
1

AAKE-BIVT: Anonymous Authenticated Key Exchange Scheme
for Blockchain-enabled Internet of Vehicles in Smart Transportation

Akhtar Badshah, Muhammad Waqas, Senior Member, IEEE, Fazal Muhammad, Ghulam Abbas, Senior
Member, IEEE, Ziaul Haq Abbas, Shehzad Ashraf Chaudhry, Senior Member, IEEE, Sheng Chen, Fellow, IEEE

Abstract—The next-generation Internet of vehicles (IoVs)
seamlessly connects humans, vehicles, roadside units (RSUs),
and service platforms, to improve road safety, enhance transit
efficiency, and deliver comfort while conserving the environ-
ment. Currently, numerous entities communicate in the IoVs
environment via insecure public channels that are susceptible to a
variety of security assaults and threats. To address these security
challenges, we design an anonymous authenticated key exchange
mechanism for the IoVs in smart transportation supported by
blockchain, referred to as AAKE-BIVT. AAKE-BIVT securely
transmits traffic information to a cluster head, before heading
to a nearby RSU utilizing the established secret session keys via
mutual authentication and key agreement. A cloud server (CS)
then securely aggregates data from related RSUs and generates
transactions. The CS combines the transactions into blocks in
a peer-to-peer network of CSs, and the blocks are confirmed
and added to the blockchain via a voting-based consensus
method. By means of rigorous informal security studies and
formal security analysis through the random oracle model, we
reveal that the proposed AAKE-BIVT is resistant to a broad
range of potential security assaults in the IoVs environment.
Furthermore, a comparative study reveals that AAKE-BIVT
outperforms existing state-of-the-art techniques, in terms of
security and functionality while being more efficient in terms
of communication and computation. Additionally, the blockchain
simulation validates the implementation viability of our proposed
AAKE-BIVT.

Index Terms—Internet of vehicles, blockchain, security, au-
thentication, key exchange, PUF.

I. INTRODUCTION

Since its inception a few years ago, the Internet of vehicles
(IoVs) has emerged as an enabling component for intelligent
transportation systems (ITS). IoVs rely on a new generation of
information and communication technologies to connect cars,

This work was supported in part by Abu Dhabi University, Abu Dhabi,
UAE (Corresponding author: Shehzad Ashraf Chaudhry.)

A. Badshah is with the Telecommunications and Networking (TeleCoN)
Research Center, GIK Institute of Engineering Sciences and Technology,
Topi 23640, Pakistan, and also with the Department of Software Engi-
neering, University of Malakand, Dir Lower, Pakistan (e-mail: akhtarbad-
shah@giki.edu.pk).

M. Waqas is with Computer Engineering Department, College of Infor-
mation Technology, University of Bahrain, 32038, Bahrain and School of
Engineering, Edith Cowan University, Perth WA 6027, Australia. (e-mail:
engr.waqas2079@gmail.com).

F. Muhammad is with the Department of Electrical Engineering, Uni-
versity of Engineering and Technology, Mardan 23200, Pakistan (e-mail:
fazal.muhammad@uetmardan.edu.pk).

G. Abbas and Z. H. Abbas are with the TeleCoN Research Center, GIK
Institute of Engineering Sciences and Technology, Topi 23640, Pakistan (e-
mails: abbasg@giki.edu.pk, ziaul.h.abbas@giki.edu.pk).

S.A. Chaudhry is with the Department of Computer Science and Informa-
tion Technology, College of Engineering, Abu Dhabi University, Abu Dhabi,
UAE (ashraf.shehzad.ch@gmail.com).

S. Chen is with the School of Electronics and Computer Science, University
of Southampton, Southampton SO17 1BJ, U.K. (e-mail: sqc@ecs.soton.ac.uk).

and are heavily dependent on the Internet of Things (IoT) [1]–
[3] to function.

In IoVs, pedestrians, cars, roadside units (RSUs), and
service platforms are all considered nodes in an integrated
information network, relying on wireless communication to
coordinate their interactions with each other and the en-
vironment. This information network enhances the overall
intelligence of the vehicles. It provides users with an efficient,
safe, and convenient driving experience and traffic services
while simultaneously enhancing the performance of traffic
operations and increasing the insightful level of intelligent
traffic services provided by the vehicles [4], [5]. It is predicted
that the IoVs market value will expand by 215 percent by 2024
due to rising road safety standards and security aspects of
intelligent vehicles, according to Allied Market Research [6].

With the rapid expansion of vehicular services and applica-
tions, it is anticipated that an increasing number of intelligent
vehicles will produce and exchange vast quantities of data,
resulting in enormous network traffic that must be managed.
Additionally, the IoV’s heterogeneity, high mobility, context
complexity, and low latency will pose significant challenges
when directly employing conventional cloud-based storage
and management. Moreover, ensuring robust interoperability
and compatibility between IoV entities from various service
providers is challenging. Therefore, the data interchange and
storage infrastructure for IoVs must be distributed, decen-
tralized, interoperable, scalable, and flexible to accommodate
future IoV growth and realize the full potential of ITS. As
the platform is decentralized and distributed, it is naturally
susceptible to more cyber threats; consequently, it is crucial to
protect the security, privacy, and dependability of IoV data [7],
[8]. Therefore, research has been conducted into implementing
blockchain as a system platform to meet the IoV’s information
exchange requirements. Blockchain-enabled IoV applications
are believed to possess a variety of desirable characteristics, in-
cluding security, decentralization, immutability, transparency,
and automation [9].

Due to the nature of insecure communication via wireless
channels among numerous connected entities in the IoVs’
setting leads to various security vulnerabilities, and the trans-
mitted data can be tampered by adversary A in various man-
ners. Specifically, A can launch numerous potential security
attacks, including physical device capture, replay, ephemeral
secret leakage (ESL), impersonation, privileged insider (PI),
denial-of-service (DoS), man-in-the-middle (MitM), and so on.
Apart from these attacks, it is essential to preserve the untrace-
ability and anonymity features of IoVs so that A cannot trace
the communicating entity. Against the bulk of such assaults, a
robust and effective authenticated key exchange (AKE) scheme

2

is the primary line of defense. Using this technique, vehicles,
RSUs, and cloud servers (CSs) can authenticate each other and
generate session keys for secure communication. Furthermore,
blockchain consensus mechanisms are often combined with
key agreement schemes to create shared secret session keys
for guaranteeing the security of communicated sessions. This
is to ensure that only authorized CSs play a part in the
consensus mechanism for block verification and addition to
the blockchain center while simultaneously minimizing the
latency and overhead issues.

Over the last few years, several AKE schemes have been
proposed for the IoVs environment. However, most of the
existing schemes have multiple deficiencies. Firstly, the com-
munication and computational overheads carried out by cryp-
tographic operations in the existing schemes are not low. Sec-
ondly, numerous schemes are not resilient enough to protect
data at rest and in transit. Thirdly, most existing schemes in
the ITS communication environment do not render anonymity,
untraceability, and non-linkability, which are crucial security
traits.

The objective of this work is to solve the aforementioned
limitations of the existing schemes. We devise an anonymous
AKE for blockchain-enabled IoVs in smart transportation,
called AAKE-BIVT, with three levels of AKE schemes for ses-
sion key establishment, namely, a) between cluster head (CH)
and nearby RSU (CH2RSU), b) between two neighboring ve-
hicles (V2V), and c) between RSU and CS (RSU2CS). These
AKE schemes enable vehicles, RSUs, and CSs to authenticate
and establish a session key for secure communication. For the
consensus mechanism among the CSs, pairwise secret keys are
utilized. Additionally, blockchain technology is indispensable
for such a communication environment because it is decentral-
ized, tamper-proof, anonymous, and robust against numerous
information security assaults. These schemes, therefore, permit
IoV entities to transmit and store their data secretly.

The main contributions of this paper are as follows.

1) We devise a blockchain-enabled secure communication
design for smart transportation system, called AAKE-
BIVT, which simultaneously permits the AKE scheme
among V2CH, CH2RSU, and RSU2CS. These AKE
schemes enable vehicles, RSUs, and CSs to authenticate
and establish a session key for secure communication.
For the consensus mechanism among the CSs, pairwise
secret keys are utilized. Moreover, blockchain technology
makes our proposed AAKE-BIVT more secure, reliable,
and decentralized.

2) We use ultra-lightweight cryptography technology, com-
posed of hash function, bitwise exclusive OR (XOR)
operator, elliptic curve cryptography (ECC), and symmet-
ric encryption/decryption along with physical unclonable
function (PUF) to design our proposed AAKE-BIVT
so that the communication and computational overheads
brought by AKE procedures are reduced. A rigorous
security analysis utilizing informal security analysis and
the Real-Or-Random (ROR) oracle model reveals that
our proposed AAKE-BIVT is resilient against potential
security attacks and satisfies session-key security. The

PUF feature enables smart vehicles and RSUs to prevent
tampering from physical attacks.

3) We perform an extensive comparative analysis, which
demonstrates that our proposed AAKE-BIVT provides
enhanced security, adds additional functionality traits,
and has lower computation and communication overheads
than the other benchmark schemes.

4) Moreover, AAKE-BIVT blockchain solution is imple-
mented to evaluate the performance by varying the num-
ber of mined blocks and the number of transactions per
block.

The remainder of this paper is organized as follows. Sec-
tion II introduces the related work for securing the IoVs
network. Section III presents the background, including the
network and threat models, design objectives, and relevant
preliminaries. Section IV details our proposed AAKE-BIVT.
In Section V, a comprehensive security analysis of the devised
AAKE-BIVT is presented. Blockchain implementation and
simulation results are presented and discussed in Section VI.
The performance analysis of the proposed AAKE-BIVT com-
pared with other state-of-the-art benchmark schemes is briefly
discussed in Section VII. The paper is concluded in Sec-
tion VIII.

II. RELATED WORK

Mollah et al. [8] surveyed the blockchain solution in the
smart transportation environment, considering various per-
spectives, mechanisms, benefits, and challenges. Moreover,
they presented IoVs paradigms integrating blockchain to-
wards establishing future ITSs. They also discussed blockchain
applications in the IoV’s setting, including data protection
and management, forensic application, ride-sharing, data and
resource trading, content broadcasting, vehicle management,
and traffic control and management.

Bagga et al. [10] presented a survey work, highlighting
security requirements and numerous possible potential attacks
in the IoVs environment. They discussed system models, tax-
onomy of security schemes, comparative analysis mechanisms,
various testbeds implementations, as well as various open
challenges and issues related to data security in IoVs.

Table I outlines several existing AKE schemes in terms of
their cryptographic operations as well as their limitations and
drawbacks. To be more specific, Liu et al. [11] designed an
AKE scheme for the IoVs based on certificateless short signa-
ture, where vehicles interact with their associated RSUs. How-
ever, the scheme is exposed to ESL attacks and requires a high
computational overhead. Furthermore, blockchain technology
and dynamic node addition are not considered. The authors
of [12] devised an efficient AKE scheme for vehicular ad
hoc networks (VANETs), which offers an efficient revocation
mechanism for the malicious entity in the VANET system.
Furthermore, their approach is computationally efficient in
terms of the certificate and signature verification process.
Vijayakumar et al. [13] designed a secure scheme for IoT-
based health systems, which ensures location privacy for pa-
tients and doctors. They utilize the chinese remainder theorem
to protect location privacy. The authors of [14] devised a
blockchain-based anonymous authentication scheme, which

3

TABLE I: Summarizing existing AKE schemes

Reference Operations Limitations

Liu et al. 2018 [11] Bilinear pairings, modular exponenti-
ation, ECC, and hash functions

• Blockchain security solution is not considered
• Exposed to ESL attack
• Computational overhead is high
• Dynamic node addition is not considered

Tan and Chung 2020
[19]

Bilinear pairings, modular exponenti-
ation, ECC, and hash functions

• Exposed to ESL and PI attacks
• Does not render anonymity
• High computational overhead
• Dynamic node addition is not considered

Moghadam et al.
2020 [20]

ECC, symmetric key encryption, and
hash functions

• Exposed to ESL and PI attacks
• Blockchain security solution is not considered

Li et al. 2020 [21] ECC and hash functions
• High communication overhead
• Blockchain security solution is not considered

Vasudev et al. 2020
[22]

Symmetric key encryption and hash
functions

• Unsafe against impersonation, MitM, and secret
key disclosure attacks

• Blockchain security solution is not considered

Vangala et al. 2021
[23]

ECC, hash functions, modular addi-
tion and multiplication

• Anonymity and untraceability features are not con-
sidered

Chattaraj et al. 2021
[24]

ECC, bivariate polynomial, ECC-
based signature, and hash functions

• High communication and computation overheads
• Anonymity and untraceability features are not con-

sidered

Note: Elliptic-curve cryptography (ECC), privileged insider (PI), man-in-the-middle (MitM), ephemeral secret leakage (ESL).

