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ABSTRACT 

Fifth Generation (5G) and beyond wireless technologies are expected to support Quality of 

Service/Experience (QoS/QoE) requirements of new and emerging Internet of Things (IoT) 

applications and services. Smart manufacturing is one of the target verticals for 5G-and-beyond 

networks. Device-to-Device (D2D) communication is a key technology to facilitate Ultra-

Reliable Low-Latency Communication (URLLC). Efficient Radio Resource Management 

(RRM) techniques are necessary to address the challenges posed by interference. The main 

objective of the research work reported in this thesis is the development of new RRM 

techniques for D2D communication in wireless industrial setting meeting QoS/QoE 

requirements of end-users in cellular networks and its deployment in Factories of the Future 

(FoF). The algorithms and techniques developed to address RRM challenges are a combination 

of centralised techniques such as mathematical optimisation and distributed approaches such 

as matching theory and machine learning.  

The key contributions of this research work are the development of new RRM techniques 

optimising spectrum utilisation, in terms of energy efficiency and throughput performance. The 

first part of the thesis focuses on developing spectrum sharing schemes for D2D 

communication in cellular and Multi-tier Heterogeneous Networks (HetNet), resulting in new 

spectrum and energy-efficient solutions. The second part of the thesis focuses on ensuring 

reliable communication for the deployment of D2D communication in industrial settings. A 

new matching technique was developed to optimise matching between D2D links and cellular 

resources. A new stateless reinforcement learning scheme is also presented, to ensure a low-

dimension state-action mapping with the latency and reliability specifications of the D2D users 

and minimum QoS of the cellular users. A comparative analysis of the results in terms of trade-

offs between factors including performance, signalling overheads and complexity shows that 

the developed distributed RRM techniques outperform centralised methods for the studied 

industrial scenarios. 
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Chapter 1 

Introduction 

The motivation and justification for the research scope of this thesis are presented in this 

chapter. Research questions, aims and objectives of the work reported in this thesis are also 

discussed. 

1.1    Background and Motivation 

Machine-Type Communication (MTC) usually refers to direct communication between smart 

objects exclusive of human intervention. Internet of Things (IoT) is a paradigm evolving from 

wide-scale MTC, which incorporates the inter-operation of physical and virtual units/systems 

to manage interactions among heterogeneous smart devices via the Internet. With the 

emergence of IoT, objects and devices that are not expected to be conventionally connected to 

the Internet will be enabled to send, receive and process data. This has been made possible by 

the rapid advancements and innovations in sensors, radio frequency technologies and emerging 

wireless networks. Smart devices possess the ability to autonomously learn and apply 

knowledge to make resource management decisions. The physical environment where smart 

devices interact through a continuous network is called a smart environment [1]. 

There are three major application categories or use cases for 5G-and-beyond networks: 

enhanced Mobile Broadband (eMBB), massive MTC (mMTC) and critical MTC (cMTC). 

Enhanced mobile broadband comprises applications with high bandwidth/data rate demands. 

Massive MTC applications include smart homes or smart agriculture, and typically involve a 

large number of low-cost smart devices with QoS requirements related to extended coverage 

and energy efficiency. Critical MTC applications, on the other hand, require real-time 

communication between smart devices such as in remote surgery, smart manufacturing, 

autonomous car, road traffic management etc [2].   

Current wireless communication technologies have limitations in supporting the above-

mentioned use cases in terms of performance, managing heterogeneity, security, and trust, 

leveraging Internet technologies, flexible networks, and service management.  It is expected 

that 5G-and-beyond wireless technologies will enable diverse new and emerging IoT use cases 

that existing wireless technologies are unable to support. While 5G offers substantial advances 
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by introducing better QoS provisioning relative to the previous generations of wireless 

networks, the sixth generation of cellular communication (6G) is expected to deliver a fully 

automated and smart environment [3]. 

