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Abstract—An edge cloud architecture plays a key role in
improving the user task computing service system by combining
the powerful data processing capability of cloud centres with the
low latency of edge computing. Existing methods for maximizing
the efficiency of an edge cloud architecture take into account
time and task parameters but ignore other factors such as
load balancing, cost, and user satisfaction when scheduling
resources. In this work, we propose a many-objective resource
scheduling model for optimizing the performance of an edge
cloud architecture, which takes into account the time spent on
task, cost, load balance, user satisfaction, and trust measurement.
The resource scheduling model converges to the optimal solution
using a novel many-objective ensemble optimization algorithm
based on a dynamic selection mechanism. The study also explores
the support set convergence of eight evolutionary operators using
the ensemble algorithm. The model solutions are dynamically
updated with the help of the dynamic integration probability, and
then a selection criteria is used to pick the best solutions from
the pool of generated solutions. Two simulations on a benchmark
dataset are used to verify the usefulness and performance of
the designed algorithm. Our approach was able to locate more
than half of the best solutions on the benchmark functions, and
it also showed to be a better model solution than the some
of the popular many-objective algorithms for dealing with the
edge cloud resource scheduling problem, according to the results
obtained from the simulations.

Index Terms—Cloud computing, mobile edge computing, en-
semble learning and resource scheduling.

I. INTRODUCTION

THE fields of cloud computing, big data, and the Internet
of Things (IoT) have gained prominence and attention

as a result of recent advancements in architecture, algorithms,
and technology [1], [2]. The integration of these disciplines
has been successfully deployed in healthcare [3], [4], smart
metering [5], [6], smart urban surveillance [7], [8], smart
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transportation [9], [10], smart factories [11], [12], and smart
homes [13], [14], among other applications. The rapid progress
and popularity of internet of things and cloud computing
for applications in many fields have lead to an exponential
growth in the amount of data generated and passed over to the
cloud for processing. In addition, the recent advancements in
networks and communication technology are another reason
for the exponential growth in the demand of computational
power for the internet of everything (IoE) and the cloud [15].
Hence, in modern times, efficient resource scheduling is one
of the core components of cloud computing algorithms for
provision of service in a reasonable amount of time [16]
and low latency resulting from efficient resource scheduling
has become a necessary characteristic for cloud computing
systems, in particular, for real time systems [17], [18].

In a typical traditional cloud computing architecture, the
IoT devices collect and transfer the data over the network
to the cloud, where it is stored, processed, and results are
transferred to the IoT device [19]. In such a system, the
IoT device has no computational abilities and the complete
data processing is done by the cloud. Note that traditional
cloud computing approaches may result in accumulation of
substantial amount of unprocessed and processed data due to
difference in speed of processing in the cloud and the rapid
transfer of data from the device to the cloud [20]. This leads
to considerable latency in the traditional cloud computing
architectures, wastage of resources on the cloud, network and
IoT devices, and places a significant strain on bandwidth of
cross-domain link [21].

As an alternate to traditional cloud computing architecture,
edge computing architecture have been proposed in recent
times, which deploy a distributed computing paradigm where
edge computing extends cloud computing from the centralized
computing to the edge of the network [22]. Essentially, the
computing devices for edge computing are typically positioned
near the data source, on the edge side of cloud computing, so
that fast access to services can be achieved and a distributed,
low-delay, and continuous work properties are available [12],
[23]. Such a mechanism leads to data forwarding, storage,
computing and analysis being processed on the edge devices,
deployed in the closest position to the user’s network [24], and
plays an important role in reducing the response delay, cloud
pressure, bandwidth cost, and providing a timely service re-
sponse to the users [9], [25]. By using cloud edge collaborative
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computing, the network function management layer strategy
can be distributed to the center cloud and edge cloud to realize
the flexible deployment of network functions and intelligent
management of cloud server resources, where the controller is
responsible for the efficient forwarding configuration of the
underlying data plane and data stream [26]. Based on the
system’s current load and resource status, a unified computing
task scheduling and resource optimization configuration strat-
egy is employed to execute tasks on the deployed edge nodes
and the central cloud. When the request for user’s task arrives,
the collaborative scheduling of computing tasks is realized
on the premise of guaranteeing the user requirements [3],
[5]. However, due to the physical limitations of computing
facilities, the computing capacity of edge cloud computing
is limited [19], [27], which may cause uneven allocation of
resources, among other issues. As a result of the uneven allo-
cation of resources, there will be a load imbalance, resulting
in a backlog of “hot spots” in specific computer clusters [20],
[24]. Therefore, it is critical to investigate how to improve
the task computing service system by combining the cloud
data center’s robust data processing capabilities with the low
latency of edge clusters [5], [28].

The demand for flexibility in edge cloud resource schedul-
ing strategies, particularly for real-time large applications, has
skyrocketed in recent years and further optimization of the
resource scheduling strategy is required to satisfy the expec-
tations of users [5], [8]. Several significant contributions have
been made to address this challenge. Liu et al. [29] presented
the joint optimization of resource allocation of computing
resources and wireless bandwidth in a cloudlets and clouds co-
exist system, and a multi-dimensional resource optimization
strategy employing a general-purpose linear programming
solution and expressing the optimization problem as a semi-
Markov decision process (SMDP) [30] was proposed. The
simulation in [29] resulted in a significant reduction in energy
consumption for the scheduling tasks system between micro-
cloud and cloud servers. By integrating edge association and
resource allocation, Luo et al. [21] proposed a novel hierar-
chical federated edge learning to minimise the core network’s
transmission cost while ensuring data privacy security [31].
By concurrently scheduling network resources in cloud radio
access networks and computing resources in edge computing,
Wang et al. [1] established a unified mobile service provider
performance trade-off framework to maximise mobile service
providers’ profit [32]. Sotiriadis et al. [33] established a cross-
cloud task scheduling framework to maximize the performance
of the participating cloud, which optimized the scheduling
indicators of task execution, completion time, and turn-around
time based on the design of the message switch showing
noticeable improvement in the performance of single cloud
scheduling performance.

Although only a limited few factor(s) affect edge cloud
resource scheduling (ECRS), a variety of criteria should be
balanced in the ECRS system in order to produce good results,
including job completion time, cost, load balancing, user
satisfaction, and trust measurement [10], [33], [34]. Many-
Objective Optimization Problems (MaOPs) feature more than

three objective functions, posing a significant challenge to
the algorithm’s convergence and diversity (CaD) mainte-
nance [35], [36]. According to Cheung et al. [37], Many-
Objective Evolutionary Algorithms (MaOEAs) can be em-
ployed to solve MaOPs, where the various functions of an
MaOEA are not the consequence of a single element, but
of the integration and coordination of interdependent and
interacting factors via appropriate mechanisms [36]. Designing
an efficient ensemble of various many-objective evolution-
ary algorithms not only maintains MaOEA’s advantages in
solving problems of high complexity, but also purposefully
selects different operators to improve the efficiency of solving
these problems based on their characteristics, thereby improv-
ing the algorithm’s overall evolution efficiency. When address-
ing a MaOP, the population’s early evolution should focus on
the convergence of solutions, while the late evolution should
focus on the diversity of solutions [35], [36]. One of the most
challenging aspect in building a high performance ensemble
of many-objective evolutionary algorithms is considering the
importance of CaD at various phases of development [38].
Many existing solutions in the literature consider a selected
time and task factors for finding an optimal solution for the
ECRS problem. In this paper, we view the ECRS problem as a
MaOP [10], and we propose an efficient ensemble of MaOEA
to solve the ECRS problem utilising five factors (the complete
time spent on task, cost, load balance, user satisfaction, and
trust measurement).

Following is a list of the notable contributions made in this
study.

• A many-objective edge cloud resource scheduling model
is designed to describe the problem in detail, with five
objectives to be optimized: time for task completion, cost
of server completion, degree of server load balancing, de-
gree of user satisfaction, and trust measurement between
task and server factors.

• A novel MaOEA based on dynamic probabilistic selection
ensemble (MaOEA-DPS) is devised to find the model so-
lution, where the MaOEA-DPS initially looks at the sup-
port set convergence of eight evolutionary operators and
then the evolutionary operators of the ensemble algorithm
are picked from three popular evolutionary algorithms.
Through mutual coordination and collaborative action,
each evolutionary strategy can contribute its different ben-
efits and generate more excellent solutions for selection
under the dynamic probability ensemble mechanism. In
addition, a selection mechanism is employed to select and
store the excellent solutions, which will overcome the
problem of declining selection pressure in the later stage
of evolution and help achieve a “strong combination” and
superior performance in balancing CaD.

• Two substantial validation tests are conducted on the
benchmark function and the ECRS problem, where the
suggested ensemble method produces more than half
of the good solutions on the benchmark function when
compared to other advanced MaOEAs. In addition, as
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compared to the involved algorithm in addressing the
ECRS problem, a superior model solution is obtained.

The rest of this study is structured in the following manner.
A detailed discussion of the ECRS problem and model design
is presented in Section II. Then, in Section III, the notion of
developing a novel many-objective ensemble method based
on dynamic probability selection is explained. Two extensive
validation tests are then performed in Section IV. Finally,
Section V brings the paper to a close.