authenticates the legitimacy of vehicle users, and a handover
authentication scheme, which reduces the overhead caused
by the reauthentication of vehicles. Blockchain is utilized to
assure the security of the authentication codes of vehicles
and realize the traceability of malicious vehicles. However,
these schemes [12]–[14] are computationally expensive due
to the utilization of bilinear pairings operations. To avoid the
high computational overhead of bilinear pairing operations,
Wei et al. [15] proposed a tree-based AKE scheme for
securing vehicle-to-infrastructure and V2V communications in
VANETs. They employ hash functions and ECC cryptography
in their proposed scheme to reduce the communication and
computational overheads brought by the AKE phase. Wei et
al. [16] devised a lightweight AKE scheme with multi-
trusted authority for fog-based VANET. Their scheme ensures
security in the VANETs environment by utilizing Lagrange
interpolation theorem and hash and pseudo-random functions.
Moreover, their proposed scheme supports the credential revo-
cation mechanism to achieve conditional privacy protection. In
addition, the single-point failure issue is also fixed by consid-
ering the multi-trusted authority model. The scheme designed
by Vinoth et al. [17] for the industrial IoT environment is
lightweight due to the utilization of XOR operation, hash
function, and symmetric cryptography. However, their scheme
is vulnerable to replay, DoS, and sensor node capture attacks.
Xia et al. [18] developed a cloud-assisted trustworthiness

evaluation procedure and efficient anonymous AKE protocol
based on non-interactive zero-knowledge to assure IoT de-
vices’ privacy protection and data security in smart cities.
However, the blockchain security solution is not considered to
provide superior security. Tan and Chung [19] devised a secure
AKE and key management with blockchain in VANETs. Their
scheme ensures security in the IoVs environment by utilizing
bilinear pairings, ECC, and modular exponentiation. However,
the scheme is vulnerable to ESL and PI attacks. Moreover, the
scheme does not preserve the anonymity feature. Furthermore,
an AKE mechanism devised by Moghadam et al. [20] is
exposed to ESL and PI attacks and does not support blockchain
solutions. Li et al. [21] suggested a hierarchical authentication
protocol for vehicular networks. They utilize ECC and hash
functions for secure communications. However, their scheme
does not support blockchain technology and imposes a high
communication overhead. The scheme of Vasudev et al. [22] is
vulnerable to secret key disclosure, impersonation, and MitM
attacks. Additionally, blockchain technology is not supported
by the scheme. Vangala et al. [23] devised an AKE scheme for
a blockchain-enabled IoVs environment. The scheme securely
communicates accidental notifications among IoVs entities
and can transmit valuable information to the blockchain net-
work for consensus. However, the scheme does not render
anonymity and untraceability features. Chattaraj et al. [24]
devised a certificateless key agreement scheme for blockchain-

4

enabled smart transportation systems. However, they do not
discuss key management among the cloud servers. Addition-
ally, their proposed scheme imposes high communication and
computation overheads and does not support features such as
anonymity and untraceability.

III. BACKGROUND

In this section, we comprehensively discuss our network and
threat models. Then, we briefly describe the design objectives
and relevant preliminaries.

A. Network Model

This subsection presents a network model of AAKE-BIVT,
as depicted in Fig. 1. The network consists of several entities,
such as trusted registration authorities (RAs), smart vehicles,
CHs, RSUs, and CSs. In addition, it is assumed that each
vehicle contains an OBU. The description of each network’s
entity is as follows.

• Trusted Registration Authority: An RA is in-charge
of registering all the deployed smart vehicles, RSUs, and
CSs. An RA is a completely trustworthy entity in the net-
work. Each entity is preloaded with essential credentials
following a successful registration before being deployed
or put into the ITS environment.

RSU communica�on Range CH communica�on range Emergency event Signal

CH

CH
V2CH

CH2RSU

RSU2CS

RAi

CS1 CS2

CSnCS3

RSUi

Blockchain
Center

Fig. 1: Network structure for the proposed AAKE-BIVT.

• Smart Vehicle: Each vehicle contains an OBU. The
OBUs have limited computing capabilities and enable
vehicles to communicate with RSUs (V2RSUs) and other
vehicles (V2V). The jth OBU, OBUj in V2RSU com-
munication or V2V communication is responsible for
transmitting and acquiring safety information, such as
traffic jams, accident alerts, and shortest route identifica-
tion. It can also be used for non-safety information, such
as infotainment messages and toll-collection payment-
related messages.

• Cluster Head: The vehicles in the network create numer-
ous clusters dynamically, where a specific vehicle can be
chosen as CH from a set of vehicles in the network. The
CH manages and coordinates with its cluster members
(CMs) when the CH has a message or data that can be
forwarded to the associated RSU via a public channel,
such as information about accidents, traffic, road condi-
tions, etc. It is worth noting that for constructing distinct
clusters from vehicles on the fly, a dynamic clustering
approach was suggested by Kakkasageri and Manvi [25]
is adopted. In their approach, vehicles traveling on the
same lane segment that ends at the intersection can be
considered for the cluster formation process. Each vehicle
may come across its neighbors traveling at about the
same speed in the same direction and on the same lane
segment. The vehicles then become the best candidates
to make up for any potential cluster that might emerge
in that lane. A vehicle that occupies the front position
on the lane is said to be an initiator since it needs to
start the cluster formation process. Based on the vehicles’
relative speeds and directions of movement, the initiator
vehicle chooses the vehicles. The CMs are considered to
be the neighboring vehicles whose corresponding speed
differential is less than the specified threshold value. To
this end, every vehicle gathers the required information,
including vehicle identity, speed, position, connectivity
degree (number of connected vehicles), and Time-to-
leave the lane segment. Time-to-leave is the length of
time a vehicle remains in a particular lane segment.
Consequently, an initiator selects the CH among the
CMs by calculating the stability metric of each CM. The
stability metric consists of average speed, connectivity
degree, and Time-to-leave. The vehicle with the highest
stability metric is selected as the CH.

• Roadside Unit: RSU is a crucial component of IoVs,
which is responsible for collecting non-safety and safety-
related messages from the respective CH(s). The CH
obtains the information from its CMs. Next, RSU trans-
mits the message to the corresponding CS containing the
received information from the CH.

• Blockchain Center: In the blockchain center, the CSs
form a peer-to-peer (P2P) network, named P2P cloud
servers (CSN). After receiving the data from RSU, the
corresponding CS treats the data as a transaction and
puts it into the global transaction pool, which is available
to all peer CSs. When the number of transactions hits a
certain threshold, a leader is chosen from the CSs, and the
block is created from the list of transactions. The block

5

is subsequently verified and added to the blockchain by
the leader using a voting consensus method based on the
ripple protocol consensus algorithm (RPCA) [26].

On the CSN, the ITS environment’s data is stored as a
private blockchain. Utilizing blockchain technology protects
against data disclosure and modification attacks. The follow-
ing secure communications forms occur per the stated net-
work model: V2CH, CH2RSU, and RSU2CS communication.
The vehicles in each cluster communicate using dedicated
short-range communications under the proposed AAKE-BIVT.
However, such communication is vulnerable to the adversary
and can be compromised due to the openness of wireless
channels.

B. Threat Model

Under the Dolev-Yao (DY) threat model [27], adversary A

can eavesdrop, intercept, store, forge, and send messages in the
network. A can also participate in the protocol’s operation just
as the most legitimate protocol participants. In general, under
the DY model, A can control the entire network completely.
Furthermore, A can physically capture RSU, the OBU of a
vehicle, and the smart card of a vehicle owner. A can launch
power analysis (PA) attacks [28] and try to retrieve the secret
credentials kept on those seized devices.

We also utilize the current de-facto, i.e., the “Canetti and
Krawczyk (CK) adversary model” [29] to devise the AAKE-
BIVT security scheme. Under the CK model, apart from A’s
capability in the DY model, A can capture long-term private
key, random number leakage, session secret key leakage,
state agreement leakage through session hijacking attacks, or
information stored in an insecure memory.

In the IoVs network, the trusted registration authorities and
CSs are considered fully trusted and semi-trusted entities,
respectively. On the other hand, the end-point communicating
entity is not considered trustworthy.

C. Design Objectives

The proposed AAKE-BIVT aims to accomplish the follow-
ing primary design objectives:
• Mutual authentication: The communicating entities,

i.e., the vehicles, RSUs, and CSs of the AKE scheme,
must authenticate each other at the time of the AKE
procedure to verify the legitimacy of the involved entity
and the integrity of the received message.

• Confidentiality: The session key, created via the AKE
procedure, should remain confidential for any entity ex-
cept for the involved entities.

• Untraceability: From the viewpoint of the adversary, the
AKE message transmitted from the communicating entity,
i.e., vehicle, RSU, and CS, should not be traceable.

• Non-linkability: The scheme must guarantee non-
linkability for multiple messages from the same source,
i.e., there should be no correlation between different in-
teractions of the same entity so that the adversary cannot
extract sensitive credentials from different interactions of
the same entity.

• Anonymity: The real identities of the communicating en-
tities, i.e., vehicles, RSUs, and CSs, should be protected.

• Resistance to potential security attacks: The scheme
must resist common attacks in the communicating en-
vironment, including MitM attacks, replay attacks, ESL
attacks, impersonation attacks, data modification attacks,
and physical attacks.

D. Preliminaries

We now provide a brief overview of the preliminaries
utilized in deriving the proposed AAKE-BIVT scheme.

1) Physical Unclonable Function

Based on the physical microstructure of a semiconductor
device, the physical unclonable functions (PUFs) assign an
input uniquely to an output. The challenge and response pair
is an alias for the (input, output) pair for PUF. A PUF (·)
is described by R = PUF (C), where R and C represent
response and challenge parameters, respectively [30]. A PUF
circuit must reveal the characteristics listed below:
• The response generated by a PUF is dependent on the

microstructure of the device.
• Response of PUF must be unique, reliable, difficult to

predict, and easy to implement and test.
• The PUF circuit could not be copied/cloned.

2) Fuzzy Extractor

Even though PUF circuits are highly reliable, noise and
temperature variation can cause deviation in PUF output.
Therefore, obtaining a stable digital key (SDK) from the PUF
is crucial. A fuzzy extractor (FE) is an algorithm that can
produce stable cryptographic keys from noisy output of the
PUF (·) [31]. FE consists of two algorithms, the generation
algorithm and the reproduction algorithm, denoted as Gen(·)
and Rep(·), respectively. Specifically:

Gen(R) → (SDK,RP): Gen(·) accepts R as input and
produces a key SDK and a reproduction parameter RP .

Rep(R′, RP)→ (SDK ′): Rep(·) takes R′ and RP as inputs
and produces SDK ′ as an output. The correctness of the
output is based on the two samples R and R′. If SDK and
SDK ′ are sufficiently close, then SDK ′ = SDK. That is,
SDK can be accurately reproduced.

IV. THE PROPOSED SCHEME

This section presents the proposed AAKE-BIVT based on
the network model illustrated in Fig. 1. It is worth recapping
that for each VANET application V ANETi, there exists an
RAi to register network entities. Table II summarizes the
notations and their descriptions utilized in AAKE-BIVT. In
the following subsections, we detail the AAKE-BIVT phases.

A. System Initialization Phase

The system initialization (SI) phase is responsible for se-
lecting the associated system parameters, detailed as follows.

a) SI-1

With each VANET application V ANETi, a trusted RAi
selects an elliptic curve i.e., Eq(α, β), of the form y2 = x3 +
αx+β (mod q) over finite field Zq , where q is a large prime,
and α, β ∈ Z∗q , with the condition 4α3 − 27β2 6= 0 (mod q),

6

TABLE II: Notations guide

Notation Description
A Adversary
‖, ⊕ Concatenation, XOR
(Ri, Ci) (challenge, response) pair
PUF (·) Physical unclonable function

h(·) Collision-resistant one-way cryptographic hash
function

Eq(α, β), P Elliptic curve, and its base point

Gen(·), RP,Rep(·) FE key generation algorithm, reproduction pa-
rameter, reproduction algorithm

V Oi, PWV Oi
ith vehicle owner, owner’s password

RAi ith trusted registration authority
OBUi, RSUj , CSl ith on-board unit, jth roadside unit, lth CS
(PBOBUi

, PROBUi
),

(PBRSUj
, PRRSUj

),
(PBCSl

, PRCSl
)

Public/private key pair of ith OBU, jth RSU, lth
CS

RAKE1, RAKE2 Random numbers utilized in the AKE phase

ECk̄(·)/DCk̄(·) Symmetric encryption/decryption using private-
key k̄

RN1,Mk, SP
Random nonce, encrypted parameter, secret pa-
rameter

TS1, TS2 Timestamps utilized in AKE phase

f(α, β)
“w-degree symmetric-bivariate polynomial with
property f(α, β) = f(β, α)”

along with O as the point at infinity or zero point1. Then,
RAi picks a generation point or base point P , such that P ∈
Eq(α, β), of order, say n, i.e., n · P = O, where n · P shows
the ECC point multiplication and n ∈ Z∗q is also called the
discrete logarithm to the base P .

b) SI-2

RAi picks a one-way collision-resistant cryptographic hash
function h(·). For instance, SHA-256 h(·) can be considered
for providing sufficient security which gives a message digest
of 256-bit.

c) SI-3

RAi picks a “w-degree symmetric-bivariate polynomial of
the form f(α, β) =

∑w
k=0

∑w
l=0 yklα

kβl (mod q) over finite
field Zq , where the coefficients ykl ∈ Zq, with the property
that f(α, β) = f(β, α)”. The degree w of f(α, β) is chosen
such that w � the number of RSUs and CSs and the w-
collision resistant properties are fulfilled.