Industry 4.0 and the emerging Industry 5.0 are considered new paradigms to optimally exploit 

the potential enhancements covered by 6G. Industry 4.0 also known as smart industry or 

Industrial IoT (IIoT), is an industrial technological revolution that integrates Cyber-Physical 

Systems (CPS), Artificial Intelligence (AI) and IoT to transform manufacturing and production 

processes. Smart industry relies on massive Machine-To-Machine (M2M) communication, 

which involves interaction between sensors, machines, robots, and wearable devices.  While 

Industry 4.0 prioritises process automation, thereby reducing human involvement in the 

manufacturing process, Industry 5.0 is conceptualised to exploit the creativity of human experts 

to collaborate with intelligent machines [4]. The Fifth-Generation Infrastructure Public-Private 

Partnership (5G PPP) identified the manufacturing industry as one of the most demanding use 

cases with respect to ultra-low latency, ultra-high availability, and reliable indoor coverage in 

metalised industrial environments. MTC for automation processes in factory environments is 

considered one of the most important use cases for 5G-and-beyond networks [5].  

While legacy cellular networks are primarily designed for Human-Type Communication 

(HTC), they are expected to support the MTC at a reduced cost of implementation. Therefore, 

cellular networks need to be modified to accommodate MTC due to new requirements [6]. The 

service requirements for MTC in Long Term Evolution-Advanced (LTE-A) were first proposed 

in [7], but did not draw the distinction between the MTC Devices (MTCDs) and mainstream 

Cellular User Equipment (CUEs) for HTC.  

In contrast to HTC, 

i. MTC is expected to support large numbers of smart devices, predominantly with small 

data sizes, which aggregate into a massive amount of data from parallel transmissions 

of a large number of MTCDs. 

ii. The uplink periodic reporting packets in MTC, account for the higher proportion of the 

total traffic while the downlink consists of occasional query and control information.  

iii. The majority of the MTCDs are required to have a battery life that will last up to a 

minimum of ten years without replacement. In addition, it will feature heterogeneous 

devices with diverse QoS requirements [8]. 
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Generally, smart devices are physically resource-constrained in terms of power, processing 

capabilities, memory, and the availability of radio spectrum [9]. The global mobile data traffic 

is forecast to increase to 670 Exabytes (EB) per month by 2025, which is an increase of 250% 

from the projection made in 2020. This unprecedented increase in data traffic is a result of the 

rapid growth in the number of smart wireless devices and bandwidth-intensive applications and 

services (e.g., online video streaming, gaming, etc.). MTCs will constitute approximately 50% 

(~14.7 billion devices) of globally connected devices by 2023, in addition to the traffic 

generated from smartphone connections [8]. This forecast shows that the rapid growth in the 

number of smart wireless devices will put pressure on radio spectrum resources that are already 

considered scarce and expensive. Fig. 1.1. represents an estimated exponential growth of global 

mobile connectivity [10].  

 

Fig. 1.1. The predicted growth of global mobile connectivity for 2020-2030 [10].  

The increased processing power of Internet of Things Devices (IoTDs) will result in a rise in 

energy consumption which will have a significant impact on battery life. Furthermore, 

increased data rates from massive connections of IoTDs will lead to a rise in overall network 

energy consumption, thus posing a major design challenge for wireless IoT based systems [11]. 

The global energy consumption of Internet devices is predicted to grow by 46% between 2013 
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and 2025, if there are no improvements in energy usage [12]. Consequently, Mobile Network 

Operators (MNO) with existing cellular technologies are faced with the challenges posed by 

these developments. A global survey of telecommunication engineers has ranked spectrum 

availability the highest among obstacles to the success of 5G [13].  

MTCDs can be deployed in licensed spectrum bands by reusing the existing cellular 

infrastructures or the license-exempt (or unlicensed) bands. Licensed bands are known for 

guaranteed reliability, extensive range, and ability to provide access to a larger number of 

devices in comparison to the unlicensed spectrum bands. However, a service fee is usually 

charged by regulators. Moreover, the scarcity and cost of licensed bands will result in higher 

congestion and blocking as network traffic grows. The performance of the regular HTC can be 

significantly degraded if congestion or system overload occurs. Congestion can arise as a result 

of concurrent uplink data transmissions or concurrent attempts to connect to the network by a 

large number of MTCDs. Cellular networks are mainly designed to manage HTC, in which 

uplink traffic is usually less than the downlink traffic, whereas MTC generates more traffic in 

the uplink than in downlink [14].  

Ultra-Reliable Low-Latency Communication (URLLC) traffic is characterised by sporadic and 

small packet sizes typically 10-20 bytes [15], end-to-end latency typically in the order of a few 

milliseconds (ms) and a packet loss probability of at least 99.999%, which can only be presently 

achieved by wired solutions, as current wireless technologies, cellular and non-cellular, have 

limitations in meeting strict target QoS requirements [16]. Device-to-Device (D2D) 

communication has the potential to achieve reduced latency and improved reliability, because 

it allows devices to communicate directly without traversing the network infrastructure. 

