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ABSTRACT

Blockchain technology has proven to be a secured and reliable technology by bringing

security, trust and data integrity to a distributed system. It is a new paradigm that

helps in the existence of cryptocurrency and eliminates the third party in a financial

transaction. It has the potential to optimise, enhance and streamline many processes

outside the cryptocurrency and financial sector but the adoption of the technology

is limited by the hindering performance issue. Unfortunately, the current blockchain

suffers a performance degrade with the increasing size because of the complexity of

its consensus protocol known as Proof-of-Work (PoW). Many industries, researchers

and organisation have been working on providing a solution to the performance issues

of the technology but most of the proposed solutions has so far ended in proposing a

newly designed protocol which ends up facing another issue referred to as the scalability

issue; having to trade off one of security or decentralisation to get speed. To address

the performance issue, the research has carried out experiments to clear pathways in

identifying the specific problem and the outcome has identified the mining process, block

size and scalability as the main factors affecting the performance of the technology. The

research further investigated these factors and identified the time taken to generate a

block as the most time-consuming task within the consensus process, regardless of the

traffic, size or number of connected nodes. The research has also explored alternative

ways of speeding the nonce finding process and identified machine learning as the best

technique because of its ability to learn and predict. Using the quantitative approach

of the research, different machine learning models were analysed and compared, and

linear regression was identified as the best fit model for the research problem. The

research used linear regression model Machine Learning technology to reduce the block

generation time without sacrificing security or decentralisation of the proof-of-work

consensus protocol. The model has achieved a 58 percent accuracy improvement on the

traditional mining process. The model reduces the block generation time when tested

on the blockchain simulation by an average of 4 seconds on the Ethereum network

and a more significant reduction for the Bitcoin network depending on the computer

hardware. In this thesis, blockchain is referred to as the blockchain that uses the PoW

consensus protocol.
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GLOSSARY OF TERMS

Term Definition

Blockchain
In this thesis, blockchain is referred to as the blockchain

that uses the PoW consensus protocol.

Performance
Refers to the speed of process within the consensus pro-

tocol

Scalability
Scalabilty is the ability for one of decentralisation, secu-

rity or speed to change without affecting the other

Simulation
A locally running blockchain network that allow source

code modification

Difficulty or Difficulty

target

Is the value that set how difficult it is to find a block

hash. A high difficulty means that it will take more

computing power to mine the same number of blocks,

making the network more secure against attacks.
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Chapter 1

Introduction

Blockchain technology’s success with bitcoin boosted the technology into the limelight

and brought the rise of other cryptocurrencies and attracted high interest across the

different sectors because of its ability to make transactions immutable, secure and

transparent. It brought a new paradigm for decentralised systems that are secure and

trustworthy in an untrusted ecosystem but its wide adoption has been hindered by some

challenges that are primarily security and performance issues (Gao et al., 2018). The

concern was raised and intensified by the increased adoption of the technology which

leads to an increase in the number of transactions and the added restriction on the

block size (Zheng et al., 2017c).

In July 2010, Satoshi Nakamoto added a 1MB limit to the block size of the blockchain

and that limits the rate at which information is added to the Blockchain. Thus, it con-

strains the need to have a finite number of transactions (Puthal et al., 2018). Therefore,

the block in the blockchain used by some cryptocurrencies such as Bitcoin and Ethereum

is only capable of processing only 7 and 20 transactions per second respectively (Kim

et al., 2018) which is not enough to compete with the likes of Visa and PayPal which

process approximately about 24,000 and 193 transactions (Bez et al., 2019).

Beyond the cryptocurrency and financial sector, blockchain technology incorporate the

right techniques to support a broad range of application across many sectors such as

healthcare, manufacturing, distribution and governance. It can enable a controlled
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sharing of electronic health records among healthcare providers and allow patients to

have full and secure control of their health data (Krawiec et al., 2016). It can help

reduce management costs by reducing human error, delays and add efficiency to the

process of having agreements between logistic companies (Mendling et al., 2018). It

can also improve traceability, transparency and add efficiency to contract management

in the telecommunication sector (Al-Jaroodi and Mohamed, 2019). Aside from the

cryptocurrency, the technology can also be utilised in other aspects of the financial

sector for example; it can remove the third party in the stock exchange and financial

settlement, enhance insurance policy and reduce the cost of financial activities in the

traditional banking system (Fanning and Centers, 2016).

The current performance of blockchain technology is not efficient for cryptocurren-

cies because it gets slower with an increase in the network size and the number of

transactions (Lu, 2019). More industrial applications or wider adoption of blockchain

technology will grow the network and generate more transactions, therefore, making

the network performance slower. Thus, there is a need to optimize the techniques and

find a lasting solution that will enable adoption from a wider horizon of sectors (Aste

et al., 2017).

Many industries, researchers and organisations have been working on providing a so-

lution to the performance issues of the technology but all efforts end in another issue

referred to as the scalability issue. The scalability issue means having to trade security

or decentralisation in order to get speed (Yu et al., 2018). Sometimes, the solution ends

up satisfying a particular use case/application instead of addressing the issue for the

whole technology as discussed in section 3.2. Therefore, the research aims at finding a

solution to improve the performance of the protocol without facing the scalability issue

by reducing the time taken to find the nonce value in the mining process.

The research carried out a study using a series of simulations and experiments to identify

alternative techniques that can be used to optimise the performance of the protocol.

The study paved way for the idea to optimise the performance using a technique with

the ability to learn and predict such as machine learning. Machine learning is the driving

force of artificial intelligence today, which has proven capable of speeding up research

12



1.1. MOTIVATION

and enabling systems across different sectors as seen in image recognition, product

recommendations, fraud detection, self-driving cars and many more. The research aims

to leverage machine learning ability to learn from experience and make an accurate

prediction when fed with data. Again, in this thesis, blockchain is referred to as the

blockchain that uses the Proof-of-Work consensus protocol.

1.1 Motivation

Blockchain incorporates various techniques that bring security, trust and data integrity

to a distributed system. As a distributed ledger, it requires multiple entities to agree

before an action is taken in the system; it is a complex process that takes a lot of time

and energy yet effectively achieves the goal on a small-scale blockchain (Mechkaroska

et al., 2018a). Unfortunately, the current blockchain suffers a performance degradation

with the increase in the transaction rate and the overall size of the blockchain - the

more transactions the network processes, the slower it becomes. (Tasatanattakool and

Techapanupreeda, 2018). The rapid growth in size and entities can lead to the capability

rate of how the network synchronises data not satisfying the transaction throughput.

Thus, a transaction can take an unacceptable amount of time to be completed and this

can create some problems with the application of the technology both in and outside

the financial sector.

Blockchain has enabled the existence of both a smart contract and cryptocurrency. It

has the potential to enhance, optimise and streamline many processes in the industrial

world but the adoption of the technology is limited by the hindering performance issue

that increases with any growth in size (Al-Jaroodi and Mohamed, 2019). In addition, so

far, any attempt to address the issue ends up in the scalability trilemma of sacrificing one

of the important parts of the blockchain (security, decentralisation or speed). Security

and decentralisation bring reliability and trust to the technology, they are part of the

pillar attributes of the system.

Therefore, there can’t be wider adoption without solving the performance issue other-

wise it will only further hinder the performance by increasing the size of the blockchain.

Thus, to utilise blockchain technology across sectors such as healthcare, manufacturing,

13



1.2. AIMS AND OBJECTIVES

the internet of things (IoT) (Dorri et al., 2016) and others, it is important to find a

lasting solution that is scalable, reliable, secure and efficient in addressing the issues

from multiple perspectives (Yaga et al., 2018).

1.2 Aims and Objectives

The research aim is to improve the performance of the proof-of-work consensus protocol

without trading off security or decentralisation using machine learning. Preliminary

research supports the idea that using machine learning to find the nonce value will

reduce the transaction throughput and allow applications to process more transactions

per second and accelerate adoption within application for which the slow and decreasing

performance is a bottleneck.

1.2.1 Objectives

1. Based on literature and theoretical evidence, identify the main factor affecting

the performance of the consensus protocol.

2. Practically examine these theoretical findings and establish facts of the actual

problem.

3. Explore alternative novel solution to improve the performance of the protocol that

advances the current state of the art.

4. Implement and test the identified solution in a blockchain simulation with real

time effect.

5. Validation of the research solution approach by peers and experts in the research

area via paper publication.

6. Evaluate the performance of the improved consensus protocol and complete thesis.

14



1.3. RESEARCH METHODOLOGY

1.3 Research Methodology

The research used the quantitative research methodology approach to study and find a

solution to the research question. By quantitative, the research experiment statistically

compared the result of different machine learning models within the criteria of their

prediction accuracy and prediction time as the matrix of choosing the best fit model

for the research implementation. The approach was adopted in the research evaluation

stage, and the performance of the research implementation was statistically compared

with the current performance of the protocol to critically examine the impact of using

machine learning techniques to improve the performance of the consensus protocol. The

flowchart in figure 1.1 describes the research approach in stages.

Figure 1.1: The research flow

As shown in figure 1.1, the research started with an empirical investigation of the

research area which was carried out through literature review and experiments to create

a base for knowledge and provides insights into the general idea of blockchain technology.

It provided insight into the topic and cleared a pathway to understand the scope of the

problem that the research is trying to address. The research investigation was narrowed

down to focus on the issues and challenges around the performance of the technology and

finally investigated the work done by others (other consensus protocols and solutions)

to address the issues. The process laid a solid foundation of knowledge and develop

ideas that put the research closer to its goal.
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1.4. RESEARCH QUESTIONS

In the second stage of the research, the Blockchain network was simulated to enable

smooth experiments executions away from the busy and complex real public blockchain

network. In doing so, a working blockchain network that can allow playing around

with the parameters is required. Therefore, a set of platforms that use PoW were

analysed and Ethereum was chosen because it is open source and provides the required

complexity and flexibility to conduct the research experiments. Ethereum network was

simulated and used in testing, evaluating and generating facts on the research finding

which helps in building research contribution ideas.

In the third stage, ideas were explored as an alternative to the problematic current

approach that hinders performance and the machine learning technique was found as

the perfect fit technique to solve the research problem. Therefore, in the next stage

(fourth), a review of machine learning was conducted to enable a solid understanding

of the technique and enable the successful implementation of the research idea.

In the fifth stage, data were collected and analysed as a requirement for a successful

implementation of machine learning. The result was able to suggest the right distribu-

tion for the research problem. All relevant models were implemented in the sixth stage

as elaborated on later in the experiment chapter and the results were quantitatively

compared to enable the selection of the best fit model.

The seventh stage includes implementing the research solution into the simulation en-

vironment and the larger dataset collected until this stage was used to optimise and

validate the model. Finally, the research was evaluated in the final stage and the re-

search was successful in optimising the performance of the protocol. All stages were

elaborated on in the subsequent section

1.4 Research Questions

The research was carried out in the path that will answer the following questions:

• The preliminary research question for the research asks what are the issues affect-

ing the performance and scalability of blackchin technology? After investigating

the question and identifying the issues and their factors, the research successfully
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1.5. RESEARCH HYPOTHESIS

discussed and answered this question in detail later in the literature review and

experiment chapters.

• What are the right methods of improving performance without altering or modi-

fying any of the protocols?

– Could speeding up the nonce search improve the performance without facing

the scalability issue? To answer this question, there is a need to identify the

right technique that can be used.

– What is the right technique that can be used to speed up the nonce search

process? The proposed idea suggested using prediction - Machine Learning.

• Could applying machine learning techniques improve the performance of the

proof-of-work consensus protocol without sacrificing security or decentralisation?

– What is the most appropriate machine learning model for the research use

case? The research found Linear regression as the best fit model as discussed

later in both the performance analysis and experiment chapters.

The research finds the sub-questions necessary and helpful in unpacking the complexity

of the work and setting direction and focus for the research investigation.

1.5 Research Hypothesis

To understand the rationale that supports the research hypothesis it is important to

understand the following points. For the first hypothesis, there was no concern about

the performance of the technology until the increased adoption of the technology that

led to an increase in the size of the network - increasing the complexity of the mining

protocol (Zheng et al., 2017c). The research investigated the complexity and identified

that complexity only affects the block generation time. The complexity introducing

the concerns around performance which later led to the scalability issue that validates

the first hypothesis. The second hypothesis can be supported by the machine learning

1Hypothesis is tested by observation, as opposed to via statistical analysis.
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1.6. RESEARCH CONTRIBUTIONS

track record of speeding up processes using its ability to predict a value, for example,

Bitcoin price Demir et al. (2019).

The research has the following alternative hypothesises:

• Reducing the block generation time improves the transaction throughput and the

overall performance of the protocol.

• Reducing the nonce search space improves the block generation time without

effect on the security or decentralisation

1.6 Research Contributions

By addressing the research questions, the work produced the following main contribu-

tions:

• A novel approach that used regression and reduced the block generation time

without sacrificing security or decentralisation and ultimately improves the overall

performance of the proof-of-work consensus protocol.

• A novel approach that introduced Machine Learning technology into the blockchain

block generation process of blockchain technology.

• Scaled solution that is decentralised, secured and faster - Improves the block

generation time without altering any other part of the protocol allowing improved

performance without affecting the current level of security or decentralisation.

• Improved transaction confirmation time of the blockchain technology: Faster

block generation time means that transactions/data will be offloaded from the

transaction pool to the blockchain faster and the faster transactions are added

into the blockchain the faster the confirmation time

• Save the cost of transaction fees: Improved confirmation time will reduce and

eliminate for some people the need to pay extra for the transaction to be given

priority. A reduced waiting time reduces the amount to pay for those that still
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1.7. RESEARCH IMPACT

need their transactions to be confirmed faster.

• Reduced the power consumption/waste of the mining algorithm: Taking the min-

ers closer to the nonce value has reduced the unused computations that take a

high amount of processing power.

• Reduce adoption concern in other sectors: The long transaction confirmation time

is one of the main concerns hindering the adoption of the technology, especially in

those areas where prompt data processing is key such as healthcare emergencies,

immigration and others.

1.7 Research Impact

This research work is of theoretical and empirical significance to the scientific commu-

nity. The theoretical importance of this study lies in demonstrating that blockchain

technology possesses the ability to keep anonymous and immutable data across sectors

beyond the financial industry without the need for central monitoring. This study has

demonstrated the importance and the right approach to scale blockchain technology

and enable firm performance that will suit a wider horizon of sectors.

Empirically, the study has safely enhanced the performance of blockchain technology

by reducing the block generation time without sacrificing security or decentralisation.

By scaling the block generation time, the study has reduced the task of the mining

process which is time and power-consuming. According to a report published by the

International Energy Agency, the overall power consumption of the Bitcoin network is

higher than in many countries (Monrat et al., 2019). Thus, the research has practically

optimised the performance and cut down the power consumption.

1.8 Road Map

Chapter 1 is the introductory chapter, it briefly highlights the research motivation,

research questions and contribution and discussed the methodology followed in con-

ducting the research. Chapter 2 is the literature review chapter, it states reviews on
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articles, journals and books that discussed the research area in general and later nar-

rowed down to focus specifically on the concerns around the performance issues. It also

covers the literature review on machine learning as the technique the research is using

to find the solution to the problem. Chapter 3 is data collection and processing, it ex-

plains how data was collected and analysed to support research decisions and enable the

implementation of the machine learning model. Chapter 4 is the experiment chapter,

it discusses the research experiment, compared results and explains how the model was

optimised. The chapter also covers the performance evaluation of the model. Chapter

5 restates the research question and how they were addressed.

1.9 Publications

Ahmed, M, S., Arafa, Y. and Ma, J., 2020, November. Improving the performance

of the Proof-of-Work Consensus Protocol Using Machine learning. In Proceedings of

the 2nd International Conference on Blockchain Computing and Applications (BCCA).

IEEE. The paper is an extract of this thesis that presents the research as a novel

approach and the initial results as a proof of concept.

Ahmed, M, S., Arafa, Y. and Ma, J., (in writing). Improved proof of work consensus

performance using machine learning linear regression model. IEEE Access,
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Chapter 2

Literature Review

2.1 Blockchain Review

In 1991 Stornetta and Haber (1991) brought the idea of certifying the time a document

was generated in a way infeasible for a user to alter using any tool or service. The

proposal came with two schemes that use hash functions. The first one is called the

linking solution; It requires chaining together the hash values of all documents sent to

the timestamp service in a way nothing can feasibly tamper with. The second one is

called a random witness solution. It requires a certain number of users to date and sign

the document and use the composite of their signatures as the certificate (Stornetta

and Haber, 1991). These ideas provide a way to keep an immutable date of documents,

enhancing the credibility of the documents. Bayer et al. (1992) later worked to develop

the idea and were able to add a Merkle tree to the design by the year 1992 which

provides the ability to collect sets of data into one block, adds efficiency and provides

a secured way of data verification.

The idea was enhanced by a presumed pseudonymous called Satoshi Nakamoto to build

the blockchain that serves as a peer-to-peer P2P protocol for Bitcoin (Nakamoto, 2008).

Bitcoin is a decentralised digital currency referred to as cryptocurrency: a digital bank-

ing system that doesn’t require any central monitoring of individuals or organisations

but rather a set of nodes (computers) located in different locations across the world.
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It uses a consensus approach between all connected nodes to perform, verify and store

transactions in an efficient, transparent, reliable and secure manner. The storage capa-

bility of the blockchain technology is used to store sensitive information that does not in

any way tolerate alteration (e.g financial transactions) because the blocks are arranged

in an immutable growing sequel structure that cannot practically be altered.