It is worth mentioning that {Eq(α, β), P, h(·), f(α, β)} are
securely shared among all the others RAs in the system.

B. Registration Phase

The registration process of the individual network entities,
such as vehicle owners (VOs), RSUs and CSs, with RAi for
VANET application V ANETi is elaborated below.

1) Vehicle Owner Registration Phase

Before accessing the online smart application (SA) SAι, the
VO V Oj must register the OBU OBUj with the associated
RAi offline by forwarding the vehicle documents and identity
proof. The VO registration (VOR) phase is described below.

1In prime field arithmetic, Z∗
q is Zq with its zero point removed.

a) Step VRP-1

To register OBUj , V Oj forwards request to RAi. RAi
picks a unique challenge parameter Cj and transmits it to
OBUj via a secure channel. OBUj computes the response
parameter Rj = PUF (Cj), and further generates stable dig-
ital key SDKOBUj and reproduction parameter RPOBUj as
(SDKOBUj

, RPOBUj
) =Gen(Rj). Moreover, OBUj calcu-

lates identity IDOBUj
of OBUj as IDOBUj

=h(SDKOBUj
),

and generates a random nonce RNj . Next, V Oj chooses the
password PWV Oj and computes RPWV Oj = h(PWV Oj ‖
RNj). Then {IDOBUj , RPOBUj , RPWV Oj} are forwarded
to RAi via a secure channel.

b) Step VRP-2

After receiving {IDOBUj , RPOBUj , RPWV Oj}, RAi
picks a private key PROBUj

∈ Z∗q and calculates the public
key PBOBUj

as PBOBUj
= PROBUj

· P . Next, RAi
computes Qj = PROBUj

⊕ h(RPWV Oj
‖ IDOBUj

) and
Wj = h(RPWV Oj ‖ PROBUj), and prepares a smart card
SC = {Cj , RPOBUj , Qj ,Wj} for V Oj . RAi stores Cj and
RPOBUj

in its database and delivers SC on mailing address.

c) Step VRP-3

After receiving SC, V Oj computes Aj = RNj ⊕
h(PWV Oj

‖ IDOBUj
) and stores {Aj} in SC.

It is worth noting that V Oj needs to remember PWV Oj in
order to access the smart transportation service SAι.

2) CS Registration

Before deploying CS CSl, the relevant RAi executes the
following cloud service registration procedure (CRP).

a) Step CRP-1

RAi selects a unique real identity IDCSl
and a random

temporary identity TIDCSl
, and calculates a pesudo-identity

as PIDCSl
=h(IDCSl

‖PRRAi
‖RTCSl

), where RTCSl
and

PRRAi
are the time of CSl registration and private key of

RAi, respectively. RAi also selects a private key PRCSl
and

calculates the public key as PBCSl
=PRCSl

· P .

b) Step CRP-2

Pairwise secret keys among CSs are established using
a key distribution technique based on symmetric-bivariate
polynomial [32], (see Subsection IV-E). To accomplish
this goal, RAi selects a “w-degree symmetric-bivariate
polynomial of the form f(α, β) =

∑w
k=0

∑w
j=0 ykjα

kβj

(mod q) over finite field Zq , with the property f(α, β) =
f(β, α)”, where the coefficients ykj ∈ Zq , and it further
calculate a polynomial share for CSl as f(PIDCSl

, β) =∑w
k=0

∑w
j=0 ykjPID

k
CSl

βj (mod q), which fabricates a w-
degree symmetric-univariate polynomial.

c) Step CRP-3

Finally, RAi loads the parameters {IDCSl
,

PRCSl
, (TIDCSl

, P IDCSl
), f(PIDCSl

, β)} in CSl.
Moreover, RAi also stores {(TIDCSk

, P IDCSk
) | k 6=

l, k = 1, 2, · · · , nCS} in CSl corresponding to all other CSs
CSk, and the parameter PBCSl

is published publicly.

7

3) RSU Registration Phase

The RSU registration procedure (RRP) is as follows.

a) Step RRP-1

To register RSUk, a request is forwarded to RAi. Then,
RAi selects a unique challenge parameter Ck and sends
it to RSUk via a secure private channel. RSUk computes
the response parameter as Rk = PUF (Ck). Additionally,
RSUk produces reproduction parameter RPRSUk

and stable
digital key SDKRSUk

as (SDKRSUk
, RPRSUk

)=Gen(Rk).
Moreover, RSUk computes identity as IDRSUk

= Za0 ⊕ Zb0,
where Z0 = h(SDKRSUk

), and Za0 and Zb0 are extracted by
splitting the parameter Z0. Next, IDRSUk

and Rk are sent to
RAi using a secure private channel.

b) Step RRP-2

After acquiring {IDRSUk
, Rk}, RAi selects a unique pri-

vate key PRRSUk
, random nonce RN1 and secret param-

eter SP , to compute PBRSUk
= PRRSUk

· P, Bk =
PRRSUk

⊕h(RN1 ‖ IDRSUk
), SIDk = h(IDRSUk

), k̄ =
h(IDRSUk

‖ PRCSm), and Mk = ECk̄(SP ‖ Ck ‖ Rk),
where PBRSUk

, SIDk, k̄, and Mk are the public key, search-
ing identity, symmetric key, and encrypted parameter, re-
spectively. RAi stores {SIDk,Mk} in CSm and forwards
{Bk, RN1, PBRSUk

, SP} to RSUk using a secure private
channel.

c) Step RRP-3

After obtaining {Bk, RN1, PBRSUk
, SP}, RSUk com-

putes X1 = h(SP ‖ IDRSUk
), and X2 = SP ⊕SDKRSUk

.
Finally, RSUk stores {Ci, RPRSUk

, Bk, RN1, X1, X2,
PBRSUk

}, and PBRSUk
is published publicly.

C. Vehicle User Login Phase

After successfully enrolling, V Oj acquires a smart card SC
from the corresponding RAi, which is used for logging into
OBUj locally and accessing smart transportation services. The
vehicle user login procedure is as follows.

a) Step ULP-1

V Oj inserts smart card SC into OBUj , and enters the
password, denoted as PW l

V Oj
, into SAι.

b) Step ULP-2

SAι retrieves {Cj , RPOBUj} from SC and computes the
challenge parameter Rj = PUF (Cj), and further computes
stable digital key SDKOBUj

for OBUj using fuzzy ex-
tractor SDKOBUj

= Rep(Rj , RPOBUj
). Next, it computes

IDOBUj
= h(SDKOBUj

), RNj = Aj ⊕ h(PW l
V Oj

‖
IDOBUj), RPW l

V Oj
= h(PW l

V Oj
‖ RNj), PROBUj =

Qj ⊕ h(RPWV Oj ‖ IDOBUj), and W ′j = h(RPW l
V Oj

‖
PROBUj

). Finally, it checks if W ′j
?
= Wj holds. If so, V Oj

is successfully logged into OBUj .

D. Authenticated Key Exchange Phase

This subsection details the devised AKE schemes for the
three different cases: 1) between an OBU (vehicle) and its
neighboring OBU (vehicle), 2) between CH and RSU, and
3) between RSU and CS.

1) AKE Between Vehicles

Both the neighboring vehicles, OBUj and OBUj′, must
have login with the assistance of SAι and SAι′, respectively,
as elaborated in Subsection IV-C. The process of AKE be-
tween vehicles is as follows.

a) Step KEV2V-1

OBUj generates random nonce RAKE1, and picks current
timestamp TS1. Then it calculates SSC=PROBUi ·PBRSUj ,
ASC =RAKE1 ·P , BSC =RAKE1 ·PBRSUj , M1 =ASC ⊕
PBOBUi

, and Auth1 =h(ASC ‖BSC ‖TS1). Next OBUj
constructs message msgV V1

={M1, Auth1, BSC, TS1} and
sends it to OBUj′ via insecure channel.

b) Step KEV2V-2

After acquiring msgV V1
at time TS′1, OBUj′ verifies the

condition |TS1 − TS′1| < ∆T ? If so, OBUj′ computes
ASC = BSC · PR−1

OBUj′
, PBOBUj = ASC ⊕M1, SSC2 =

PROBUj′ ·PBOBUj , and Auth2 = h(ASC ‖ BSC ‖ TS1).
Next OBUj′ checks if Auth2

?
=Auth1 holds. If true, OBUj′

generates a nonce RAKE2, and picks current timestamp TS2.
Then, it computes M2 = ASC ⊕ RAKE2, and also computes
session key SKOBUj′,OBUj

and session key verifier Auth3 as
SKOBUj′,OBUj

=h(ASC ‖RAKE2 ‖SSC2 ‖TS1 ‖ TS2), and
Auth3 = h(RAKE2 ‖ SKOBUj′,OBUj ‖ TS2), respectively.
OBUj′ constructs message msgV V2 ={M2, Auth3, TS2} and
sends it to OBUj using insecure channel.

c) Step KEV2V-3

After acquiring msgV V2
from OBUj′, OBUj checks

whether the current timestamp TS′2 satisfies |TS2 − TS′2|<
∆T . If this condition holds, OBUj extracts RAKE2 from
RAKE2 = M2 ⊕ ASC. Next, OBUj computes session
key SKOBUj ,OBUj′ and session key verifier Auth4 as
SKOBUj ,OBUj′ =h(ASC ‖RAKE2 ‖SSC ‖TS1 ‖ TS2), and
Auth4 = h(RAKE2 ‖ SKOBUj ,OBUj′ ‖ TS2), respectively.
OBUj checks if Auth4

?
= Auth3 holds, then it accepts and

stores SKOBUj ,OBUj′(=SKOBUj′,OBUj
) as SK.

This authentication and key exchange phase between two
neighboring vehicles is summarized in Fig. 2.

2) AKE Between CH and RSU

The process of AKE between cluster head CH (e.g., OBUi)
and RSU RSUj is detailed as follows.

a) Step KEV2R-1

CH (OBUi) generates random nonce RAKE1 and picks
current timestamp TS1. Next it computes SSC =PROBUi ·
PBRSUj , ASC = RAKE1 · P , BSC = RAKE1 · PBRSUj ,
M1 = ASC ⊕ PBOBUi

, and Auth1 = h(ASC ‖
BSC ‖ TS1). Then CH constructs message msgV R1

=
{M1, Auth1, BSC,TS1} and transmits it to RSUj through
public channel.

b) Step KEV2R-2

After receiving msgV R1 from CH , RSUj checks whether
the current timestamp TS′1 satisfies |TS1 − TS′1| < ∆T .
If this condition holds, RSUj retrieves parameters Ci and

8

Vehicle OBUj Vehicle OBUj′
Known parameters:{Aj , Cj , RPOBUj

, Qj ,Wj}; Input: PW l
V Oj

Known parameters:{Aj′, Cj′, RPOBUj′ , Qj′,Wj′}; Input: PW l
V Oj′

Retrieve: Cj , RPOBUj
;

Compute: Rj = PUF (Cj), SDKOBUj
= Rep(Rj , RPOBUj

),
IDOBUj = h(SDKOBUj), RNj=Aj ⊕ h(PW l

V Oj
‖IDOBUj),

RPW l
V Oj

= h(PW l
V Oj
‖ RNj), PROBUj = Qj ⊕ h(RPWV Oj ‖

IDOBUj
), W ′j = h(RPW l

V Oj
‖ PROBUj

);

Check if W ′j
?
= Wj holds: Vehicle driver is successfully login.

Retrieve: Cj′, RPOBUj′ ;
Compute: Rj′ = PUF (Cj′), SDKOBUj′ = Rep(Rj′, RPOBUj′),
IDOBUj′ = h(SDKOBUj′), RNj′=Aj′ ⊕ h(PW l

V Oj′
‖IDOBUj′),

RPW l
V Oj′

=h(PW l
V Oj′

‖RNj′), PROBUj′ = Qj′⊕h(RPW l
V Oj′

‖
IDOBUj′), W ′j′ = h(RPW l

V Oj′
‖ PROBUj′);

Check if W ′j′
?
= Wj′ holds: Vehicle driver is successfully login.

Mutual authentication and key exchange scheme

Generate: random nonce RAKE1;
Pick: current timestamp TS1;

Compute: SSC = PROBUj
·PBOBUj′ , ASC = RAKE1·P , BSC =

RAKE1 · PBOBUj′ , M1 = ASC ⊕ PBOBUj
, Auth1 = h(ASC ‖

BSC ‖ TS1);
msgV V1

:{M1,Auth1,BSC,TS1}−−−−−−−−−−−−−−−−−−−−→
(OBUj → OBUj′)

.

Check if |TS1 − TS′1| < ∆T ? If true, compute: ASC = BSC ·
PR−1

OBUj′
, PBOBUj

= ASC ⊕M1, SSC2 = PROBUj′ · PBOBUj
,

Auth2 =h(ASC ‖ BSC ‖ TS1);
Check if Auth2

?
= Auth1 holds; If so, generate: TS2 and RAKE2;

Compute: M2 = ASC ⊕ RAKE2, SKOBUj′,OBUj
= h(ASC ‖

RAKE2 ‖SSC2 ‖TS1 ‖ TS2),
Auth3 = h(RAKE2 ‖ SKOBUj′,OBUj ‖ TS2);
msgV V2

:{M2,Auth3,TS2}←−−−−−−−−−−−−−−−−−
(OBUj′ → OBUj)

.