Therefore, D2D is considered one of the key enabling technologies of 5G-and-beyond wireless 

systems [17].  

In terms of spectrum usage, a D2D user either transmits exclusively via a dedicated channel or 

shares a channel with a cellular user, thus, addressing the challenges of insufficiency and under-

utilisation of spectrum resources. D2D-type communication can be used to create massive 

MTC connections for future wireless industrial networks in factories of the future (FoF) and 

next-generation smart manufacturing, also known as Industry 4.0/5.0. Integrating D2D 

communication within an IoT environment will facilitate meeting the stringent QoS 

requirements of the target use cases [18].  
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Cellular service providers are able to mitigate problems such as poor indoor coverage and low 

data rates at the edge of the cell, by allowing users to connect to the cellular network, via a 

femtocell or small cell. Cell-edge users are users located at the edge of the cell, i.e., they are 

far away from the base station. They commonly experience low Signal-to-Interference-Plus-

Noise Ratio (SINR), which results in a low date rate [19]. A femtocell is a small low-power 

cellular base station that connects the mainstream mobile devices to a network operator [20]. 

The integration of femtocells into a larger network, called a macrocell, forms a multi-tier 

Heterogeneous Network (HetNet). This structure has the potential of increasing the network 

capacity but will also increase the demand for spectrum resources. Spectrum sharing among 

the macrocell and femtocells may result in cross-tier interference. The introduction of D2D 

communication in a multi-tier network can, increase the overall network throughput, however, 

interference will become more complex when D2D and femtocell users have to reuse the 

macro-cell user resources. 

Power control plays a crucial role in interference management and meeting the data rate 

demand of different users [21]. Therefore, advanced RRM using power control is necessary. 

This can be achieved by using intelligent algorithms to efficiently allocate limited power and 

radio resources and manage the impact of interference to an acceptable level, such that the QoS 

requirements of all users are simultaneously satisfied. Limitations in terms of radio resource 

availability and energy consumption are key issues to be considered in addressing RRM 

challenges to achieve URLLC requirements for smart manufacturing [22]. 

1.2   Main RRM Approaches 

There are two main approaches to RRM, namely: centralised and distributed. In centralised 

RRM, the resource allocation policies are centrally controlled and coordinated by a Base 

Station (BS) or Access Point (AP), whereas distributed RRM is user terminal-centric. Owing 

to the large-scale nature of some smart environments, such as in manufacturing, a centralised 

RRM solution may not be always viable or practical due to the computation cost, increased 

signalling overheads and complexity. Effective spectrum and energy management in a 

heterogeneous environment, as in the case of wireless IoT, require a self-organising approach 

that is scalable, while maintaining target QoS/QoE metrics for the intended users or 

applications. A distributed RRM implementation is device-centric, making it possible to realise 
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a Self-Organising Network (SON) and supporting autonomy, which is an inherent feature of 

smart environments [23].  

Centralised approaches often adopt general mathematical optimisation techniques and may not 

be efficient in an ultra-dense network of devices having strict latency requirements. Some game 

theoretic based methodologies may be used to achieve distributed RRM solutions [24]. There 

are, however, some limitations that make a game theory solution inadequate for large-scale 

network deployment, such as in a smart factory. These limitations include the complexity 

associated with modelling utility functions, slow convergence to equilibrium and high 

overheads [25]. Matching theory [26] has been able to address these challenges by providing a 

structure that facilitates decentralised resource allocation with reduced overheads and 

complexity. Machine learning [27], which was originally designed and developed for systems 

to learn and make decisions that will yield better performance for a given task, should be 

explored to tackle RRM challenges in next-generation networks.  A distributed solution is 

better suited to support device-centred learning. With a machine learning-based RRM solution, 

wireless network entities can learn from their environment and make autonomous decisions to 

determine their optimal resource allocation, which is able to adapt to the dynamics of the 

network and satisfy strict QoS requirements [28]. It is considered that Machine Learning (ML) 

and Artificial Intelligence (AI) are pivotal to the realisation of the visions for 5G and beyond 

networks [11].   