Blockchain technology enhances data integrity through distributed structure: A decen-

tralised structure that requires all records of transactions to be replicated across all

participating nodes and all nodes have to come to a consensus before any data is added

to the blockchain. This helps build trust between the participant of the network and

enable the elimination of central monitory. A transaction cannot be approved by a sin-

gle authority or a central monitory nor can any of them set a specific rule of accepting

transactions instead they get processed, verified, approved and recorded through the

consensus process (Yli-Huumo et al., 2016).

For a secure and effective blockchain or any other decentralised system, it is key to

consider an effective and suitable way of securing the flow of data across its different

repositories. Blockchain consensus is the process used in verifying the state of the

network, it checks and agrees all blocks keep the same information with correct val-

ues across all nodes. Bitcoin blockchain uses the consensus algorithm called proof of

work (PoW) that requires at least 51 per cent control of the whole network to enable

manipulating the network. That is practically not feasible depending on the number

of connected nodes and because the attacker will have to attack all nodes simultane-

ously.

2.1.1 Issues and Challenges

This section will discuss the numerous challenges encountered through blockchain tech-

nology by many organizations within a few numbers of varied contexts. The discovery

made by Al-Saqaf and Seidler (2017) asserts that the lack of principles and interoper-

ability within the open domain is a major factor that deters the widespread acceptance

of the blockchain initiative. Alketbi et al. (2018) claimed that even though blockchain

proposes to outrun many security hurdles that include data integrity and secure data
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sharing, in more ways it also offers new security challenges to be exclusively analyzed

and confronted. Atlam et al. (2018) buttressed a number of blockchain integration

challenges that include scalability, legal and lack of skills: Scalability is the trade of

security or decentralisation to get speed, the legal issue that comes in many forms in-

cluding compliance with financial services regulation or jurisdiction boundaries as nodes

can be located anywhere in the world. Boulos et al. (2018) claimed that blockchain en-

counters normal challenges just like any similar technology threatening to destabilize

existing processes and highlighted many of its challenges inclusive of interoperability,

privacy and security and also the urge to sustain suitable and adaptable business mod-

els for execution. Dorri et al. (2017) argued that the adoption of blockchain within the

Internet of Things (IoT) schemes and discussed main challenges in the likes of com-

putational overhead and time duration in the mining of blocks, inadequate scaling of

nodes and important traffic load in case there is an increase in the number of nodes in

the network.

Lacity (2018) illustrated the challenges of blockchain technology in the aspects of stabil-

ity, interoperability and performance with similar systems. Additionally, this literature

will also highlight the challenges concerning the management of blockchain applica-

tions that include standards, shared governance, regulation and building a reliable

atmosphere that encourages progress. Mendling et al. (2018) illustrated some series of

technological challenges blockchain constantly encounters. The illustrated challenges

include throughput, size and bandwidth, latency, limited usability, security and misused

resources. Also, Salman et al. (2019) discussed some challenges of blockchain adoption

that include the capacity of storage and scalability, anonymity and data privacy, and

security issues.

In addition, Mingxiao et al. (2017) claimed that blockchain is still fresh as it is just

emerging and it is prone to face several issues that involve throughput (i.e., transac-

tions are optimal numerically by seven theoretically per second), size and bandwidth,

latency in the terms of duration of the period of time to access the blockchain. Zheng

et al. (2017b) insisted that blockchain is going through multifaceted challenges and re-

capitulated three common challenges of this technology that includes privacy leakage,

scalability, and self-centred mining. Self-centred mining is known as an approach for
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mining bitcoin in which some miners organize to increase their return by building their

personal branch of the blockchain.

2.1.1.1 Performance

Blockchain technology isn’t fast enough for the cryptocurrency to satisfy the need for

the mainstream payment method such as VISA (Vasin, 2014). Gao and his colleagues

considered performance and security as the wider application of blockchain technology

and concluded by indicating the need to improve the performance of the blockchain for

the technology to be competitive with the traditional software implementation (Gao

et al., 2018). In their discussion of the emerging concerns in blockchain technology,

they identified scalability and availability as part of the contributing factors in the

performance issue where they mentioned the block size and transaction throughput to

be the key players.

Throughput

In his literature Swan (2015) had expressed seven technical future challenges and bound-

aries of the Bitcoin technology. A prominent part of the issue is Throughput. The issue

with Bitcoin as of 2022, it handles an average of 4 transactions per second (tps) (Xu

et al., 2016), with a maximum possible theoretical throughput of 7 tps. In contrast, the

VISA transaction network is believed to process up to 24,000 tps (Xu et al., 2016).

A block is generated in the public blockchain at the rate of 1 in every 10 minutes and a

transaction can only be termed confirmed if it is added to a block that is included in the

blockchain (Yli-Huumo et al., 2016). Blocks are where data is stored in the blockchain,

so a limited block size (1MB) confines the amount/capacity of data that can be added

to the blockchain. Therefore, Bitcoin can only append to the block about 7 transactions

with a block creation time of 1 in 10 minutes (Kim et al., 2018). Looking at things from

the smart contract perception, the scalability issues seemed to have been downsized.

The transaction speed depends partially on your gas usage instead of factors such

as consensus, transaction validation and others. One Ethereum block using a smart

contract facility takes about 15 seconds. Averagely for such a transaction, the total

wait time of a transaction takes about 15/2 seconds for a complete block to be mined.

Mostly the amount of time a transaction takes to be completed in a smart contract
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Scherer (2017).

In a typical smart contract blockchain analogy, to both compensate nodes for a transac-

tion executed and to reduce computation, a fee is charged in relation to the proportion

of computation used in the blockchain which is known as gas (Wood, 2017). The more

gas the more it costs to run. The gas limit and block time determine the basic through-

put speed as mentioned by Scherer (2017). Even though with such a mechanism the

slow speed of transactions implies that smart contracts aren’t completely suitable for

e-commerce applications now. It’s either the high cost to pay of computation power

or the slow nature of the transaction, all the mentioned constraints seem to render the

scalability of blockchain to be questioned (Tonelli et al., 2019).

Mrs Chauhan and his colleagues stated in their article, there is a daily average of

130,000 bitcoin transactions in 2017, thus, the transaction waiting time has increased

to 29 minutes (Chauhan et al., 2018). While the transaction increase looks good in-

dicating the acceptance of the system, the waiting time increase is not looking good

for a technology/system that is to compete with the likes of Visa and PayPal. Expect

more increases in the waiting time as transaction increases, this is not because they

are proportional, they are not. It is because Bitcoin can only process 7 transactions

per second (Conti et al., 2018). This is far from satisfactory compared to the likes

of Visa and PayPal which are capable of processing 24,000 and 193 transactions per

second respectively (Chauhan et al., 2018). Though the numbers are slightly better

with Ethereum as it can process 20 transactions per second as of 2021, that is still not

enough to compete with the likes of Visa and PayPal (Bez et al., 2019). According

to Chauhan et al. (2018), Ethereum is supposed to process about 1000 transactions

per second in theory. However, unfortunately, it can only practically process about 20

because of the enforced gas limit which is the price for running a transaction that is

based on the computational effort.

Block Size

A block is only capable of taking a limited amount of data after Nakamoto appended

a 1MB block limit which according to Mechkaroska et al. (2018b) is believed to be

a security measure. The block size has attracted so much argument standing for or
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against it, most of them against believing that increase in the block size will lead to

centralisation which will make mining more expensive and leads to having fewer miners

running full nodes and having more power on the network (Mechkaroska et al., 2018b).

According to ETH Zurich et al. (2016) research findings, increasing the current bitcoin

size up to 4 MB does not have a significant impact on security especially selfish mining

and double-spending resilience. Chaudhry and Yousaf (2018) mentioned the security

of the blockchain is not penalised with the current block size of 1 MB and a block

generation interval of 1 minute. The point indicates there will not be a significant issue

if the time taken by the miners to generate a new block will be optimised to 1 minute

from the current situation of 10 minutes.

According to Monrat et al. (2019) the block size slows the transaction process. Kim

et al. (2018) believes the increase in the number of transactions affects the technology by

increasing the number of transaction waiting times: the time taken before a transaction

is added to the blockchain. According to Gao et al. (2018) and Mechkaroska et al.

(2018b) the public blockchain Bitcoin has a restriction on the block size in order to

leverage the security of the blockchain consensus but Zheng et al. (2017a) indicated

larger blocks will lead to slower propagation in the blockchain network, which will

gradually violate the decentralisation principle of the technology.

Lin and Qiang identified the transaction throughput issue and how it is affected by the

block size, yet increasing the block size arbitrarily cannot be the best solution because

of how the larger blocks can impact the performance of the blockchain (Lin and Qiang,

2019). They made a point that increasing the block size will not increase the complexity

of the system and it will be easy to implement. However, it increases the risk of forking

because the change cannot be effective on the old nodes and the process of verifying

and synchronising blocks will take longer.

2.1.1.2 Scalability Issue

A major part of the challenging problems concerning Blockchain implementations is

scalability. In order to gain access to the theoretically proven security, the Blockchain

adaptation must have a reasonable number of full nodes. Otherwise, its implementation

might result in a less decentralised system (Beck et al., 2016). The limits of scalability
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of the Blockchain are related to the size of the data on the Blockchain, the rate of

processing transactions, and the latency of the transmission of data. According to Xin

et al. (2017), the discussion on the blockchain scalability challenge has been vigorous

and at times acrimonious with no clear method to be deployed in addressing the issue.

Yli-Huumo et al. (2016) a systematic review on blockchain technology and the authors

stated there will be a direct impact on the scalability when the size of the Blockchain

increases. Thus, for the technology to be ready for pervasive use, scalability issues such

as performance and latency have to be addressed.

According to Chaudhry and Yousaf (2018), scalability is the fundamental requirement

in blockchain technology to deal with big data in today’s environment and PoW is

not scalable enough. In the paper titled “Blockchain scalability” written by Chauhan

et al. (2018), the authors mentioned there is a propositional relationship between a fall

in scalability and an increase in the network size. They referred to the miners as the

bottleneck of the scalability issue because they are given the task of processing and

verification of every transaction that occurs in the system, the faster the process the

faster the finality of the blocks. Also briefly highlighted the need to optimise the speed of

performing a transaction in blockchain technology, showing a big difference compared to

its counterparts such as VISA. Lin and Qiang (2019) paper has indicated that the issue

on the blockchain is not only on scalability but also on the technical standardisation

that is dynamic enough to fit different sectors and their requirements.

Many interesting solutions are coming up in order to address the scalability issue. This

issue includes Lightning Network, which involves the addition of an additional layer

to the standing blockchain network just to hasten faster transactions, in addition, the

interesting solution is Sharding which relates subsets of nodes into their limited networks

or ‘shards’, which are then solely responsible for the transactions that are related to

their shard. We will elaborate on the solutions in the state-of-the-art section.

2.1.1.3 Blockchain Storage

The total size of the Bitcoin network hits 197GB at the end of 2018. This is a growing

size of data whose copy is expected to be stored on all connected nodes (Palai et al.,

2018). Excluding the few that might have been foreseen, most of the identified or
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worrying issues of the technology a raised after the technology has stored and dealt

with a large amount of data. With less data, the technology has been satisfying.

Therefore, some researchers believe reducing the storage alone can be enough to scale

the technology (Zheng et al., 2017c).

Zheng et al. (2017c) discussed storage optimisation and redesigning the blockchain as

the best solution to the scalability issue of the technology. Storage optimisation: Was

proposed by J.D. Bruce (2017) as a scheme that requires the old transactions to be

forgotten by the network and a consensus algorithm called Proof-Chain to provide the

security loss. Bruce argues to have achieved scalability at the expense of some security

trade-offs that can be dealt with.

2.1.1.4 Other Issues

Organisations such as IBM, Microsoft and Amazon have been exploring possible meth-

ods to cater to the cost and complexity issues of blockchain technology through the in-

troduction of cloud technology (Karame, 2016). The adoption of a blockchain in cloud-

based technology as proposed by these organizations is going to adopt a blockchain-

as-a-service. This service will allow organizations to set up and run their blockchain

network making the cost, as well as the complexity of blockchain service responsibilities,

will depend entirely on the host organization. According to the diagram in figure 2.1

from Statista, blockchain was 185GB in size at the end of September 2018, the figure

shows how the size of the technology has been increasing since the early days of the

technology. The y-axis shows the blockchain size in megabytes while the x-axis shows

the time from 2010 to 2018 in three quarters.
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Figure 2.1: Blockchain size from 2010 to 2018

(statista, 2018)

Latency issues, the time factor is a determinant of the critical issues in Blockchain

executions. The bitcoin requests are being processed online almost immediately, and

that in a way stands as an obstacle in regard to universal technological acceptance

Beck et al. (2016). For security’s sake concerning bitcoin, any transaction related

to its medium is advised to be completed in a space of about 10 minutes. For an

enormous transfer amount, the cost of a double-spent attack can be up to an hour.

The completion of the VISA transaction process only takes a few seconds (Swan, 2015)

(Yli-Huumo et al., 2016). With the decentralization and distribution of public ledgers,

there seems to be a massive number of nodes that needs to attain a consensus can

be achieved. Every node needs access to the whole blockchain. This would amount

to a great deal of database with time. Getting access to the entire blockchain to a

large number of nodes will also increase the security threat. The resultant effect is

that there are thousands more transactions waiting in the queue than the ones that are

being verified every minute. Many ecosystems have made efforts to mitigate this issue

by only partially decongesting their distributed ledger, where only a sizable number of

prominent nodes reach consensus.
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Cost The price tag attached to Bitcoin is a drawback to its decentralization and

blockchain technology. The users of Bitcoin have to pay for their transactions and com-

putational power. The fact that users have the option to choose centralized solutions is

that they have to be constantly reminded that their actions are attached to a fee, but

the prices are not openly displayed (Beck et al., 2016).

Integration with Legacy Systems There is the issue of corporations on how to

integrate blockchain with their institutional system(s). Most likely, if they decide to

make use of blockchain, establishments are needed to wholly restructure their former

system, or organize a pattern for the successful integration of the two technologies (At-

lam et al., 2018). Another major issue is that due to the lack of enlightened developers,

establishments do not have access to the needed pool of blockchain ideologies to infuse

in this process. Reliance on a foreign party can lessen the hurdles (Dorri et al., 2017).

Most present solutions on the market need the organization to invest a tangible amount

of time and materials to accomplish the transition. There are more incidences of data

loss and breaches that are disengaging most establishments from transitioning to the

blockchain. All enterprise is reserved and unwilling to adjust to their database, and for

reasonable reasons, data loss or data dilapidation possess a major risk (Lin and Liao,

2017). A few years ago, innovations came up that enabled legacy systems to integrate

with a blockchain backend. One such solution is the Modex Blockchain Database, an

innovation structured to assist people without a background in technology, gaining ac-

cess to the benefits of blockchain technology and eliminating the challenges presented

by losing sensitive data (Janowski, 2015).

Security and Privacy Challenges Blockchain is the enabler of crypto and it is

mainly perceived as an arena for bad actors, frauds, hackers, and speculators. More

significantly are issues such as immaturity (still slow and tedious), lack of scalability,

the inefficiency of interoperability, stand-alone projects, difficulty in integration with

legacy systems, complications and lack of blockchain initiatives. An issue with the

open distributed ledgers is the highly speculative character with a trade-off between

the elements of the network and decentralization (Atzei et al., 2017). The possibility of

attacks by malicious actors on Bitcoin is they have to control 51 percent of the network.

In such a case, a miner can have total control of the majority of the network which
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seems to be a big problem (Lin and Liao, 2017). It was highlighted that several security

breaches that happened in Bitcoin include distributed denial-of-service (DDoS) attacks,

hacking of accounts by Trojan horses and viruses contacted through ads. According to

Mingxiao et al. (2017), a total of 11 million USD had been forfeited to scams by about

13,000 Bitcoin victims between September 2013 to September 2014.

Privacy issues: A major issue that is connected to Bitcoin privacy is the issue of multiple

addresses. For instance, users of the Bitcoin system have the opportunity to create

numerous addresses and researchers try to collect all the addresses that relate to a

single user (Boulos et al., 2018). Address collection is done to trace the economic

transactions of the same user. The aim is to discover all the possible addresses involved

in the transaction that is linked to the targeted user (Sullivan and Burger, 2017). The

researchers discovered that some of the Bitcoin addresses could be traced through the

IP addresses by examining the traffic of the transaction.

Double-spending attacks: Blockchain operations are susceptible to double-spending at-

tacks. Concerning the case of Bitcoin, a double-spending attack may occur when an

intruder keeps his/her Bitcoin while getting services that can be expended again. This

happens when the intruder credits an account, receives goods or services through the

account holder and later rearranges the ledger by reverting the transaction that pays

into the account. Nakamoto (2008) insisted that the Bitcoin system is hampering

double-spending attacks by showcasing the attacker and the group of honest players as

competing users that are performing a random activity moving towards a single direc-

tion with probabilistic steps. Though, it is not certain that in Bitcoin’s decentralized

atmosphere the intruder may try to introduce disagreement between the sincere miners

Raju et al. (2017).

2.1.1.5 Conclusion

The section discussed many concerns about blockchain technology from different works

of literature. These concerns are mostly around the amount of data the technology can

take at a given time referred to as the throughput and the block size issues. This shows

that there is a gap in this technology that calls for a solution and is required to allow

the utilisation of the full potential of the technology both in the financial and other
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sectors looking to adopt this tremendous technology. The review also shows that the

concerns highlighted in the research problem and motivation are shared among other

researchers, experts and other parties interested in the technology.

The research finds the performance issue as a key area of concern in the challenges

discussed because it affects the efficiency of the technology and happens to be a direct

or indirect factor in most of the other issues excluding the blockchain size. Therefore,

it serves as a solid ground that supports and validates the need and importance to

improve the performance of the technology. The review in the next section is narrowed

down to focus on other proposed solutions to address the performance issue and the

impact of the scalability issue.