Check if |TS2 − TS′2| < ∆T ? If true, extract: RAKE2 from
RAKE2 = M2 ⊕ASC;
Compute: SKOBUj ,OBUj′ =h(ASC ‖RAKE2 ‖SSC ‖TS1 ‖ TS2),
Auth4 = h(RAKE2 ‖ SKOBUj ,OBUj′ ‖ TS2);
Check if Auth4

?
= Auth3 holds;

Store SKOBUj ,OBUj′(=SKOBUj′,OBUj) as SK.

SKOBUj ,OBUj′(= SKOBUj′,OBUj) = h((RAKE1 · P) ‖ RAKE2 ‖ (PROBUj · PROBUj′ · P) ‖ TS1 ‖ TS2)

Fig. 2: Authentication and key exchange phase between two neighboring vehicles OBUj and OBUj′.

Cluster head OBUi Roadside Unit RSUj
{Ai, Ci, RPOBUi , Qi,Wi} {Ci, RPRSUj , Bj , RN1, X1, X2, PBRSUj}

Generate: random nonce RAKE1;
Pick: current timestamp TS1;
Compute: SSC = PROBUi

·PBRSUj
, ASC = RAKE1 ·P , BSC =

RAKE1 · PBRSUj , M1 = ASC ⊕ PBOBUi , Auth1 = h(ASC ‖
BSC ‖ TS1);
msgV R1

:{M1,Auth1,BSC,TS1}−−−−−−−−−−−−−−−−−−−−→
(OBUi → RSUj)

.

Check if |TS1 − TS′1| < ∆T ? If so, retrieve: Ci and RPRSUj
;

Compute: Ri = PUF (Ci), SDKRSUj
= Rep(Ri, RPRSUj

),
Z0 = h(SDKRSUj

), IDRSUj
= Za0 ⊕ Zb0,

PRRSUj = Bj ⊕ h(RN1 ‖ IDRSUj), ASC = BSC · PR−1
RSUj

,
PBOBUi

= ASC ⊕M1, SSC2 = PRRSUj
· PBOBUi

,
Auth2 = h(ASC ‖ BSC ‖ TS1);
Check if Auth2

?
= Auth1 holds;

If so, generate: random nonce RAKE2 and pick: TS2;
Compute: M2 = ASC ⊕ RAKE2, SKRSUj ,OBUi = h(ASC ‖
RAKE2 ‖SSC2 ‖TS1 ‖TS2),
Auth3 = h(RAKE2 ‖SKRSUj ,OBUi

‖TS2);
msgV R2

:{M2,Auth3,TS2}←−−−−−−−−−−−−−−−−−
(RSUj → OBUi)

.

Check if |TS2 − TS′2| < ∆T ? If so, extract: RAKE2 from
RAKE2 = M2 ⊕ASC;
Compute: SKOBUi,RSUj

=h(ASC ‖RAKE2 ‖SSC ‖ TS1 ‖ TS2),
Auth4 =h(RAKE2 ‖SKOBUi,RSUj

‖ TS2);
Check if Auth4

?
= Auth3 holds;

Store: SKOBUi,RSUj (= SKRSUj ,OBUi) as SK.

SKOBUi,RSUj
(= SKRSUj ,OBUi

) = h((RAKE1 · P) ‖ RAKE2 ‖ (PROBUi
· PRRSUj

·G) ‖ TS1 ‖ TS2).

Fig. 3: Authentication and key exchange phase between CH OBUi and RSU RSUj .

9

RPRSUj
, and computes Ri = PUF (Ci), SDKRSUj

=
Rep(Ri, RPRSUj), Z0 =h(SDKRSUj), IDRSUj =Za0 ⊕ Zb0,
and PRRSUj = Bj ⊕ h(RN1 ‖ IDRSUj). RSUj further
calculates ASC = BSC · PR−1

RSUj
, PBOBUi

= ASC ⊕M1,
SSC2 =PRRSUj ·PBOBUi , and Auth2 = h(ASC ‖ BSC ‖
TS1). Next it checks if Auth2

?
=Auth1 holds. If true, RSUj

generates a nonce RAKE2 and picks current timestamp TS2.
Then it computes M2 = ASC⊕RAKE2, and further calculates
session key SKRSUj ,OBUi

and session key verifier Auth3 as
SKRSUj ,OBUi

= h(ASC ‖ RAKE2 ‖ SSC2 ‖ TS1 ‖ TS2)
and Auth3 = h(RAKE2 ‖ SKRSUj ,OBUi ‖ TS2), respectively.
RSUj fabricates message msgV R2 ={M2, Auth3, TS2}, and
then transmits it to OBUi using an insecure channel.

c) Step KEV2R-3

After acquiring msgV R2 from RSUj , CH (OBUi)
checks whether the current timestamp TS′2 satisfies |TS2 −
TS′2| < ∆T . If this condition holds, CH extracts RAKE2

from RAKE2 = M2 ⊕ ASC. Next CH computes ses-
sion key SKOBUi,RSUj

and session key verifier Auth4 as
SKOBUi,RSUj = h(ASC ‖RAKE2 ‖SSC ‖ TS1 ‖ TS2) and
Auth4 = h(RAKE2 ‖ SKOBUi,RSUj ‖ TS2), respectively. It
then checks if Auth4

?
= Auth3 holds, then accepts and stores

SKOBUi,RSUj
(= SKRSUj ,OBUi

) as SK.
The authentication and key exchange phase between CH

(OBS) and RSU is illustrated in Fig. 3.

3) AKE Between RSU and CS

The proposed AKE scheme between RSUj and CSm is
detailed as follows.

a) Step KER2C-1

RSUj retrieves Ci and computes Ri = PUF (Ci),
SDKRSUj

= Rep(Ri, RPRSUj
), Z0 = h(SDKRSUj

),
IDRSUj =Za0⊕Zb0, SP ′=X2⊕SDKRSUj , and X ′1 =h(SP ′ ‖
IDRSUj). Next, RSUj checks if X1

?
= X ′1 holds. If so, it

generates RAKE1 and picks TS1, and computes PRRSUj =
Bk ⊕h(RN1 ‖IDRSUj

), SSH=PRRSUj
·PBCSm

, ASC =
RAKE1 ·P , BSC = RAKE1 ·PBCSm

, Z3 = ASC⊕PBRSUj
,

Z4 = (IDRSUj
‖ RPRSUj

) ⊕ h(SSH ‖ TS1), and Z5 =
h(ASC ‖ BSC ‖ IDRSUj ‖ RPRSUj ‖ SP ‖ TS1). RSUj
forwards message msgRC1 = {Z3, BSC, Z4, Z5, TS1} to
CSm using an insecure channel.

b) Step KER2C-2

After reception of msgRC1
at TS′1, CSm checks |TS1 −

TS′1| < ∆T ? If so, it computes ASC = BSC · PR−1
CSm

,
PBRSUj = ASC ⊕ Z3, SSH2 = PRCSm · PBRSUj , and
extracts IDRSUj

and RPRSUj
from (IDRSUj

‖ RPRSUj
) =

Z4⊕h(SSH2 ‖ TS1). To extract the secret credentials (SIDj

and Mj) of RSUj stored in its database for authentication
of RSUj , CSm computes SIDj = h(IDRSUj), and through
SIDj , it retrieves Mj from its database. Then CSm computes
K2 = h(IDRSUj

‖ PRCSm
), (SP ‖ Ri ‖ Ci) = DCK2

(Mj),
and Z ′5 = h(ASC ‖ BSC ‖ IDRSUj

‖ RPRSUj
‖ SP ‖

TS1). Next CSm checks Z5
?
= Z ′5. If so, it generates

RAKE2 and picks TS2. Then CSm computes SDKa
RSUj

=
Rep(Ri, RPRSUj

) and Z6 =ASC ⊕RAKE2. Moreover, CSm
calculates session key SKCSm,RSUj

= h(ASC ‖ RAKE2 ‖
SSH2 ‖ SDKa

RSUj
‖ SP ‖ TS1 ‖ TS2), and also computes

session key verifier Z7 = h(SKCSm,RSUj
‖ RAKE2 ‖ TS2).

Finally CSm forwards the message msgRC2 ={Z6, Z7, TS2}

Roadside Unit RSUj Cloud Server CSm
{Ci, RPRSUj

, Bj , RN1, X1, X2, PBRSUj
} {SIDj , Mj}

Retrieve: Ci;
Compute: Ri = PUF (Ci), SDKRSUj = Rep(Ri, RPRSUj),
Z0 = h(SDKRSUj

), IDRSUj
= Za0 ⊕Zb0, SP ′ = X2⊕SDKRSUj

,
X ′1 = h(SP ′ ‖ IDRSUj

);
Check if X1

?
= X ′1 holds; If so, generate: random nonce RAKE1;

Pick: current timestamp TS1;
Compute: PRRSUj = Bj ⊕ h(RN1 ‖ IDRSUj),
SSH = PRRSUj · PBCSm ,
ASC = RAKE1 · P , BSC = RAKE1 · PBCSm

, Z3 = ASC ⊕
PBRSUj

, Z4 = (IDRSUj
‖ RPRSUj

)⊕ h(SSH ‖ TS1),
Z5 = h(ASC ‖ BSC ‖ IDRSUj

‖ RPRSUj
‖ SP ‖ TS1);

msgRC1
:{Z3, BSC, Z4, Z5, TS1}−−−−−−−−−−−−−−−−−−−−−−→

(RSUj → CSm)
.

Check if |TS1 − TS′1| < ∆T ? If so, compute: ASC = BSC ·
PR−1

CSm
, PBRSUj

= ASC ⊕ Z3, SSH2 = PRCSm
· PBRSUj

;
Extract: IDRSUj

and RPRSUj
from (IDRSUj

‖ RPRSUj
) =

Z4 ⊕ h(SSH2 ‖ TS1);
Compute: SIDj = h(IDRSUj

), and through SIDj , retrieve: Mj ;
Calculate: K2 = h(IDRSUj ‖ PRCSm), (SP ‖ Ri ‖ Ci) =
DCK2(Mj), Z ′5 = h(ASC ‖ BSC ‖ IDRSUj ‖ RPRSUj ‖ SP ‖
TS1);
Check if Z5

?
= Z ′5 holds; If so, generate: RAKE2; Pick: TS2;

Compute: SDKa
RSUj

= Rep(Ri, RPRSUj), Z6 = ASC ⊕RAKE2,
SKCSm,RSUj

= h(ASC ‖ RAKE2 ‖ SSH2 ‖ SDKa
RSUj

‖ SP ‖
TS1 ‖ TS2), Z7 = h(SKCSm,RSUj

‖ RAKE2 ‖ TS2);
msgRC2

:{Z6, Z7, TS2}←−−−−−−−−−−−−−−−
(CSm → RSUj)

.

Check if |TS2 − TS′2| < ∆T? If so, extract: RAKE2 from
RAKE2 = Z6 ⊕ASC;
Compute: SKRSUj ,CSm

= h(ASC ‖ RAKE2 ‖ SSH ‖
SDKRSUj

‖ SP ‖ TS1 ‖ TS2),
Z ′7 = h(SKRSUj ,CSm

‖ RAKE2 ‖ TS2);
Check: Z7

?
= Z ′7 holds;

Store: SKRSUj ,CSm(= SKCSm,RSUj) as SK.
SKRSUj ,CSm

(= SKCSm,RSUj
) = h((RAKE1 · P) ‖ RAKE2 ‖ (PRRSUj

· PRCSm
·G) ‖ SDKRSUj

‖ SP ‖ TS1 ‖ TS2).

Fig. 4: Authentication and key agreement phase between RSUj and CSm.

10

to RSUj via an insecure channel.

c) Step KER2C-3

After receiving msgRC2
from CSm, RSUj checks whether

the current timestamp TS′2 satisfies |TS2 − TS′2| <
∆T . If this condition holds, RSUj extracts RAKE2 from
RAKE2 = Z6 ⊕ASC. Next RSUj calculates session key
SKRSUj ,CSm

= h(ASC ‖ RAKE2 ‖ SSH ‖ SDKRSUj
‖

SP ‖ TS1 ‖ TS2) and session key verifier Z ′7 =

h(SKRSUj ,CSm ‖RAKE2 ‖ TS2). It then checks if Z7
?
= Z ′7

holds, Then it stores SKRSUj ,CSm(=SKCSm,RSUj) as SK.
The AKE between RSUj and CSm is illustrated in Fig. 4.

E. Key Management Phase

The key management between CS CSl and CS CSj in
the CSN is described in this subsection. Both CSl and CSj
generate a secret key for future secure communications at the
end of successful key management.