1.3   Main Research Aim  

As set out in the previous section, there are challenges that should be addressed for the 

realisation of the optimal deployment of D2D communication in 5G-and-beyond networks in 

general, and for wireless Industrial IoT (IIoT) in particular. The research work presented in this 

thesis aims at addressing some of the issues and presenting solutions specifically targetting 

D2D wireless communication for smart manufacturing. It focuses on investigating and 

developing new RRM techniques achieving energy efficiency and optimised spectrum 

utilisation, while maintaining target QoS/QoE metrics for intended users and services. 

Furthermore, recommendations for the target verticals and use cases will be provided. 

1.4   Research Questions 

In connection to addressing the main issues related to the research aim set out above, a number 

of inter-related research questions are investigated, namely: 
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1. What is the current state-of-the-art in RRM for D2D communication and its 

applications to Industrial IoT? 

2. How will the diverse and conflicting QoS/QoE requirements/metrics of wireless 

Industrial IoT be met with newly developed RRM schemes? 

3. How will the newly developed RRM algorithms compare with other conventional 

methods in terms of KPIs and QoS metrics? 

1.5   Research Objectives  

This research work investigates new RRM frameworks including centralised optimisation, 

matching theory, and machine learning techniques to address some of the underlying 

challenges of next-generation wireless communication networks. The target vertical/domain 

of applications is D2D communication in cellular networks and its deployment in Factories-

of-the-Future (FoF), which is enabled by Industrial (IIoT). IIoT is characterised by traffic that 

demands guaranteed delivery within extremely very time-sensitive intervals, with a reliability 

requirement of over 99.9999% and latency of less than 0.5ms for certain use cases. This is 

stricter than most Critical IoT applications, making IIoT one of the most demanding verticals 

in terms of ultra-reliable, low-latency communication (URLLC). The focus of this work is to 

develop novel algorithms and evaluate their performance for different use cases. The main 

issues to be considered are: 

1. Spectrum sharing and interference mitigation for D2D-enabled cellular networks. 

2. Resource allocation for URLLC targetting wireless industrial scenarios. 

This research work contributed to the H2020 CLEAR5G project [29], which aims to investigate 

and demonstrate some of the key enablers necessary to support MTC in 5G networks, 

particularly in FoF environments.  

1.6   Main Contributions and Progress beyond State-of-the-Art 

The main contributions of this research work are focused on developing new RRM techniques 

for improving resource utilisation, while maintaining the QoS demands for a D2D-enabled 

cellular network in a wireless industrial environment. 

1. Resource allocation for channel assignment and power control in a system with 

differentiated QoS for CUEs and D2D User Equipment (DUEs), is presented in Chapter 

3. A Power-Rate Reduction Ratio (PRR) scheme is designed to address the multiple-
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objective optimisation problem by maximising the energy efficiency of the DUEs, 

while satisfying the QoS of the cellular users. This scheme is compared to a method 

that adopts Fixed-Target-SINR Tracking Power Control (TPC). Numerical results show 

that the TPC algorithm provides a good CUE throughput performance and DUE power 

savings, whereas the PRR scheme generates a higher overall system utility which better 

realises the system’s objectives. 

2. Spectrum Sharing for D2D deployment in a multi-tier HetNet, in which the DUEs and 

Femtocell User Equipment (FUEs) are to share the same cellular resources, is presented 

in Chapter 4. A heuristic centralised Interference-Aware Spectrum Sharing Algorithm 

(ISA) is presented to solve the spectrum sharing problem, resulting in a resource-

efficient allocation with throughput maximisation for the connected users. Results from 

numerical simulations demonstrate that the presented scheme achieves higher network 

throughput compared to a scenario where the active devices transmit at peak power, 

and where the CUEs have exclusive channel use. 

3. In Chapter 5, resource allocation for reliable D2D communication in a wireless 

industrial scenario is investigated. A novel matching theory-based technique, denoted 

as Priced-Deferred Acceptance (P-DA) algorithm, is presented to improve resource 

utilisation. The scheme uses incentive-based stability to match D2D users to cellular 

resources and optimise the reuse gain. The performance of the P-DA algorithm is 

compared to the traditional Deferred Acceptance (DA), centralised optimisation and 

random algorithms. Numerical simulations show that the P-DA scheme outperforms 

the other algorithms for optimisation of spectrum utilisation in wireless industrial 

scenarios where MTCs are expected to support large numbers of sensors/devices. 