2.1.2 Current Solutions/SoA Addressing Performance in Blockchain

In this section, we will discuss the work done by others to address the issues mentioned

in the previous section and how the solutions are affected by the scalability challenge.

Blockchain technology remains the most decentralised and secured information process-

ing system with its great attributes that can be utilised beyond Bitcoin and the financial

sector. The adoption is still however facing issues such as performance and scalability.

Researchers have taken different approaches to solving the challenge for different use

cases. The approaches can be categorised into On-chain (first layer), Off-chain (second

layer), Side-chain and Child-chain (Chauhan et al., 2018).

On-chain or first layer solution: require making a change to the actual blockchain

without altering any of the main features or characteristics of the technology. Off-chain

or second-layer solution: is an additional protocol built on top of the main chain to

enable performing transactions without adding much congestion to the network. Side-

chain: approach is to enable communication between blockchains. Child-chain: uses

the parent-child approach, where a transaction is recorded in the parent chain after

being processed in the child chain (Kim et al., 2018).

Blockchains using PoW are still facing hindering performance issues and any attempt

to improve that value ends in trading off security or decentralisation (Khan and Miˇ,

2018). The block size is still limited to 1MB which leaves the transaction pool getting
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flooded with unconfirmed transactions, and increasing the size will require all partici-

pating miners to reach a consensus before they can adopt the new size (Mechkaroska

et al., 2018a). The section will discuss work done by the financial industries and other

interesting parties trying to address the scalability and performance issues around the

Proof of Work consensus protocol. The discussion will critically analyse the approach

based on how it satisfies security, decentralisation and speed.

2.1.2.1 On-chain/first-layer solution:

Sharding (ETHEREUM): Sharding simply means partitioning, it is a solution

suggested by Ethereum developers in their quest for a scalable blockchain. The idea

suggests dividing the blockchain into a partition of shards with each shard having a

different state, therefore, different history. Nodes will be grouped into shards and each

shard is capable of processing a set of transactions and at the same time updating the

state of the blockchain. The mining process is divided into the partition, and each node

will focus on mining its partition instead of all nodes mining the whole data (Luu et al.,

2016).

One of the backbone reasons for the PoW algorithm succeeding security-wise is the

ability to maintain a single state across all nodes on the network, and a successful

attack requires at least 51 percent of the whole network. Dividing the workload on

the network will improve the transaction processing time because there will be fewer

amounts of data to verify and validate when processing and confirming transactions

(Dang et al., 2019). It also makes the network less secure because a successful shard

attack can give an attacker the monopoly to control data if the attacker succeeds in

taking over the majority of the collators in the shard (Chauhan et al., 2018).

Sregated Witness (SEGWIT): The idea was proposed by the bitcoin developer Dr

Pieter Wuille. He suggests increasing the number of transactions in the Bitcoin block

by removing and storing the signature data outside the transaction block, allowing

more transactions to fit in a block. The signature data takes more than 60 percentage

space in a single transaction and removing it has enabled processing 1.7 to 4 times more

transactions than before (Kim et al., 2018). SEGWIT has been added to the Bitcoin

protocol in August 2017 Mechkaroska et al. (2018b). The solution has improved the
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transaction throughput without any scalability issues but the rate is still not enough

to satisfy the performance requirement.

Hard Fork: Hard fork is an update in the network protocol that validate the previous

invalid blocks and transactions, it makes the previous version of the software incom-

patible. There is a new coin called Bitcoin Cash (BCH) that has the same structure

as the normal Bitcoin but with a larger block size of about 8MB. The coin is expected

to have a throughput of 60+ transactions per second (Kwon et al., 2019). Another ex-

ample is Litecoin, designed to reduce block generation time. Its block generation time

is 4 times better than bitcoin thus, has a faster transaction speed of about 56 transac-

tions per second (Clarke et al., 2018). It is still not enough to satisfy the performance

requirement.

2.1.2.2 Off-chain/Second-layer solution:

There are dozen of new application solutions that are faster than the bitcoin network

as of the time of writing, especially with the rapid growth of the technology world and

the potential of blockchain technology. There are the likes of oracle blockchains that

provide blockchain as a service to ease and enable blockchain adoption. This section

will concentrate on the solutions that are believed to be motivated by the proof-of-work

challenges and relevant in the context of solving the scalability issue.

1. Lighting Network:

The lighting network solution proposed addressing the scalability issue by adding

an extra layer to the blockchain and introducing channels to be used in perform-

ing a transaction. It enables users to create a payment channel that requires only

the participating parties when validating a transaction (Chauhan et al., 2018).

The required number of nodes to participate in the consensus on the traditional

blockchain is equal to the number of participants in the network which can be

any number depending on the connected nodes. On the lightning network, the

number of participating nodes equals the number of participants. It uses native

smart-contract scripting to store transaction information on the main chain after

it is conducted off-chain. Thus, it is very fast promising a transaction speed of
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millions of transactions per section surpassing Visa’s ability of 45,000 transac-

tions per second (Poon and Dryja, 2015). Should it be achieved, it will be the

fastest financial transaction on the globe. The solution did not technically solve

the blockchain’s challenge rather it solved the Bitcoin’s or cryptocurrency chal-

lenge by proving a new way of performing transactions away from the blockchain

complexity and issues.

2. Plasma:

Plasma is an off-chain solution for the Ethereum blockchain network that focuses

on a scalable autonomous smart contract which proposed pushing the computa-

tion process off-chain. Like the lightning network approach addressing the issue

from the bitcoin angle, Plasma is doing similar to the smart contract perspec-

tive. It uses a child chain on top of the main blockchain refers to as a root chain

that allows having multiple side chains with each having its business logic. The

plasma does the data computing and process before passing only the block header

to the root chain where the state of the blockchain is stored (Bez et al., 2019).

Figure 2.2 depicts a small architecture of how it works. The Root Chain is the

main blockchain that all block headers are sent to after processing in other shown

chains.

Figure 2.2: Plasma description

Source (Rosic, 2020)

A plasma chain can be custom created by anybody for a variety of reasons, but the

state transition is enforced by fraud-proof. If fraud is identified by proof of fraud

when submitting a block header to the blockchain that block will be rolled back
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(Poon and Buterin, 2017). Security-wise, it is safe to rely on the root chain which

is just relying on the current blockchain to keep the smart contract. It is another

solution that is addressing the challenges for a particular use case (Ethereum)

instead of solving it for the whole technology.

3. Raiden Network:

The Raiden solution is referred to as the etheruem version of the lightning net-

work. It works just like the lighting network, it also includes the two-way channel

that is a big factor in the lighting network. The only difference comes in the

Bitcoin and Etheruem way of function which is, Bitcoin is strictly for financial

transactions (Cryptocurrency) and Etheruem can be used for smart contracts

(Khalil and Gervais). Nevertheless, the solution cannot be generalised because

it provides an avenue to perform a transaction away from the blockchain in a

way that suits a particular cryptocurrency (Ethereum) and might not apply to

another cryptocurrency not to mention sectors.

4. Trinity:

Trinity is a second layer solution built on the NEO blockchain, it aims to enable

real-time transactions with a lower fee and reduce the traffic on the main chain

as explained in (David Yiling Li, 2018). It uses the state channel approach and

adopts zero-knowledge proof to protect data and improve privacy. All settlement

amounts are broadcast to the entire network to ensure trust and decentralisation.

Trinity does for NEO assets what the Lighting Network is doing for Bitcoin and

Raiden Network is doing for Ethereum Ramachandran et al. (2018). It also solves

the challenges for its use case, not the technology.

2.1.2.3 Conclusion

The section discussed other solutions proposed and implemented to address the con-

cerns around the technology. On-chain solution sharding proposed by the Ethereum

developers speeds up transaction processing time but lessens the security because an

attacker has higher chances of successfully attacking a partition than attacking the

whole blockchain. Other solutions have been successfully implemented but do not cer-
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tify the performance requirement especially when future network growth is considered.

Off-chain solutions review came across many prospect ideas and solutions that will

very well certify the blockchain performance requirement for some particular use cases

or types of use cases but not the blockchain as a technology. Sidechain is a solution

that uses the normal blockchain in its current form in the background and its proposed

side-chains do not conform with the decentralised idea of the blockchain that enforces

the need to keep the same state across all connected nodes. DPoS used as the consensus

protocol also has scalability issues as discussed in the next section.

2.1.3 Consensus Protocols:

The solution to the performance issue of blockchain technology may be addressed by

looking into the various protocols. This allows gaining insight and quantitative analysis

of other protocols proposed as a solution to the performance and scalability issue.

The research interest and comparison parameters are the decentralisation, security and

performance of the protocols.

2.1.3.1 Proof of Work Protocol

The proof of Work algorithm is a consensus protocol used in Bitcoin and Ethereum

blockchain in producing new blocks in the chain and bringing all nodes in agreement,

validating and verifying transactions while securing the entire network against mali-

cious attacks (Yaga et al., 2018). It solves a complex mathematical puzzle in order to

validate transactions, generate a new block and link it to the blockchain. One of the

main attributes that made the protocol succeed is the fact that it is hard to find a

solution for a given problem but easy to verify if a solution is correct. There are other

consensus protocols such as Proof-of-Stake, Proof-of-Vote but the research is trying to

address the performance issue of the blockchain technology from the PoW algorithm

perspective because the protocol remains the most secure and decentralised, trustwor-

thy and reliable protocol than any other one because it allows all connected nodes to

participate in the mining process without any form of selection.

The part of the protocol used in generating a new block is called the mining process, the

process that incurs a large amount of processing power. Mining is a key concept that is
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part of PoW protocol contrary to some misunderstanding the research came across that

portrays it as being the whole protocol. The mining is a task within the protocol that

is used in finding the signature or in other words the right hash value of a block before

a block can be added to the long chain (Aste et al., 2017). The task is computationally

expensive; therefore the first miner to find the right signature is rewarded with some

Bitcoins (Ghimire and Selvaraj, 2019). The flows in figure 2.3 represent the flow of the

mining process. The states of the flow chart are self-explanatory.

Figure 2.3: Flow of the mining process

Source (Ghimire, 2018)

The idea is for miners to search for a value called nonce value, an integer number

between 0 to 2224 that enables the resulting hash (SHA-256) of the block header to
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start with a certain number of zero (O’Dwyert and Malone, 2014). The rate at which

the value can be found is controlled by a set difficulty target value but is still influenced

by the speed of the mining nodes (Ghimire and Selvaraj, 2019).

• Difficulty The relationship between the target and the difficulty can be repre-

sented in the equation below.

D =
Tmax

t
(2.1)

Difficulty (D), Target (t), Largest possible target value T max.

• Nonce The miners are expected to find a value that satisfies the following equa-

tion.

H(B.N) < T (2.2)

Hash function value (H), other block data (B), Nonce value (N), the target value (T).

• Probability The probability of finding a nonce value.

p =
T

2256
=

Tmax

D2256
=

1

D232
(2.3)

True Positives (TP), True Negatives (TN), Total of positives (P), and Total of Negatives (N).

2.1.3.2 Proof of Stake (PoS):

Is some worth different than the PoW in the methods of validation of transactions?

The Proof of Stake shares the same purpose as PoW but the procedures for achieving

the purpose differ (Thin et al., 2018). It is energy efficient unlike PoW, which doesn’t

reward miners for creating a new currency, it has all its currency created at stake

(Decker et al., 2016). Saving the cost and the processing time. PoS is faster than

PoW in processing transactions with block mine time at 15 sec which is about 40 times

faster (Thin et al., 2018). Therefore, with a limited block size of 1MB, this approach

can accommodate approximately 7 transactions in 15 sec, which is much faster than

PoW but still insufficient to compete with the likes of Visa and not as secure as PoW.
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There are chances of a small group having the monopoly of the system by having the

majority of the tokens which is a big concern for the security of the blockchain system.

Figure 2.4 is a good illustration of the miner, block and a statement on how the miner

is chosen.

Figure 2.4: Proof of Stake

Source (Sharma, 2018)

2.1.3.3 Delegated Proof of Stake (DPoS)

Uses a consensus algorithm that maintains an irrefutable agreement on the trust that

exists across the network. DPoS serves as a validation mechanism for transactions but in

this case, through acting as a digital democracy mediator which uses a real-time system

and entails a voting system (Chaumont et al., 2019). The procedure is effective with

its democratic approach enabling producing a block at the speed of 10 sec per block,

60 times faster than PoW and surpassing PoS by 5 sec. It saves energy by reducing the

complexity of the mathematical puzzle and specifying a time for adding a block. DPoS

is deemed to be efficient and effective in the method of validating transaction (Yang

et al., 2019). The solution provides higher transaction throughput but loses security

and decentralisation compared to PoW because it requires fewer nodes in keeping the

network alive which makes the ”51 percent” attack easier and the nodes with more

tokens can influence the network.
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2.1.3.4 Byzantine Fault Tolerance (BFT)

To understand BFT better it is important to understand Byzantine General Problem:

Byzantine army are camped in divisions a night before a battle, and each division has a

general that command all its activities. There are messengers used in passing messages

between the generals and the fear is one or more of either the messengers or the general

is a traitor. Thus, the traitor messenger can pass wrong information and the traitor

general can sabotage the plan (Lamport et al., 1982).

Byzantine Fault Tolerance defines a system that tolerates the Byzantine General Prob-

lem in safeguarding the system against faulty nodes (Castro and Liskov, 1999). It is

based on the assumption that having a reliable network requires at least two-thirds

of the consensus participating nodes to be reliable and honest (Driscoll et al., 2003).

Reducing the influence of faulty nodes by enabling cryptocurrencies to reach consen-

sus based on PoW where there are maliciously acting nodes on the network (Sankar

et al., 2017). Technically, the incoming message must be repeated by all connected

nodes, if successful, the malicious issue will be ruled out and otherwise, the node is

considered malicious or faulty (Jalalzai et al., 2019). Figure 2.5 illustrate the byzantine

general problem. The blue arrow shows a well-functioning node while the red shows

faulty nodes. the left side shows a successful attack while the right side shows an

uncoordinated attack.

Figure 2.5: Byzantine Fault Tolerance

Source (Mitra, 2019)
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2.1.3.5 Practical Byzantine Fault Tolerance (PBFT)

Practical byzantine fault tolerance is a replication of the tolerate Byzantine faults (BFT)

designed to address many of the problems associated with BFT (Castro and Liskov,

1999). PBFT achieves consensus by solving a mathematical puzzle that is less complex

and transactions are processed and finalised faster than the PoW because it does not

require multiple confirmations. The algorithm has a finite or known number of entire

nodes, therefore, it is hard to use the protocol in public systems. One of the limitations

of this protocol is being susceptible to a Sybil attack: an attack where an entity can

have many identities. It also has a scalability issue because an increase in the number

of nodes increases the response time(Castro and Liskov, 1999) . PBF is currently used

in Ripple and Stellar.

The protocol uses a voting approach in approving blocks and the validators commu-

nicate with a peer-to-peer gossip protocol. The protocol proceeds in rounds trying

to reach a consensus on the next block. In each round, a proposer will suggest what

should be the next block and the nodes will validate and respond with a message called

VoteMessage. The block will be committed and later added to the chain if enough

nodes vote for the same block. According to Cachin and Vukolić (2017), the protocol

suffered a live lock bug pertaining to the locking and unlocking votes, there is a need

for thorough correctness analyses of the protocol.

2.1.3.6 Ripple:

The protocol is usually known as Ripple Transaction Protocol (RTXP), it consists of two

types of nodes, one participates only in transferring funds and the others are involved in

the consensus process. The consensus protocol validates transactions through a network

of servers instead of the blockchain mining concept, the approach saves energy, enables

almost instant transaction confirmation and costs less. Ripple does not have a limit on

the block size but rather on the bandwidth limiting the amount of data that can be sent

within the confirmation window. Unlike the PoW consensus protocol, ripple doesn’t

handle failure in the case of an attack, it notifies the validators for the bad actor

to be removed and allows the consensus process to resume (Chase and MacBrough,

2018).
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2.1.3.7 Stellar Consensus Protocol (SCP):

The protocol was proposed by David Mazieres introducing the concept of quorum slices-

A subset of quorum that helps nodes in the processing agreement. A quorum is a set

of nodes working together to achieve consensus. It consists of nomination protocol and

ballot protocol. The nomination protocol is used in producing a new set of candidates

for approval, the values will be circulated to each node to vote for a single value and

eventually result in having a collectively agreed value for that slot. Slot: is used to

identify updates. The ballot protocol is used in deciding the faith of the result of the

nomination, either to commit or to abort. The protocol does not entail dynamic or

complex security within the process like the way PoW there are not enough encryption

and verifications thus, it does not always guarantee safety (Mazieres, 2015).

2.1.3.8 Proof of Vote

Li et al. (2017) proposed proof-of-vote as a new consensus algorithm targeting the con-

sortium blockchain. The protocol’s approach to reaching consensus is through voting.

The protocol has different roles and security identities that regulate the behaviour of

the protocol. They include the Commissioner that performs the duty of verifying and

forwarding blocks transaction and the Butler (in other words node) that specialised in

producing a block. The model can ensure a low transaction delay with a high perfor-

mance of the blockchain. POV is not as decentralised as the PoW it has controllable

security.

2.1.3.9 Proof of Learning

Bravo-Marquez et al. (2019a) proposed a new cryptocurrency called wekaCoin that uses

proof-of-learning as its consensus protocol. The protocol’s approach is fully captured in

figure 2.6. The protocol approach to validating blocks and transactions is inspired by

and uses machine learning competition instead of the hashing-base puzzles. The process

has three types of participants: A supplier that hosts the machine learning competition,

a trainer that trains and submits transactions and a validator that evaluates and verifies

the models, reaches consensus and proposes a new block to be added to the chain.
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Figure 2.6: Proof of Learning Flow

Source (Bravo-Marquez et al., 2019b)

2.1.3.10 Conclusion

The section discussed other solutions proposed as a new consensus protocol. The main

concern of these solutions is the scalability issue where they have to trade off decentrali-

sation or security. The main assets of blockchain technology include the decentralisation

and security it brought through its mechanism, enabling the technology to eliminate

the need for central monitoring in financial transactions (Chauhan et al., 2018). The

reliability and trust that comes with the technology when Bitcoin started were a result

of the decentralisation and security of the protocol. Therefore, it is important to find

a solution that is secured and decentralised to ensure more efficiency of the technology.

