive to normal or
abnormal records through pre-training of different data types,
but it is also possible that the model is shifted to the train set.
B5-PSSAE is our final method. It combines the advantages
of B3 and B4 while making up for the deficiencies of the
two models. As shown in the tables and figures, our proposed
PSSAE model significantly outperforms the other baseline
models. Compared to B1, the Accuracy of PSSAE increased
significantly by about 10%, the DR increased significantly
by about 16%, and the FAR decreased significantly by about
3%. Experiments prove that PSSAE has strong detection and
generalization abilities.

In Table VI, the classification results on KDDTest-21 of
our proposed architecture are compared with the baselines. We
mentioned in the previous article that the attack in KDDTest-
21 is more challenging to detect. As shown in Table VI, for
the KDDTest-21 data set, our method also has good results.
Compared with other baseline methods, the accuracy, DR, and
F1-score of PSSAE have increased significantly, but the FAR

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

TABLE V
COMPARISON OF OUR FINAL METHOD WITH OTHER BASELINE METHODS ON THE NSL-KDD(KDDTEST+)

Method Accuracy(%) DR(%) Preston(%) F1-Score(%) FAR(%) AU-ROC AU-PR
B1-DNN3 80.46 71.42 92.55 80.62 7.60 0.9374 0.9502
B2-SAE3 82.86 73.00 95.89 82.89 4.14 0.9355 0.9479
B3-SAEN 83.67 73.92 96.60 83.75 3.44 0.9224 0.9517
B4-SAEA 88.31 86.84 92.18 89.43 9.74 0.9404 0.9479
B5-PSSAE 90.05 87.06 95.86 91.25 4.96 0.9507 0.9605

TABLE VI
COMPARISON OF OUR FINAL METHOD WITH OTHER BASELINE METHODS ON THE NSL-KDD(KDDTEST-21)

Method Accuracy(%) DR(%) Presion(%) F1-Score(%) FAR(%) AU-ROC AU-PR
B1-DNN3 58.00 51.52 94.78 66.75 12.78 0.7799 0.9318
B2-SAE3 59.99 54.10 94.76 68.88 13.48 0.8220 0.9403
B3-SAEN 69.12 65.49 95.32 77.64 14.51 0.7844 0.9444
B4-SAEA 78.41 82.75 90.07 86.25 41.12 0.7636 0.9234
B5-PSSAE 82.36 82.88 94.92 88.49 19.98 0.8390 0.9477

has increased compared to B1- B3. The abnormal deviation of
the model may cause this. However, because the positive and
negative samples of KDDTest-21 are seriously imbalanced,
we have observed that the AU-PR is rising, indicating that
the classification ability of the model is rising. We mentioned
earlier that compared with kddtest +, kddtest-21 does not
contain records that the producer can correctly classify through
multiple tests. Therefore, the detection of attacks in kddtest-21
is difficult. Typically, its accuracy is lower than kddtest+.

In Fig. 5, the ROC of our method is compared with the other
baseline methods based on the KDDTest+ dataset. The AU-
ROC can be interpreted as randomly selecting sample A from
all positive examples and then selecting sample B from all
negative examples. The AU-ROC can be interpreted as follows.

• Randomly selects a sample A from all positive examples,
• Randomly selects a sample B from all negative examples,
• The possibility that the classifier has a higher probability

of judging A as a positive example than judging B as a
positive example.

At this point, TPR is always greater than FPR, which means
that the probability of positive cases is greater than the negative
cases. This is because the ROC is not affected by changes
in the ratio of positive and negative samples. Hence, it has
strong robustness. In Fig. 5, we can observe that the ROC of
PSSAE is smoother than the ROC of other baseline methods,
and the AU-ROC is larger than the AU-ROC of other baseline
methods. It shows that the classification ability of PSSAE is
better than other baseline methods.