4. A distributed stateless reinforcement learning technique, denoted as Reinforcement 

Learning Based Matching (RLBM) algorithm, is presented in Chapter 6 to solve 

spectrum-sharing and resource allocation problem, while considering the latency and 

reliability requirements in an industrial setting. The 𝑸-value function is formulated 

using action-reward only, making the state transition irrelevant but, nevertheless 

capturing the QoS requirements of the DUEs. As such, the challenges caused by 

traditional problem of large state-action mapping are mitigated, resulting in reduced 

complexity and signalling overheads. Also, 𝑸-tables for the CUEs are maintained and 

updated for the actions of the DUEs so that the satisfaction and preferences of the 
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cellular users are considered during resource allocation. This scheme is different from 

conventional techniques, where the QoS of the cellular users is modelled in the state 

space or reward function and the BS reports the QoS measurement of the CUE to the 

DUE at each time slot. The RLBM scheme is compared to a semi-distributed scheme, 

denoted as Base Station-Assisted (BS-A), where the DUEs upload their Q-tables to the 

BS for centralised channel allocation. Simulation results show that RLBM is more 

viable for massive device deployments such as in FoF, achieving good throughput 

performance at lower signalling overhead and complexity compared to other schemes, 

if device autonomy and stability are important system requirements. 
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1.7   Dissemination of Results 

This research work resulted in the following technical papers and presentation: 

Journal papers 

1. I. O. Sanusi and K. M. Nasr, “Channel Selection in D2D Wireless Industrial 

Applications- A Reinforcement Learning Approach,” IEEE Transactions on Network 

Management and Service (Submitted) 

2. I. O. Sanusi and K. M. Nasr, “Base Station-Assisted Reinforcement learning for 

Resource Allocation in Wireless Industrial Environments,” International Journal on 

Advances in Telecommunications, Vol. 15, no. 3&4, Dec. 2022. 

3. I. O. Sanusi, K. M. Nasr and K. Moessner, “Radio Resource Management Approaches 

for Reliable Device-to-Device (D2D) Communication in Wireless Industrial 

Applications,” IEEE Transactions of Cognitive Communication and Networking, 

Vol.7, Issue 3, pp. 905-916, Oct. 2020. 

Conference papers 

4. I. O. Sanusi and K. M. Nasr, “A Machine Learning Approach for Resource Allocation 

in Wireless Industrial Environments,” in Proc. of the Eighteenth Advanced 

International Conference on Telecommunications (AICT), pp. 18-23, Jun. 2022. 

5. I. O. Sanusi, K. M. Nasr and K. Moessner, “A Priced-Deferred Acceptance (P-DA) 

Technique for D2D Communication in Factories of the Future,” in Proc. of Cognitive 

Radio-Oriented Wireless Networks (CROWNCOM), Springer Cham, pp.102-111, 

Mar. 2021. 

6. I. O. Sanusi, K. M. Nasr and K. Moessner, “Resource Allocation for a Reliable D2D 

Enabled Cellular Network in Factories of the Future,” in Proc. of IEEE European 

Conference on Networks and Communications (EUCNC), pp. 83-89, Jun. 2020. 

7. I. O. Sanusi, K. M. Nasr and K. Moessner, “Device-to-Device Communication (D2D) 

Spectrum Sharing Scheme for Wireless Industrial Networks,” in Proc. of IEEE 

European Conference on Networks and Communications (EUCNC), pp. 353-357, Jun. 

2019. 
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8. I. O. Sanusi, K. M. Nasr and K. Moessner, “Channel Assignment and Power Control 

for D2D-Enabled Cellular Networks,” in Proc. of IEEE International Conference on 

Computing, Electronics and Communication (iCCECE), pp. 225-228, Aug. 2019. 

9. I. O. Sanusi and K. M. Nasr, “Resource Management Techniques in Smart 

Environments,” Third Medway Engineering Conference, University of Greenwich, 

Medway Campus, Jun. 2018.  

Presentation 

10. I. O. Sanusi, “Radio Resource Management for Wireless Industrial Applications,” 

PGCon Edinburgh Postgraduate Conference, John McIntyre Conference Centre, 

University of Edinburgh, Oct. 2019. 