Thus, the research focuses on improving the PoW consensus protocol that is the most

decentralised and secured.

2.1.4 Conclusion

The first part of this section discussed many concerns about the performance of blockchain

technology from different works of literature that there is a gap in this technology that

calls for a solution to improve the efficiency of the technology across sectors. The sec-

ond part of the section discussed other solutions proposed and implemented to address

the concerns around the technology and the review came across many prospective ideas

and solutions that will very well certify the blockchain performance requirement for

some particular use cases or types of use cases. The new proposed protocols are strug-

gling with the trading-off decentralisation or security which are the pillar part of the
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blockchain architecture (Chauhan et al., 2018).

Only the second-layer solutions have achieved the required speed but the argument

with these solutions is that they are not addressing the issues for the technology, they

provide another layer where millions of transactions can be processed and confirmed

before they will be passed on to be stored on the blockchain. The second layer solutions

are also not applicable to other use cases and blockchain as a technology is a solution

that is used across many sectors therefore, they are not considered a solution to the

technology which is why other researchers continue to propose new protocols.

The review serves as a solid ground that supports and validates the research problem

statement and motivation by highlighting the importance to improve the performance

of the technology and how the concern is shared among other researchers, experts

and other parties interested in the technology. Since all new solutions are considered

less secured or decentralised if compared with the PoW, then, the research will focus

on solving the issues on the protocol (PoW) in line with its research questions and

hypothesis.

At this stage, the research carried out a series of analyses as discussed in chapter 5. The

essence of these experiments is to have a practical understanding of the problem and

identify the exact factor affecting the performance of the technology as the answer to

the first research question. The experiments identified the nonce searching process when

generating a new block as the main factor affecting the performance of the protocol.

To answer the question, there is a need to answer the subquestions by first finding the

right technique that can be used to speed up the nonce searching process.

After another series of experiments trying many ideas and techniques, the research

proposed using prediction to take the miners searching for the nonce value closer to

the value. This way, there is no modification to the protocol that will affect or lead to

losing the decentralisation or security of the protocol. Therefore, the research identified

using the machine learning technique as the best approach to achieving the goal of

the research because of its ability to learn and predict or classify. Machine learning

is new to the research, therefore, there is a need for a detailed understanding of the
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technique to ensure successful implementation. From here research was introduced

the second research question and the next chapter introduces machine learning as a

technology.

2.2 Machine Learning Review

In this section, we are going to review Machine learning because it is the technology we

are going to use to optimise the block generation time. Machine learning is an important

part of artificial intelligence that refines the automotive learning process of computers

using techniques from a wide range of algorithms applicable in different domains based

on data models such as regression or classification (Ray, 2019). It deals with teaching

a computer without explicitly programming it (Mitchell, 1997). It comprises princi-

ples from various combinations of disciplines such as information theory, philosophy,

statistics and probability, neurobiology and psychology, control theory, computational

complexity and artificial intelligence (Kim et al., 2016). The algorithms of machine

learning are used in various applications and provide various benefits. Performance

of machine learning strongly depends on the amount and quality of given data, which

shows the strong connection between data integration and machine learning as em-

phasised by (Dong and Rekatsinas, 2019). Over the years, machine learning techniques

have been used to automate processes in a wide range of fields including cryptocurrency

Demir et al. (2019) used some regression models to predict Bitcoin price. It has been

used to solve many problems for systems such as recognition systems, informatics, data

mining, and autonomous control systems.

2.2.1 Review of machine learning techniques

The generosity of machine learning algorithms or techniques illustrates data analysis

and problem-solving approaches to resolving complexities (Bernardi et al., 2019). The

machine learning technique is an important tool used in data mining to determine

the relationship between data in large datasets (Sharma et al., 2013). The techniques

empower data insights and tend to forecast future trends, changes and opportunities

(Kotsiantis et al., 2006). To harness the machine learning key techniques, we employ

computational methods to learn information directly from available data (Shrivastava
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and Kumar, 2019). The available machine learning techniques count on supervised,

unsupervised, neural or deep learning, reinforcement and transfer learning methods to

accommodate data efficiency and effectiveness in Blockchain technology.

2.2.1.1 Supervised Learning

Supervised machine learning makes use of statistical models to predict output in nu-

merical data and have the correct label classified (Saravanan and Sujatha, 2018). Su-

pervised ML techniques count on the available dataset to make reasonable predictions

(Bzdok et al., 2018). The famous supervised techniques are categorized as classifica-

tion and regression. The outcome of supervised learning is based on past experiences,

optimising performance criteria and resolving real-time computational problems (Singh

et al., 2016). The strength of supervised machine learning resides in known training and

labelling, class identification, specification of data, and predicting the numerical target

value of given data and labels. The supervised learning is applicable to marketing and

sales, lifetime analysis, churn rate and people analytics (Winter, 2019).

Classification Classification tends to group label input through binary or multi-class

classification, F.Y et al. (2017) categorized supervised learning algorithms as linear (lo-

gistic regression, and support vector machines), non-linear models (KNN, SVM, Näıve

Bayes, decision tree and random forecast classification). The method facilitates the

specification of class for determining class elements and usability of discrete value out-

put (Kotsiantis et al., 2006). Common examples of classification include the classifica-

tion of email as spam or harm, customer segmentation, bank loan grants, and positive or

negative outcomes. Using the probabilistic interpretation, classification aims to group

or classify similar tasks and things by agreeing on considerable satisfied conditions. The

implications of classifications are extended to real-life problem solutions (Binkhonain

and Zhao, 2019).

Regression process The regression analysis techniques predict values by taking

training or input data and emphasising continuous numerical values (Cui and Gong,

2018). The regression models are applied for determining the relationship between

two variables to ascertain forecasting. The regression takes on quantity while on the

other hand, classification methods account for discrete class levels. The implications
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of machine learning and regression analysis feature relationship effect, change in target

variable and predict future trends. The categorization of regression features linear,

multiple, logistic and polynomial regression (Binkhonain and Zhao, 2019). Oracle at-

tributed regression as a data mining function for predicting numbers but the scope of

regression is extended to financial forecasting, trend analysis, marketing and time series

prediction. Some common types of regression algorithms include:

• Logistic regression: The algorithm identifies the dependent variable as binary or

dichotomous where two class values determine the categorical dependent variable.

The logistic regression method estimates the occurrence of an event by interpret-

ing input values and the probabilistic nature outline the result in 0 and 1 and 1

is ascribed to complete certainty (Bonaccorso, 2017). The real-life implications

of logistic regression surround fraud detection, credit card scoring, clinical tri-

als, customer insurance and real estate. The distinguishing element of logistic

regression is openness to dependent variables and projecting quantified value of

the relationship between variables.

• Linear regression: The methods interpret the relationship between quantitative

target variable Y and input variable X. The linear regression predicts output with

the constant slope in a continuous range in making predictions and estimations.

The regression algorithm corrects weights and overcomes biases for approximat-

ing the best fit. The regression slope depicts a positive or negative relationship

between two variables while multiple regression features relationship complexity.

Abdelsamea et al. (2017) emphasized regression models in machine learning and

minimizing the variance between actual and predicted values and it incorporates

cost function and gradient descent. The model performance or goodness of fit for

predicting the best fit line can be obtained through the R-Square method (Cui

and Gong, 2018). The model can be used in financial portfolio prediction, salary

forecasting, and traffic trends accompanied by multiple regression exposure to

social sciences.

Challenges of supervised learning Supervised learning encounter challenges to

justify the adoption of supervised machine learning techniques. Collection and organi-
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zation of data are critical for extracting relevant information and predictions and it’s

a big hurdle to find relevant data that is enough to allow good performance of the

model. In addition to that, probability accuracy is also subjected to deviations and

standardized approaches are less relevant to data mining and extraction (Kathole and

Chaudhari, 2019).

2.2.1.2 Unsupervised Learning

Unsupervised machine learning techniques lean on intrinsic or hidden structures by

drawing inferences from input data without labelled responses (Celebi and Aydin, 2016).

Unsupervised machine learning does not possess label data. In regards to this, data

samples are stored in cluster groups depending on how similar or dissimilar they are

(Vats et al., 2018) making use of different approaches. For instance, association rules

algorithms and K means clustering. The rationale for unsupervised learning is to maxi-

mize the utility of exploratory analysis, finding unknown patterns, real-time processing

and ease of extracting unlabeled data. The unsupervised learnings categorize cluster-

ing, visualization algorithms, anomaly detection and association. The unsupervised

learning techniques don’t require laborious data labelling and take on unlabeled data

for the training process to comprehend output or the decision making process. Some

common techniques of unsupervised learning include:

• Clustering: It’s a concept that deals with the structure or patterns of unlabeled

data and process data in clusters or groups by determining class methods and class

models. The clustering process categorizes or groups data of similar characteristics

where the algorithm defines output. The famous clustering techniques are K-

means, K-Medians, Expectation Maximization (EM) and Hierarchical clustering

for accommodating machine learning (Celebi and Aydin, 2016).

• Visualization: The visualization algorithms absorb unlabeled data and display it

in 2D or 3D format where visualization of cluster provides room for interpretation.

The anomaly detection technique is applied prior to training and is applicable for

detecting criminal activities (Abdelsamea et al., 2017).

• Association: The outcome of association learning methods create a relationship
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among data objects and variables in large databases. The examples of associations

illustrate new home buyers who are more likely to buy new furniture

• Anomaly detection: The algorithm detects anomalies or errors in data without

any prior training or input data for example suspicious credit card transaction

detection to undermine criminal activities. The anomaly detection technique is

used to detect the different or distinguished things and spot outliers with more

specifications (Hasan et al., 2019). For example, anomaly detection complements

the detection of suspicious data and taking corrective measures for corrections

Challenges of Unsupervised learning The freedom to use raw data questions

relevancy and algorithm usefulness as data lacks label information. The uncertainty

and lack of precision are quite evident in unsupervised learning and manual inspection

becomes paramount in unsupervised learning. Unsupervised learning defines blurred

problems due to a lack of labels and it becomes ambiguous for AI to interpret data and

performance measures (Soni, 2020).

2.2.1.3 Reinforced Learning

The area of machine learning maximizes the likelihood of cumulative reward by fo-

cusing on the balance between explorations (unchartered) and exploitation (current

knowledge). Reinforcement learning prioritizes penalties or rewards for actions for cor-

rect and wrong moves. The rationale for using reinforcement learning is yielding worthy

actions and rewarding them by configuring which action needs large rewards (Montague,

1999). Examples of reinforcement learning are autonomous cars, deepsense.ai or learn-

ing to run projects, industry transformation through robotics, trading and finance and

natural learning processing (NLP).

The reinforcement learning methods emboss decision making by presuming game-like

situation and use trial and error methods for providing solutions with the typical re-

inforcement scenario features agent, environment (e), reward (R) state (s), policy (π),

Value (V) and Q value or Action value (Q). The operational scenario of reinforcement

learning emanates value-based, policy-based, and model-based algorithms. In rein-

forcement learning, there is no supervisor for sequential decision making and delayed
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feedback for positive and negative whereby Q learning and Markov decision process

(Montague, 1999).

The reinforcement learning process enables an agent to learn through the environment

by using feedback from their own actions and experiences. The exploration vs exploita-

tion trade-off is the dilemma for exploring new states and maximizing rewards. Q

learning and SARS are frequently applicable methods of reinforcement learning. The

challenge with reinforcement learning is the availability of a simulation environment

which is task-dependent. The complexity of reinforced learning is attributed to uncer-

tainty in an environment which restricts collision. Moreover, reinforcement learning also

encounters scaling and tweaking of agents and reaching local optimum are also enlisted

as challenges to reinforcement learning. The limitation of a specific environment where

enough data availability is ensured makes reinforcement a complex time-consuming

method. The reinforcement learning method also faces challenges of reward/feature

design, parameters, realistic environment, and information overload (Zihan and Dong,

2020).

2.2.1.4 Comparison of Supervised, Unsupervised and Reinforcement tech-

niques

The thin line between supervised and unsupervised learning accentuates labelled datasets,

available with algorithms to interpret data accuracy on training data. The availability

of both input and output variables distinguishes supervised learning as algorithms are

trained to use labelled data. Supervised learning ponders over input and output data

links for the training models which authenticate the accuracy and trustworthiness of

output with the real-time learning process while the other hand, while unsupervised

learning doesn’t use output data where a number of classes are not known. The classi-

fication of supervised learning is a challenge whereby unsupervised learning is labelled

and not known (Sathya and Abraham, 2013).

Supervised learning requires a large amount of data inputs followed by annotation for

categorization. On the other hand, unsupervised learning is free from data classification

and the clustering process counts on machine learning interpretation. The algorithms

used in supervised learning are enlisted as support vector machines, neural networks,
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classification and regression. On the contrary, unsupervised learning uses different algo-

rithms namely clustering, K-means, and hierarchical clustering which becomes complex

for computation (Berry, Mohamed and yap, 2019). The comparative analysis of su-

pervised, unsupervised and reinforcement learning methods is tabulated in the table

2.1

Attributes Supervised Unsupervised Reinforcement

Specification Data labels are used for

training and machine

learning

The training process

counts on unlabeled

data without any prior

guidance

Agent interacts with

environment and

learns from errors or

rewards

Categories Classification and Re-

gression

Clustering and Associ-

ation

Reward-based

Data type Labeled Unlabeled Spontaneous data or

feedback

Supervision Strict No No

Perspective Mapping labelled data

inputs to known out-

puts

Patterns understand-

ing and discovering

outputs

Trial and error

Algorithm Linear regression, lo-

gistic regression, SVM

and KNN

K-Means, C-Means

and Apriori

Q Learning and

SARSA

Objective Outcome based Discovering patterns Learning through feed-

back

Application Risk Evaluation and

forecasting

Anomaly detection Self-driving and au-

tomation

Table 2.1: Source: (Dangeti, 2017)

2.2.2 Machine Learning and Blockchain

In recent times, machine learning and blockchain have been two major focal areas

in emerging research. Machine learning is the practice of developing learning models

on computers that will parse data and provide decisions or predictions for some real-
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world problems. On the other hand, blockchain can process and store data, preserve

the integrity of data and govern the accessibility of peers without needing any cen-

tralized administration. Those researches are significant data-driven and each has its

bottlenecks and advantages. This section highlights the strides of other researchers and

company experts to use machine learning in blockchain technology. The discussion will

focus on discussing what has been achieved, techniques and results to provide a base for

the possible success of the approach. The discussion highlighted all ideas the research

could find in no particular order of selection because they are not many.

2.2.3 Blockchain security attack detection

A major concern of the public in regard to blockchain technology is its performance

in terms of security. Although blockchain makes use of consensus and cryptography to

enforce its network privacy and security, it is not entirely immune to attacks. Bitcoin

researchers Conti et al. (2018) identified that bitcoin is vulnerable to some specific at-

tacks, even though it has been able to run continuously for years. Some vulnerabilities of

Ethereum were exposed in 2019 and it was identified that the network has experienced

different forms of attacks like 51 percent attacks and data breaching attacks (Chen

et al., 2019a). One of the tools to improve blockchain security is machine learning. The

work Scicchitano et al. (2020) proposed an unsupervised machine learning approach

in identifying various activities of the network on blockchain. The proposed detection

system of anomaly constructs a neural model of encoder-decoder which possess the

capability to summarise the status of the ledger in a ledger sequence-by-sequence man-

ner. The system possesses the ability to identify the difference in the status between

anomalous situations and have the alert triggered accordingly.

Dey (2019) intended to improve the consensus mechanism of blockchain through mak-

ing use of game theory and algorithm of supervised machine learning. An improved

Proof-of-Work consensus was adopted for preventing any attacks that can be quantified.

Through the analysis of the attacker’s activities and rewards, a payoff/utility function

can be achieved and fed into the supervised machine learning model. This model of

machine learning possesses the ability to detect whether an attack can be expected to

happen or not based on community/service value. If the attack has a high likelihood of
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happening, the machine learning agent possesses the ability to prevent confirmation of

blockchain until a new block is produced again. The work iteHou2019SquirRLAA intro-

duced the SquirRL framework a deep reinforcement framework for learning that can be

used to evaluate the rewards in the blockchain. Although the squirrel framework is used

in detecting the activities of adversaries in the network, it can automate the detection

of a vulnerability in the incentive mechanism of the blockchain. In the instance that

the theoretical analysis is infeasible, SquirRL stands as an essential tool for blockchain

engineers in verifying the design of protocols during their phases of development.

2.2.4 Cryptocurrency and Mining

Thanks to cryptography and blockchain, the advent of cryptocurrency has drawn signif-

icant attention. Unlike stocks and fiat money, cryptocurrencies have experienced major

unstable fluctuations and have been a major disruption in the investment industries.

Researchers have carried out steady and continual progress on how the profitability of

cryptocurrencies can be improved through applying machine learning models to assess

network data and market performance. The work McNally et al. (2018) proposed a

method that can help in the prediction of fluctuations in the price of cryptocurrencies.