1) Step 1

CSl generates a random number rnCSl
∈ Z∗q and

picks current timestamp TSCSl
. Next, it calculates

f(PIDCSl
, P IDCSj

) by taking the polynomial share
f(PIDCSl

, y) using PIDCSj of CSj as well as computes
ACSl

=h(rnCSl
‖TCSl

‖PRCSl
)⊕h(f(PIDCSl

, P IDCSj)‖
TSCSl

) and AuthCSl
= h(PIDCSl

‖ PIDCSj
‖ ACSl

‖
h(f(PIDCSl

, P IDCSj
) ‖TSCSl

). Then CSl sends message
msgCSl

= {TIDCSl
, ACSl

, AuthCSl
, TSCSl

} to CSj
through public insecure channel.

2) Step 2

After receiving msgCSl
at TS′CSl

, CSj verifies the validity
of msgCSl

by checking if |TSCSl
− TS′CSl

| < ∆T . If
so, CSj retrieves PIDCSl

corresponding to TIDCSl
from

msgCSl
. Next CSj computes h(rnCSl

‖ TCSl
‖ PRCSl

) =
ACSl

⊕ h(f(PIDCSj
, P IDCSl

) ‖ TSCSl
) and AuthCSj

=
h(PIDCSl

‖ PIDCSj
‖ ACSl

‖ h(f(PIDCSj
, P IDCSl

) ‖
TSCSl

), and verifies if AuthCSj

?
= AuthCSj

holds. If so,
CSj generates random number rnCSj and selects timestamp
TSCSj . Then CSj calculates ACSj = h(rnCSj ‖ TSCSj ‖
PRCSj

) ⊕ h(f(PIDCSj
, P IDCSl

) ‖ TSCSj
), secret key

shared with CSl SKCSj ,CSl
=h(h(rnCSl

‖TCSl
‖PRCSl

) ‖
h(rnCSj

‖ TSCSj
‖ PRCSj

) ‖ h(f(PIDCSj
, P IDCSl

)) and
secret key verifier SKVCSj ,CSl

= h(SKCSj ,CSl
‖ h(rnCSj ‖

TCSj ‖ PRCSj) ‖ TCSj). Next CSj sends the response
message msgCSj

= {SKCSj ,CSl
, ACSj

, SKVCSj ,CSl
, TCSj

}
to CSl through public channel.

3) Step 3

When CSl receives the response message msgCSj
at

TS′CSj
, CSl checks the freshness of the received msgCSj

by checking if |TSCSj
− TS′CSj

| < ∆T . If so, CSl
calculates h(rnCSj ‖ TSCSj ‖ PRCSj) = ACSj ⊕
h(f(PIDCSj

, P IDCSl
)‖TSCSj

), and the secret key shared
with CSj SKCSl,CSj

= h(h(rnCSl
‖ TCSl

‖ PRCSl
) ‖

h(rnCSj
‖ TSCSj

‖ PRCSj
) ‖ h(f(PIDCSl

, P IDCSj
)).

Then CSl computes the secret key verifier SKVCSl,CSj =
h(SKCSl,CSj ‖h(rnCSj ‖TCSj ‖PRCSj)‖TCSj), and checks

if SKVCSl,CSj

?
= SKVCSj ,CSl

holds. If so, the received
message msgCSj

is legitimate. Hence, both CSl and CSj
share the same pairwise secret key SKCSl,CSj = SKCSj ,CSl

and utilize it for secure communications.

F. Dynamic Node Addition Phase

To deploy a new RSU RSUnew in the smart transporta-
tion network under an existing CS CSm, RAi performs the
following steps.

a) Step NAP-1

A request is initiated by RSUnew to RAi. RAi se-
lects a unique challenge parameter C and forwards it to
RSUnew via a private channel. Then RSUnew computes
response parameter R=PUF (C), and produces stable digital
key SDKRSUnew and reproduction parameter RPRSUnew by
(SDKRSUnew , RPRSUnew) = Gen(R). Moreover, RSUnew

computes identity IDRSUnew = Xa
0 ⊕ Xb

0 , where Xa
0 and

Xb
0 are extracted by splitting X0 = h(SDKRSUnew). Next,

it dispatches (IDRSUnew , R) through private channel to RAi.

b) Step NAP-2

After receiving (IDRSUnew , R), RAi picks unique private
key PRRSUnew , random nonce RN1, and secret parameter
SP . It then calculates public key PBRSUnew =PRRSUnew ·P ,
Bk = PRRSUnew ⊕ h(RN1 ‖ IDRSUnew), searching identity
SIDk = h(IDRSUnew), symmetric key k = h(IDRSUnew ‖
PRCSm

), and encrypted parameter with key as k Mk =
ECk(SP ‖ C ‖ R). RAi stores {SIDk,Mk} in CSm
and forwards {Bk, RN1, PBRSUnew , SP} to RSUnew via a
secure private channel.

c) Step NAP-3

After obtaining {Bk, RN1, PBRSUnew , SP} from RAi,
RSUnew computes X1 = h(SP ‖ IDRSUnew), X2 =
SP ⊕ SDKRSUnew . Finally, RSUnew stores the parameters
{C,RPRSUnew , Bk, RN1, X1, X2, PBRSUnew}, and the pa-
rameter PBRSUnew is published publicly.

Similarly, a new CS CSnew can be registered in the
existing CSN by RAi, as explained in Subsection IV-B2 CS
Registration, before its deployment.

G. Password Updation Phase

When vehicle user V Oi wants to reset password due to
security reasons, it must put smart card SC into the onboard
unit OBUi and requests to run the smart application SAi.
Then the following required steps are executed.

a) Step PU-1

SAi prompts V Oi to put the password. Then, V Oi enters
password PW old

V Oi
.

b) Step PU-2

SAi retrieves Ci and RPOBUj from SC, and computes
challenge parameter Ri = PUF (Ci) and stable digital
key SDKOBUi

= Rep(Ri, RPOBUi
). Next, it computes

IDOBUi
= h(SDKOBUi

), RNi = Ai ⊕ h(PW old
V Oi

‖
IDOBUi

), RPWV Oi
= h(PW old

V Oi
‖ RNi), PROBUi

=
Qi ⊕ h(RPWV Oi

‖IDOBUi
), W ′i =h(RPWV Oi

‖PROBUi
),

11

Block Header
Block Version BlkV er
Previous Block Hash PreBlkHash
Merkle Tree Root MRHash
Timestamp TS
Ower of Block OB
Public Key of Owner PBCS

Block Payload (Encrypted Transactions)
List of Encrypted Transactions EPPBCS

(Txi)|i = 1, 2, · · · , nt)
Current Block Hash CBHash
Signature on CBHash SignCBHash

Fig. 5: Structure of block Blockk.

and check if W ′i
?
= Wi holds. If so, V Oi is successfully login

into OBUi. Now V Oi can reset the password.

c) Step PU-3

V Oi enters new password PWnew
V Oi

into SAi. SAi with the
aid of SC computes RPWnew

V Oi
= h(PWnew

V Oi
‖ RNi), and it

further calculates Qnewi =PROBUi⊕h(RPWnew
V Oi
‖IDOBUi),

Wnew
i = h(RPWnew

V Oi
‖ PROBUi

) and Anewi = RNi ⊕
h(PWnew

V Oi
‖IDOBUi

).

d) Step PU-4

SAi keeps the updated parameters in SC as SC =
{Ci, RPOBUi , Q

new
i ,Wnew

i , Anewi }.

H. Block Construction and Addition Phase

This subsection first details block construction by a CS,
and then discusses the block verification and addition to the
blockchain network via a consensus mechanism.

1) Block Construction Phase

In the devised AAKE-BIVT, the information is securely
transmitted in each traffic vicinity TVi among the vehicle
and CH via an established session key SKOBUi,OBUj be-
tween vehicle and CH during the AKE phase discussed in
Subsection IV-D1. The collected information by the CH is
then secretly transferred to RSU using the established session
key SKOBUj ,RSUk

between the CH OBUj and its associated
RSU RSUk in the traffic vicinity TVi during the AKE phase
discussed in Subsection IV-D2. Next, RSUk forwards the
collected information secretly using the established session key
as discussed in Subsection IV-D3 to its associated CS CSm.
CSm forms the transaction, encrypts it with its public key,

and puts it into the global transaction pool GTNXpl. When
the number of transactions in GTNXpl hits a threshold value,
a leader CSl is selected through the secure leader selection
algorithm of [33] from the P2P CSN. The leader CSl produces
a block, which has the structure as illustrated in Fig. 5.

2) Block Verification and Addition Phase

Once block Blockk is constructed by leader CSl, the
voting-based consensus mechanism using Ripple protocol con-
sensus algorithm (RPCA) [34] is executed in the AAKE-BIVT
for the block verification and addition into the blockchain, this
process is summarized in Algorithm 1.

Algorithm 1 The blockchain consensus algorithm for block
verification and addition
Input: nCS : Number of CSs in CSN, GTNXpl: global transaction

pool, and Tnxt: transaction threshold.
Output: After successful verification, Blockk added to blockchain.

1: if (GTNXpl = Tnxt) then
2: Leader CSl is selected through the secure leader selection

algorithm [33] from the peer nodes in CSN.
3: CSl constructs block Blockk as shown in Fig. 5.
4: CSl initializes V otesCT ← 0 and flagCSj = 0, ∀{j =

1, 2, · · · , nCS , CSl 6= CSj}.
5: For each CSj , CSl selects distinct random number rnj and

current timestamp TSj .
6: Utilizing shared secret key SKCSl, CSj established in Sub-

section IV-E, CSl encrypts voting request V oteRQ =
ECSKCSl, CSj

(V oteRQ, rnj) and computes authentication
parameter APlj =h(V oteRQ‖rnj ‖TSj).

7: CSl fabricates {Blockk, ECSKCSl,CSj
(V oteRQ, rnj), APlj ,

TSj} and forwards it to all other CSs CSj ,
{j = 1, 2, · · · , nCS , CSl 6= CSj} via a public channel.

8: for each CS CSj do
9: Suppose CSj obtains message at time TS

′
j .

10: if (| TSj − TS
′
j |) < ∆T then

11: On received Blockk, CSj verifies MRTk, BKHashk

and SigBKk.
12: By utilizing the shared secret key SKCSj ,CSl ,

it decrypts the request as (V oteRQ∗, rn∗
j) =

DCSKCSj,CSl
(ECSKCSl,CSj

(V oteRQ, rnj)).
13: if (h(V oteRQ∗ ‖ rn∗

j ‖ TSj) = APlj) then
14: Pick timestamp TS∗∗

j , encrypt (V TStatus) as
ECSKCSj,CSl

(rn∗
j , V TStatus) and compute

APjl = h(rn∗
j ‖ V TStatus ‖ TS∗∗

j). Next, forward
{ECSKCSj,CSl

(rn∗
j , V TStatus), APjl, TS∗∗

j } to
CSl.

15: end if
16: end if
17: end for
18: for each received message from CSj do
19: CSl computes (rn#

j , V TStatus#j) =
DCSKCSl,CSj

(ECSKCSj, CSl
(rn∗

j , V TStatus)).
20: if (APjl = h(rn#

j ‖ V TStatus#j ‖ TS
∗∗
j)) then

21: if (((rn#
j = rnj) and (V TStatus = valid))

and flagCSj
=0) then

22: CSl sets V otesCT =V otesCT+1 and flagCSj
=1.

23: end if
24: end if
25: end for
26: if (V otesCT > 50%) then
27: Transaction enters to the next round.
28: if (V otesCT < 80%) then
29: go to Step 18.
30: else
31: Broadcast the committed message to all other CSs,

Blockk is added to the blockchain, and stop the con-
sensus process.

32: end if
33: end if
34: end if

V. SECURITY ANALYSIS

A. Informal Security Analysis

We use informal security analysis to reveal that our pro-
posed AAKE-BIVT is resilient against various potential at-
tacks.

12

1) Replay Attack

During the AKE phase between two neighboring OBUs,
OBUi and OBUj , presented in Subsection IV-D1, the trans-
mitted messages msgV V1

= {M1, Auth1, BDC, TS1}
and msgV V2

= {M2, Auth3, TS2} are transmit-
ted over insecure public channels. Similarly, during the
AKE phase between CH and associated RSU, OBUi
and RSUk, as stated in Subsection IV-D2, the messages
msgV R1

= {M1, Auth1, BDC, TS1} and msgV R2
=

{M2, Auth3, TS2} are communicated over insecure public
channels. Likewise, at the AKE phase between RSU and its
associated CS as mentioned in Subsection IV-D3, the com-
municated messages msgRC1 = {Z3, BDC, Z4, Z5, TS1}
and msgRC2 = {Z6, Z7, TS2} are sent over insecure public
channels.

Due to employing the current timestamps and random
numbers in fabricating the communicated messages. If an
adversary A tries to reply the old messages, then it can
be easily detected because the freshness of the messages is
validated first at the receiving end. Thus, our devised AAKE-
BIVT inherently resists the replay attack.

2) MitM Attack

Adversary A may intercept the communication channel
between vehicles, OBUi and OBUj . For example, A tries
to eavesdrop on the AKE request message msgV V1 from the
insecure public channel and strives to modify it in order to
impersonate a legitimate party in the network. To achieve this
goal, however, A has to choose the correct random nonce
and timestamp. A also requires the secret key PROBUi of
the OBUi. Therefore, it is a computationally infeasible task
for A to fabricate the message msgV V1

. Likewise, A cannot
fabricate the acknowledgment AKE message msgV V2

without
the knowledge of secret credential PROBUj

. Similarly, A

fails to fabricate the valid messages for msgV R1
, msgV R2

,
msgRC1 and msgRC2 . Therefore, our proposed AAKE-BIVT
is resilient against MitM attacks.