1.8   Organisation of the Thesis 

The thesis is organised as follows: 

In Chapter 2, a literature review focusing on the state-of-art in IoT use cases, D2D 

communication and wireless factory automation is presented, together with the performance 

requirements of smart manufacturing. RRM challenges and associated approaches and 

techniques are critically surveyed. 

In Chapter 3, a spectrum sharing scheme for D2D communication in a cellular network is 

presented. The problem is formulated as a multi-objective optimisation problem, which is 

solved using a low-complexity centralised heuristic algorithm. 

In Chapter 4, a centralised algorithm is designed to address the resource allocation problem for 

D2D and femtocell users co-existing with cellular users in a multi-tier HetNet.  

In Chapter 5, resource allocation for a D2D-enabled cellular network, targetting smart factory 

settings is presented. The aim is to maximise the overall system throughput comprising cellular 

users and D2D links with reliability constraints. A matching technique, which uses an 

incentive-based stability to optimise spectrum sharing is developed.  

Reinforcement learning based RRM techniques for channel selection, targetting the 

deployment of D2D links in a wireless URLLC industrial environment, are presented in 

Chapter 6. The presented techniques adopt stateless learning without limiting the performance 

requirements of the users, in order to reduce the learning complexity.  
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The conclusions resulting from the research work carried out in this thesis are presented in 

Chapter 7. These include a summary of the contributions, recommendations, dissemination of 

results and potential directions for future research work. 
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Chapter 2 

A Critical Review of Application Requirements  

and RRM Techniques in Wireless IoT Networks 

In this chapter, a review of the state-of-the-art is presented, as identified by the published 

literature in the field of study. Initially, an overview of use cases for IoT in 5G-and-beyond 

networks is presented and discussed, with a specific focus on D2D communication and its 

deployments in smart industrial scenarios and highlighting the key enabling technologies. The 

RRM challenges faced in achieving the required QoS in smart manufacturing are discussed. 

The relevant techniques and main approaches to RRM are also overviewed. Finally, the chapter 

concludes with a summary of the main outcomes and implications of this literature survey as 

they relate to the research work reported in this thesis. 

2.1   Internet of Things Use cases in 5G-and-Beyond Networks 

The main 5G use cases include enhanced Mobile Broadband (eMBB), massive MTC (mMTC) 

and critical MTC (cMTC) [30,31]. These services have widely diverse QoS/QoE requirements 

and can be allowed to coexist within the same network architecture through the concept of 

network slicing [32]. 

a) Enhanced Mobile Broadband (eMBB) 

eMBB has a high bandwidth requirement such as in High Definition (HD) video, Virtual 

Reality (VR), Augmented Reality (AR), on-body sensors etc.  It supports connections with 

high peak data rates (approximately 10Gbps and with a bandwidth of several hundreds of 

MHz), as well as moderate rates for cell-edge users and moderate latency (a few milliseconds). 

eMBB is characterised by large data packets and regular traffic over an extended time interval. 

Thus, devices with eMBB traffic usually use dedicated radio resources. An eMBB service 

focuses on maximising data rate, while guaranteeing reliability ranging from low to average, 

with a Packet Error Rate (PER) of the order of 10−3 [33]. 
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b) Massive Machine-Type Communication (mMTC) 

Massive MTC is characterised by a vast number of IoT/MTC devices, which are only 

intermittently active and transmit few data packets at a relatively low data rate in the uplink. 

Only a random set of the large number of mMTC devices connected to a particular BS may be 

active at any given instant. Thus, it is practical to provide random access in spectrum sharing 

rather than pre-assigning dedicated radio resources to each device. The number of active sets 

of mMTC devices is a random variable, with a mean value that estimates the mMTC data traffic 

arrival rate (average number of data traffic per unit time). The design aim of mMTC is to 

maximise the arrival rate that can be supported in a given resource block [33]. The PER value 

of an mMTC transmission is typically low, for example, of the order of 10−1. 

c) Critical Machine-Type Communication (cMTC) 

Critical MTC, also known as URLLC often requires real-time communication between smart 

devices. It supports relatively low transmission rate (typically 100kps) with strict demand for 

high reliability (typically 99.999%), extremely low delay (typically 0.25-0.3 ms/packet) and 

with a PER typically lower than 10−5. URLLC transmissions are also sporadic, but the set of 

potential URLLC transmitters is much smaller than for mMTC and are usually event-driven. 