II. EDGE CLOUD RESOURCE SCHEDULING PROBLEM

The volume of task data provided by users is growing expo-
nentially [39] in tandem with major advancements [30], [40]
in the field of artificial intelligence [9], [41]. In the traditional
cloud computing paradigm, the data for these tasks is sent to
the cloud data centre, which performs centralized processing
and the devices are solely utilized for data collection and trans-
mission to the cloud. The edge cloud computing paradigm,
on the other hand, is based on the availability of computing
capabilities on both the data centre (called the cloud in IoE)
and the data collection device (called the edge in IoE) [1], as
depicted in Figure 1. The edge cloud computing architecture
essentially creates a flexible cloud platform with numerous
important options, such as edge computing, network, storage,
security, and so on. This concept requires and forms a technical
framework for “cloud-edge-collaboration” between the cloud
and the edge, where part of the decision making from data
analysis and processing tasks can be handled on the edge
to reduce response delay, cloud pressure, and bandwidth
costs [42]. In addition to these capabilities, the configurable
cloud platform of the edge cloud computing paradigm can
provide the same services as traditional cloud computing, such
as network scheduling and computing power distribution.

A. Problem Description

A central cloud and numerous edge clouds make up an
edge cloud resource scheduling system in general. The central
cloud is in charge of controlling and monitoring each edge
cloud platform, as well as coordinating resource allocation
among platforms to satisfy the demands of users’ tasks [1],
[7]. For each edge cloud platform, the user-side equipment
delivers tasks to the server, and the edge server decomposes
the tasks into many sub-tasks, which are sent to different edge
devices (EDs) for computing [43]. Large tasks are scheduled
to the cloud computing center for processing due to the limited
computing capability of EDs. The data is then fed back to the
user equipment layer by layer via the cloud computing center.
The entire resource scheduling procedure of the system can
be summarized as depicted in Figure 1. The n tasks in set
Task = {task1, task2, · · ·, taskn} are scheduled reasonably on
the m EDs computing nodes in the ED computing node-set
ED = {ed1, ed2, ···, edm} (where, m < n), in order to maximize
the efficiency of task completion [44]. The matrix D (shown in
Equation 1) represents the corresponding relationship between

the user task and the ED computing node. A row in D denotes
the m ED computing node queue, a column in D denotes
the n task queue, and di j denotes the task j is assigned for
completion.

D =
©«

d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...
dm1 dm2 · · · dmn

ª®®®®¬
. (1)

In most cases, an edge cloud task is assigned to finish the
calculation on one of the EDs that can handle several tasks.
Therefore, di j ∈ (0, 1),

m∑
i=1

di j = 1( j = 1, 2, · · ·, n). According to

the corresponding relation matrix, the completion time matrix
of ED is constructed as shown in Equation 2, where teti j
denotes the completion time of task j on edi .

TET =
©«

tet11 tet12 · · · tet1n
tet21 tet22 · · · tet2n
...

...
. . .

...
tetm1 tetm2 · · · tetmn

ª®®®®¬
. (2)

In addition, certain attributes of tasks and edge computing
node for cloud resource scheduling system are described in
Table I [35].

TABLE I
DESCRIPTION OF EDGE NODE AND TASK RELATED ATTRIBUTES

Type Attribute Description

edi
edbandwidth

i bandwidth of edi
edCPU

i CPU of edi
edmips

i mips of edi

Task j

Task f ilesize
j bandwidth of edi

Taskoutputsize
j outputsize of Task j

Tasklengthj length of Task j

Taskwaittime
j waittime of Task j

Taskdeadline
edi

deadline of Task j

Taskbudget
j budget of Task j

Some notable desired characteristics of an optimal ECRS
algorithm in an edge cloud environment that impacts user
satisfaction positively are security of the system, lowered total
execution time, reduced costs, and avoiding uneven resource
scheduling. Since the system is unable to differentiate between
malicious fraudulent service and normal service during re-
source scheduling because of the virtualization characteristics
of the edge cloud environment, hence the security of the
entire scheduling mechanism is of utmost importance for
user in the edge cloud environment [45]. Similarly, the total
execution time for the task has a direct impact on user
satisfaction with the computing service. Additionally , edge
cloud service operators should minimize idle machines in
the edge-cloud platform to reduce costs. In addition, uneven
resource scheduling results in poor load balancing of the edge
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Fig. 1. A Typical Edge Cloud Resource Scheduling System - The figure displays a typical edge cloud resource scheduling system, with a center cloud
system and N edge cloud systems. Each edge cloud system has computing capability, with an edge network connecting the edge cloud computing center to
the edge servers which are then connected to the edge devices. The tasks need to be coordinated and managed at both the center cloud system as well as
edge servers to get the most optimal solution often with mutually conflicting factors.

cloud server, which in turn leads to reduced resource utiliza-
tion of the corresponding edge cloud and higher operation
and consumption costs [9]. Note that the factors that affect
the ECRS problem are restricted, with conflicted goals, and
influenced, and thus the ECRS problem can be regarded as
a Many Objective Problem (MaOP). The objective function
formulated below is then used to express the many-objective
edge cloud resource scheduling model.

B. Objective Function

1) Completion time: Let A1, A2, and A3 represent the
million instructions per second (MIPs) for performance, band-
width and CPU of the edi . Then, the transmission time of
task j from edge cloud to edi is represented by T transmission

edi
and shown in Equation 3.

T transmission
edi

=
Task

f ilesize
j +Task

out put size
j

ed
A2
i

. (3)

Then, the computing time of task j on edi is represented
by Tcomputing

edi
and shown in Equation 4.

Tcomputing
edi

=
Task

length
j

ed
A3
i ·ed

A1
i

. (4)

Also, note that when a large number of tasks are to be
scheduled given the limited computing resources of EDs, the
waiting time of some tasks (shown in Equation 5) may be
non-zero and is described by Twaittime

edi
[35].

Twaittime
edi

= Taskwaittime
j . (5)

Then the completion time tetedi of each task j can be
calculated as shown in Equation 6.

tetedi = T transmission
edi

+ Tcomputing
edi

+ Twaittime
edi

. (6)

In the resource scheduling decision-making scheme of the
whole ECRS system, the task with the maximum task comple-
tion time (represented by Tedi and shown in Equation 7) in the
task execution queue directly affects the execution efficiency.

Tedi =
n∑
j=1

tetedi · di j . (7)

Note that typically assignment tasks take the shortest time
to complete. Suppose x represents an edge cloud task resource
scheduling scheme, then the service completion time for x
represented by Tedi (x) is shown in Equation 8.

Tedi (x) = max(Ted1,Ted2, · · ·,Tedm ). (8)

Since the minimum service completion time is preferred,
the completion time of resource scheduling decision-making
scheme f1(x) is shown in Equation 9.

f1(x) = min(Tedi (x)). (9)

2) Completion Cost: In general, a high-quality service of
user tasks should be obtained at the lowest possible cost.
Therefore, resource providers need to explore reducing service
charges based on typical service needs of the user. Since the
investment cost of leasing edge cloud servers represents the
majority cost investment of the provided service in edge cloud
computing systems, we limit the rental cost of edi to the cost
of the million instructions per second (MIPS) of CPU of edi ,
network bandwidth, and memory space [46].

Suppose MonyA1,2,3 denotes three types of cost in the
scheduling process of using edi , and Y describes whether the
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task j is assigned to the edi , where Y=0 denotes the task j is not
assigned to the edi and Y=1 denotes the task j is assigned to
the edi . Then, the total cost of the entire task can be calculated
as follows, where f2(x) represents the completion cost of the
best resource scheduling decision-making system and is shown
in Equation 12.

Kind =
Tasklengthj

edA1
i

+
Task f ilesize

j + Taskoutputsize
j

edA2
i

+
Tasklengthj

edA3
i

,

(10)

TaskCost
Total=

m∑
i=1

n∑
j=1
(edA1,2,3

i · MonyA1,2,3 · Kind · Y ), (11)

f2(x) = min(TaskCost
Total). (12)

3) Degree of user satisfaction: User satisfaction can be
calculated from the computing power and service level of
the edge cloud resource scheduling system, and has a direct
impact on service providers’ resource scheduling decisions.
If the user satisfaction level is too low, for example, a high
number of tasks submitted by the user will be unable to
be finished on time [35]. As a result, whether from the
perspective of users’ or service providers’ interests, the degree
of user satisfaction ( f3(x)) should be considered in the resource
scheduling process, and is expressed in Equation 13.

f3(x) = max((
n∑
j=1
(

Tedi
Taskdeadline

edi

+
Taskcos t

j

Task
budget
j

))/n). (13)

4) Degree of load balance: The edge cloud server displays
varied resource scheduling service levels due to the differences
in resource scheduling tasks in the edge cloud system. The
idle phenomenon of available computer resources is observed
due to non-scheduling of all tasks on some resources, because
of difference in performance optimality among various edge
devices of the ECRS system. Edge cloud server resource load
balancing is connected to whether or not the service providers
of ECRS system are completely and systematically exploited,
with a direct impact on the time it takes to complete a task, the
cost, and user satisfaction. A standard deviation technique is
used to determine the degree of load balancing. The lower the
standard deviation coefficient, the more load-balanced resource
scheduling jobs can be assigned to edge devices. The specific
load balancing degree ( f4(x)) can be seen in Equation 14.

f4(x) = min Loadedi = min

n∑
j=1
(
(t etedi

−Loadmean
edi

)2

N )

Loadmean
edi

,
(14)

where Loadmean
edi

=
Tedi
N .

5) Trust Measurement: Because of virtualization features,
edge cloud resource scheduling systems are insecure, making
it difficult for cloud users to identify their service capabilities
and meet their service requirements. Furthermore, because of

malicious and fraudulent cloud services, the trust measurement
value of services may be lowered. As a result, cloud resource
scheduling service trustworthiness measurement is critical in
the whole ECRS system [6], [47]. In general, there are
two forms of trust measurement: direct and indirect trust
measurement. The value of a direct trust can be calculated
using the probability of a direct transaction’s success and
failure to perform the assigned task. Suppose NSuccess is
the number of tasks successfully completed the assignment
schedule between edi and Task j , NFailure is the failure
number of completing the assigned task due to the provision
of poor service or fraudulent actions by the other party, and µ
denotes a penalty factor and µ > 1, which is mainly used to
encourage task nodes to provide real and effective information
rather than false information. Then the direct trust for edi
and Task j (represented by Trustdirect (edi,Task j))is shown
in Equation 15.