The PRC of our proposed method on the KDDTest+ dataset
is shown in Fig. 6 and compared with baseline methods.
Similar to ROC, PRC also measures the effectiveness of the
classifier by using TPR (Recall) and AUC. However, PRC
focuses on Precision instead of FPR, making it more suitable
for imbalanced datasets. Thus, both indicators of the PRC are
more focused on positive examples. In Fig. 6, we can observe
that the PRC of PSSAE is smoother than the PRC of other
baseline methods, and the AU-PRC of PSSAE is larger than

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr
ue

 P
os
iti
ve
 R
at
e

ROC curve - KDDTest+

DNN3 (area = 0.9374)
SAE3(area = 0.9355)
SAEN(area = 0.9224)
SAEA(area = 0.9404)
PSSAE(area = 0.9507)
Random guess

Fig. 5. ROC of our method and other baseline methods on KDDTest+

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

PR curve - KDDTest+

DNN3 (area = 0.9502)
SAE3(area = 0.9479)
SAEN(area = 0.9517)
SAEA(area = 0.9479)
PSSAE(area = 0.9605)

Fig. 6. PRC of our method and other baseline methods on KDDTest+

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS.

Dataset Method Accuracy(%) DR(%) FAR(%) F1-Score(%)
5-layers DNN [15] 78.9 - - 79.7
RNN [16] 83.28 72.95 3.06 -
ICVAE-DNN [21] 85.97 77.43 2.74 86.27

KDDTest+ S-NDAE [25] 85.42 85.42 14.58 87.37
CBR-CNN [27] 87.28 - - -
Feature learning [32] 84.12 - - -
PIO [33] 88.3 86.6 8.8 88.2
Proposed PSSAE 90.05 87.06 4.96 91.25
RNN [16] 68.55 - - -

KDDTest-21 ICVAE-DNN [21] 75.43 72.86 12.96 82.92
CBR-CNN [27] 76.27 - - -
Proposed PSSAE 82.36 82.88 19.98 88.49

that of other models, which indicates that PSSAE’s ability to
detect attacks is higher than other baseline methods.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve - KDDTest-21

DNN3 (area = 0.7799)
SAE3(area = 0.8220)
SAEN(area = 0.7844)
SAEA(area = 0.7636)
PSSAE(area = 0.8390)
Random guess

Fig. 7. ROC of our method and other baseline methods on KDDTest-21

As shown in Fig. 7, the ROC of our method is compared
with the other baseline methods on the KDDTest-21 dataset.
We can see that the ROC of PSSAE is smoother than other
baseline methods. The AU-ROC is also larger than the AU-
ROC of other baseline methods, indicating that PSSAE has
better classification capabilities on KDDTest-21.

In Fig. 8, the PRC of our method is compared with
the other baseline methods on the KDDTest-21 dataset. We
mentioned in the previous sections that the ratio of positive
and negative samples in KDDTest-21 is unbalanced. The PRC
is widely considered better than the ROC in the category
of imbalance problem because it is mainly concerned with
positive examples. From Fig. 8, we can see that the PRC of
PSSAE is smoother than that of other baseline methods, and
the AU-PRC is also larger than that of other baseline methods.
Therefore, PSSAE has a better ability to detect attacks.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR curve - KDDTest-21

DNN3 (area = 0.9318)
SAE3(area = 0.9403)
SAEN(area = 0.9444)
SAEA(area = 0.9234)
PSSAE(area = 0.9477)

Fig. 8. ROC of final method and other baseline methods on KDDTest-21

F. Overall performance

To further prove the detection performance of PSSAE, we
compare PSSAE with some intrusion detection algorithms.
As shown in Table VII, on the KDDTest+ and KDDTest-
21 datasets, general neural network structures, such as DNN
[15] and RNN [16] have low discrimination and sensitivity
to normal records and abnormal records. Therefore, the ac-
curacy of the model and DR is low. On the other hand, the
accuracy and feature learning [32] of S-NDAE [25], ICVAE-
DNN [21], CBR-CNN [27], and the DR based on the AE
method are higher than those of DNN [15], and RNN [16].
This shows that SAE can effectively extract deep semantic
data features, amplify the difference between positive and
negative samples, and make the model more discriminating.
Our proposed PSSAE has higher accuracy, DR and F1-Score,
and lower FAR than other methods. This shows that our
model meets our initial expectations, i.e., a higher degree
of discrimination between normal and abnormal records to
improve detection and reduce the false alarm rate. Herefore,
PSSAE is a better model for intrusion detection performance
based on the comparison results.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