3) ESL Attack

During the AKE phase between vehicles OBUi and
OBUj , a shared secret session key SKOBUj ,OBUj′(=
SKOBUj′,OBUj) = h((RAKE1 · P) ‖ RAKE2 ‖ (PROBUj ·
PROBUj′ · P) ‖ TS1 ‖ TS2) is established. Also at the time
of AKE phase between the cluster head OBUi and the asso-
ciated RSU RSUk, a shared secret session key is formed for
secure communication as SKOBUi,RSUj

(=SKRSUj ,OBUi
) =

h((RAKE1 · P) ‖ RAKE2 ‖ (PROBUi · PRRSUj · G) ‖
TS1 ‖ TS2). Similarly, during the AKE phase between
RSUk and CSm, a shared secret session key SKRSUj ,CSm

(=
SKCSm,RSUj

) = h((RAKE1 · P) ‖ RAKE2 ‖ (PRRSUj
·

PRCSm
·G) ‖ SDKRSUj

‖ SP ‖ TS1 ‖ TS2) is established
for secure communication.

Consider the case of establishing the shared secret session
key for secure communication between OBUi and OBUj
presented in Subsection IV-D1. Under the CK-adversary model
as stated in Subsection III-B, A may get hold of short-term
secrets, such as RAKE1, RAKE2, TS1 and TS2. To construct
the session key, however, A also requires the knowledge

of long-term secrets, i.e., PROBUi
and PROBUj

, of the
involved parties. But it is a computationally infeasible task
for A to obtain the required long-term secrets. The same
is also true for the construction of SK between CH OBUi
and associated RSU as well as between the RSU and its
associated CS. Moreover, compromising the current SK does
not reveal the past and future SK due to the randomness and
distinctness in each session. Therefore, our proposed AAKE-
BIVT can successfully shield both forward and backward
secrecy accompanying the SK security. Hence, the AAKE-
BIVT is resilient against ESL attacks.

4) Anonymity and Untraceability Preservation

As stated in the threat model of Subsection III-B, A

can seize the communicated messages msgV V1
and msgV V2

during the AKE phase between vehicles OBUi and OBUj
over public insecure channels. Without the knowledge of the
secret parameters PROBUi

, PROBUj
, RAKE1 and RAKE2,

however, it is a computationally challenging task for A to infer
the identities of both OBUi and OBUj in polynomial time.
Therefore, this ensures that our proposed AAKE-BIVT can
preserve the anonymity feature. Regarding the untraceability
feature, it is worth noting that the nature of the communicated
messages is dynamic, which are calculated by utilizing cur-
rent timestamps and random nonces. Moreover, by utilizing
the collision-resistant cryptographic hash function h(·), it is
impractical for A to trace the transmitted messages. Thus,
the AAKE-BIVT also preserves the untraceability feature.

Similarly, the AKE schemes between CH and its associated
RSU as well as between RSU and its associated CS also ensure
the anonymity and untraceability properties.

5) Stolen Smart Card Attack

If adversary A obtains a stolen or lost smart card SC, it
can extract the parameters {Ai, Ci, RPOBUi , Qi,Wi} stored
in SC’s memory by performing PA attacks. From the extracted
information, however, A cannot obtain the secret creden-
tials, such as IDOBUi

, PROBUi
and RNi. To procure these

secret parameters, A requires computing Ri = PUF (Ci),
SDKOBUi = Rep(Ri, RPOBUi), IDOBUi = h(SDKOBUi),
RNi =Ai ⊕ h(PW l

V Oi
‖ IDOBUi

), RPW l
V Oi

=h(PW l
V Oi
‖

RNi) and PROBUi
=Qi ⊕ h(RPWV Oi

‖ IDOBUi
). But to

perform these computations, A requires the secret parameter
PWV Oi , which is known only to V Oi. Thus, our AAKE-
BIVT is resilient against stolen smart card attacks.

6) Impersonation Attacks

Assume that adversary A acts as a licit CH (for instance,
OBUi) to its associated RSU. In such a situation, A may
then attempt to compose a legitimate AKE request message
msgV R1 = {M1, Auth1, BSC,TS1} to impersonate OBUi.
A may initially pick a timestamp TS∗1 and a random secret
R∗AKE1 to accomplish this purpose. Next, A may try to form
M1 = (R∗AKE1 · P) ⊕ PBOBUi

, BSC = R∗AKE1 · PBRSUj

and Auth1 = h((R∗AKE1 · P) ‖ BSC ‖ TS∗1). However,
in order to generate a legitimate message, A requires the
knowledge of the random secret RAKE1 of OBUi. Therefore,
A cannot impersonate OBUi. Similarly, A is incapable of

13

impersonating CS and RSU. Thus, the proposed AAKE-BIVT
can withstand impersonation attacks.

7) DoS Attack

Vehicle owner V Oi puts smart card SC into OBUi and
enters the password into smart application SAi during the ve-
hicle user login phase. Then, SAi calculates Ri=PUF (Ci),
SDKOBUi = Rep(Ri, RPOBUi), IDOBUi = h(SDKOBUi),
RNi =Ai ⊕ h(PW l

V Oi
‖ IDOBUi), RPW l

V Oi
=h(PW l

V Oi
‖

RNi), PROBUi
= Qi ⊕ h(RPWV Oi

‖ IDOBUi
) and W ′i =

h(RPW l
i ‖ PROBUi

) and then check if W ′i
?
= Wi holds. If

so, V Oi is successfully signed in and can now carry out future
communications. In this configuration, the login process just
uses the OBUi side and does not utilize the bandwidth of the
other party (such as the other vehicle and RSU). Hence, our
AAKE-BIVT eliminates DoS attacks.

8) Non-linkability

The proposed AAKE-BIVT can guarantee non-linkability
for multiple messages from the same source. For instance,
in the AKE phase between vehicles OBUj and OBUj′ , the
messages exchanged are inherently dynamic because random
numbers and timestamps are used; thus, there is no correlation
between different interaction information of the same vehicle.
So the adversary cannot extract sensitive credentials from
different information of the same vehicle. Thus, the AKE
scheme between vehicles preserves the non-linkability feature.
Similarly, the AKE schemes between the CH and its associated
RSU as well as between the RSU and its associated CS also
ensure the non-linkability property.

9) Data Tempering Attack at CSN

CS CSk obtains data from the associated RSU RSUk,
encrypts it, and temporarily stores it in a GTNXpl. When
GTNXpl reaches a threshold, a leader is selected from the
CSN, which constructs a block and broadcasts it into the
CSN for consensus. Additionally, the block is included in the
blockchain once consensus has been attained. Since blockchain
cannot be altered, A cannot change the block data. Thus,
the AAKE-BIVT is resilient against data tempering attacks
at CSN.

B. Formal Security Analysis Using ROR Model

For AKE schemes, the ROR model is prominent formal
security analyzing mechanism and is regarded as a robust
SK security validation technique. Theorem 1 demonstrates the
SK security for the devised AAKE-BIVT. Suppose that Ψd

V O,
Ψe
OBU , Ψf

RSU and Ψg
CS signify the instances d, e, f and g of

the participants VO, OBU, RSU and CS, respectively, alias as
the oracles. In Table III, various queries are tabulated, which
adversary A can perform.

Theorem 1. A is launching an attack against the
AAKE-BIVT in polynomial time (tpoly). Let HQ, |Hash|,
AdvECDDHPA (tpoly), Qs and |Dic| represent Hash queries,
Hash output range, the advantage of A in breaching the El-
liptic Curve Decisional Diffie-Hellman Problem (ECDDHP),
Send queries and the password dictionary, respectively. Then,
approximated advantage of A in breaching the security of the

TABLE III: Description of various queries
Query Description

Send(Ψ,msg)
This query enables A to execute an active at-
tack by transmitting a message msg to Ψ and
acquiring a response accordingly.

Execute(Ψe
OBU ,Ψ

f
RSU)

This query enables A to eavesdrop on all the
transmitted messages between Ψe

OBU and Ψf
RSU .

Hash(Ψ,msg)
With this query, A can dispatch a hashed mes-
sage msg to Ψ and acquire a response accord-
ingly.

CorruptSC(Ψd
V O)

By executing this query, A can procure the stored
secret parameters in lost/stolen SC.

CorruptOBU(Ψe
OBU)

By utilizing this query, A can access the secret
information stored in lost or compromised OBU .

Reveal(Ψ)
By exercising this query, A can reveal the secret
SK, established between Ψ and its partner.

Test(Ψ)
By employing this query, A strives to guess an
SK by dispatching a request to Ψ. The response
of Ψ is probabilistic like toss coin C.

AAKE-BIVT for procuring the SK between the communicating
participants, denoted as AdvAAKE−BIV TA (tpoly), is upper
bounded by the following inequality

AdvAAKE−BIV TA (tpoly) ≤ HQ2

|Hash|
+

2 ·Qs
|Dic|

+ 2 · AdvECDDHPA (tpoly). (1)

Proof. Let Gamek, for k = {0, 1, 2, 3, 4}, signifies a series
of games played by A to breach the security of the AAKE-
BIVT and Succk indicates the probability of success in which
A wins the game Gamek in time tpoly. Specifically, we
have Game0: This game simulates the real attack by A

against the devised AAKE-BIVT. In this game, the judgment
is obtained by flipping an unbiased coin, and hence we have

AdvAAKE−BIV TA (tpoly) = |2 · Prob[Succ0]− 1|. (2)
Game1: In this game, A performs eavesdropping against

the AAKE-BIVT with the help of Execute query. In the end,
A runs the Test query. Further, A verifies the output is
a valid SK or a random output. Note that the SK between
the CH OBUi and RSUj is computed as SKOBUi,RSUj (=
SKRSUj ,OBUi

) = h((RAKE1 · P) ‖ RAKE2 ‖ (PROBUi
·

PRRSUj
· G) ‖ TS1 ‖ TS2), which includes both the short-

term secrets and long-term secrets. It is a computationally
challenging task for A to procure the SK, as these secret
parameters are concealed in the transmitted messages msgV R1

and msgV R2
. Thus, eavesdropping on these messages does not

benefit the task of stealing the session key SKOBUi,RSUj
(=

SKRSUj ,OBUi
), and the winning probability of Game1 is not

increased from that of Game0, namely,
Prob[Succ1] = Prob[Succ0]. (3)

Game2: In this game, A performs an active attack by
executing the Hash and Send queries. A can check for
hash collisions by running multiple Hash queries in order
to accomplish this. There is no collision when A runs the
Send query because each exchanged message in the devised
scheme contains timestamps and random numbers; therefore,
the collision probability in hash outputs is nearly zero. Thus,
the birthday paradox exhibits outcome as follows

|Prob[Succ2]− Prob[Succ1]| ≤ HQ2

2|Hash|
. (4)

Game3: In this game, A executes an active attack

14

and attempts to procure the session key SKOBUi,RSUj
(=

SKRSUj ,OBUi) using all the eavesdropped messages msgV R1

and msgV R2 between OBUi and RSUj as well as the
other secret parameters acquired from the games mentioned
earlier. In order to do this, A must compute SKOBUi,RSUj

(=
SKRSUj ,OBUi

) = h((RAKE1 · P) ‖ RAKE2 ‖ (PROBUi
·

PRRSUj
· G) ‖ TS1 ‖ TS2). In other words, A must solve

the ECDDHP for acquiring the SK. It follows that
|Prob[Succ3]− Prob[Succ2]| ≤ AdvECDDHPA (tpoly). (5)
Game4: This game mimics lost/stolen SC attacks, in-

sider attacks, and password guessing attacks. A ob-
tains {Aj , Cj , RPOBUj

, Qj ,Wj} from a lost/stolen SC and
{Aj , Cj , RPOBUj

, Qj ,Wj} from OBUi’s memory by uti-
lizing CorruptSC and CorruptOBU queries, respectively,
to reveal V Oi’s credential {PWV Oi} or produce an access
request. To succeed in this game, A requires to guess PWV Oi

with a bounded number of guesses from Dic, and hence

|Prob[Succ4]− Prob[Succ3]| ≤ Qs
|Dic|

. (6)

As A has performed all the games, it executes a Test query.
Further, a fair coin is flipped to deduce the semantic security
of SK, and hence

Prob[Succ4] =
1

2
. (7)

Therefore, from (2) we have
1

2
AdvAAKE−BIV TA (tpoly) =

∣∣∣Prob[Succ0]− 1

2

∣∣∣. (8)

Using (7) and (8) as well as noting (3), we obtain
1

2
AdvAAKE−BIV TA (tpoly) = |Prob[Succ0]− Prob[Succ4]|

= |Prob[Succ1]− Prob[Succ4]|. (9)
By applying the famous triangular inequality to (9), we have

1

2
AdvAAKE−BIV TA (tpoly) ≤ |Prob[Succ1]− Prob[Succ2]|

+ |Prob[Succ2]− Prob[Succ3]|
+ |Prob[Succ3]− Prob[Succ4]|. (10)

Substituting (4), (5) and (6) into (10) leads to
1

2
AdvAAKE−BIV TA (tpoly) ≤ HQ2

2 · |Hash|

+
Qs
|Dic|

+ AdvECDDHPA (tpoly), (11)

that is, (1). This completes the proof. �

VI. BLOCKCHAIN IMPLEMENTATION

In this section, we furnish the blockchain implementa-
tion of the devised AAKE-BIVT. The experiments were
performed over a platform having Intel® Core TM i7-6700
CPU@3.4GHz; RAM@8 GiB; OS@Ubuntu 20.04.2 LTS, and
for script implementation, Node.js® framework in Visual
Studio (VS) Code (version 1.60) integrated development en-
vironment (IDE) were utilized [36], [37].