The method proposed collects the online posts of users and comments that are related to

activities of the cryptocurrency market and carries out an association analysis between

the data collected and price fluctuations of cryptocurrencies. The model finally drawn

identified that approximately 74 percent weighted average precision in the Ethereum

and Bitcoin markets. The work Madan (2014) focused on automating the trading of

Bitcoin through supervised machine learning algorithms by adopting binomial logis-

tic regression and random forest in supporting the vector machine. Their method of

learning was trained with the price index of Bitcoin and achieves more than 55 percent

precision. Jang and Lee (2018) adopted the Bayesian Neural Network algorithm for the

training of the supervised learning model. The data for training the empirical study

comprise the cryptocurrency market volumes and prices, financial stock market infor-

mation and global currency ratio. A promising result was presented in their research

in regards to anticipating the price time series of Bitcoin and providing an explanation

for the volatility of the bitcoin market.
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The work McNally et al. (2018) combined two different forms of deep learning models

in forecasting the price of Bitcoin with the Long-Short Term Memory (LSTM) and Re-

current Neural Network (RNN) algorithm. The two models were identified to achieve

approximately 50 percent of accuracy in simulations but the LSTM model possesses

the capability to acknowledge the dependencies of the market in the long term period.

Jourdan et al. (2019) formulated a few dependencies that are conditionally induced by

the block design of the protocol of Bitcoin and proposed a probabilistic graphical repre-

sentation for the prediction of the value of UTXOs, which records the number of Bitcoin

that is used in each transaction. The work Wang et al. (2021) adopted the Reinforce-

ment Learning algorithm to analyze the profit attached to different forms of mining

strategies and discovered the optimal strategies to mine over time-varying networks of

blockchains. Some researchers showed that the mining of Bitcoin cannot be quantified as

a Markov Decision Process (MDP), and different reinforcement learning algorithms can

be applied in constructing the model of MDP (Eyal and Sirer, 2013). Aside from that,

the work iteNguyen2020 introduced a reinforcement learning-based offloading scheme

that provides assistance for mobile miners to determine the optimal decisions to offload,

reduce consumption of energy and avoid latency in the network.

2.2.5 Transaction entity classification

Bitcoin has continually been accepted as an alternative medium for exchanging value.

Some users have taken advantage of the Bitcoin network for illegal transactions and

purposes. With CoinJoin mix services, Bitcoin has been identified as a currency that

is safe in the darknet markets and can be used to launder money. As a result, there

is an urgent need for developing address and transaction tracking systems. Machine

learning has generally been identified as an essential tool to carry out cryptocurrency

address labelling and clustering for detecting illegal activities in the year 2017, the

work Sun Yin and Vatrapu (2017) developed different forms of classifiers making use

of supervised machine learning models for identifying Bitcoin addresses that relate to

illegal or criminal activities. The following year Harlev et al. (2018) also proposed a

supervised learning model with an algorithm for gradient boosting. All those models

of learning can achieve 75 percent accuracy in the simulation of address clustering.

Aside from that, Akcora et al. (2019) introduced a traceable and efficient framework
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identified as the BitcoinHeist. Through the application of topological data analysis

into the record of transactions, the BitcoinHeist can automate the prediction of new

transactions of ransomware in a cluster of addresses and identify the ransomware that

does not have any record.

2.2.6 Blockchain-enabled machine learning model

s

While the systems of machine learning have become essentially powerful tools for re-

solving problems in the real world, people have continued to question the level of its

trustworthiness. In the first instance, machine learning might be susceptible to data

poisoning attacks. Hackers might endeavour to manipulate the performance of the sys-

tem by altering the data collected or inserting constructed poisoning instances. On the

other hand, it is difficult for humans to understand the decision that machine learning

systems make if there is no system logs that can be traced or specific training history.

Thirdly, the centralized servers are still significantly required for the completion of the

model training processes. Lastly, the stages of model construction are not automated

and the involvement of humans may bring about biases in the final system. A great

potential has been identified in Blockchain and smart contracts in potentially solving

such challenges.

2.2.7 Blockchain for data security

Blockchain has been well known for keeping data safe and secure. With traceable and re-

liable data stored on the blockchain, researchers can ensure that machine learning algo-

rithms will produce the most credible and trusted result. The work iteshayan2019biscotti

identified a federal learning system identified as Biscotti which makes use of crypto-

graphic and blockchain primitives in coordinating a privacy-preserving federated pro-

cess of learning between peering clients. While all the iterations of training have been

stored in the blockchain, only the updates that are peer-verified are committed to the

final model. Training data are stored locally with the data providers. This system

possesses the ability to protect the privacy of the data of an individual client and also

defend against attacks on data poisoning. The work Mugunthan et al. (2020) offered a
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BlockFlow which is a privacy-preserving federated learning system.

The system adopts various differential privacy models, introducing a novel mechanism

for auditing model contributions and making use of smart contracts to incentivize pos-

itive behaviours. Nevertheless, the system does not possess the ability to detect any

form of an anomaly during the process of learning. For that issue to be addressed De-

sai et al. (2021) developed another blockchain-based federated framework for learning

which was identified as BlockFLA. After deploying of learning algorithm, the BlockFLA

framework makes use of smart contracts to automatically detect and discourage any

form of backdoor attacks by having the responsible parties held accountably. Both of

the frameworks ensure that the algorithm of machine learning tends to be resilient to

malicious attacks.

As of the year 2018, Chen et al. (2018) introduced a secure system of supervised machine

learning identified as LearningChain. In regards to this, they developed a differential

mechanism of privacy for the process of local gradient computing to protect individual

providers of data and an l-nearest scheme of aggregation for defending against attacks of

Byzantine in the process of global aggregation gradient. Afterwards, Kim et al. (2019)

identified that the LearningChain system has various limitations such as low efficiency

in computation, zero support for non-deterministic computations of function and weak

privacy preservation. To have the issues revolved systematically, they build an improved

distributed model of machine learning for permission blockchains. With an error-based

aggregation rule and differentially private stochastic gradient descent method as core

primitives, their model provides better defences against byzantine attacks and possesses

the capability of handling the learning algorithm with defined non-deterministic func-

tions. Aside from that, Zhou et al. (2020) also proposed a system that is similarly

called the PIRATE to provide the distributed algorithms of machine learning with

byzantine-resiliency but this was designed for the 5G network.

2.2.8 Blockchain for system improvement

Smart contracts and blockchain can also be adapted to provide improvement for the

processes of machine learning and eliminate the involvement of humans. The work
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Ouyang et al. (2020) adopted a novel framework for federated learning collaboration,

the learning markets. Within the learning markets, the blockchain creates a trustless

environment for transactions and collaboration. The providers of learning tasks simply

need to publish initial tasks towards the market and deposit rewards within the network.

The trainers and the data providers participate in the process of learning through

depositing an entrance fee, having data uploaded/downloaded on the IPFS network

and having their computation power controlled. Various predefined smart contracts

serve as network agents in the maintenance of collaborative relationships and market

mechanisms. The work iteKim2020 introduced on-device architecture for blockchain-

based Federated learning identified as BlockFL. The data on the device of users are

locally processed and the local updates are accumulated on the blockchain. The updates

of the global model are calculated based on the user updates that are recorded on each of

the blocks. Primarily their architecture mainly focuses on the minimization of latency

and scalability of the system. They also identify that systems may not have the ability

to retrieve the updates of the local model on time as a result of network delay or

intermittent problems availability.

The work ur Rehman et al. (2020) provided a complete requirement list for a federated

learning framework that is blockchain-enabled including decentralization, penalization,

fine-grained federated learning, trust, incentive mechanism, heterogeneity, activity mon-

itoring and contest awareness, communication, model synchronization and bandwidth

efficiency. They also proposed the term reputation and describe how the attribute

works in their proposed framework. Aside from this, some researchers in this regard

work on the development of new mechanisms of blockchain for the distributed task of

machine learning. The work iteBravoMarquez2019ProofofLearningAB invented a new

protocol identified as Proof-of-Learning, which achieves distributed consensus through

ranking systems of machine learning for a given task of machine learning. The objective

of such a protocol is to help mitigate the computational consumption in solving puzzles

that are hashing-based while still ensuring data integrity. Toyoda and Zhang (2019)

improved the common mechanism of incentive in the current network of blockchain and

make it more applicable to the blockchain network when the task of machine learning

is involved.
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2.2.9 Transportation

The work ite9079513 introduced a mathematical framework that adapts the design of

blockchain-based federated learning into the autonomous vehicle sector. They adopt

the mechanism consensus and a renewal reward approach to be enabled on-vehicle

machine learning training in the network of distribution. The global models and on-

vehicle updates are maintained in the blockchain, which is visible to and verifiable by

all vehicles. Rewards are distributed to the owners of the vehicle based on the size of

their updates that are accepted into the global model. They also have the limitations

discussed in regard to the designs and the performance of the system based on numerical

analysis and simulations. Hua et al. (2020) endeavoured to apply federated learning

algorithms into heavily haul railway management. In their research, the train controls

are quantified into various multiple classes and the data on an individual train applies

to the SVM-based mixed kernel. The smart contract carries out the global model. This

research resolves the issues relating to Data Island in this sector and the algorithm

of asynchronous collaborative learning designed without the involvement of a central

server.

2.2.10 Healthcare

The healthcare sector has long been an early adopter of technological advancement

and greatly benefited from it. Chen et al. (2019a) introduced a blockchain-based

disease classification framework identified as Health-Chain. In the system of Health-

Chain, multiple institutes can have their model trained with their patient records, asyn-

chronously collaborate in the blockchain network and contribute to the global model

with preserved privacy. The researchers implement the systems in two tasks for disease

recognition, ECG arrhythmia classification and, breast cancer diagnosis and both sim-

ulations demonstrate promising results. Kumar et al. (2020) proposed a more elaborate

but similar supervised machine learning framework for the detection of COVID-19 in

patients. The framework proposed can utilize data that are up to date which can im-

prove the recognition of ICT images. Both the above researchers focus on developing

the machine learning models and the blockchain is adopted for enforcing the consensus

across various research institutes and aggregating the models of training. The work
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Rahman et al. (2020) gave a complete picture of the way blockchain can be adopted

from the Internet of Health Things (IoHT) perspective. From the framework they

proposed, n smart contracts are used to manage the trust management, train plan,

participant authentication and data encryption of the device. The framework design

has high scalability and security level in the health management area of IoHT.

2.2.11 Supply Chain Systems

Kamble et al. (2021) developed a model for prediction using machine learning techniques

to evaluate the probability of an organization of successful adoption of blockchain within

the supply chain sector. The researcher focuses on explaining the extent of blockchain

adoption through the use of psychological constructs from the literature regarding tech-

nology adoption. The model of learning can help managers in predicting their organiza-

tional readiness. The work Mao et al. (2018) introduced a credit evaluation system that

is blockchain-based for strengthening the efficiency of management and supervision of

the food supply chain. The system collects the evaluation of credit from blockchain

traders, directly analyzes the evaluation through a deep learning network and provides

the credit results for the management and supervision of regulators. The work Yong

et al. (2020) proposed a “vaccine blockchain” system in detail based on machine learning

technologies and blockchain. The vaccine system is designed to support the prevention

of supply record fraud and tracing vaccine inventory.

2.2.12 Blockchain andMachine Learning Issues and Challenges

These technologies are being expected enthusiastically across the globe, but yet various

obstacles resist the integration of blockchain technology and machine teaching (Bravo-

Marquez et al., 2019b). The integration of both is still at its infancy stage and many

open challenges and issues are yet to be identified or expressed. The most relevant

challenge of utilising machine learning in the application of blockchain technology is

data privacy - data generated through devices to be stored on the blockchain is available

to the entire nodes of the blockchain (Zheng et al., 2017c). This results in a potential

concern for privacy for data that needs to be stored either confidential or private and

this imposes barriers on Machine learning models for analytics and prediction.
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2.2.13 Other Applications and results

Machine learning is not limited to supervised, unsupervised learning and reinforcement

learning rather its scope is extended to semi-supervised learning, self-learning, feature

learning, sparse learning and Robotics. The categorization of machine learning is spread

to hybrid learning, statistical inferences, and learning modules. Semi-supervised learn-

ing is the type of supervised learning which counts on training data whereby few data

labels and unlabeled data are embedded for making effective use of available data. Tak-

ing inspiration from unsupervised learning for interpreting unlabeled data for extracting

clustering or pattern identification. For example, labelling the dataset of photographs

(van Engelen and Hoos, 2020). Self-supervised learning techniques count on a corpus

of unlabeled images and training for supervised learning. For example, making im-

ages grayscale or colourization and auto-encoders. Ensemble methods take the idea

by combining multiple predictive models for determining high-quality predictions. For

example, Random Forest algorithms combine multiple decision trees to reduce the vari-

ance and bias of the model.

Neural networks and deep learning captures non-linear patterns in data by embedding

layers of parameters. The simple neural network is flexible enough to build linear and

logistic regression. Deep learning collaborates with neural networks by holding a set

of multiple hidden layers and large data and better computational power for the best

performance. Deep learning is a growing field for image analysis and face recognition

where graphical processing units are required. Neural networks are expensive and time-

consuming and require large databases for accuracy and reliability. The neural networks

are reflected as black boxes where data scientists are unaware of processing and the

network tends to overfit and becomes hard to interpret (Ghasemi et al., 2018).

Transfer learning is a machine learning technique which re-trains neural networks or

re-uses part of data to adopt new tasks. Once the neural network is trained, transfer-

ring the fractions to new tasks can maximize the adoption and learning process. The

advantageous factor of transfer learning is related to less consumption of data and it be-

comes difficult to find labelled data for training. Natural language processing prepares

text for machine learning and is indirectly related to machine learning and serves as a
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support function to machine learning. Word embedding through TFM and TFIDF are

numerical representations of text documents which consider frequencies for quantifying

the text documents.

To complement data analysis, supervised, unsupervised and reinforcement learning

techniques provide comprehensive details. By delving into challenges and benefits,

the modern evolving methods of deep learning and neural processing are complex and

time-consuming. The complex nature of deep learning and the time-consuming process

makes it difficult to propel and require investment and research to gauge the viabil-

ity of machine learning in blockchain technology. Combining machine learning with

blockchain technology is considered beneficial for the interpretation of data where ac-

curacy and reliability complement transactions. The enhancement of security will com-

plement data analysis and machine learning is likely to facilitate blockchain technology

features for data sharing (Chen et al., 2019b). The evolution of data collaborates with

blockchain technology and considers secure and accurate reliable data sharing.

2.2.14 Conclusion

The first part of the section discussed in-depth the different techniques of machine

learning and cleared the pathway of understanding how and when the technique can

be used. This provided enough insight to allow the selection of the right technique

of machine learning to be applied in the research. The second part of the chapter

reviewed how the technique was successfully used in Blockchain applications such as

predicting bitcoin prices. Although that does not imply it will also be a success in

this research, it serves as a strong base of support for the research hypothesis that

says Machine learning techniques can be used to narrow down the block generation

time and improve transaction throughput. The research is going to use the supervised

learning approach in optimising the block generation time because it uses past data to

learn from experience and there are many publicly available blockchain data to work

with, and more data can be generated. The research will use the regression approach

of supervised learning instead of the classification because we are trying to predict a

value not classify one.
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2.3 Conclusion

In summary, this first section covered the relevant reviews of literature that enlightens

the research about the issues that hinder the performance of the Proof of Work consen-

sus protocol and the strides by other people to solve the challenges. The findings can

be summarised to:

• Throughput – the number of transactions that can be processed per second. The

current tps rate is very low compared to the rate achieved by other counterparts

and the mainstream payment systems.

• Block size – the amount of transaction a block can take. Understandably, It is

important to have a limit to how many transactions there can be in a block but

such a limit is, unfortunately, a big constraint to the performance because of the

time it takes to generate a block.

• Scalability – trading of security or decentralisation to get speed. Efforts by others

to solve the performance issue have so far all resulted in having to trade off security

or decentralisation to get speed.

The findings in the first part of the chapter have answered the first research question

that asked about the factors affecting the performance of blockchain technology. The

second part of the chapter has informed the research about important factors to the

success of machine learning implementation. Also, discussed the success and scope of

machine learning integration into the blockchain to further pave the way and guide the

research direction to novelty. The findings can be summarised to:

• Selecting the right technique is important in ensuring the model’s accuracy and

the selection depends on the dataset’s behaviour. In this case, the analyses dis-

cussed in chapter 5 has identified the data behaviour to be linear therefore, a

linear regression model has been selected for the research.

• Machine learning has already been used in blockchain applications to make predic-

tions that support or inform users but it has never been used within the protocol
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to support any technical process. Thus, the research idea to use ML in improving

the mining process is novel.

• There is a need for enough, clean and accurate training datasets to ensure model

accuracy. Enough – large enough for the model to train, learn and identify pat-

terns within the dataset. The more complex the dataset, the more data is required.

The findings in the second part of the chapter have partially answered the sub-question

of the third research question that asked for the appropriate machine learning technique

for the research use case. The research will need to explore the algorithms that support

linear regression and find the appropriate one. To do so, there is important to collect

accurate data that will allow such experiments. Therefore, the next chapter will discuss

the data collection process.
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Chapter 3

Dataset and Performance

Analysis

The review in chapter 4.1 informed the research of the critical importance of extracting

relevant information when collecting and organising data to ensure accurate prediction

of a machine learning model. Also, it is sometimes difficult to find the amount of data

needed to train a model and ensure good performance. The amount of data needed is

dependent on the complexity of the problem that needs to be solved. The data needs

to be cleaned and transformed where necessary into a state Machine Learning can

learn from. Therefore, this chapter discussed how data used in training the research’s

machine learning model was collected and processed and how the performance was

analysed.

The research used two different types of datasets, the Ethereum dataset was used for

the simulation and model development and the Bitcoin dataset was used for the eval-

uation of the model. The rationale behind choosing Ethereum and Bitcoin is because

they both use PoW consensus protocol and Ethereum as an open-source solution al-

lows the research to run a simulation, experiment and play around with parameters.