V. CONCLUSION

Considering IoT’s low latency and limited computing re-
sources, we propose an intrusion detection model that can be
deployed in fog computing. We analyzed the existing IDS
methods and found that most models have low detection
rates and high FAR. To address these issues, we believe that
SAEs can extract deep semantic features more effectively
than ordinary neural networks, enabling the model to learn
the normal and abnormal states of the network, amplify
the differences between positive and negative samples, and
improve the distinction between normal and abnormal records.
Therefore, we proposed a NIDS based on PSSAE and com-
pared its performance with existing NIDS models. The results
of the ablation experiment demonstrated that PSSAE achieved
higher accuracy, DR, F1-Score, AU-ROC, and AU-PRC, while
maintaining a lower FAR compared to other baseline meth-
ods. These results validate the effectiveness of PSSAE in
extracting deep semantic features, exhibiting a high degree
of discrimination between normal and abnormal records, and
demonstrating strong generalization ability. Furthermore, the
compact size of the PSSAE’s HDF5 file (only 500kb) requires
low computing power and does not increase hardware costs,
making it easily deployable in the fog computing layer. As
part of our future work, we plan to enhance the evaluation
of our model’s performance through extensive testing on a
diverse array of datasets. By doing so, we aim to gauge its
efficacy and versatility in various intrusion detection scenarios.
Additionally, we plan to explore the combination of SAEs with
traditional machine learning algorithms in the study of NIDS.
This approach aims to further enhance the model’s accuracy
and reduce the false-positive rate, ultimately improving its
overall performance.

ACKNOWLEDGEMENT

This work was supported in parts by the China Na-
tional Key Research & Development Program under Grant
2018YFB0803600, Natural Science Foundation of China un-
der Grant 61801008, the Scientific Research Common Pro-
gram of Beijing Municipal Commission of Education under
Grant KM201910005025, and the Chinese Postdoctoral Sci-
ence Foundation under Grant 2020M670074.

REFERENCES

[1] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma, and J. Ott, “Security
and privacy in device-to-device (D2D) communication: A review,” IEEE
Communications Surveys Tutorials, vol. 19, no. 2, pp. 1054–1079, 2017.

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[3] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the Internet
of Things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116,
2016.

[4] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, “Fog computing
for the Internet of things: Security and privacy issues,” IEEE Internet
Computing, vol. 21, no. 2, pp. 34–42, 2017.

[5] M. Waqas, Y. Niu, M. Ahmed, Y. Li, D. Jin, and Z. Han, “Mobility-
aware fog computing in dynamic environments: Understandings and
implementation,” IEEE Access, vol. 7, pp. 38 867–38 879, 2019.

[6] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, 2002, pp. 255–264.

[7] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, “Network intrusion
detection,” IEEE Network, vol. 8, no. 3, pp. 26–41, 1994.

[8] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”
Citeseer, Tech. Rep., 2000.

[9] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: methods, systems and tools,” IEEE communications surveys
& tutorials, vol. 16, no. 1, pp. 303–336, 2013.

[10] M. Waqas, S. Tu, Z. Halim, S. Rehman, G. Abbas, Z. H. Abbas,
“The Role of Artificial Intelligence and Machine Learning in Wire-
less Networks Security: Principle, Practice and Challenges”, Artificial
Intelligence Review, vol 2022, no. 55, pp. 5215-5261, Feb. 2022.

[11] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Computational
intelligence and neuroscience, vol. 2018, 2018.

[12] D. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 26, no. 10, pp. 1702–1726, 2018.

[13] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based rec-
ommender system: A survey and new perspectives,” ACM Computing
Surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.