Critical MTC requires random access with a short Transmission Time Interval (TTI) to avoid 

waste of resources due to the periodic traffic [34-36].  

In 6G, URLLC, eMBB, and mMTC) will be extended to other areas, which are Ultra-High 

Precision Communication (uHPC), Ultra-Broadband (uMBB), Ultra-Massive Machine-Type 

Communication (uMTC), respectively.  uHPC provides higher reliability, lower latency, more 

precision in synchronicity compared 5G URLLC.  uMBB have higher data rate requirements 

than 5G eMBB use case scenarios and uMTC supports ultra-high connection density compared 

to in 5G use case scenarios. A comparison of the different wireless generations [10, 37-40], 

using some Key Performance Indicators (KPIs), is shown in Table 2.1. 
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Table 2.1:  Comparison of some KPIs of different wireless generations [10, 37-40],  

  3G 4G 5G 6G 

Year of 

Introduction 

1998 2008 2018 2030 

Wireless 

Standard or 

Technology 

Universal Mobile 

Telecommunication 

Systems (UMTs) 

Long Term 

Evolution (LTE) 

5G New Radio (NR) Ubiquitous Wireless 

Intelligence (UWI) 

Example of 

use cases 

MBB MBB eMBB, URLLC, 

mMTC 

uMBB, uHPC, uMTC 

Peak data 

rate 

30Mbps 100Mbps 10Gbps 1Tbps 

Experienced 

data rate 

2Mbps 10Mbps 0.1Gbps 1Gbps 

Frequency 800-2000MHz Below 6GHz Up to 300GHz  Up to 3THz 

Latency 200ms 100ms 10ms 1ms 

Mobility 

support 

up to 300km/h up to 350km/h  up to 500km/h up to 1000km/h 

Reliability >99.9% >99.99% >99.999% >99.9999% 

Connection 

density 

104Devices/km 105Devices/km2 106Devices/km2 107Devices/km2 

Area traffic 

capacity 

100kb/s/m2 0.1Mb/s/m2 10Mb/s/m2 10Gb/s/m2 

Examples of 

Applications 

Voice, data, Video 

call 

Voice, data, video 

call, High-

Definition TV, 

Mobile TV 

Voice, data, video 

call, Mobile TV, 

Smart city, Vehicle-

to-Everything (V2X), 

Virtual Reality (VR) 

Digital sensing and 

reality, autonomous 

driving, Tactile haptic 

Internet, Space travel, 

Internet of Bio-Nano 

Things, Internet of 

Everything (IoE), 

Augmented Reality (AR) 

Technologies Wideband Code 

Division Multiple 

Access (WCDMA), 

CDMA-2000 

Orthogonal 

Frequency-Division 

Multiplexing 

(OFDM), 

Orthogonal 

Frequency-Division 

Multiple Access 

(OFDMA) 

Multiple- Input 

Multiple-Output 

(MIMO), Carrier 

Aggregation (CA), 

D2D 

mm-Wave 

communication, Non-

Orthogonal Multiple 

Access (NOMA), 

Massive MIMO, 

Software defined 

Network (SDN), 

Network Function 

Virtualisation (NFV), 

Network slicing, 

Edge computing, 

Virtual Network 

Operator (VNO) 

Tera-Hertz (THz) 

communication, Spatial 

Modulation MIMO (SM-

MIMO), Orbital Angular 

Momentum (OAM) 

multiplexing, 

Blockchain-based 

spectrum sharing, 

Quantum 

communication, AI, ML 
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2.2    Wireless Factory Automation (Wireless Industrial IoT) 

Smart industry, also known as smart factory, Industry 4.0 or Industrial IoT (IIoT), is an 

industrial, technological development that integrates cyber-physical systems (CPS), artificial 

intelligence (AI) and IoT to transform manufacturing and production processes through 

automation [41]. While Industry 4.0 is still being adopted by businesses, Industry 5.0 has 

emerged recently. The concept of Industry 4.0 focuses on connectivity through cyber-physical 

systems. Industry 5.0, while aligned with objectives of Industry 4.0, addresses the interaction 

between “humans and machines,” otherwise known as robots or cobots [42,43]. 

One of the key aspects of factory automation is real-time control of machines and systems. 