In the simulation, the sizes of the block version, timestamp,
previous block hash, Merkle tree root, proposer identity, the
public key of the proposer, block payload, current block hash
(SHA-256) and ECDSA signature are 32, 32, 256, 256, 160,

1 5 . 4 5 6

2 9 . 5 4 3

4 5 . 5 7 7

6 4 . 9 1 5

8 0 . 2 9 4

1 5 3 0 4 5 6 0 7 5
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

To
tal

com
put

atio
nal

 tim
e (

in
sec

ond
s)

N o . o f b l o c k s m i n e d

N o . o f P 2 P n o d e s i n C S N : 1 5 , N o . o f t r a n s a c t i o n s i n e a c h b l o c k : 5 0

Fig. 6: Blockchain simulation results for Case 1.

320, 640 · nt, 256, and 320 bits, respectively. Therefore, the
total size of the block becomes 1632 + 640 · nt, where nt is
the total number of transactions stored in a block. Two cases
are considered.

Case 1: In this case, we evaluate the performance by con-
sidering the total number of P2P nodes in the CSN is 15 and
the number of transactions in each block is 50. The simulation
results depicted in Fig. 6 illustrate the computational time (s)
as the function of the number of blocks mined. As expected,
the computational time increases as the number of blocks
mined increases.

Case 2: In this case, we evaluate the performance by
considering the number of blocks mined in each chain is 35
and the total number of P2P nodes in the CSN is 15. The
simulation results furnished in Fig. 7 demonstrate that the total
computational time (s) increases as the number of transactions
stored in a block for fixed chain length varies.

VII. COMPARATIVE ANALYSIS

This section conducts rigorous comparative analysis on the
communication and computation overheads during the AKE
phase as well as the security and functionality features among
the devised AAKE-BIVT and the existing schemes of Liu

TABLE IV: Cryptography operations utilized for analysis

Cryptographic operation Symbol Raspberry PI-3 Server

Bilinear pairing Tbpo 32.084 ms 4.716 ms

ECC point addition Teca 0.016 ms 0.002 ms

ECC point multiplication Tecm 2.288 ms 0.674 ms

Fuzzy extractor function Tfe ≈ Tecm 2.288 ms 0.674 ms

Map to elliptic curve point Tmtp 0.385 ms 0.114 ms

Modular addition Tma 0.010 ms 0.001 ms

Modular exponentiation Texp 0.228 ms 0.039 ms

Modular multiplication Tmul 0.011 ms 0.002 ms

Physical unclonable function Tpuf 0.4 µs -

SHA-256 hash function Th 0.309 ms 0.055 ms

Symmetric decryption Tsd 0.014 ms 0.003 ms

Symmetric encryption Tse 0.018 ms 0.003 ms

15

TABLE V: Computation overhead of proposed and related schemes

Scheme Based on OBU/Vehicle/CH RSU/Server/CS
Liu et al. [11] V2RSU 6Th + 3Tmul + 7Tecm + 2Teca ≈ 17.935 ms 4Th + 2Tmul + 4Tecm + 3Teca + Tbpo ≈ 7.642 ms

Tan and Chung [19] V2RSU n(8Th + 10Tecm + 2Teca) ≈ 5076.80 ms n(6Th + 7Tecm + 2Texp + 4Tbpo) ≈ 4798 ms
V2V m(3Th + 2Tecm) ≈ 550.03 ms (m+ 2)Th + (3m+ 1)Tecm ≈ 208.484 ms

Li et al. [21] V2RSU 7Th + 10Tecm + 4Teca ≈ 25.107 ms 7Th + 10Tecm + 4Teca ≈ 7.133 ms

Vasudev et al. [22] V2V 6Th + Tse + Tsd ≈ 1.886 ms —
V2RSU 3Th + Tsd ≈ 0.941 ms 3Th + Tse ≈ 0.168 ms

Vangala et al. [23] V2CH 2(5Th + 2Teca + 6Tecm) ≈ 30.61 ms —
CH2RSU 7Th + 2Teca + 6Tecm ≈ 15.923 ms 8Th + 2Teca + 6Tecm ≈ 4.488 ms

Chattaraj et al. [24]
V2RSU 5Th + 5Tecm + Teca ≈ 13.001 ms 3Th + 5Tecm + Teca ≈ 3.537 ms
V2CH 2(Teca + 4Th + 5Tecm) ≈ 25.384 ms —
RSU2CS — 2(Tpoly + 6Th) ≈ 6.66 ms

Proposed AAKE-BIVT
V2CH 6Th + 5Tecm ≈ 13.294 ms —
CH2RSU 3Th + 3Tecm ≈ 7.791 ms 5Th + 2Tecm + Tpuf + Tfe ≈ 2.297 ms
RSU2CS — 13Th + 5Tecm + 2Tfe + Tpuf + Tsd ≈ 5.436 ms

Note: The number of neighboring vehicles and the number of vehicles ready to be in a group are represented by n and m, respectively, in the scheme of
Tan and Chung [19]; t-degree polynomial requires t modular additions and t modular multiplications, i.e., Tpoly = tTmul + tTma, in the scheme of

Chattaraj et al. [24]. Furthermore, m = 100, n = 200, and t = 1000.

3 6 . 0 8 9
3 6 . 6 1 6

3 7 . 2 7 7
3 7 . 7 2 7

3 9 . 2 7 1

2 0 3 0 4 0 5 0 6 0
3 5

3 6

3 7

3 8

3 9

4 0

To
tal

com
put

atio
nal

 tim
e (

in
sec

ond
s)

N o . o f t r a n s a c t i o n s p e r b l o c k

N o . o f P 2 P n o d e s i n C S N : 1 5 , N o . o f m i n e d b l o c k s i n e a c h c h a i n : 3 5

Fig. 7: Blockchain simulation results for Case 2.

et al. [11], Tan and Chung [19], Li et al. [21], Vasudev et al.
[22], Vangala et al. [23], and Chattaraj et al. [24]. As the
enrollment and password updation phases are infrequent, the
overheads required in these phases are not included.

A. Computation Overheads Comparison

We utilize the existing experimental execution times of
various cryptographic operations on distinct platforms reported
in [24], and for PUF, we use the results produced in [35].
Table IV lists various cryptographic operations, their symbols,
and execution times on different platforms. Note that the
execution time for XOR operation is negligible, and we do
not consider it in the computational overheads.

We first analyze the computational overheads of our AAKE-
BIVT. In V2CH scenario, the computational overheads im-
posed by vehicle and associated CH are 3Th + 3Tecm and
2Th + 3Tecm, respectively. The total computational overhead
for V2CH scenario is therefore 6Th + 5Tecm ≈ 13.294 ms.
For CH2RSU scenario, CH and associated RSU impose the
computational overheads of 3Th + 3Tecm ≈ 7.791 ms and

5Th+2Tecm+Tpuf +Tfe ≈ 2.297 ms, respectively. Thus, the
cumulative computational overhead of CH2RSU scenario is
8Th + 5Tecm +Tpuf +Tfe ≈ 10.088 ms. Lastly, for RSU2CS
scenario, RSU and associated CS impose the computational
overheads of 7Th + 3Tecm + Tpuf + Tfe and 6Th + 2Tecm +
Tfe+Tsd, respectively, and thus the cumulative computational
overhead is 13Th + 5Tecm + 2Tfe + Tpuf + Tsd ≈ 5.436 ms.

The computation overheads of our proposed AAKE-BIVT
are compared with those of the six existing schemes in
Table V. It can be seen that, with the exception of the scheme
of Vasudev et al. [22], our proposed AAKE-BIVT requires
far fewer computational overheads as compared to the other
five existing schemes. Although our scheme necessitates more
computational overhead as compared to the scheme of [22], it
offers more functionality and security features over the scheme
of [22] (see Table VII).

B. Communication Overheads Comparison

To measure the communication overheads of our AAKE-
BIVT in the three scenarios, we contemplate the number
of messages exchanged and bits transmitted over the com-
munication channel between the communicating entities. We
make a reasonable assumption that the bit-lengths of the
real identity, random number, elliptic curve point, timestamp
and hash function are 128, 128, 320, 32 and 256 bits, re-
spectively. In V2CH scenario, the communication overheads
for two messages msgV V1

= {M1, Auth1, BSC, TS1} and
msgV V2

= {M2, Auth3, TS2} demand (320 + 256 + 320 +
32) = 928 bits and (320 + 256 + 32) = 608 bits, respec-
tively, which add to a total of 1536 bits. Again in CH2RSU
scenario, two messages msgV R1 = {M1, Auth1, BSC, TS1}
and msgV R2

= {M2, Auth3, TS2} demand (320 + 256 +
320 + 32) = 928 bits and (320 + 256 + 32) = 608 bits,
respectively, which add to a total of 1536 bits. In RSU2CS
scenario, two messages msgRC1

= {Z3, BSC,Z4, Z5, TS1}
and msgRC2 = {Z6, Z7, TS2} demand (320 + 320 + 256 +
256 + 32) = 1184 bits and (320 + 256 + 32) = 608 bits,
respectively, which add to a total of 1792 bits.

The communication overheads of AAKE-BIVT and six ex-

16

isting schemes are compared in Table VI, which demonstrates
that, with the exception of the scheme [22], [24], the devised
AAKE-BIVT imposes lower communication overhead than the
other four schemes, although our scheme necessitates higher
communication overhead in V2CH or V2V scenario than the
scheme of [22]. Moreover, the apparent excess communication
overhead vis-a-vis [24] is amongst RSU2CS. The slightly
higher communication overhead is well justified because our
proposed AAKE-BIVT sustains more security and functional-
ity features (see Table VII).

TABLE VI: Communication overhead of proposed and related
schemes

Scheme Based on Number of messages Total overhead (bits)

Liu et al. [11] V2RSU 3 2752

Tan and Chung [19] V2RSU 2n+ 1 992 + 1344n

V2V 3m+ 2 3584m

Li et al. [21] V2RSU 5 5536

Vasudev et al. [22] V2V 2 1024

V2RSU 2 1280

Vangala et al. [23] V2CH 2 1856

CH2RSU 3 2400

Chattaraj et al. [24]
CH2RSU 3 2560

V2CH 3 2464

RSU2CS 3 1376

Proposed AAKE-BIVT
V2CH 2 1536

CH2RSU 2 1536

RSU2CS 2 1792

Note: In the scheme of Tan and Chung [19] n and m represent the number
of neighboring vehicles and the number of vehicles ready to be in a group,

respectively.

C. Functionality and Security Features Comparison

In Table VII, our AAKE-BIVT is compared with the
existing schemes of Liu et al. [11], Tan and Chung [19],
Li et al. [21], Vasudev et al. [22], Vangala et al. [23],
and Chattaraj et al. [24] based on the set of ten function-
ality and security features, namely, FE1: support blockchain
solution; FE2: dynamic node addition phase; FE3: replay
attack; FE4: MitM attack; FE5: ESL attack; FE6: anonymity
and untraceability preservation; FE7: stolen smart card attack;
FE8: impersonation attacks ; FE9: DoS attack; and FE10:
data tempering attack. It is worth mentioning that our devised
AAKE-BIVT and the schemes of Tan and Chung [19], Van-
gala et al. [23] and Chattaraj et al. [24] assist blockchain
solution. It is clear that our proposed AAKE-BIVT offers
more functionality and security features than the other existing
schemes.

D. Critical Discussion

In the IoVs environment, various entities communicate via
insecure or open channels, which are exposed to various
security assaults and threats. In order to address these se-
curity concerns, we designed AAKE-BIVT, which simulta-
neously permits the AKE scheme among V2CH, CH2RSU,
and RSU2CS. These AKE schemes enable vehicles, RSUs,
and CSs to authenticate and establish a session key to se-
cure communication. Rigorous security analysis demonstrates

TABLE VII: Security and functionality features comparison

Scheme FE1 FE2 FE3 FE4 FE5 FE6 FE7 FE8 FE9 FE10

Liu et al. [11] × × X X × X X × X ×
Tan and Chung [19] X × X X × X X × X X

Li et al. [21] × × X X X X X × X ×
Vasudev et al. [22] × × X × × X X X X ×
Vangala et al. [23] X X X X X × X X X X

Chattaraj et al. [24] X X X X X × X X X X

Our AAKE-BIVT X X X X X X X X X X

X: support the feature or the scheme is secure; × : does not support the
feature or the scheme is insecure.

that our proposed AAKE-BIVT is resilient against potential
security attacks and satisfies session-key security. The PUF
trait enables smart vehicles and RSUs to prevent tampering
from physical attacks. The comparative analysis presented
in the previous subsection shows that our proposed AAKE-
BIVT reasonably improves performance by minimizing the
computational and communication overheads and by adding
additional security and functional features as compared to
most benchmarks. The reason for the improved performance of
AAKE-BIVT is that the design goals of our proposed schemes
are to reduce the communication and computational overheads
of AKE procedures, for which we use ultra-lightweight cryp-
tography technology composed of XOR, ECC, hash function,
and symmetric encryption/decryption accompanying PUF.