[14] S. Tu, M. Waqas, S. U. Rehman, M. Aamir, O. U. Rehman, Z. Jianbiao,
and C.-C. Chang, “Security in fog computing: A novel technique to
tackle an impersonation attack,” IEEE Access, vol. 6, pp. 74 993–75 001,
2018.

[15] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–41 550,
2019.

[16] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion
detection using recurrent neural networks,” IEEE Access, vol. 5, pp.
21 954–21 961, 2017.

[17] E. Hodo, X. Bellekens, A. Hamilton, P.-L. Dubouilh, E. Iorkyase,
C. Tachtatzis, and R. Atkinson, “Threat analysis of IoT networks
using artificial neural network intrusion detection system,” in 2016
International Symposium on Networks, Computers and Communications
(ISNCC). IEEE, 2016, pp. 1–6.

[18] F. Hosseinpour, P. Vahdani Amoli, J. Plosila, T. Hämäläinen, and
H. Tenhunen, “An intrusion detection system for fog computing and
IoT based logistic systems using a smart data approach,” International
Journal of Digital Content Technology and its Applications, vol. 10,
2016.

[19] K. Sadaf and J. Sultana, “Intrusion Detection Based on Autoencoder and
Isolation Forest in Fog Computing,” IEEE Access, vol. 8, pp. 167059-
167068, Sept. 2020.

[20] H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, and K.-
K. R. Choo, “A two-layer dimension reduction and two-tier classification
model for anomaly-based intrusion detection in IoT backbone networks,”
IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2, pp.
314–323, 2016.

[21] Y. Yang, K. Zheng, C. Wu, and Y. Yang, “Improving the classification
effectiveness of intrusion detection by using improved conditional vari-
ational autoencoder and deep neural network,” Sensors, vol. 19, no. 11,
p. 2528, 2019.

[22] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme
using deep learning approach for Internet of Things,” Future Generation
Computer Systems, vol. 82, pp. 761–768, 2018.

[23] S. Prabavathy, K. Sundarakantham, and S. M. Shalinie, “Design of
cognitive fog computing for intrusion detection in Internet of Things,”
Journal of Communications and Networks, vol. 20, no. 3, pp. 291–298,
2018.

[24] S. Rathore and J. H. Park, “Semi-supervised learning based distributed
attack detection framework for IoT,” Applied Soft Computing, vol. 72,
pp. 79–89, 2018.

[25] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE transactions on emerging topics
in computational intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[26] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with
nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014
2nd workshop on machine learning for sensory data analysis, 2014, pp.
4–11.

[27] N. Chouhan, A. Khan et al., “Network anomaly detection using channel
boosted and residual learning based deep convolutional neural network,”
Applied Soft Computing, vol. 83, p. 105612, 2019.

[28] C. A. de Souza, C. B. Westphall, R. B. Machado, J. B. M. Sobral,
and G. dos, Santos Vieira, “Hybrid approach to intrusion detection in
fog-based IoT environments,” Computer Networks, vol. 180, p. 107417,
2020.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

[29] S. Tu, M. Waqas, Y. Meng, S. U. Rehman, I. Ahmad, A. Koubaa,
Z. Halim, M. Hanif, C.-C. Chang, and C. Shi, “Mobile fog computing
security: A user-oriented smart attack defense strategy based on DQL,”
Computer Communications, vol. 160, pp. 790–798, 2020.

[30] F. Huang, M. Waqas, S. Tu, G. Abbas, and Z. H. Abbas, “A revocable
and outsourced multi-authority attribute-based encryption scheme in fog
computing,” Computer Networks, p. 108196, 2021.

[31] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in 2009 IEEE symposium on
computational intelligence for security and defense applications. IEEE,
2009, pp. 1–6.

[32] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
“Autoencoder-based feature learning for cyber security applications,” in
2017 International joint conference on neural networks (IJCNN). IEEE,
2017, pp. 3854–3861.

[33] H. Alazzam, A. Sharieh, and K. E. Sabri, “A feature selection algorithm
for intrusion detection system based on pigeon inspired optimizer,”
Expert systems with applications, vol. 148, p. 113249, 2020.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3319953

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