The research datasets were collected through simulation and downloads from publicly

available application interface API.
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3.1 Definition of variables

The two datasets include attributes included in the block header sent to miners to

find the nonce value. It is important to understand that the dataset here does not

include transactions stored in the block because the research focuses on block gen-

eration and that only requires the header attributes. But the transactions are also

represented on the header attribute as the Merkle root attribute in the Bitcoin block

header and as transaction root in the Ethereum dataset. Our dataset is expected to

have a uniform data type, therefore, only some attributes of the block header are re-

quired. The Ethereum dataset includes seed, Difficulty, GasLimit, GasUsed, Time and

nonce. Figure 3.2 shows how the dataset was collected from the simulation. The Bit-

coin dataset includes confirmations, size, stripped size, weight, height, version, time,

median time, difficulty, nTx and nonce. Figure 3.1 shows how the dataset was collected

from the blockchain API. Detailed information for all variables of the two datasets has

been listed in the appendix. After the first experimentation and its poor accuracy,

the researcher studied the process of sending the header attributes to the miners and

identified a variable called seed in the Ethereum mining process that is important to

the nonce searching process but missing in the block header or record. The missing

seed value holds the total target value of the nonce which is the value the search starts

from.
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Figure 3.1: How the Bitcoin dataset downloaded

Figure 3.1 shows the python implementation of how the experiment connects and col-

lects data from the blockchain through the API. Dataset1.txt on line 18 is the name

of the file where all collected data is stored and the words in the quotation and green

colour from lines 22 – 32 are the names of header attributes that were collected. Figure

3.2 shows the code added to the Ethereum open source code to collect the dataset.

“Myexperiment” is a class added to keep all addition or custom methods that are re-

quired in the experiment for example “WriteToFile” which allows writing collected data

to a text file. “strconv” is a library used to convert the header attributes into a string

to allow writing to the giving text file – dataset.txt.

Figure 3.2: How Ethereum dataset extracted from the simulation
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3.2 Data collection

The data collection process initially focused on the available data from the public

blockchain downloaded through blockchain.info’s blockchain data API and BitcoinRPC.

After the first experiment with the initial downloaded data, the seed value missing in

the actual dataset was identified as an important value that is required to enable the

machine learning model to identify the right pattern within the dataset. The seed

value is not included in the block header nor is it stored on any ledger, it is a value only

used within the consensus protocol. Therefore, it called for the need to simulate the

Ethereum network and generate the dataset within the consensus protocol to ensure

model accuracy.

3.2.1 Data Downloads

The blockchain.com API provides all data stored in the blockchain record and the

dataset requires only variables included in the block header. Therefore, To download

the Ethereum dataset, the python script used to download the data was implemented

to download only the records of the block header attributes. The Bitcoin dataset was

downloaded by running a full node of the network and using the BitcoinRPC API of

the Bitcoin core software to read all the block records as seen in figure 3.1. The python

script used in Bitcoin differs from Ethereum because, in Bitcoin, the mining script uses

much of the data received to generate the block header.

Thus, the first data to be collected for this research was at least a hundred thousand

(100,000) out of six hundred thousand plus (600,000+) blocks in the bitcoin network.

But the implementation to generate the header out of the record was a struggle and

it was decided to use the Ethereum dataset instead. Another one hundred thousand

(100,000) Ethereum block records were downloaded. After a thorough study of how the

Bitcoin miner is implemented and a good understanding of how to generate the block

header out of the block record sent to miners, over seven hundred thousand (700,000)

records of the Bitcoin blockchain were downloaded for the evaluation of the research

model. A sample of the collected dataset can be found in figure 3.3 and 3.4
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Figure 3.3: Sample of the downloaded bitcoin dataset

Figure 3.3, give a glimpse of the cleanly collected dataset from bitcoin. All header

attributes collected can be found in 3.1 and the comma was used to separate the at-

tributes.

3.2.2 Simulation

Using the publicly available open-source code of the Ethereum network written in go-

lang as the official implementation, a simulation of the Ethereum network was used to

generate the required Ethereum dataset for this research. The go-lang implementation

is the official implementation and the publicly available one currently. Simulation is

an important factor of this research but at this stage, the simulation focuses only on

generating block data that will be used in the training of the machine learning model.

Nevertheless, the complexity of the network is still required to reflect the nature of the
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real network. Therefore, the network started with a single node to allow understanding

of the processes before the complexity. Web3j API was used with a python script to

generate transactional traffic. The transactions were financial transactions generated

randomly because such transactions are the easiest to generate and reflect the type

of most of the records stored in the public blockchain. The simulation started with a

single node and subsequently added more nodes. The data was generated by modifying

the open-sources code to write the required block header attributes to a text file as seen

in figure 3.2. The figure below shows a sample of the data generated.
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Figure 3.4: Sample of the downloaded Ethereum dataset

Figure 3.4, give a glimpse of the cleanly collected dataset from the simulation. All

header attributes collected can be found in 3.2 and the comma was used to separate

the attributes.

The evaluation of the model also required a larger dataset therefore, the experiment

ran for at least 9 months continuously until the evaluation stage was complete. Thus
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the continued simulation generated more datasets used to evaluate the research model.

The simulation has in total generated over 1.6 million block data as seen in the figure

3.5.

Figure 3.5: Larger sample of the downloaded Ethereum dataset

Figure 3.5 shows the same details as 3.4, the only difference is that 3.5 indicate a higher

line number to show how large the dataset is.
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Another simulation with a slightly different approach was run, the aim was to generate

data that will be used to analyse the behaviour of the model. This time, several

simulations were run with 3 hours average run time and different manually set target

difficulty values. The rationale behind this is to collect data that captures the behaviour

of the network when the difficulty increases. The collected data was used in the data

analyses next section.

3.2.3 Conclusion

Dataset Size Maximum Difficulty Source

Ethereum Downloaded 100,000+ 13,785,148 Etherscan

Bitcoin Downloaded 700,000+ 15,011,455,676 BitcoinRPC

Ethereum Simulated 1.6 Million 306,579,150,222,389 Open Source Code

Table 3.1: Dataset comparison

Table 3.1 visualised all data collected to provide a clear quantitative view of the dataset.

The size represents the total size collected, maximum difficulty represents the maximum

difficulty target value within the dataset and the source tells the medium through which

the data was collected.

Multiple sources were used to collect the required data for the study. A part of the

collected data was used for the performance analyses to investigate the performance

issues identified in the literature review. Another part of the data was used for the

research experiment and the final dataset will be used to evaluate the research imple-

mentation. There was no particular limit to the amount of data needed, therefore data

was continuously generated through the simulation.

3.3 Performance analysis

The analyses used both the collected data and the simulation process to identify the

main contributing factor to the slow performance of the mining process. The analy-

sis aims to identify the relationship between each attribute of the collected data and

how they contribute to the performance or precisely how it supports the mining pro-

cess. Using 10,000 generated block data, the research investigated these three processes
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within the mining process to try ideas and get a first-hand picture of the challenges and

provide insight into the nature of the dataset that will pave way for new ideas:

• The time taken for miners to collect a new block sent for mining was analysed and

the result shows that it takes the miners an average of 3.65us to take possession

of a new block to mine. Figure 3.6 shows a sample of the dataset collected for

the analyses.

Figure 3.6: Sample dataset of block collection time

Figure 3.6 shows a sample of the dataset collected to analyse the time taken for

a block to be collected for mining. The figure shows the date and time of the

collection, the time that represents the duration of the collection process and the

number representing the block number.

• The block generation time was analysed and the result shows that it takes an

average of 2.4 seconds to generate a new block with 131072 (0x20000 in hex) set

as the difficulty value. The result of the first miner is what is submitted as a new

block, the work of other miners is discarded as mentioned in the review section in

chapter 3. The process was further looked into and the nonce searching process

was identified as the particular process that takes that time. Figure 3.7 shows a

sample of the dataset collected for the analyses.
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Figure 3.7: Sample dataset of nonce search time

Figure 3.7 shows sample of the dataset collected to analyse the time taken for

miners to find a nonce value. The figure shows the date and time of the collection,

hash representing the hash string found for the block, time taken that represent

the duration of the mining process and nonce representing the nonce value.

• The time taken to insert a mined block into the main blockchain was analysed

and the result identified the process to be a very simple one that takes an average

of 290us. The figure 3.8 shows a sample of the dataset collected for the analysis.

75



3.3. PERFORMANCE ANALYSIS

Figure 3.8: Sample dataset of block insertion time

Figure 3.8 shows a sample of the dataset collected to analyse the time taken to

insert a block onto the chain after mining. The figure shows the date and time

of the collection, time representing the duration of the mining process and block

size representing the size of the mined block.

The findings have practically addressed the main research question that asks for the

main factors affecting the performance protocol by identifying the nonce search process

as the most time taken process within the consensus protocol. The nonce needs to be

found before transactions are confirmed by adding them into a block and adding the

block to the blockchain. Also, they serve as the base for the research question that

asks if speeding up the nonce searching process could improve the performance of the

protocol. The behaviour/nature of the nonce value was analysed and the result shows

that there is randomness in the nonce searching range as shown in figure 5.9 and the

randomness increases with an increase in block records.
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Figure 3.9: Mining distance to the nonce value
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Figure 3.10: Mining distance to the nonce value

Figure 3.9 and 3.10demonstrates the behaviour of 400 nonce values part of the collected

dataset. The 400 limit was to allow demonstrating the full result in a few graphs. The
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distance to the nonce value represents the range between when searching begins to when

the nonce is found. The block record represents the number of blocks used from the

dataset. Four graphs were used to demonstrate the result of the 400 records instead of

one to ensure readability.

Considering how it takes a long or short time to find the nonce value, if the short values

were the only ones to be used in measuring the performance, it is logical the result will

be faster compared to the current average. Therefore, the idea of predicting the value

to reduce the nonce searching range was developed. Machine learning was seen as the

appropriate technique for its ability to learn and predict.

3.3.1 Performance Growth Analyses.

To prove the problem mentioned in the problem statement regarding the performance

decreasing with an increase in size. The research analysed the dataset to understand the

behaviour of growth and have a clear pathway in choosing the right machine learning

model and set a determinant of a significant improvement in the implementation. The

average nonce search time was analysed based on a set difficulty value and the result

shows there is a linear relationship between the increase in size and the average time

taken to generate block as shown in the figure 3.11.

Figure 3.11: The behaviour of the dataset
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The graph in figure 3.11 demonstrates the behaviour of the dataset after analysing the

performance growth of the dataset. The x-axis represents the amount of block generated

while the y-axis represents the average time it takes miner to find nonce value within

the network size on the x-axis. As discussed in the literature review, the increase on the

x-axis affects the y-axis because of the difficulty target value that increases and results

in a longer mining time. The growth stops at some point because the difficulty target

value is reduced when the performance goes over a certain average time to maintain a

certain efficient level of performance. E.g. Bitcoin maintains a maximum of 10 minutes

on average while Ethereum maintains 14 seconds.

3.3.2 Conclusion

The performance analyses have identified the nonce searching process within the block

generation process as the most time-consuming aspect of the process. The nonce search-

ing process does not affect any of the decentralisation or security aspects of the protocol.

All it does is find the right nonce value that will result in the right block hash. There-

fore, modification of the process will not result in scalability issues. Reducing the

nonce search space will answer the research question that asked for the right methods

of improving performance without altering or modifying any of the protocols.

3.4 Conclusion

The chapter has covered discussions on the dataset collection and analyse and the

performance analyses of the PoW consensus protocol through simulation. It discussed

the performance analysis and unpacked how the research gap and contribution were

identified and highlighted how the results answered the first research question and

serve as the basis to support the subquestions as well as one of the hypotheses. It also

discussed how data was collected and the amount of data collected.

The pattern of the performance growth was analysed and the result demonstrates a

linear growth in the time taken to find a nonce based on an increasing difficulty value.

This informed the research about the right model that will best fit the dataset. But,

the concern at this stage was whether the randomness of the nonce search shown in
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figure 5.10 will allow a linear model to fit the dataset. The result of the experiments in

the next chapter was able to address the concern.
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Chapter 4

Experiment and Result

The previous chapter has practically analysed the research problem, investigated and

addressed some of the research questions and concluded by identifying the behaviour

of the dataset to be linear in growth. It also suggested the use of machine learning pre-

diction ability to reduce the nonce search space and provided a collection of datasets

for training and evaluating the machine learning model. This chapter focus on exper-

imenting with different machine learning prediction models that fit a linear problem

and identifying the model that shows the best results to address the research concern.

A quantitative methodology will be used in choosing the right model based on the

accuracy of the model.

4.1 Nonce booster Model

The nonce booster model refers to the model the research proposes to improve the per-

formance of the PoW consensus protocol. The model provides optimised performance

by reducing the time in the nonce searching process of the block generation process

sometimes referred to as the mining process. To reduce the time, the model uses the

machine learning ability to learn, identify patterns and predict a value to guide the

nonce searching process by giving the miners a value closer to the nonce as the point

from which the miners start searching for the nonce.
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Ray (2019) emphasised the importance of choosing the right machine learning algorithm

for the right problem. The research is informed and guided in choosing the right model

by the performance analyses process where linear distribution was identified as the

behaviour of the problem. The linearity is because there is a linear growth in the time

taken to generate a block with an increase in network size and difficulty target value.

The research uses the quantitative research methodology to compare linear problem-

supported algorithms to select the best algorithm for the research problem base on

accuracy.

Bzdok et al. (2018) have highlighted the importance of data in supervised machine

learning as discussed in chapter 4. That is why the study used multiple sources to

collect data that is enough to train, test and evaluate the model. Enough data in

machine learning depends on the complexity of the problem (Kathole and Chaudhari,

2019). The research has in total collected 1.6 million records of the Ethereum block

dataset and over 700,000 records of the Bitcoin block dataset used in implementing the

nonce booster model.

4.1.1 Evaluation metrics

The model evaluation matrics used a comparison of its prediction accuracy with the

accuracy of the dataset to determine the accuracy improvement. The accuracy was

calculated by using the relative error (RE) formula in equation 4.1 is used to determine

the magnitude of the absolute error in terms of the actual size of the measurement.

The actual value is the nonce value and the predicted value is the point or value at

which the search starts. The starting value for the Ethereum dataset is the seed value

(as identified and mentioned in chapter 5), the Bitcoin dataset starts from 0 and the

nonce booster model uses its prediction value.

RE =
actual − predicted

max(actual)
(4.1)

Where (actual) is the nonce value, and the (predicted) value is the point or value at which the search starts
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4.1.2 Performance metrics

The performance metrics focused on how good the prediction value is in improving

the nonce search range. The goodness and effectiveness of the nonce booster model

in reducing the searching range can be defined by how close its prediction is to the

nonce value. The only certain thing regarding the model prediction at this stage is

the predicted value will have to be a positive integer number with the possibility of

sometimes going above the nonce value and in the case of Ethereum, going below the

seed value. Therefore, the possible ranges of prediction are defined in figure 4.1 for the

Ethereum dataset and 4.1 for the bitcoin dataset.

Figure 4.1: Ethereum prediction range description

• Below minimum: is a range within which if a value is predicted, the search will

begin from a value lower than the normal starting value.

• Right range: is a range within which if a value is predicted, the search will begin

from a value closer to the nonce than the normal starting value.

• Above maximum range: is a range within which if a value is predicted, the search

will begin after a value higher than the nonce value leading to an infinite search.
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Figure 4.2: Bitcoin prediction ranges description

The model needs to predict values within the right range otherwise it will be a slower

performance if the value predicted is below the minimum. The performance will be

a disaster if the value predicted is within the above maximum range. The ranges for

the Ethereum dataset differ from the Bitcoin datasets used in the evaluation because

Bitcoin starts searching for the nonce value from zero, it does not have any value called

seed value. Therefore, the Bitcoin dataset has only the right and above the right ranges

as seen in figure 4.2.

4.2 Machine learning models

The section discussed the experiments of the machine learning models and their results.

It uses a quantitative approach to determine the implementation that best addressed

the research question using the performance and evaluation metrics of the nonce booster

model. The section also serves as a proof of concept and the process of identifying the

best fit model for the research problem. Therefore, the models were implemented with

the 400,000 blocks of the dataset collected at the time. The ratio of 80, 20 percent of the

dataset was used for training and testing respectfully in line with the recommendation of

Gholamy et al. (2018) that suggested the use of 20-30 percent of the dataset for testing

gives the best results as empirically studied. A different 400 records were used to test

the accuracy and performance of the model. The 400 limit was to allow demonstrating

the full result in a few graphs.

Machine learning algorithms selection is based on the algorithm’s ability to solve the
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research problem - a linear problem. The options are now a Linear Algorithm that can

perform classification and regression on a linear problem or a support vector machine

that can perform classification and regression on many problems specified through its

kernel function including linear problems. Although the problem is linear, it is also

important to understand the research problem requires prediction not classification

therefore, all other linear algorithms such as Näıve Bayes and logistic regressions that

are classifiers will not be useful to the research. Furthermore, to prove Bzdok et al.

(2018) emphasis on choosing the right model, Random Forest Regression was selected

in the hope of using its overfitting prevention to stop the prediction value from going

above the maximum range as shown in figure 4.2 and 4.1. There is parity in all three

selected algorithms in terms of their dependant and independent variable but differs in

parameters because they use different equations.

4.2.1 Linear Regression Model

The model’s technique is referred to as the most widely used statistic technique, it allows

for a linear relationship between the dependant variable y and a single predictor variable

x. The result of our behaviour analysis in section 4.2.1 suggests a linear model is the

best fit for our dataset, therefore, we are going to implement and examine the result

of the model with our dataset. The first step in the process is to define our dependent

and independent variables, and in our case, the nonce value is the dependent variable

that is depending on other headers attributes (independent variables) included in our

dataset.