Trustdirect (edi,Task j) =
NSuccess

NSuccess + µNFailure
, NSuccess > NFailure

0, others

(15)

Similarly, indirect trust between edge server node and task
node is measured through the recommendation of a third-party
edge server nodes coming from the friends and strangers.
Suppose Ned j is the direct interaction number between task
node Taskk and friend node edj , and λ denotes the weight
of recommendation information from friend nodes edj . Then
Equation 16 represents the indirect trust measurement from
the friends with a direct interaction with task nodes.

Re com f riend(edi,Task j) =

Nedj∑
k=1

λ · Trustdirect (edj,Taskk).

(16)

Suppose that NSed j is the indirect interaction number
between task node Taskk and stranger node edj for edi;
Trustdirect (edj,Taskk) describes the recommendation trust
value between task node Taskk and stranger nodes edj for edi .
Then Equation 17 represents the indirect trust measurement
from the strangers with an indirect interaction with task nodes.

Re comstranger (edi,Task j) =

NSedj∑
k=1

Trustdirect (ed j,Taskk )

NSedj
.

(17)

The task node Taskk and stranger nodes edj for edi have
direct interaction history. Suppose that α and β are the weight
adjustment factor of direct and indirect trust measurement,
respectively, and α+β = 1, then the indirect trust measure con-
siders the recommended trust values of friends and strangers,
and is shown in Equation 18.

Trustrecom(edi,Task j) = α · Re com f riend(edi,Task j)+

β · Re comstranger (edi,Task j).
(18)

In addition, to meet the user’s satisfaction with task comput-
ing service, the reliability of edge cloud server and user nodes
shown in Equation 19 should be considered. Suppose Taskm
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represents the task node in the same trust domain that has
directly interacted with node. NTedi is the interaction number
of task node Task j and node edi , then

Re liab(edi,Task j) =
Trustdirect (edi,Task j )

NTedi∑
m=1

Trustdirect (edi,Taskm)

.
(19)

In calculating comprehensive trust measurement, the
weighted average method considers the direct and indirect trust
measurement. Suppose that δ, θ and γ are three weight factors
to adjust the proportion of factors influencing trust measure-
ment, respectively. Then the comprehensive trust measurement
with the task node and the node are expressed in Equation 20.

Trust(edi,Task j) = δ · (θ · Trustdirect (edi,Taskm)+
(1 − θ) · Trustrecom(edi,Task j)) + γ · Re liab(edi,Task j).

(20)

The trade-off between trust value and service reliability
requirement needs to be quantified, where the comprehensive
satisfaction of the user with the quality of service should
screen out the resource nodes to meet the comprehensive needs
of the user. Equation 21 represents the trust factor.

f5(x) = max(Trust(edi,Task j)). (21)

C. Model Constraints

The influence of several environmental or equipment factors
make it quite challenging to perfect the ECRS system [28],
and constraining the many-objective ECRS model may help
in bridging the gap betwen reality and the abstract model.
For example, the completion time of task can not be greater
than the deadline required by the task in the ECRS process,
described as Tedi 6 Taskdeadline

edi
. It is necessary to pay a

certain amount of money in the design of an edge cloud re-
source scheduling system, whether to repair a damaged server
or to perform routine maintenance on the system, in order to
ensure the system’s normal operation and meet the needs of
users. Note that such type of input cost, on the other hand,
is not limitless, N and the cost of task consumption should
be within the service provider’s budget in a standard resource
scheduling system. Otherwise, the system will crash and the
task will not be completed. Therefore, whether it is friend node
or stranger node for the trust measurement between task and
server, the trust measurement value should be between 0 and 1,
i.e., Taskcos t

j 6 Taskbudget
j , 0 6 Trustdirect (edj,Taskk) 6 1

and 0 6 Re comstranger (edi,Task j) 6 1.

III. DESIGNED ALGORITHM

According to the no-free lunch (NFL) theorem [48], it
is impossible to design an algorithm that is more effective
than all other algorithms when solving optimization problems
with different characteristics [36], [49]. And it is very time-
consuming to select an effective algorithm from thousands of
candidate algorithms in the face of practical problems [50],
[51]. On the basis of the existing optimization algorithms, we
explore that if we can make use of the proposed operators,

consider the advantages of each operator in different time
segments of the algorithm, and organically integrate a series
of improvement strategies of these operators to make them co-
ordinate and work together, the performance of the algorithm
can be greatly improved [50], [51]. In the literature, several
ensemble techniques, such as parameter ensemble [52], [53]
and evolutionary variable ensemble [54], [55], are proposed
from numerous perspectives and are based on the many aspects
of the ECRS problem. These studies mostly focus on address-
ing Single-objective Optimization Problems (SOPs) [49], [56]
or on Multi-objective Optimization Problems (MOPs) [57],
[58], and perform poorly when it comes to solving many-
objective Optimization Problems (MaOPs)(with the number
of objective exceeds three) - the problem at the core of ECRS
systems [10]. To address this issue, a technique based on a
probabilistic selection ensemble has been developed in this
study. Through mutual coordination and joint action, each
evolutionary strategy gives various advantages and achieves
a “strong combination” and superior performance under the
ensemble mechanism [49]. The detailed framework includ-
ing selection of evolutionary operators, ensemble mechanism,
selection mechanism, algorithmic framework, and complexity
analysis of our approach is described below.

A. Selection of evolutionary operators

The classical optimization method converges slowly and
is not easy to obtain the optimal solution or local optimal
solution. In addition, its robustness is poor, and the design
of optimization rules is often only for a specific objective
environment. Thus, an evolutionary strategy has been proved
to have the characteristics of fast convergence and strong ro-
bustness, and can avoid the problems of classical optimization
methods.

1) Common evolutionary strategies: Genetic algorithm
(GA) [59], [60], differential evolutionary (DE) [52], [61], [62],
particle swarm optimization (PSO) [38], [63], cuckoo search
(CS) [11], [64], and pigeon-inspired optimization (PIO) [65],
[66] are some of the popular evolutionary algorithms used
in optimization problems. However, the search modes and
performances of these works are limited [49], [50]. As a result,
the global and local search patterns of evolutionary operators
in distinct evolutionary algorithms differ from one another in
terms of search patterns. Hence, each evolutionary algorithm
offers a unique set of benefits while dealing with optimization
problems of various types. We now discuss in detail the eight
common evolutionary strategies (shown in Table 2) used in
optimization problems.

Strategy 1: Random search (DE/rand/1)
The essential concept behind DE is that two individuals are
chosen at random from the population, and offspring are
produced by recombination between selected individuals [52]
[61]. The optimal individual to be retained in the population
is determined by comparing the fitness values of the two
individuals and guiding the population to evolve in a better
direction. Let F be the contraction factor used to control

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3235064

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



7

TABLE II
DESCRIPTION OF EDGE NODE AND TASK RELATED ATTRIBUTES

Strategy Evolutionary Operator Evolutionary Strategy Name
1 DE Random search (DE/rand/1)
2 DE Random search (many-objective DE, MaOE/best/2)
3 GA Single point crossover
4 GA Many-objective Single point crossover
5 GA Two-point crossover
6 PSO Flying in the direction of global optimal individual
7 PSO Many-objective flying in the direction of relatively better individual
8 CS Flying in the direction of global optimal individual

the influence of the difference vector, and xid(t), xjd(t) and
xkd(t) be the individuals randomly selected from the current
population. Then, the common DE random strategy (DE / rand
/ 1, where 1 is the number of difference vectors) is shown in
Equation 22.

xid(t) = xid(t) + F · (xjd(t) − xkd(t)). (22)

Strategy 2: Random search (Many-objective DE,
MaDE/best/2)
The relationship between solutions is non-dominated in
solving MaOPs for the standard DE / rand / 1 strategy
described earlier. Therefore, the optimal individual can not
be obtained by comparing fitness values only leading to the
inability of better evolution of the existing population beyond
a certain point [62], [63]. For an effective solution, the
evolutionary operator DE/rand/1 is improved to MaDE/best/2
(represented by xid(t) and shown in Equation 23).

xid(t) =


xid(t) + F · (xjd(t) − xid(t)) + F · (xkd(t) − xid(t))

i f rand 6 CR

xjd(t) or xkd(t) otherwise
(23)

Strategy 3: GA with single-point crossover
GA is a simple optimization technique that works by imitating
the natural evolutionary search process to deal with a practical
problem. Selection, crossover, and mutation are the three
most important GA operators. Simulated binary crossover
(SBX) [38], [67] is a type of crossover, which mimics the
evolutionary approach of the population using a binary string
and causes the offspring to maintain the relevant pattern
information of the parent chromosome.

Let η be a custom parameter for defining distribution factor,
whose size is positively correlated with the probability of
the offspring approaching the parent individual. Then the
parameter µ is defined using η as shown in Equation 24.

µ =

(2 · r)
1
η+1

i f r 6 0.5,

[1/(2 − r)]
1
η+1 otherwise .

(24)

Let xid and xjd are two parents randomly selected from
the evolutionary population for the single point crossover
evolutionary mode of SBX operator. Then the generation of

two offspring Cid and Cjd is shown in Equation 25.{
Cid = 0.5 · [(1 + µ)xid + (1 − µ)xjd],
Cjd = 0.5 · [(1 − µ)xid + (1 + µ)xjd],

(25)

Strategy 4: GA with many-objective single point crossover
SBX operator is known to be an effective method in solving
MaOPs [38], [63]. Let wd and vd represent the maximum and
minimum values of Xid and Xjd , respectively (d = (1, 2, · · ·D),
which is the dth component), and rk be a random number
within [0,1]. Then µk(k = 1, 2) parameter is defined in
Equation 26.