Nevertheless, the credential revocation mechanism to
achieve conditional privacy protection is not considered in
our proposed AAKE-BIVT. Therefore, for future work, we
plan to design a blockchain-based authentication scheme with
conditional privacy that supports the revocation mechanism.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed an anonymous authen-
ticated key exchange scheme for blockchain-enabled IoVs
applications in smart transportation, called AAKE-BIVT. Our
proposed AAKE-BIVT establishes authenticated key exchange
between vehicles, between cluster head and its associated
RSUs, between RSUs and cloud servers (CSs), as well as
offers the key management among CSs. The data from the
vehicles are securely routed to a cluster head, which in turn
routes the data to a nearby RSU. CS then collects data
from its associated RSUs and creates transactions in a secure
environment. Additionally, transactions are aggregated into
blocks by CS in a peer-to-peer CS network. The blocks are
then mined, verified, and incorporated into the blockchain
network.

An extensive security analysis that includes informal anal-
ysis and formal analysis through the random oracle model
has confirmed that the proposed AAKE-BIVT is resistant to a
wide range of potential security attacks commonly occurring
in IoV environments. An in-depth comparative analysis has
further demonstrated that our AAKE-BIVT outperforms many
existing leading-edge schemes, in terms of computation and
communication overheads, as well as offers more function-
ality and security features. As a future work, we intend to
design a blockchain-based handover authentication scheme
that reduces the overhead caused by the reauthentication of
vehicles. Furthermore, since the inception of the blockchain-

17

enabled IoVs, new application scenarios are emerging, such
as data protection and management, content broadcasting,
vehicle management, and traffic control and management. Our
future work will also include the design of a blockchain-based
authentication scheme with conditional privacy to support
revocation mechanism.

REFERENCES

[1] U. Z. A. Hamid, H. Zamzuri, and D. K. Limbu, “Internet of vehicle
(IoV) applications in expediting the implementation of smart highway of
autonomous vehicle: A survey,” in: F. Al-Turjman (ed.), Performability
in Internet of Things, Springer, 2019, pp. 137–157.

[2] J. E. Siegel, D. C. Erb, and S. E. Sarma, “A survey of the connected
vehicle landscape–architectures, enabling technologies, applications, and
development areas,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 8,
pp. 2391–2406, Aug. 2017.

[3] S. Ullah, G. Abbas, Z. H. Abbas, M. Waqas, and M. Ahmed, “RBO-EM:
Reduced broadcast overhead scheme for emergency message dissemina-
tion in VANETs,” IEEE Access, vol. 8, pp. 175205–175219, Oct. 2020.

[4] M. Amadeo, C. Campolo, and A. Molinaro, “Information-centric net-
working for connected vehicles: A survey and future perspectives,” IEEE
Commun. Mag., vol. 54, no. 2, pp. 98–104, Feb. 2016.

[5] S. Ullah, G. Abbas, M. Waqas, Z. H. Abbas, S. Tu, and I. A. Hameed,
“EEMDS: An effective emergency message dissemination scheme for
urban VANETs,” Sensors, vol. 21, no. 5, 1588, pp. 1–19, 2021.

[6] Allied Market Research, “Internet of Vehicle Market Outlook:
2024,” accessed: 2021-12-20. [Online]. Available: https://www.
alliedmarketresearch.com/internet-of-vehicles-market

[7] M. Wazid, B. Bera, A. K. Das, S. P. Mohanty, and M. Jo, “Fortifying
smart transportation security through public blockchain,” IEEE Internet
of Things J., early access, Feb. 2022.

[8] M. B. Mollah, J. Zhao, D. Niyato, Y. L. Guan, C. Yuen, S. Sun,
K. Lam, and L. H. Koh “Blockchain for the Internet of vehicles towards
intelligent transportation systems: A survey,” IEEE Internet of Things J.,
vol. 8, no. 6, pp. 4157–4185, Mar. 2021.

[9] A. Badshah, M. Waqas, F. Muhammad, G. Abbas, and Z. H. Abbas, “A
novel framework for smart systems using blockchain-enabled Internet
of things,” IEEE IT Prof., vol. 24, no. 3, pp. 73–80, June. 2022.

[10] P. Bagga, A. K. Das, M. Wazid, J. J. P. C. Rodrigues, and Y. Park,
“Authentication protocols in Internet of vehicles: Taxonomy, analysis,
and challenges,” IEEE Access, vol. 8, pp. 54314–54344, Mar. 2020.

[11] J. Liu, Q. Li, R. Sun, X. Du and M. Guizani, “An efficient anonymous
authentication scheme for Internet of vehicles,” in Proc. ICC 2018
(Kansas City, MO, USA), May 20-24, 2018, pp. 1–6.

[12] M. Azees, P. Vijayakumar, and L. J. Deboarh, “EAAP: Efficient anony-
mous authentication with conditional privacy-preserving scheme for
vehicular ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 9, pp. 2467–2476, Sep. 2017.

[13] P. Vijayakumar, M. S. Obaidat, M. Azees, S. H. Islam, and N. Kumar,
“Efficient and secure anonymous authentication with location privacy
for IoT-based WBANs,” IEEE Trans. Ind. Informat., vol. 16, no. 4,
pp. 2603–2611, June. 2019.

[14] M. Azees, V. Pandi, J. D. Lazarus, M. Karuppiah, and M. S. Christo
“BBAAS: Blockchain-based anonymous authentication scheme for pro-
viding secure communication in VANETs,” Security and Communication
Networks, vol. 2021, no. 6679882, Feb. 2021.

[15] L. Wei, J. Cui, H. Zhong, Y. Xu, and L. Liu, “Proven secure tree-based
authenticated key agreement for securing V2V and V2I communications
in VANETs,” IEEE Trans. Mobile Comput., vol. 21, no. 9, pp. 3280–
3297, Sep. 2022.

[16] L. Wei, J. Cui, H. Zhong, I. Bolodurina, and L. Liu, “A lightweight
and conditional privacy-preserving authenticated key agreement scheme
with multi-TA model for fog-based VANETs,” IEEE Trans. Dependable
Secure Comput., early access, Dec. 2021.

[17] R. Vinoth, L. J. Deborah, P. Vijayakumar, N. Kumar, “Secure multifactor
authenticated key agreement scheme for industrial IoT,” IEEE Internet
of Things J., vol. 8, no. 5, pp. 3801–3811, Sep. 2020.

[18] X. Xia, S. Ji, P. Vijayakumar, J. Shen, and J. J. P. C. Rodrigues “An
efficient anonymous authentication and key agreement scheme with
privacy-preserving for smart cities,” Int. J. Distributed Sens. Networks,
vol. 17, no. 6, p. 15501477211026804, June. 2021.

[19] H. Tan and I. Chung, “Secure authentication and key management with
blockchain in VANETs,” IEEE Access, vol. 8, pp. 2482–2498, Jan. 2020.

[20] M. F. Moghadam, M. Nikooghadam, M. A. B. A. Jabban, M. Alishahi,
L. Mortazavi, and A. Mohajerzadeh, “An efficient authentication and
key agreement scheme based on ECDH for wireless sensor network,”
IEEE Access, vol. 8, pp. 73182–73192, Apr. 2020.

[21] X. Li, Y. Han, J. Gao, and J. Niu, “Secure hierarchical authentication
protocol in VANET,” IET Information Security, vol. 14, no. 1, pp. 99–
110, Jan. 2020.

[22] H. Vasudev, D. Das, and A. V. Vasilakos, “Secure message propagation
protocols for IoVs communication components,” Computers & Electri-
cal Engineering, vol. 82, Art. no. 106555, pp. 1–15, Mar. 2020.

[23] A. Vangala, B. Bera, S. Saha, A. K. Das, N. Kumar, and Y. Park,
“Blockchain-enabled certificate-based authentication for vehicle accident
detection and notification in intelligent transportation systems,” IEEE
Sensors J., vol. 21, no. 14, pp. 15824–15838, Jul. 2021.

[24] D. Chattaraj, B. Bera, A. K. Das, S. Saha, P. Lorenz, and Y. Park,
“Block-CLAP: Blockchain-assisted certificateless key agreement proto-
col for Internet of vehicles in smart transportation,” IEEE Trans. Veh.
Technol., vol. 70, no. 8, pp. 8092–8107, Aug. 2021.

[25] M. S. Kakkasageri and S. S. Manvi, “Multiagent driven dynamic
clustering of vehicles in VANETs,” J. Netw. Comput. Appl., vol. 35,
no. 6, pp. 1771–1780, July. 2012.

[26] X. Wang, P. Zeng, N. Patterson, F. Jiang, and R. Doss, “An improved
authentication scheme for Internet of vehicles based on blockchain
technology,” IEEE Access, vol. 7, pp. 45061–45072, Apr. 2019.

[27] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Trans. Inf. Theory, vol. 29, no. 2, pp. 198–208, Mar. 1983.

[28] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-
card security under the threat of power analysis attacks,” IEEE Trans.
Comput., vol. 51, no. 5, pp. 541–552, May 2002.

[29] R. Canetti and H. Krawczyk, “Universally composable notions of key
exchange and secure channels,” in Proc. EUROCRYPT 2002 (Amster-
dam, The Netherlands), Apr. 28-May 2, 2002, pp. 337–351.

[30] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair, “The
Bistable Ring PUF: A new architecture for strong physical unclonable
functions,” in Proc. 2011 IEEE Int. Symp. Hardware-Oriented Security
and Trust (San Diego, CA, USA), Jun. 5-6, 2011, pp. 134–141.

[31] J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M. D. M. Yu, “Effi-
cient fuzzy extraction of PUF-induced secrets: Theory and applications,”
in Proc. CHES 2016 (Santa Barbara, CA, USA), Aug. 17-19, 2016,
pp. 412–431.

[32] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and
M. Yung, “Perfectly secure key distribution for dynamic conferences,”
Information and Computation, vol. 146, no. 1, pp. 1–23, 1998.

[33] B. Bera, S. Saha, A. K. Das, and A. V. Vasilakos, “Designing blockchain-
based access control protocol in IoT-enabled smart-grid system,” IEEE
Internet of Things J., vol. 8, no. 7, pp. 5744–5761, Apr. 2020.

[34] D. Schwartz, N. Youngs, and A. Britto, “The Ripple protocol consensus
algorithm,” Ripple Labs Inc White Paper, p. 1–8, 2014.

[35] T. Alladi, Naren, G. Bansal, V. Chamola, and M. Guizani, “SecAu-
thUAV: A novel authentication scheme for UAV-ground station and
UAV-UAV communication,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 15068–15077, Dec. 2020.

[36] A. Badshah, M. Waqas, G. Abbas, F. Muhammad, and Z. H. Abbas,
S. Vimal, and M. Bilal, “LAKE-BSG: Lightweight authenticated key
exchange scheme for blockchain-enabled smart grids,” Sustainable En-
ergy Technologies and Assessments, vol. 52, Art. no. 102248, pp. 1–13,
May. 2022.

[37] K. Kashish, “Implementing PBFT in blockchain,” https://medium.com/
coinmonks/implementing-pbft-in-blockchain-12368c6c9548, accessed:
2021-12-24.

https://www.alliedmarketresearch.com/internet-of-vehicles-market
https://www.alliedmarketresearch.com/internet-of-vehicles-market
https://medium.com/coinmonks/implementing-pbft-in-blockchain-12368c6c9548
https://medium.com/coinmonks/implementing-pbft-in-blockchain-12368c6c9548

	Introduction
	Related Work
	Background
	Network Model
	Threat Model
	Design Objectives
	Preliminaries
	Physical Unclonable Function
	Fuzzy Extractor

	The Proposed Scheme
	System Initialization Phase
	Registration Phase
	Vehicle Owner Registration Phase
	CS Registration
	RSU Registration Phase

	Vehicle User Login Phase
	Authenticated Key Exchange Phase
	AKE Between Vehicles
	AKE Between CH and RSU
	AKE Between RSU and CS

	Key Management Phase
	Step 1
	Step 2
	Step 3

	Dynamic Node Addition Phase
	Password Updation Phase
	Block Construction and Addition Phase
	Block Construction Phase
	Block Verification and Addition Phase

	Security Analysis
	Informal Security Analysis
	Replay Attack
	MitM Attack
	ESL Attack
	Anonymity and Untraceability Preservation
	Stolen Smart Card Attack
	Impersonation Attacks
	DoS Attack
	Non-linkability
	Data Tempering Attack at CSN

	Formal Security Analysis Using ROR Model

	Blockchain Implementation
	Comparative Analysis
	Computation Overheads Comparison
	Communication Overheads Comparison
	Functionality and Security Features Comparison
	Critical Discussion

	Conclusion and Future Directions
	References