Let Y denote the “dependent” variable and X1, X2, ..., Xk denote the “independent”

variables and β denote the coefficient estimates that signifies the amount by which

change in the dependent variable must be multiplied to give the corresponding average

change in the independent variable (the nonce). Then the equation for computing the

predicted value of y is:

y = β0 + β1x1 + β2x2 + · · ·+ βp−1xp−1 (4.2)

Linear equation
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is to be fit to data, which we denote as

yi = xi1, xi2, · · · , xi,p−1 , i =1, · · · , n (4.3)

The observations yi , where i = 1, · · · , n, will be represented by a vector Y. The

unknowns, β1, · · · , βp−1, will be represented by a vector β. Let Xn∗p be the matrix

X =


1 x11 x12 · · · x1,p−1

1 x21 x22 · · · x2,p−1

...
...

...
...

...

1 xn1 xn2 · · · xn,p−1

 (4.4)

For a given β, the vector of fitted or predicted values, Ȳ , can be written as

Ȳ
n∗1

= X
n∗p

β
p∗1

(4.5)

The least squares problem can then be phrased as follows: Find β to minimize

S(β) =
n∑

i=1

(yi − β0 − β1xi1 − · · · − βp−1xi,p−1 )
2

= ||Y −Xβ||2

= ||Y − Ȳ ||2

(4.6)

if u is a vector, ||u||2 =
∑n

i=1 u
2
i

If we differentiate S with respect to each βk and set the derivatives equal to zero, we

see that the minimizers β̄0, · · · , β̄p1 satisfy the p linear equations.
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nβ̄0 + β̄1

n∑
i=1

xi1 + · · ·+ β̄p−1

n∑
i=1

xi,p−1=
n∑

i=1

yi

β̄0

n∑
i=1

xik + β̄1

n∑
i=1

xi1xik,+ · · ·+ β̄p−1

n∑
i=1

xikxi − p− 1 =
n∑

i=1

yixik, k = 1, · · · , p− 1

(4.7)

These p equations can be written in matrix form

XTXβ̄ = XTY (4.8)

and are called normal equations. But XTX is nonsingular in this case, therefore, the

formal solution for each β is:

β̄ = (XTX)−1XTY (4.9)

We will use the slope intercept formula to form the equation of the line and find our

y-intercept and slope:

y = mx+ b (4.10)

Where (m) is the slope, (x) is the intercept and (b) is the y-intercept

To find our slope we use the formula:

m =
y2 − y1
x2 − x1

(4.11)

Where (y) is the dependant variable and (x) is the independent variable

Using our experimentation environment and some open source libraries such as Scikit-

learn (sklearn) which is used as a tool for predictive data analysis, the described model

was successfully implemented.
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Result

The linear regression prediction model was implemented and tested. The model resulted

in 94.3 percent accuracy beating the dataset accuracy (92.8) by 1.5 percent. The range

of prediction was examined to determine the model performance and 39.3 percent of

the predicted values were identified to be within the right range, only one of the values

was below the minimum and 60.4 percent were above the maximum. Even though the

accuracy is promising, the percentage above the maximum was a big concern for the

performance of the model, the concern was addressed section 4.3.
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Figure 4.3: The distance of the prediction compared to the mining distance to the nonce

value

90



4.2. MACHINE LEARNING MODELS

Figure 4.4: The distance of the prediction compared to the mining distance to the nonce

value
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Figure 4.3 and Figure 4.4 demonstrates the comparison between the prediction result

and the dataset (the 400 records used). The 400 limit was to allow demonstrating the

full result in a few graphs. The values that have gone below zero are those within the

above maximum range. The distance to the nonce value represents the range between

when searching begins to when the nonce is found. The block record represents the

number of blocks used from the dataset. Four graphs were used to demonstrate the

result of the 400 records instead of one to ensure readability.

4.2.2 Support Vector Regression (SVR)

SVR is the part of the Support Vector Machine SVM that supports regression and uses

almost the same principle to perform classification and prediction. One of its main

benefits is that it minimizes error and gives the flexibility to define how much error the

model should accept and it uses a hyperplane in a higher dimension to fit the data.

The experiment aims to explore the possibility of achieving maximum accuracy with

a minimal error by utilising its principle of maximum margin that shows emphasis on

minimizing error in the model prediction. The model has a function that works for

different types of problems including linear and can be appropriately specified through

the kernel function. Therefore, the model will be implemented with a linear kernel

approach.

We need to find a function f(x) with at most deviation from the target y, where x

represents the header attributes and the y represents the nonce value. Now, our new

objective function and constraints are as follows:

The function is:

MIN
1

2
||w||2 (4.12)

There is a possibility some of the points will fall out of the margin therefore, we need

to account for the error that will be larger than ∈. To do so, we need to add deviation

to the function:
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MIN
1

2
||w||2 + C

n∑
i=1

|ξi| (4.13)

Result

The SVM model was implemented and tested. The model resulted in 43 percent ac-

curacy which is 49.8 less than the dataset accuracy (92.8). The model gets stuck (run

endlessly) when run with dataset values that are not scaled down regardless of the size

of the training data. After investigating the reason for the poor performance, it was

found that the values lose their accuracy by a big margin after scaling. The Ethereum

dataset for example has a value of sixteen digits, scaling it down to one digit with dec-

imals will require a lot of decimals to retain the accuracy. To keep consistency within

the decimals means the value decimals get rounded at some points and that results in

the values losing their accuracy when converted to the original scale. Therefore, it is

not possible to have an accurate result if the model is trained on inaccurate data. To

solve the scaling issue, the standard scaler used was changed to normalisation scaling

methods provided as a module in the Sklearn library but to no positive effect. Regard-

less of the scaling approach, the model increases instead of reducing the nonce search

space in the predictions.

A theoretical study of the poor performance was studied and Khoong (2021) suggested

that SVM is not suitable for a large dataset because the training dataset grows with

the dataset to a point where it becomes infeasible to train and use due to computing

constraints. But the implementation experimented with a smaller dataset and the per-

formance remains poor regardless. Khoong (2021) suggested of SVM performs poor in

classification with an imbalanced dataset and Brus (2021) suggested regression prob-

lems are also affected by an imbalanced dataset. The different split ratios were used to

turn the balance but there was no improvement in the accuracy.

4.2.3 Random Forest Regression

Random forest is a machine learning model that can be used for both classification and

regression problems, which uses a decision tree approach in solving problems. Although

the model is not both theoretically and practically the best for a linear problem, the

93



4.2. MACHINE LEARNING MODELS

rationale behind experimenting with the model is to practically prove the point that a

model that supports linear problems is the best for our dataset. Random forest prevents

overfitting of data, it trains fast and has good accuracy because it takes the average of

the result from each decision tree.

Result

Random forest regression was implemented and tested. The model resulted in 6.4

percent accuracy which is 86.4 less than the dataset accuracy (92.8). As expected from

a model that is asked to solve a problem it is not fit for, the result shows the model

accuracy is worst than the SVM. This further proves the importance of using the right

algorithm for the right machine learning problem as discussed in the review in chapter

4. Therefore, the result provides a solid ground for the research to stick to using only

linear models.

4.2.4 Conclusion

To ensure the best result and good performance in our implementation, it is imperative

to make sure the research is working with the best model. Therefore, it is important

to compare the experiment result of our linear regression, support vector regression

and random forest model. The comparison is based on the evaluation and performance

metrics provided for the nonce booster model. The dataset has an accuracy of 92.8 and

a nonce searching range of 17,422,631.

Model Accuracy Max Nonce Search Range Behaviour fit

Linear Regression 94.3 13,785,148 Linear

Support Vector Machine 43 15,011,455,676 Linear

Random Forest Regression 6.4 306,579,150,222,389 No

Table 4.1: Model comparison

From the table 4.1, the linear regression model results to be the most promising of the

models both in terms of accuracy and the searching range of the nonce value. This

is not surprising because our data behaviour analyses proved our dataset to be linear,

thus, it is expected to work well with a linear model. The interesting part is SVR also

uses the linear function yet it has a big difference from the linear model. This is because
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SVR requires going through a dataset scaling process to ensure the dataset maintains a

uniform range of values between all attributes. The analysis of the difference between

the scaled value and unscaled value shows that the scaled values are in billions less

than the unscaled value thus, the big difference in the searching range. Comparing

other results to the random forest and other experiments with nonlinear models that

are not documented here justifies why using a model that is inclined with the behaviour

of the dataset is important.

4.3 Model Optimisation

The model optimisation started with the parameter turning process where the model

experimented with different combinations of the dataset attributes. The combination

with the highest consist of attributes that include height, difficulty, and time as gen-

eral attributes for both Bitcoin and Ethereum and other attributes such as seed value

peculiar to Ethereum.

The first question that comes to mind at this stage is: how to ensure the value does not

go above the maximum when in reality the maximum value is not known? It is a tricky

question that requires a thoughtful solution. The prediction was analysed to determine

the difference between the predicted value and the maximum value. It was identified

that subtracting the maximum difference between the predicted and maximum values

where the predicted is higher than the maximum will bring back the value to the

maximum or below.

Since there is no way to check each time the model predicts, if the value is above the

maximum, the result of the initial experiment having 60 percent above the maximum

value gives the basis for the assumption that most of the predictions will be above

the maximum value. Therefore, the maximum difference between the predicted and

maximum values from the result of the test data will be subtracted from each predicted

value. Also, the result of the initial experiment having 39.3 percent of the predicted

value in a good range indicates subtracting the maximum difference in each prediction

might take some values outside the good range or below the minimum. Therefore, to

ensure none goes below the minimum, the model was modified to always reset to the
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value the miners normally start from when the predicted value goes below.

The experiment was carried out again with optimisation and both the model’s pre-

diction accuracy and range were improved. The result shows there is a value below

the minimum, 203 values at the minimum, 208 within good range, no value above the

minimum and there is exactly one value that is the same as the nonce. The new graph

is demonstrated in figure 4.5 and 4.6
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Figure 4.5: The distance of the prediction compared to the mining distance to the nonce

value after optimisation
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Figure 4.6: The distance of the prediction compared to the mining distance to the nonce

value after optimisation

Figure 4.5 and 4.6 demonstrates the comparison between the prediction result and the
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dataset (the 400 records used). The 400 limit was to allow demonstrating the full result

in a few graphs. The distance to the nonce value represents the range between when

searching begins to when the nonce is found. The block record represents the number

of blocks used from the dataset. Four graphs were used to demonstrate the result of

the 400 records instead of one to ensure readability.

4.4 Performance Evaluation

The discussion of the comparison of the experimented models in section 6.3 has iden-

tified the Linear Regression model as the best fit model for the research problem.

Therefore, the model implementation in this section expects to result in improved per-

formance of the protocol when tested. There are two implementations one for Ethereum

and Bitcoin. The Ethereum implementation also has two implementations. 1) The ini-

tial implementation serves as a proof of concept. 2) The final implementation further

demonstrates performance improvement.

Before the final implementation of the Ethereum implementation, to ensure efficient

performance of the model, the model has been trained again using a larger dataset

collected through download and simulation for both Bitcoin and Ethereum respectively

as discussed in chapter 5. The implementation was done on another simulation similar

to the one used in collecting the dataset. This time, it does not only generate data but

also calls the nonce booster model through a restful service to get a number that will

replace the seed value as the value from where the nonce search starts. The code used

to call the RestFul web service is shown in figure 4.7.
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Figure 4.7: How the nonce booster model was implemented in the simulation

4.4.1 Model Integrated into Ethereum

To study and understand how our model can be integrated into the blockchain system

and to determine the impact of our model on the performance of the PoW protocol,

an application interface API was developed to allow the integration of the ML model

in the simulation network. Before the start of the mining process, the mining protocol

communicates with the nonce booster model through the API by sending the new block

header attributes and asking for a point at which the miners should start looking for

the nonce value. The point is the value predicted by the nonce booster model.

4.4.1.1 Initial Implementation

The initial implementation aimed to test and prove the research hypothesis that says,

machine learning can be used to narrow down the block generation time and improve

the performance of the proof of work consensus protocol. Previous discussions on

experiments have demonstrated how the nonce booster model has been improved with

good accuracy, the implementation aimed to determine or translate the improvement

in accuracy to performance as in the research context. Different experiments were

carried out to ensure the performance of the model after the implementation is captured

within different difficulty target values. This was done by restarting the simulation and
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manually changing the value of the difficulty target. The result of the evaluation is

shown in figure 6.8.

Unlike the previous simulation that was started and allowed to keep running while

generating more data and automatically increasing the difficulty, the simulation was

restarted after a day with a new manually defined difficulty. This is to allow fast

testing of our model instead of having to wait for the network to increase the difficulty

automatically when it increases in size. Thus, the x-axis in figure 4.8 represents the

difficulty value instead of the size of the blockchain as it was done in figure 3.11. The

result shows and compares the average block generation time with and without our

model implemented based on a set of different difficulty target values. It also shows

improvement in the performance especially when the difficulty increases.

Figure 4.8: Performance improvement as a result of model implementation

Figure 4.8 demonstrate the comparison of the average block generation with and with-

out the nonce booster model. The y-axis represents time in a section and the x-axis
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represents the difficulty target value used. The x-axis started at 1M because there was

no improvement in the lesser values, and it stopped at 5M because that is the highest

difficulty value in the generated dataset used to train and test our model.

Result

The difficulty target value will look very small compared to the current difficulty value

of Bitcoin and Etheruem but that justifies why the average time is also much lower.

The lack of pattern in the improvement can be attributed to the random behaviour of

the mining process as stated earlier. While can still benefit from more optimisation to

ensure better performance improvement, the result has tested and proven the research

hypothesis true.

4.4.1.2 Final Implementation

The final implementation of the nonce booster model only differs from the initial im-

plementation in the use of a much higher difficulty target value and a larger dataset. A

high target value was used to make the simulation network more complex. the nonce

booster model was able to outperform the traditional mining process on the Ethereum

simulation. The result showed a 30 percent accuracy improvement with a 96.3 percent

new accuracy as seen in figure 4.9. It also demonstrated a 4 secs improvement on the

block generation time as demonstrated in figure 4.10.

Figure 4.9: The accuracy of the final implementation
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Figure 4.10: Performance improvement as a result of model implementation

Figure 4.10 demonstrate the comparison of the average block generation with and with-

out the improved proposed model. The y-axis represents time in a section and the x-axis

represents the difficulty target value used. The x-axis started at 10M to ensure balance

in the scale, and it stopped at 40M because that is the highest difficulty value in the

generated dataset used to train and test our model.

4.4.2 Model Integrated into Ethereum Bitcoin

This section discusses both the retraining of the research proposed model with the

collected Bitcoin dataset and the implementation of the model in the mining process.

Unlike Ethereum, both the Bitcoin data collection and implementation did not require

simulation of the Bitcoin network. This is because the Bitcoin mining process has been

separated from the official network implementation. The official Bitcoin client software

has a built-in API called RPC (Remote Procedure Call) that allows interaction with
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the blockchain system.

The RPC was used to access the blockchain data using a python script. The dataset was

discussed and collected in the data collection section of chapter 5. The data structure

was studied carefully before collecting the data to avoid data processing. Unlike the

Ethereum implementation, the implementation didn’t require a Restful service because

both the nonce booster model and Bitcoin mining were implemented in python. There-

fore, the model was only imported and a function call was used to get the predicted

value as shown in figure 6.11.

Figure 4.11: How the nonce booster model was implemented in Bitcoin mining

Results

The model was trained with the seven hundred thousand plus record in the bitcoin

blockchain as of the 26th of September 2021 using 80 and 20 percent of the data for

training and testing respectively. The result shows 81.1 percent accuracy as seen in

figure 6.12, which is a 58.6 percent improvement in accuracy when compared with the

calculated accuracy of the dataset. The maximum nonce calculated in the dataset was

4.2 billion while the maximum for our model was 1.4 million. It means using the nonce

booster model, bitcoin miners can take 2.8 fewer calculation steps to find the nonce
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value.

Figure 4.12: The accuracy of the Bitcoin implementation

The result indicates the Bitcoin implementation to be better than the Ethereum im-

plementation even though the model was initially designed and implemented using the

Ethereum dataset. Table 6.2 shows mining without the model starts from 0 while min-

ing with the model starts from a number very close to the nonce. Unfortunately, it

is not possible to simulate the Bitcoin network as we did with the Ethereum network.

But using its approach, the model was successfully implemented with very impressive

performance.

Block Number Miner Start at Model Prediction Nonce

702930 0 1,086,201,030 1,118,746,415

702931 0 937,901,919 903,372,318

702932 0 952,056,427 1,142,720,264

702934 0 1,054,639,063 1,610,865,561

Table 4.2: Sample data from the Bitcoin implementation

105



4.4. PERFORMANCE EVALUATION

Figure 4.13: Results of the comparison between the bitcoin dataset and model predic-

tion
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Figure 4.14: Results of the comparison between the bitcoin dataset and model predic-

tion
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Figure 6.13 and 6.14 demonstrates the comparison between the prediction result and

the dataset (the 400 records used). The 400 limit was to allow demonstrating the full

result in a few graphs. The distance to the nonce value represents the range between

when searching begins to when the nonce is found. The block record represents the

number of blocks used from the dataset. Four graphs were used to demonstrate the

result of the 400 records instead of one to ensure readability.

4.4.3 Performance Evaluation Conclusion

The evaluation resulted in reducing the average time of producing blocks by 4 secs

using a difficult target value of 40 million. It is a relatively very small difficulty value

compared to the current Ethereum difficulty that reads in the trillions. But the research

needed to use a difficulty that is within the dataset used to train the model to ensure

good model performance and the highest difficulty in the dataset is 40 million. Never-

theless, the Bitcoin implementation has proved the efficiency of the model in a complex

setting. The Bitcoin implementation resulted in a 70 percent accuracy which is a 65

percent improvement accuracy improvement against the dataset and a very reduced

nonce searching range.