µk =

{
[rk .ak]

1
η+1 i f rk 6 1/ak,

[1/(2 − rk .ak)]
1
η+1 otherwise ,

(26)

Let wd , vd , ld and ud be the two boundary values of the
d decision variable respectively, and η be the crossover distri-
bution index, then ak(k = 1, 2) is calculated in Equation 27.

ak =

{
2 − [1 + 2(vd − ld)/(wd − vd)]

−(η+1) k = 1,
2 − [1 + 2(ud − wd)/(wd − vd)]

−(η+1) k = 2.
(27)

Let Xid and Xjd be the two individuals randomly selected
from the evolutionary population, and let Cid and Cjd be the
two offsprings. Then the offspring are generated from the
parents as shown in Equation 28.

Cid = 0.5 · [(wd + vd) − µ1(wd − vd)],

Cjd = 0.5 · [(wd + vd) − µ2(wd − vd)].
(28)

By employing the polynomial mutation (PM) ap-
proach [38], [63] to determine the objective value of new
offspring, a random number k is created to select which
offspring solution (Cid or C jd) will generate new solutions for
further replacement. The relatively superior individuals of each
generation can be retained by replacing the least fit individuals
in the current population. Given the importance of SBX in
solving MaOPs, the parent selection should be tweaked: Xid

is randomly selected from the current evolutionary population
while Xjd is randomly selected from the top 10% individuals
of the external archive. The selection from the external archive
can be used to improve the diversity and convergence of the
population towards a solution.
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Strategy 5: GA with two-point crossover strategy
GA can also be performed while performing crossover at mul-
tiple points [59], [60]. This strategy is shown in Equation 29.

xid(t + 1) = ε · xid(t) + (1 − ε) · xjd(t). (29)

Strategy 6: PSO with flying in the direction of optimal
global individual
PSO is one of the most widely used metaheuristic algorithms
for problem solving. The most important feature of PSO is the
possession of a velocity vector for each particle and a position
vector reflecting the decision variables. The velocity vector is
used to update the position, and the velocity is updated based
on the individual’s optimal position as well as the optimal
global position [38], [63].

Let w be the inertia value, c1 and c2 be two learning factors,
r1 and r2 be two random numbers with uniform distribution
in [0,1], and pbestid and gbestd be the positions of local
optimal particles and global optimal particles respectively.
Each particle moves towards the direction of global optimal
solution, as explained by the evolution equation of velocity
and position in PSO [38] and shown in Equation 30.

vid(t + 1) = wvid(t) + c1r1(pbestid − xid(t))+

c2r2(gbestd − xid(t)),

xid(t + 1) = xid(t) + vid(t + 1).
(30)

By substituting the above formula, it can be written as
follows.

vid(t) = xid(t) − xid(t − 1)
xid(t + 1) = xid(t) + w(xid(t) − xid(t − 1)) + c1r1(pbestid−

xid(t)) + c2r2(gbestd − xid(t))

Thus,

xid(t) = xid(t − 1) + w(xid(t − 1) − xid(t − 2)) + c1r1(pbestid
− xid(t − 1)) + c2r2(gbestd − xid(t − 1))

Strategy 7: PSO with many-objective flying in the direction
of relatively better individual
Many variants of PSO have been proposed to solve
MaOPs since the proposal of PSO, including NMPSO [38],
MOPSO [68], dMOPSO [69], MPSO-D [70], and MOPSO-
CD [71]. However, due to the peculiarities of the PSO operator,
the new generation tends to gravitate toward the optimal
solution, which diminishes population diversity to a certain
extent [63]. As a result, we alter the particle velocity update
search strategy of the original PSO operator to make it more
suitable for solving MaOPs, in order to better guide the
evolution of the population.

Let t be the number of iterations, w be the inertia value,
c1, c2 and c3 be three learning factors, r1, r2 and r3 be
three random numbers with uniform distribution in [0,1], and
pbestid and gbestd be the positions of local optimal particles
and global optimal particles respectively. Then the specific
particle velocity and position update strategies are defined in

Equation 31.
vid(t + 1) = wvid(t) + c1r1(pbestid − xid(t)) + c2r2(gbestd

− xid(t)) + c3r3(gbestd − pbestid)

xid(t + 1) = xid(t) + vid(t + 1)
(31)

The local and global optimal solutions are randomly se-
lected from the current evolutionary population and the top
10% of the external solution set and ranked in descending
order by using the evaluation mechanism. Through this strat-
egy, the population can be guaranteed to evolve in a better
direction, and the evolution can quickly converge towards the
global optima in solving MaOPs. Hence Equation 31 can be
re-written as follows.
vid(t) = xid(t) − xid(t − 1)
xid(t + 1) = xid(t) + w(xid(t) − xid(t − 1)) + c1r1(pbestid −

xid(t)) + c2r2(gbestd − xid(t)) + c3r3(gbestd − pbestid)
Thus,

xid(t) = xid(t − 1) + w(xid(t − 1) − xid(t − 2)) + c1r1(pbestid
− xid(t − 1)) + c2r2(gbestd − xid(t − 1)) + c3r3(gbestd
− pbestid)

Strategy 8: Cuckoo Search with convergence towards
optimal global individual
Cuckoo Search is a recently proposed optimization algorithm,
which is based on simulation of cuckoo’s behavior of search-
ing for a nest, laying eggs and brooding in nature. At the
same time, it takes into account the cuckoo’s distinctive Levy
flight mode, and the individual flies towards the optimal global
individual [11], [64].

Let λ=1.5, then φ can be calculated as

φ =

(
Γ(1+λ)·sin( λπ2 )

Γ( 1+λ2 )·λ·2
λ−1

2

) 1
λ

. (32)

Let gbestd be the global optimal individual of the current
population, xjd(t) be the individual randomly selected from
the current population, then the unique flight mode of cuckoo
levy(λ) is defined as

levy(λ) ∼ φ · u/|v |1/λ, (33)

where u and v obey the standard Gaussian distribution.

Let r be a random number of [0,1], and α be the random
step size (usually set to 1). The position updating equation in
CS is shown in Equation 34.

xid(t + 1) = xid(t) + α · 0.01 · levy(λ) · r · (gbestd − xjd(t)).
(34)

2) Convergence analysis: Convergence performance is an
important factor in selecting the appropriate evolutionary
strategy as the evolutionary operator of any ensemble algo-
rithm [49]. Therefore, the global convergence performance of
eight common evolutionary strategies was analysed from the
perspective of the support set, where the specific analysis is
explained here.
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Strategy 1: The support set xid(t) of M t
id

can be an interval.
Due to the arbitrariness of the individual population, there
are some differences, i.e., −max

{ ��xjd(t) − xkd(t)
��} ≤ xjd(t)−

xkd(t) ≤ max
{ ��xjd(t) − xkd(t)

��} .

Therefore, the value range of xid(t) is

Ψ=max
{ �� xjd(t) − xkd(t)

�� } · F
xid(t) ∈ [xid(t) − Ψ, xid(t) + Ψ] .

(35)

Assumed that xt
d,max and xt

d,min represent the largest and
smallest d-dimensional (d = 1, 2, . . . ,D) components of all
individuals in the tth generation population, respectively. The
∆t
d
= xt

d,max − xt
d,min, and xid(t) ∈ [xid(t) −∆td · F, xid(t)+∆td ·

F]. The length of the interval can be calculated as 2∆t
d
· F.

Therefore, the support set size of xi(t) is M t
id
=

D
Π
d=1

2∆t
d
· F =

2DFD
D
Π
d=1
∆t
d
.

Strategy 2: Similar to strategy 1, the support set M t
id

of
xid(t) is an interval, and the value interval of xid(t) is xid(t) ∈[
xid(t) − 2 · F · (xt

d,min − xid(t)), xid(t) − 2 · F · (xt
d,max − xid(t))

]
.

The interval length is calculated as 2∆t
d
· F.

As a conclusion, the support set size of xi(t) is M t
id
=

D
Π
d=1

2∆t
d
· F = 2DFD

D
Π
d=1
∆t
d
.

Strategy 3: It can be found from the Eq. (16) that Xid

and Xjd have the same value space, and the value space of
xid(t) can be calculated as xid(t) ∈ [0.5 · [(1 + µ)xt

d,min +

(1 − µ)xt
d,min], 0.5 · [(1 + µ)x

t
d,max + (1 − µ)x

t
d,max]] ⇒ xid(t) =

[xt
d,min, xt

d,max]. The support interval length of a is expressed
as xt

d,max − xt
d,min = ∆

t
d
. Hence, the support set size of xi(t) is

M t
id
=

D
Π
d=1
∆t
d
.

Strategy 4: Encouraged by strategy 3, the length of support
set interval of xi(t) is still xt

d,max − xt
d,min = ∆

t
d
. The support

set size of xi(t) is M t
id
=

D
Π
d=1
∆t
d
.

Strategy 5: The xid(t) = ε · xid(t − 1) + (1 − ε) · xjd(t − 1),
and xid(t) ∈ [εxid(t − 1) + (1 − ε)xt

d,min, εxid(t − 1) + (1 −
ε)xt

d,max]. Therefore, the length of the interval is shown as

(1−ε)·(xt
d,max−xt

d,min) is M t
id
=

D∏
d=1
(1 − ε) · (xt

d,max − xt
d,min) =

(1 − ε)D ·
D∏
d=1
∆t
d
.

Strategy 6: If ϕ1 = c1r1, ϕ2 = c2r2 are set in strategy 6,
then because 0 ≤ ϕ1 ≤ c1, 0 ≤ ϕ2 ≤ c2 vertices ϕ1 = ϕ2 = 0
and ϕ1 = c1, ϕ2 = c2 will form a hyperrectangular body.

When ϕ1 = ϕ2 = 0, the support set of xi(t) is M t
id
=

xid(t − 1) + w(xid(t − 1) − xid(t − 2)).

When ϕ1 = c1, ϕ2 = c2, the support set of xid(t) is M t
id
=

xid(t −1)+w(xid(t −1)− xid(t −2))+ c1(pbestid − xid(t −1))+
c2(gbestd − xid(t − 1)).

Let A = xik(t − 1)+w(xik(t − 1) − xik(t − 2)), then xid(t) ∈
[A+ c1(pbestid − xt

d,max)+ c2(gbestd − xt
d,max), A+ c1(pbestid −

xt
d,min) + c2(gbestd − xt

d,min)].

Then interval length of xid(t) support set is
[A + c1(pbestid − xt

d,min) + c2(gbestd − xt
d,min)] − [A+

c1(pbestid − xt
d,max) + c2(gbestd − xt

d,max)]

= (c1 + c2)(xtd,max − xt
d,min)

= (c1 + c2)∆
t
d

Therefore, the support set of point xid(t) is M t
id
=

D
Π
d=1
∆t
d
(c1 + c2) = (c1 + c2)

D
D
Π
d=1
∆t
d
.

Strategy 7: If ϕ1 = c1r1, ϕ2 = c2r2, ϕ3 = c3r3 are set in
strategy 7, then because 0 ≤ ϕ1 ≤ c1, 0 ≤ ϕ2 ≤ c2, 0 ≤ ϕ3 ≤
c3, vertices ϕ1 = ϕ2 = ϕ3 = 0 and ϕ1 = c1, ϕ2 = c2, ϕ3 = c3
form a hyperrectangular body.

When ϕ1 = ϕ2 = ϕ3 = 0, the support set of xi(t) can be
expressed as M t

id
= xid(t − 1) + w(xid(t − 1) − xid(t − 2)).

When ϕ1 = c1, ϕ2 = c2, ϕ3 = c3,
the support set of can be expressed as

M t
id
= xid(t − 1) + w(xid(t − 1) − xid(t − 2)) + c1(pbestid

−xid(t − 1)) + c2(gbestd − xid(t − 1)) + c3(gbestd − pbestid)
.

Let A = xik(t − 1) + w(xik(t − 1) − xik(t − 2)), then
xid(t) ∈ [A + c1(pbestid − xt

d,max) + c2(gbestd − xt
d,max)

+ c3(gbestd − pbestid), A + c1(pbestid − xt
d,min)

+ c2(gbestd − xt
d,min) + c3(gbestd − pbestid)]

Therefore, the interval length of xid(t) support set is
[A + c1(pbestid − xt

d,min) + c2(gbestd − xt
d,min) + c3(gbestd

−pbestid)] − [A + c1(pbestid − xt
d,max) + c2(gbestd − xt

d,max)

+c3(gbestd − pbestid)]
= (c1 + c2)(xtd,max − xt

d,min)

= (c1 + c2)∆
t
d

And the support set of xid(t) is M t
id
=

D
Π
d=1
∆t
d
(c1 + c2) =

(c1 + c2)
D

D
Π
d=1
∆t
d
.

Strategy 8: If B = α ·0.01 · levy(λ) · r ,(B ∈ [Bmin, Bmax]) in
strategy 8, then xid(t) = xid(t−1)+α ·0.01·levy(λ)·r ·(gbestd−
xjd(t−1)),⇒ xid(t) = xid(t−1)+B ·(gbestd−xjd(t−1)). It can
be seen that the support set of xi(t) is an interval, and because
of the arbitrariness of cuckoo xjd(t), then xid(t) ∈ [xid(t−1)+
(gbestd − xt

d,max) · Bmax, xid(t − 1) + (gbestd − xt
d,min) · Bmax].

Therefore, the interval length of support set of xi(t) is shown
as [xid(t −1)+ (gbestd − xt

d,min) ·Bmax]− [xid(t −1)+ (gbestd −
xt
d,max) ·Bmax] = Bmax∆

t
d
. And the support set of xi(t) is M t

id
=

D
Π
d=1

Bmax∆
t
d
= BD

max

D
Π
d=1
∆t
d
.

To summarize, the search performance of these eight tech-
niques is compared based on the size of their support sets.
Both strategy 1 and strategy 2 have the same support set
sizes. Furthermore, strategies 3 and 4 are the same size, as are
strategies 6 and 7. Specifically, when the random individuals
are not in the range of xid(t), strategy 1 and 2 are unable to
attain the global extremum. As a result, they are unable to
guarantee global convergence. The same is true for strategies
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5, 6, 7, and 8, none of which can guarantee convergence with
probability 1. In addition, c1 + c2 ≥ 1, 0 ≤ Bmax < 1 and
0 < 1−ε < 1. c1+c2 ≥ 1−ε, c1+c2 ≥ Bmax and c1+c2 ≥ 2 ·F
are obtained. Therefore, the support sets of strategies 6 and 7
are greater than those of strategies 5 and 8, and they are also
larger than those of strategies 1 and 2. The support set of
strategy 5 is usually Bmax ≤ 1 − ε and 2 · F ≥ 1 − ε, which
is larger than that of strategy 8. Note that the support sets of
strategies 1 and 2 are larger than that of strategy 5 and the
support sets of strategies 3 and 4 are smaller than those of the
other six strategies because their support sets do not involve
other variable parameters.

B. Ensemble mechanism

The design of the ensemble mechanism helps in dynami-
cally selecting the operator to search for the optimal solution
according to the characteristics of the problem. For solving
MaOPs, we propose the integration strategy of probabilistic se-
lection to build a strategy pool and store the solutions obtained
by executing different evolutionary strategies in an abstract
“pool” to form an alternative solution policy pool, where
the pool can integrate multiple excellent operators. Under
their mutual coordination and joint action, the population can
obtain a wider range of alternative solutions in the evolution
process. As one of the most commonly used strategies in algo-
rithm mechanisms, the design and application of probability
integration strategy have significant impact on performance
of the algorithm. This paper introduces two commonly used
strategies of equal probability ensemble mechanism (EPEM)
and dynamic probability ensemble mechanism (DPEM) as
shown in Figure 2.

=

1

p1

p2

p1 p1'

p2 p2p2'

p1p3 p3'

＋

＋ ＋

＋

=

1

=

1

p1

p2

p1 p1'

p2 p2p2'

p1p3 p3'

+a

＋

＋

-b

-c

＋

＋

=

1

(a) (b)

Fig. 2. Strategies of Probability Ensemble Mechanism - The figure displays
the two strategies for probability integration. Panel a) displays the diagram
of equal probabiolity ensemble mechanism (EPEM), where the probability
of selecting an operator does not change with time. Panel b) displays the
diagram of dynamic probability ensemble mechanism, where the probability
of all operators is updated with every iteration under defined constraints for
probability.

1) Equal probability ensemble mechanism (EPEM): EPEM
strategies are chosen so that they all have the same chance
of succeeding. The selection probability of operators does
not vary during the process of population iteration EPEM is
suitable for tackling real problems requiring a stronger fairness
mechanism, in general. It will, however, be inapplicable when
dealing with problems that are easily influenced by unknown
factors. Figure 2(a) depicts the selected probability change
process of three operators in the population iteration process to
help you understand the EPEM. The selection probabilities of
the three operators in the initial population are p1, p2, and p3,
respectively, where p1 = p2 = p3, and p1+ p2+ p3 = 1. In the
iterative procedure, the selection probability of each strategy
is recorded as p1′, p2′, and p3′. The EPEM stipulates that the
probability of selecting an operator does not change with time,
i.e., p1 = p1′, p2 = p2′, p3 = p3′, and p1′ + p2′ + p3′ = 1.

2) Dynamic probability ensemble mechanism (DPEM):
The parameter setup is the most important aspect of DPEM.
Designers frequently desire to adjust the parameter values
of variables to affect the algorithm’s performance in order
to indirectly change the selection probability of different
strategies. The DPEM is frequently used to select a strategy
that varies with the population’s evolutionary stage. When
a strategy performs well across multiple generations of as-
sessment metrics, the strategy’s selection probability should
be suitably enhanced, while the selection probability of other
strategies should be kept the same or reduced. Every several
generations, the population should be assessed and evaluated
after evolution. The likelihood of three strategies being chosen
should be listed in sequence, with the likelihood of the
first option being chosen being enhanced. For the latter two
operators, the likelihood of getting chosen can be separated
into two categories.

Case 1: The likelihood of selecting the second strategy
remains unchanged, while the probability of selecting the third
strategy lowers, and the decreased probability value should be
equal to the increase in probability value of the first operator.

Case 2: The second and third operators’ probability values
are decreased, and the sum of the reduced probability values
of the two strategies should equal the increase in probability
value of first strategy.

Before proceeding with the aforementioned process, ad-
ditional metrics are employed to evaluate the amount of
change in the probability value of the second and third-
ranked strategies. Case 2 is used in this study since it is more
realistic in terms of practical application. Figure 2(b) depicts
the population being measured and evaluated after multiple
generations of evolution. The chance of each of the three
tactics being chosen is p1 > p2 > p3. Then, by satisfying
a = b + c, the probability of the strategy being picked in
the next initial iteration should be altered to p1′ = p1 + a
(where a denotes the enhanced probability value), and the
probability values of p2 and p3 should be decreased to
p2′ = p2 − b, p3′ = p3 − c. Furthermore, the probability of a
technique being chosen will continue to increase or decrease
in actual problems. As a result, the upper and lower bounds of
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the probability value should be set to prevent the probability of
the strategy being chosen from being larger than 1 or negative.