4.5 Conclusion

The chapter discussed the experiment, implementation and result of the nonce booster

model. The comparison of the models in the experimentation part of the chapter has

identified the linear regression model as the best fit model for the research problem. It

has addressed the subquestion in the second part of the research question that asked for

the most appropriate machine learning model for the research use case. It also tested

true, the hypothesis that says machine learning techniques can be used to narrow down

the block generation time and improve the performance of the proof of work consensus

protocol. Improving the performance of the protocol by reducing the nonce search space

has answered the second research question that asked for the right methods of improving

performance without altering or modifying any of the protocols. The implementation

part of the chapter has discussed the implementation of the nonce booster model in

the research simulation of the Ethereum network and the performant implementation
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of the Bitcoin mining process.

The implementation part of the chapter has addressed the third question in the re-

search question asking that asked if applying machine learning techniques will improve

the performance of the proof-of-work consensus protocol without sacrificing security or

decentralisation. The research has successfully improved the performance of the proto-

col without trading-off security or decentralisation. The hypothesis that says improving

the block generation time without altering any other part of the protocol will allow im-

proved performance without affecting the current level of security or decentralisation

has also been tested true.

Let us use this case study to understand and translate how much the nonce booster

model has improved Bitcoin block generation time. If you are using a machine that can

generate 1 million hashes a sec and you want to find the nonce value for block number

702930 shown in table 6.2. Using equation number 6.8 to calculate the expected time.

The expected time to find the nonce value using the normal process is 18.6 minutes. It

will take you approximately 1 minute to calculate if you are using the nonce booster

model. Note, these values differ on average.

ET =
N − SP

HR
/60 (4.14)

Expected time (ET), Nonce (N), Starting point (SP), Hashrate (HR).

Let us now reflect on the improvement in the speed of transactions. Assuming the

average nonce finding time is 10 minutes and 5 for the normal process and using the

nonce booster model respectively (it strongly depends on the machine’s hash rate). If

Bitcoin takes an average of 500 transactions per block (it does) and 10,000 transactions

are waiting in the transaction pool. All transactions will be added into the blockchain

in 3 hours 20 minutes using the normal process and 1 hour 40 minutes using the nonce

booster model.

There is a fee called transaction fees in Bitcoin and a gas limit in Ethereum which users

pay for their transactions to be given priority and be confirmed faster. The transaction

with the highest fees is given priority when fetching transactions from the memory
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pool. The option of this fee is used especially when there are a lot of transactions

per day which will lead to a longer transaction confirmation time such as in January

2021 when the average transaction per second was 400,000. People’s concerns about

the transaction fees have made them pay an average high of 60 USD for transaction

fees in 2021 (Vigna, 2021). Therefore, the nonce booster model not only improves the

confirmation time by reducing the nonce search space but also reduces the need to pay

extra to get a transaction confirmed faster.

The performance improvement by the nonce booster model is even more significant

when you look at the application of the technology outside the financial sector. For

example application of blockchain in the healthcare system, will require a more prompt

process and access to data, especially in cases of emergency where there is life at

stake. It requires a faster confirmation of records into the blockchain and there is

no one to pay a transaction fee. the nonce booster model is positioned as the best

option for implementation in healthcare because it provides decentralisation, security

and improved speed.

Another example is the immigration system where there are millions of people travelling

every day and records are expected to be prompt and accurate. A traveller cannot be

asked to pay a fee if he wants his records to be recorded faster and that record needs

to reflect fast so that he does have to wait or be denied at another. the nonce booster

model is again positioned as the best option for implementation. Although in the

case of extreme traffic, the nonce booster model might also not suffice in its current

form. But it has shown and proved the ability to improve with an increase with a

larger training dataset therefore, continuous training for the nonce booster model will

be prudent for the nonce booster model. The result of the optimisation has given the

research a reason to confidently believe the model is capable of adapting to the high

traffic demand of different applications as long as it will be optimised and trained with

a larger dataset.
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Chapter 5

Conclusion and discussion

This chapter concludes the research work by summarising how it addresses the re-

search questions and evaluated the hypothesis. It presents a summary of the re-

search approaches, and contributions identified research limitations and suggest future

work.

Blockchain has shown the promising potential of dominating the ledger space of the

technology industry, although dominance remains far away, it surely has brought de-

centralised systems and cryptocurrencies to the limelight. The prominent aspect of the

technology called the consensus protocol that ensures security and decentralisation have

faced the daunting challenge of slowing performance which motivated the emergence of

new protocols that ended up with the trilemma of having to trade one of security or

decentralisation to get speed. The thesis has investigated the performance issue on the

initial protocol (PoW) and was able to improve the performance without trading off

security or decentralisation

5.1 Investigations and findings

The research started with the goal of solving the performance and scalability issue of

blockchain technology by defining or finding the right protocol the research can improve

to enable the system to scale without compromising security or decentralisation. The
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literature review was carried out within the research area to gain insight into the whole

idea of the technology. State of the art was also studied to gain a wider understanding

of the issues, challenges, and how they impact the technology. The research has thor-

oughly examined the proof-of-Work consensus protocol, comparing it to other proposed

solutions to the performance and scalability issue (such as Segwit, sharding and others)

to learn from experience and identify limitations in the work done by other researchers,

companies and industries to address the performance and scalability issues.

• The research believes that proof of work remains the most reliable protocol in

terms of decentralisation and security yet the slowest in terms of transaction per

second. Which is one of the reasons the research sticks with the protocol.

• The performance solutions are mostly peculiar solutions designed for their target

application or use case and cannot be useful for other use cases. It is not feasible

to have a whole new protocol designed for each use case. It is important to have

a solution that is applicable to a different sector and use cases otherwise, this can

only hinder the adoption of the technology.

• The process of finding the nonce value in the blockchain mining process was iden-

tified as the most time taking and power-consuming process within the consensus

protocol. The delay in the process is what results in a higher block generation

time

• Replacement of the mining and verification process with an approach that requires

less number of participants is what led other solutions to have to trade security

or decentralisation. The research focused on improving performance within the

original design of the protocol.

5.2 Research Novelty and Results

Experiments were carried out to conceptualise the research contribution by analysing

the technical process of the technology and testing research ideas gained through the

study. The knowledge was used to build the research novel contribution that proposed

providing an alternative to the time and power-consuming process of finding the nonce
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value in the blockchain mining process without any modification to the protocol’s archi-

tecture. The chosen alternative technique was the machine learning technique because

of its prediction ability - The research used the technique to reduce the nonce search

space by predicting a starting value for the miner that is closer to the nonce value. A

review of the machine learning technique has been carried out and some models have

been implemented and compared.

• The results of the experiments have shown a promising ability to achieve the set

goals with a model accuracy of 96.3 and 70 percent for Ethereum and Bitcoin,

which is a 30 and 58 percent improvement respectively when calculated by the

improved percentage.

• The initial results published have shown promising ability by improving the ac-

curacy by 18 per cent using a small dataset and a promising improvement in

accuracy with an increase in training data. The result at the early stage shows

our approach is promising in improving the block generation time which is also a

big step in validating the research hypothesis

• The final results to be published have shown a significant improvement in perfor-

mance by achieving a 30 percent accuracy improvement on the Ethereum model

and 58 percent on the Bitcoin model

The results of the research model have shown performance improvement and tested the

research hypothesis to be true. Thus, the research was able to achieve all aims and

objectives to improve the performance of the proof-of-work consensus protocol using

machine learning to predict a smaller nonce searching range for the miners.

5.3 Further Discussions

The evaluation result proves that the nonce booster model does not only reduce the

waiting time for a transaction to be confirmed by reducing the nonce search space,

but it also reduces the need to pay extra fees to get a transaction confirmed faster. It

provides a solution that improves the performance of the technology across multiple

sectors of its application such as healthcare and the immigration system.
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Both research hypotheses tested true by successfully using machine learning to improve

the block generation time without altering any other part of the protocol which allowed

improved performance without affecting the current level of security or decentralisation.

Thus, the research’s main contribution can be noted as:

• Improved the overall performance of the blockchain and save cost. Because faster

block generation time means transactions can be added to the blockchain faster

and that reduces the transaction waiting time. This also means a reduction in

the need for users to pay a transaction fee for his/her transaction to be confirmed

faster - saving costs.

• Scaled solutions that reduce adoption concerns – the research provides a solution

that increases speed without sacrificing security or decentralisation. Even more,

the solution can only get better with more training datasets. Transaction con-

firmation has always been one of the stumbling blocks for the adoption of the

technology in some applications and areas that require fast transaction confirma-

tion.

• Reduced the power consumption for Bitcoin by reducing the amount of hash rate

used and unused hash created.

The research addressed the research questions as follows:

• The first research question asked for the contributing factor to the performance

issue, and the question was answered by identifying the nonce searching process

of block generation as the main contributing factor in the performance analyses.

• Question 2 asked for the right technique that can be used to speed up the nonce

search process and was answered with the proposal of using the machine learning

prediction technique in the performance analyses.

• Question 3.1 asked for the most appropriate machine learning model for the re-

search use case and was answered when the result of the model comparison found

linear regression as the best fit model in the research experiment.
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• Question 3 asked if applying machine learning techniques improves the perfor-

mance of the proof-of-work consensus protocol without sacrificing security or de-

centralisation, and question 2.1 asked if speeding up the nonce search improves

the performance without facing the scalability issue were both answered by the

amazing results of the nonce booster model.

5.4 Limitations and Future Work

As stated in the previous section, this research presented several contributions to the

performance of blockchain technology. Despite the promising results demonstrated in

the performance evaluation, it has some limitations and room for improvements and

future research directions.

• The difficulty value in the training dataset is very much lower than the current

difficulty value in the real Ethereum network. Therefore, the nonce booster model

cannot fit in the main Ethereum network or any other with similar complexity

until the model is optimised and retrained with accurate data. One way of achiev-

ing this is through accessing all blockchain data in the Ethereum network but the

problem with this approach is mining in the Ethereum network does not start

from zero. It starts from a value called seed that is not found on the blockchain

data. As discussed in chapter 5, the seed value was the missing data in the initial

downloaded dataset and a critical parameter in the accuracy of the nonce booster

model. Alternatively, the data can be generated through simulation while mak-

ing sure the difficulty value and the number of transactions reflect the Ethereum

network.

• The machine learning model will always benefit from more training datasets and

it is important to ensure the dataset is complex and accurate enough as the

target application of the model. The growing size of the blockchain networks is

a concern for the nonce booster model accuracy because of the increase in the

difficulty value, the change in timestamp and other parameters used in the nonce

booster model training. The more these values chance, the higher it affects the

accuracy of the model. As mentioned in the machine learning discussion, the
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technique learns from experience and the more the parameters chance the more

the model losses familiarity with the data. Therefore, it’s important to ensure the

model continues learning as more data is generated to ensure the model retains

good accuracy at all times.

• Although the data-exploratory process has identified the average behaviour of

the dataset to be linear and a linear regression model implemented has proven to

be effective in achieving the goal, it is important to explore and find a machine

learning algorithm that best fits the randomness of the unaveraged data behaviour

as identified in the performance analyses process.

Despite the above-mentioned limitation, the research model is so far the only solution

proposed to solve the blockchains’ s performance issue that completely avoided trading

off security or decentralisation. The research provided a significant contribution to the

technology, especially in the industry where the hindering performance of one of the

most reliable cryptocurrencies (Bitcoin) is improved, thus, encouraging wider adoption.

It also provides a base for reference and learning in the academic sector and a milestone

of research other researchers can build on.
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Appendix A

Appendix

A detailed understanding of the problems around blockchain technology requires a solid

understanding of the concept and mechanism that gave life to the technology. Therefore,

this section is going to unpack the technical complexity of the technology.

A.1 Blockchain Architecture

The structure of blockchain technology is represented by sequel blocks that enclosed a

list of transactions which is stored as a flat-file. It uses two important data structures:

Pointers that keeps the information about the location of each block. Linked lists

used in keeping a sequential order of blocks with help of the pointer. The distributed

structure of blockchain technology enforces the need for each participant within the

network maintains, approves, and updates all record in the blockchain. This network

consists of many computers that only agree to alter the record through a consensus of

the whole network ensuring all records and procedures are in order. Thus, it provides

an excellent data validity, security and trust in the data integrity.
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Figure A.1: An example of blockchain with a continues growth

Source (sheinix, 2020)

Figure 1 above illustrates an example of a blockchain, the link between the blocks is

done by an attribute in the block header called parent hash, it holds the hash values of

the previous block. Each block must have the parent hash except for the genesis block

that doesn’t have any parent block. Each block consisting of two sections: the block

header and the block body. The block header contains information used in identifying

a particular block and every blockchain has a different set of attributes included in the

block header base on their operational requirement. The block body is composed of a

transaction counter and some set of transactions (the maximum number of transactions

depends on the size of the block).

A.1.1 Block structure

As mentioned earlier, the attribute in the header are base on the blockchain and its

requirements. Figure 1 shows the block header in bitcoin context while figure 2 does

the same in Ethereum context:
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Figure A.2: Bitcoin block header

Bitcoin block header attributes

• Block version: indicates which set of block validation rules to follow or the bitcoin

version number.

• Parent hash: the hash value of the previous block.

• Merkle tree root hash: the hash value of all the transactions in the block.

• Timestamp: current timestamp in Unix’s time() at this block’s inception (seconds

since 1st January 1970).

• Difficulty target: The difficulty target of the block.

• Nonce: a number find by miners used in generating the correct hash

Ethereum block header attributes
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Figure A.3: Ethereum block header

Source (Kasireddy, 2017)

Extra attributes found in Ethereum block header:

• ommersHash: The Keccak 256-bit hash of the current block list of ommers.

• beneficiary: The 160-bit address of the miner to collected the successful fees of

mining this block.

• logsBloom: The log information in Bloom filter (data structure).

• extraData: An arbitrary byte array containing data relevant to this block. This

must be 32 bytes or less than.

• number: A count of the number of the ancestor blocks. (The genesis block has a

number of zero).

• gasLimit: The current limit of gas expenditure per block.

• gasUsed: The total gas used by transactions in this block.
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• mixHash: A 256-bit hash which, combined with the nonce, proves that a sufficient

amount of computation has been carried out on this block.

• stateRoot: The Keccak 256-bit hash of the root node of the state trie, makes it

easy for a light client to verify anything about the state.

• transactionsRoot: The Keccak 256-bit hash of the root node of the trie that

contains each transaction in the transactions list portion of the block.

• receiptsRoot: The Keccak 256-bit hash of the root node of the trie structure that

contains the receipts of each transaction in the transactions list portion of the

block.

A.1.2 The core component and concept of blockchain

Figure A.4: The main component of blockchain technology

A.1.2.1 Decentralisation

The decentralised structure of blockchain technology made data more secure by remov-

ing the reliance on central point storage. It brought about accuracy and trust in all

data stored in blockchain technology because it keeps multiple copies of the data across

all participating nodes located in many different parts of the world and a complex

consensus between all nodes is required before any form of modification on the data.

Any successful manipulation will have to occur across all or the majority of the nodes
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making it almost impossible. Any attack on one of the nodes cannot lead to losing

data or its validity since all information is recorded on multiple nodes that can easily

synchronise data based on consensus (Yli-Huumo et al., 2016).

A.1.2.2 Consensus

A consensus can be defined as a set of rules that are used in governing a distributed

system. It plays a significant role in blockchain technology’s success in eliminating the

need for a central monitory by providing a secured channel for all nodes to communicate

and reach a collective agreement before any action is performed on the network. The

efficiency of the blockchain or decentralised system in both performance and security

aspect is highly affected by the efficiency in the consensus algorithm. The protocol has

to process and validate transactions before a record can be added into the block (Bach

et al., 2018). Therefore it plays a pillar role in the blockchain system as well as any

other distributed system. Proof-of-Work (PoW) consensus protocol was the first to be

developed and is used by both Bitcoin and Ethereum (Yli-Huumo et al., 2016). PoW

will be discussed in the next section while other consensus protocol will be discussed in

depth in the state of the art section.

A.1.2.3 Cryptography

Cryptography is one of blockchain’s most important features, it plays a key role in

achieving immutability in the blockchain system. The techniques bring privacy and

confidentiality by making sure only the intended receiver can read a message sent which

is necessary when communicating over any untrusted medium. It also helped in proving

identity and securely sharing crypto keys. Blockchain technology has used cryptography

in so many ways that include generating hash for the transaction and blocks data when

storing the history of transactions in a Merkle tree. It is not only used in making data

immutable, it is also used in the authentication (Salman et al., 2019).

A.1.2.4 Blocks and transactions

After a transaction is performed, the details are published to the blockchain network

through a place called transaction pool where all unconfirmed transactions wait to be

verified and validated. A transaction is only confirmed if added in a block that has
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been added to the blockchain. They both are very important parts of the technology

because they represent the data and its storage that the whole complexity of the system

is trying to secure (Yli-Huumo et al., 2016).

A.2 Conclusion

The chapter discussed the important technical aspects of the blockchain technology and

the PoW consensus protocol for better understanding of discussions in the chapters

that follow. The core components of the technology were discussed. The discussion

highlighted the importance of decentralisation and security in the blockchain system

which provides a better insight into the concerns around the scalability issue forcing

trading off one of the important attributes. The research also discussed the PoW

consensus protocol and the idea behind the mining process and mentioned how the

difficulty level influences the mining speed. To conclude, The amount of trust that can

be given to blockchain depends on its level of decentralisation and the security of its

protocol, and the difficulty level influences the mining speed.
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