C. Selection mechanism

When determining a selection mechanism for ECRS prob-
lem, two factors should be taken into account: convergence
and distribution. Convergence assumes that solving MaOP is a
continuous process of reaching the Pareto optimal solution set.
Distribution requires non-dominated solutions to be distributed
equally and widely in the objective space. As a result, the
designed selection mechanism should ensure a good CaD for
the generated solution as the measurement criteria of mech-
anism design. In this study, the optimal solution obtained in
the process of population evolution is stored using a balanced
fitness estimation (BFE) method based on an external solution
set [38]. In addition, the BFE method is proved to be an
effective method to overcome the limitation of the Pareto
sorting and decomposition method, where the BFE method
considers the factors of equilibrium CaD in the objective
space.

Suppose that population P = {p1, p2, ..., pN } contains N
individuals, Discon(pi, P) be the convergence distance, and
Disdiv(pi, P) be the diversity distance of pi . Then DIV(pi) is
the nearest neighbor individual distance value, which can be
calculated as shown in Equation 36.

DIV(pi) = min
p j ∈P, j,i

√
M∑
m=1

div( fm(pi), fm(pj))

2
, (36)

where div(∗) =
{
fn(p j )− fn(pi ),i f fn(p j )> fn(pi )

0 otherwise
; fn(pi) is the stan-

dardized fitness value of individual pi at the mth objective.

Let DIVmin and DIVmax represent the minimum and maxi-
mum of shift-based density estimation (SDE) values calculated
by density transfer function, respectively, then the diversity
distance of pi (Disdiv(pi, P)) can be calculated as shown in
Equation 37.

Disdiv(pi, P) = 1 −

√
M∑
m=1

fm(pi )
2

M .
(37)

On the other hand, the convergence distance Discon(pi, P)
can be calculated by using the SDE as shown in Equation 38.

Discon(pi, P) =
DIV (pi )−DIVmin
DIVmax−DIVmin

. (38)

Let α and β be the weight factors to adjust the influence
of the two distances and to dynamically balance the distance
of CaD. Then the BFE method ( f itness(pi, P)) is shown in
Equation 39.

f itness(pi, P) = w1 ∗ Discon(pi, P) + w2 ∗ Disdiv(pi, P).
(39)

Note that the fitness values for different individuals is
adaptable with the distance between them, and the specific
adjustment principles for adjusting the weight factors w1 and
w2 can be found in literature [38]. When computing the

BFE value, the maximum and lowest values of the relevant
objectives should also be considered for normalization. In
high-dimensional space, this type of normalized reduction
objective will vibrate strongly. The truncated selection mech-
anism should be employed in the selection mechanism to
avoid the size of the external solution set from surpassing
the population size barrier. The BFE selection mechanism can
effectively steer the population’s search direction to approach
the true Pareto-optimal Front (PF) by evaluating the CaD fully.
Algorithm 1 lists the main steps of the selection mechanism,
where A is the external archive to store the optimal solution
generated in each iteration and Aj is the jth solution in
A. B is the offspring population obtained by executing the
evolutionary strategy and Bi is the ith solution in B.

Algorithm 1: Selection mechanism (A, B)

1 Begin
2 For i=1 to |B|
3 For j=1 to |A|
4 Check domination relationship between Aj and
5 Bi;
6 If nondominated solution in A
7 Keep the solution Aj in A;
8 End if
9 If nondominated solution in B

10 Add the solution Bi into A;
11 End if
12 End for
13 If |A| > |N |
14 Calculate the BFE fitness;
15 Delete the last worst solution;
16 End if
17 End for
18 Output A;
19 End

The Pareto dominance relationship between individuals in
the external archive A and the newly formed population B is
validated in the selection process (line 4), and the correspond-
ing individual is then added to the external archive A if the
non-dominated solution is in B. If the non-dominated solution
is in the external archive A, on the other hand, the individual
is temporarily retained (lines 6-11). When the solution size of
A is larger than the population size, the truncation mechanism
is used to sort the individuals in the population using the
BFE method value (lines 13-16). Finally, until A reaches the
required size, the worst individuals in the population will be
removed in an iterative manner.

D. Algorithmic framework

Algorithm 2 - MaOEA-DPS algorithm describes the frame-
work of the proposed MaOEA-DPS algorithm, where Q and
A∗ represent the offspring generated by different evolutionary
strategies, P is the initial population, A is the external archive,
and gen and Maxgen are the current and maximum number
of iterations.
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Algorithm 2: MaOEA-DPS Framework

1 Begin
2 Initialize populations P and the related parameters;
3 Initial external archive A;
4 while gen < Maxgen do
5 Employ evolutionary strategies to generate
6 offspring Q;
7 A = Selection mechanism (A, Q)
8 A∗ = SBX-PM(A);
9 A = Selection mechanism (A, A∗);

10 End while
11 Output A;
12 End

The initial population P is randomly generated in MaOEA-
DPS algorithm (line 2) while the external archive A is filled
with individuals selected in the first layer of the non-dominated
sorting method for the population P (line 3). Furthermore, an
alternate evolutionary strategy pool is constructed by merging
strategies 2, 4 and 7. The offspring solutions in population
Q are derived from the offspring solutions obtained from
the three evolutionary strategies (lines 5-6). The selection
mechanism is activated, and the better offspring solutions from
the evolution strategy pool are selected and stored, which
will overcome the problem of declining selection pressure
in the later stage of evolution and help achieve a ”strong
combination” and superior performance in balancing CaD
(lines 7-9). The iterations continue until the stop condition
(line 4) is met.

E. Complexity analysis

The algorithm terminates when the number of iterations
reaches the predefined limit. In contrast to the ensemble
mechanism employed in hybrid many-objective particle swarm
optimization (HMaPSO) algorithm [63], the probabilistic se-
lection in MaOEA-DPS algorithm is incorporated into the
evolutionary strategy’s ensemble mechanism. The two ensem-
ble strategies are depicted in Figure 3 to intuitively convey
their differences. The three HMaPSO evolutionary techniques
should obviously be implemented every generation, however
MaOEA-DPS only uses one evolutionary approach every it-
eration. As a result, the computational complexity has been
lowered to an extent from initial 3MN2 steps to MN2. The
selection mechanism and nondominated sorting steps consume
the majority of the remaining computational complexity. The
maximum number of iterations for a particular constant is
significantly less than the number of nondominated solutions.
As a result, the number of nondominated solutions can be used
to calculate the computational complexity. To summarise, the
time complexity of the algorithm is O(MN2).

IV. SIMULATION EXPERIMENT

The efficacy of the design algorithm was verified through
extensive experimentation. The major step was to verify

1 2 3

3N

Strategy

Solution

N N
N

Ensemble mechanism of HMaPSO

1 2 3

N

 Strategy

Solution

Ensemble mechanism of MaOEA-DPS

N

Fig. 3. Comparison of Computational Complexity for Ensemble Mech-
anisms - The figure compares the computational complexity of ensemble
method of HMaPSO algorithm and that of the ensemble method of MaOEA-
DPS algorithm. The figure shows that the computational complexity of both
the methods is same, yet the number of steps deployed in MaOEA-DPS
algorithm are 1/3rd of those deployed in HMaPSO algoithm.

the performance of our algorithm on a benchmark function,
while the proposed algorithm optimizes the ECRS problem
and achieves model solution. It is noted that the proposed
algorithm outperforms other sophisticated MaOEAs in terms
of performance. The detailed description and experiment con-
ditions are described below.

A. Experimental setup

1) Function settings: MaFs are fifteen benchmark func-
tions, proposed by Chen et. al [72], to facilitate research on
MaOPs. MaFs have shown a range of performance advantages
in testing multimodality, preference, connectivity, and concav-
ity [72], therefore they were adopted to test these features
of our proposed approach. Furthermore, values for critical
parameters for each algorithm, including MaOEA-R&D [73],
VaEA [74], and RVEA [75], are determined by selecting the
highest performing values in literature as discussed in Param-
eter settings. VaEA and RVEA, for example, use a double-
layer reference point system, with SBX and PM probability
of 1 and 1/D, respectively (where D represents the dimension
of decision variables). The maximum number of iterations
is considered the algorithm’s stop condition, and the precise
values for the parameters of MaFs are listed in Table III.

TABLE III
PARAMETER SETTINGS OF INVOLVED ALGORITHM

Parameter name Value
Population size 240

Objective Number 5/10/15
Number of evaluations 10000

Number of independent runs 20

2) Parameter settings: In this paper, we set the recom-
mended parameters according to the relevant literature that
has successfully proved its effectiveness [10], [47], [76].
The total number of tasks for the ECRS problem is set to
400 [10], and the created model contains a lot of parameters.
For the two-weight adjustment factors of direct and indirect
trust measurement, α and β are modified to 0.6 and 0.4,
respectively [10]. To change the percentage of factors influ-
encing trust measurement, the three weight factors δ, θ, and
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γ that quantify the trade-off between trust value and service
reliability need are altered to 0.6, 0.7, and 0.4, respectively
[47]. Meanwhile, the penalty factor mu is set to 2 when
computing the procedure for direct trust measurement. For λ
of recommendation information from friend nodes, the weight
factor is set to 1. For the cost of using the MIPs performance,
bandwidth and CPU of the edi , MonyA1,2,3 are set to 0.05,
0.1 and 0.1, respectively [76]. The remaining parameters are
shown in Table IV.

TABLE IV
PARAMETER SETTINGS OF ECRS PROBLEM

Related properties Value
edbandwidth

i =500
Edge Cloud edCPU

i =2
edmips

i =250
Task f ilesize

j =300
Task Taskoutputsize

j =300
Tasklengthj =5000

Number of edge cloud is 5
MIPs = 2500

Number of ED is set to 50
Center Cloud Host memory ram is 2048 (MB)

Host storage is set to 1000000
Bandwidth of center cloud is 10000

B. Performance index

For the performance of MaOEA, CaD is an important as-
pect. Hypervolume (HV) [77], as a comprehensive evaluation
indicator, has been widely used to test the CaD of the algo-
rithm. In addition, it does not need to presuppose the true ideal
Pareto frontier in advance. For convenience, the HV is selected
to measure the performance of the evaluation algorithm. In
general, HV is the volume covered by PF in the objective
space, which is defined as the hypervolume between the front
surface and the reference vector r = (r1, r2, ..., rm)T . Where
i = {1, · · ·,m} and m is the number of objectives. Let fi(x)
denotes the ith fitness value of solution x in the front surface
solution set X , and [ fi(x), ri] denotes the hypercube, which can
be constructed with the reference vector and the fitness value
as two diagonal corners of the hypercube. Therefore, the HV
is defined as follows:

HV(X, r) = VOL(
⋃
x∈X
[ f1(x), r1] × · · · × [ fm(x), rm]) (40)

where VOL(∗) is the Lebesgue metric, which calculates the
hypervolume of all the objectives’ hypercubes. Monte Carlo
estimation mechanism [77] is included to help evaluate the
HV metric in dealing with MaOPs [74], [75], where a higher
HV metric indicates a better performance.

C. Result analysis

In this section, the simulation results are presented in two
subsections. Firstly, the designed MaOEA-DPS is compared

and analyzed with the existing three advance MaOEAs on
MaFs functions. And they are applied to address the ECRS
problem. The specific results are expressed as follows.

1) Performance analysis on benchmark function: The HV
values produced on MaF by MaOEA-DPS, MaOEA-R&D,
VaEA, and RVEA are shown in Table V. The comparison
results are indicated when compared to the MaOEAs involved
for various test scenarios. Based on Wilcoxon’s rank test and
Friedman statistical test [63], the labels ”+”, ”-” and ”≈”
respectively indicate that the results obtained by different algo-
rithms are higher, lower or equal than the existing algorithms.

MaOEA-DPS had the most notable results on MaFs func-
tions overall. Specifically, when each algorithm is compared
individually, MaOEA-R&D and VaEA are not as good as
MaOEA-DPS, with the exception that MaOEA-R&D outper-
forms MaOEA-DPS on 15 MaF1 objectives. When compared
to MaOEA-DPS, the RVEA achieves higher performance
on MaF8. The reason for this is that the reference vector
selection process selects the better-distributed solution with
more accuracy. MaOEA-DPS, on the other hand, outperformed
the remainder of RVEA’s MaF results, demonstrating that the
ensemble selection process based on dynamic probability is
capable of finding solutions with improved CaD performance.
As a result, MaOEA-DPS outperforms the other algorithms in
the MaF test function.

2) Performance analysis on ECRS problem: Fig. 4 illus-
trates the performance comparison box for several algorithms
on different objectives to intuitively compare the performance
of different algorithms for dealing with the ECRS problem. All
four algorithms are very competitive in terms of completion
time, completion cost, and load balance degree, based on
the median and quartile value of model solutions. Fig. 4
(a), (b) and (d) show that the median values of the four
algorithms are significantly different, with the median value
of MaOEA-DPS clearly smaller. The ranking of all algorithm-
based median values is followed to better discern the perfor-
mance difference. For example, the ranking of median value
is shown for completion time and completion cost: MaOEA-
DPS<MaOEA-R&D≈RVEA<VaEA. And the objective of the
load balance degree has a different landscape, MaOEA-
DPS<VaEA<MaOEA-R&D≈RVEA is followed based on the
median value. In terms of solution distribution, MaOEA-DPS
in Fig. 4 (a), (b) and (d) is tighter and more concentrated
than the other three algorithms. And it is clear to observe
that the MaOEA-DPS obtains smaller upper and lower quartile
values, which means that MaOEA-DPS has better performance
than other algorithms in obtaining the objective solution of
completion time, completion cost, and load balance degree.

Fig. 4 (c) and (e) demonstrate the reciprocal of user
satisfaction and trust measurement owing to the minimal value
of each objective, respectively. Other algorithms show the
same behavior as MaOEA-DPS; they reach close to 0 for
the solution value, indicating that the answers are identified
with reasonable satisfaction and reliable measurement. VaEA,
RVEA, and MaOEA-DPS have lower values in the objective of
trust measurement, similar to user satisfaction, implying that
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(c) Reciprocal of User Satisfaction degree

MaOEA-R&D VaEA RVEA MaOEA-DPS
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ad

 B
al

an
ce

 D
eg

re
e

(d) Load Balance degree
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(e) Reciprocal of Trust Measurement
Fig. 4. Performance comparison box for different algorithms on different objectives - The figure displays the boxplot for comparison of performance
of MaOEA-R&D, VaEA, RVEA, and MaOEA-DPS algorithms on completion time in Panel a), completion cost in Panel b), reciprocal of degree of user
satisfaction in Panel c), degree of load balance in Panel d), and reciprocal of trust management in Panel e).
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TABLE V
HV VALUE OF DIFFERENT ALGORITHMS ON THE MAF

Problem M MaOEA-R&D VaEA RVEA MaOEA-DPS

MaF1
5 4.4730e-3 (2.25e-3) − 1.4114e-2 (5.74e-4) ≈ 6.6497e-3 (6.37e-4) − 1.3859e-2 (1.16e-3)

10 5.9817e-8 (3.39e-8) ≈ 3.2907e-7 (5.99e-7) ≈ 2.5310e-8 (1.86e-8) ≈ 9.2618e-8 (1.06e-7)
15 5.5707e-13 (3.20e-13) + 0.0000e+0 (0.00e+0) ≈ 2.0014e-13 (2.22e-13) + 0.0000e+0 (0.00e+0)

MaF2
5 4.0036e-2 (1.77e-3) − 4.8457e-2 (5.93e-4) − 4.7877e-2 (4.52e-4) − 5.6420e-2 (1.61e-4)

10 5.8943e-3 (3.39e-4) − 7.1777e-3 (1.20e-4) − 6.3648e-3 (3.13e-4) − 8.5940e-3 (8.66e-5)
15 4.2899e-5 (4.93e-6) − 5.1488e-5 (1.92e-6) − 2.8873e-5 (2.09e-6) − 7.7446e-5 (1.59e-6)

MaF5
5 3.9780e+4 (2.71e+2) − 3.8495e+4 (6.97e+2) − 3.8617e+4 (1.49e+3) − 4.1206e+4 (3.33e+3)

10 8.4274e+16 (1.47e+15) − 4.1725e+16 (7.29e+15) − 7.5382e+16 (5.14e+15) − 8.9263e+16 (1.49e+15)
15 5.2448e+36 (6.60e+34) − 2.3344e+36 (5.03e+35) − 3.9622e+36 (7.57e+35) − 5.4705e+36 (2.94e+34)

MaF6
5 5.5253e-6 (1.23e-5) − 5.8077e-3 (1.12e-3) − 2.7754e-3 (2.43e-3) − 8.4973e-3 (4.75e-4)

10 2.7517e-16 (9.94e-16) ≈ 1.1359e-9 (5.08e-9) ≈ 1.1457e-8 (2.00e-8) − 1.4225e-8 (2.53e-8)
15 5.9627e-33 (2.67e-32) ≈ 0.0000e+0 (0.00e+0) ≈ 6.8755e-17 (2.03e-17) + 1.6464e-20 (7.36e-20)

MaF7
5 3.1382e-1 (1.68e-1) − 8.5723e-1 (1.44e-1) − 6.7882e-1 (2.31e-1) − 2.1882e+0 (2.12e-1)

10 8.1883e-5 (1.66e-4) − 6.2266e-9 (2.69e-8) − 1.7746e-3 (5.28e-3) − 2.2289e+0 (2.63e-1)
15 2.8499e-8 (1.23e-7) − 0.0000e+0 (0.00e+0) − 4.7690e-4 (9.39e-4) − 1.3984e+0 (6.73e-2)

MaF8
5 4.8212e-1 (8.44e-1) − 3.4795e-1 (6.94e-1) − 2.7666e+0 (3.57e-1) ≈ 1.7632e+0 (1.57e+0)

10 8.0942e-1 (2.86e+0) − 2.8735e+0 (4.26e+0) ≈ 1.1933e+1 (1.02e+0) + 3.3384e+0 (4.52e+0)
15 4.5464e-5 (2.03e-4) − 1.4401e+0 (3.62e+0) − 1.8766e+1 (4.21e+0) + 4.1131e+0 (7.82e+0)

MaF9
5 3.8103e-1 (1.20e+0) − 3.5155e-1 (8.39e-1) − 4.6887e+0 (1.19e+0) − 6.4718e+0 (2.14e+0)

10 5.8662e-1 (1.42e+0) − 3.7769e+0 (4.30e+0) − 3.2205e+0 (3.63e+0) − 2.3542e+1 (4.95e+0)
15 2.2483e+0 (5.72e+0) − 2.4792e-1 (1.11e+0) − 8.2772e+0 (1.01e+1) ≈ 3.7107e+1 (4.29e+1)

MaF10
5 1.7583e+3 (1.38e+2) − 1.8675e+3 (8.01e+1) − 1.9681e+3 (1.24e+2) − 5.4145e+3 (2.09e+2)

10 2.0308e+9 (1.01e+8) − 1.9632e+9 (7.20e+7) − 2.0972e+9 (1.54e+8) − 7.6136e+9 (6.29e+8)
15 2.6734e+16 (1.32e+15) − 2.5528e+16 (2.45e+14) − 2.7492e+16 (1.85e+15) − 1.1713e+17 (1.29e+16)

MaF11
5 5.4806e+3 (6.59e+1) − 5.5874e+3 (5.65e+1) − 5.5247e+3 (7.86e+1) − 5.6871e+3 (9.05e+1)

10 7.5098e+9 (2.31e+8) − 7.9002e+9 (1.10e+8) − 7.7752e+9 (1.87e+8) − 8.4747e+9 (3.60e+7)
15 1.1392e+17 (5.25e+15) − 1.2849e+17 (1.96e+15) − 1.1820e+17 (5.73e+15) − 1.3633e+17 (5.17e+14)

MaF12
5 3.2370e+3 (1.65e+2) − 3.7097e+3 (1.19e+2) − 3.9249e+3 (1.19e+2) − 4.7992e+3 (1.28e+1)

10 4.2153e+9 (4.57e+8) − 5.8097e+9 (3.21e+8) − 5.7978e+9 (4.64e+8) − 8.5122e+9 (5.15e+7)
15 7.7633e+16 (5.50e+15) − 1.0610e+17 (4.24e+15) − 8.3871e+16 (1.15e+16) − 1.6210e+17 (1.18e+15)

MaF13
5 1.9275e-1 (4.45e-2) − 3.8198e-1 (2.01e-2) − 2.3449e-1 (4.08e-2) − 4.3288e-1 (1.90e-2)

10 1.0518e-1 (1.13e-1) − 2.8261e-1 (3.39e-2) − 1.5750e-1 (6.95e-2) − 3.5362e-1 (7.71e-3)
15 1.2591e-1 (1.03e-1) − 2.8117e-1 (4.29e-2) − 1.6504e-1 (8.37e-2) − 3.6330e-1 (3.61e-2)

+/−/≈ 1/29/3 0/27/6 4/26/3

MaOEA-DPS can effectively judge the ECRS system’s trusted
measurement by applying the ensemble selection mechanism
based on dynamic probability. Due to the objective space
reduction selection method, the MaOEA-R&D has a lower
competition with high value in the objective of trust measure-
ment than the other three algorithms.

It can be shown from the preceding analysis that MaOEA-
DPS can provide generally consistent and excellent results on
each objective.

V. CONCLUSION

The ECRS problem is seen as a MaOP in this study, and
a many-objective edge cloud resource scheduling model is
created with five objectives to be optimised: task completion
time, server cost, server load balance degree, user satisfaction
degree, and task-server trust measurement. The MaOEA-DPS

is designed in order to acquire a model solution. Using the
notion of support set, the MaOEA-DPS examines the global
convergence of eight evolutionary operators. As evolutionary
operators of the ensemble algorithm, evolutionary algorithms
are chosen. Through mutual coordination and joint action, the
dynamic probability ensemble mechanism allows each evolu-
tionary strategy to play to its unique advantages, generating
better solutions for selection under the dynamic probability
ensemble mechanism. A selection mechanism is employed
to select and store the excellent solutions with superior CaD
performance. This plays an important role in overcoming the
problem of declining selection pressure in the later stage of
evolution and realizing a “strong combination” performance.
Meanwhile, MaFs and ECRS problems are subjected to two
thorough validation tests. MaOEA-R&D and VaEA are not
as good as MaOEA-DPS on MaFs when compared to other
advanced MaOEAs, except that MaOEA-R&D outperforms
MaOEA-DPS on 15 MaF1 objectives. It performs better on
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MaF8 than MaOEA-DPS for the RVEA. MaOEA-DPS, on the
other hand, outperforms the remainder of RVEA’s MaF results,
demonstrating that the ensemble selection process based on
dynamic probability is effective in picking solutions with
improved CaD performance. In addition, when compared to
the included algorithms in dealing with the ECRS problem, a
relatively good model solution is obtained. The ECRS prob-
lem, however, does not include any fuzzy components. More
fuzzy factors, such as completion time and trust measurement,
should be studied and added into the many-objective model
in the future. Furthermore, more efficient MaOEAs could be
constructed to improve the solution for the proposed model.
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of things, big data, and cloud computing for healthcare 4.0,” Journal of
Industrial Information Integration, vol. 18, p. 100129, 2020.

[5] K. Cao, L. Li, Y. Cui, T. Wei, and S. Hu, “Exploring placement of
heterogeneous edge servers for response time minimization in mobile
edge-cloud computing,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 1, pp. 494–503, 2021.

[6] F. Bai, T. Shen, Z. Yu, K. Zeng, and B. Gong, “Trustworthy blockchain-
empowered collaborative edge computing-as-a-service scheduling and
data sharing in the iioe,” IEEE Internet of Things Journal, vol. 9, no. 16,
pp. 14 752–14 766, 2022.

[7] J. Fang and A. Ma, “IoT application modules placement and dynamic
task processing in edge-cloud computing,” IEEE Internet of Things
Journal, vol. 8, no. 16, pp. 475–488, 2018.

[8] K. Zhang, Y. Zhu, S. Maharjan, and Y. Zhang, “Edge intelligence and
blockchain empowered 5G beyond for the industrial internet of things,”
IEEE Network, vol. 33, no. 5, pp. 12–19, 2019.

[9] I. Sorkhoh, D. Ebrahimi, R. Atallah, and C. Assi, “Workload scheduling
in vehicular networks with edge cloud capabilities,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 9, pp. 8472–8486, 2019.

[10] B. Cao, J. Zhang, X. Liu, Z. Sun, W. Cao, R. M. Nowak, and
Z. Lv, “Edge-cloud resource scheduling in space-air-ground integrated
networks for internet of vehicles,” IEEE Internet of Things Journal,
vol. 9, no. 8, pp. 5765–5772, 2022.

[11] Z. Cao, C. Lin, and M. Zhou, “A knowledge-based cuckoo search
algorithm to schedule a flexible job shop with sequencing flexibility,”
IEEE Transactions on Automation Science and Engineering, vol. 18,
no. 1, pp. 56–69, 2021.

[12] S. Hu and G. Li, “Dynamic request scheduling optimization in mobile
edge computing for iot applications,” IEEE Internet of Things Journal,
vol. 7, no. 2, pp. 1426–1437, 2019.

[13] W. Choi, J. Kim, S. Lee, and E. Park, “Smart home and internet of
things: A bibliometric study,” Journal of Cleaner Production, vol. 301,
p. 126908, 2021.

[14] M. S. Aliero, K. N. Qureshi, M. F. Pasha, and G. Jeon, “Smart home
energy management systems in internet of things networks for green
cities demands and services,” Environmental Technology & Innovation,
vol. 22, p. 101443, 2021.

[15] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C.
Eldar, “Near-field wireless power transfer for 6g internet of everything
mobile networks: Opportunities and challenges,” IEEE Communications
Magazine, vol. 60, no. 3, pp. 12–18, 2022.

[16] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource manage-
ment approaches in fog computing: a comprehensive review,” Journal
of Grid Computing, vol. 18, no. 1, pp. 1–42, 2020.

[17] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[18] Z. Kuang, Z. Ma, Z. Li, and X. Deng, “Cooperative computation
offloading and resource allocation for delay minimization in mobile edge
computing,” Journal of Systems Architecture, vol. 118, p. 102167, 2021.

[19] C. Pham, D. T. Nguyen, Y. Njah, N. H. Tran, K. K. Nguyen, and
M. Cheriet, “Share-to-run iot services in edge cloud computing,” IEEE
Internet of Things Journal, vol. 9, no. 1, pp. 497–509, 2022.

[20] Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic approach
to computation offloading strategy optimization in end-edge-cloud com-
puting,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 6, pp. 1503–1519, 2022.

[21] S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge asso-
ciation and resource allocation for cost-efficient hierarchical federated
edge learning,” IEEE Transactions on Wireless Communications, vol. 19,
no. 10, pp. 6535–6548, 2020.

[22] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in
edge computing: A survey,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2131–2165, 2021.

[23] Z. Tong, X. Deng, J. Mei, B. Liu, and K. Li, “Response time and
energy consumption co-offloading with slrta algorithm in cloud-edge
collaborative computing,” Future Generation Computer Systems, vol.
129, pp. 64–76, 2022.

[24] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and
M. Shoaib, “Bringing computation closer toward the user network:
Is edge computing the solution?” IEEE Communications Magazine,
vol. 55, no. 11, pp. 138–144, 2017.

[25] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end
task offloading in mobile-edge computing networks with limited commu-
nication capability,” IEEE Transactions on Cognitive Communications
and Networking, vol. 7, no. 2, pp. 624–634, 2021.

[26] Z. Tong, X. Deng, J. Mei, B. Liu, and K. Li, “Response time and
energy consumption co-offloading with slrta algorithm in cloud–edge
collaborative computing,” Future Generation Computer Systems, vol.
129, pp. 64–76, 2022.

[27] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289–330, 2019.

[28] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, vol. 21, no. 3, pp. 940–954, 2022.

[29] Y. Liu, M. J. Lee, and Y. Zheng, “Adaptive multi-resource allocation for
cloudlet-based mobile cloud computing system,” IEEE Transactions on
Mobile Computing, vol. 15, no. 10, pp. 2398–2410, 2015.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3235064

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



17

[30] G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, Á. L. Garcı́a, I. Here-
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