Wireless factory automation has gained much attention in recent times. This can be attributed 

to its merits in terms of low installation and maintenance costs with flexibility and scalability 

compared to wired networks, in addition to its suitability to meet the requirements of FoF. 

Factory automation can provide new opportunities and prospects for manufacturing and 

enhance the efficiency of production and increase productivity. Smart factories rely on MTCs. 

This involves interaction between sensors, machines, robots, and wearable devices. Fig. 2.1 

depicts a graphical illustration of a typical smart factory [44].  The industrial evolution [45], 

highlighting the key technological development at each phase is shown in Table. 2.2. The 

principal challenges for the deployment of industrial wireless networks are the stringent 

performance requirements in terms of very low end-to-end latency and high reliability with 

low power consumption for data acquisition and control [46].  

2.2.1   Wireless Technologies used in Industrial Environments 

The most common existing wireless standards used for communication in factory automation 

include Zigbee, WirelessHART, ISA100.11a and IEEE 802.11x [47]. These technologies are 

deployed in the license-exempt bands which are subjected to co-channel interference and 

congestion as the number of devices increases, as well as security and privacy issues, thus 

limiting their QoS/QoE guarantees. Cellular technologies, on the other hand, offer long-range 

connectivity and provide access to a larger number of devices, and are also recognised for their 

reliability [48]. 
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Fig. 2.1.   An illustration of Industry 4.0 [44] 

 

Table 2.2:   Different Eras of the Industrial Revolution [45] 

Technology Industry 1.0 Industry 2.0 Industry 3.0 Industry 4.0 Industry 5.0 

Key feature Mechanisation Electrification Automation Cyber-physical 

systems 

Collaborative 

robots (Cobots) 

Characteristics Mechanical 

weaving looms, 

steam power etc. 

Production lines, 

mass production 

using electrical 

energy 

Electronics and 

information 

technology for 

automation 

Intelligent 

production 

integrated with 

Internet of Things, 

machine learning 

and artificial 

intelligence 

Mass 

customization 

and cyber-

physical 

cognitive 

systems 

Year 1784 1870 1969 Today Within the 

present decade 

 

The current technologies, both cellular and cell-free architectures, have limitations in terms of 

capabilities in handling performance requirements (e.g., low-latency and high reliability) for 

FoF [5]. 5G-and-beyond technologies are expected to provide performance improvements to 
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enable applications and services that cannot be supported by existing wireless networks or 

standards.  

2.2.2    D2D Communication for Wireless Industrial Applications  

            in 5G-and-Beyond Networks 

Device-to-Device communication (D2D) is considered as a promising solution for URLLC use 

cases, especially for proximity communication.  MTC within the factory is an example of 

URLLC [49]. Factory automation typically involves a closed loop that comprises sensors and 

actuators (e.g., a robot and a Programmable Logic Controller (PLC)). Fig. 2.2. illustrates D2D 

communication in a typical smart factory.  The sensor sends its measured data to the PLC, 

which then instructs the actuator to implement a certain action [50]. These devices have the 

potential for direct D2D communication because they usually operate in proximity to each 

other. Integrating D2D into future industrial wireless networks and next-generation 

manufacturing can support the creation of mMTCs [51].  With D2D, proximal devices can 

bypass the network infrastructure and communicate directly. D2D communication aims to 

provide three main types of gains, namely, proximity, hop and reuse gain. Proximity gain is 

achieved through short-range direct communication of D2D links which results in reduced 

delay and a lower power consumption, improved reliability, and data rates. Hop gain is where 

a D2D link uses a single hop as opposed to the conventional cellular transmission which uses 

both uplink and downlink resources, thus contributing to reducing the end-to-end latency. 

Reuse gain is achieved by the simultaneous use of channels by D2D links and cellular links, 

thus enhancing spectrum efficiency and increasing network capacity and traffic offload [52]. 

Considering the limitations of the current wireless solutions, D2D communication is a key 

enabler to satisfying URLLC requirements for factory automation [53]. 
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Fig. 2.2.  D2D communication in smart factory [46] 

D2D communication can take place in the cellular licensed spectrum bands (called in-band 

communication) or in the unlicensed spectrum bands (or out-band communication [54]). D2D 

communication links deployed in the licensed spectrum bands have gained much attention 

because of their reliability in terms of QoS guarantees that can be attained relative to the 

unlicensed bands which are unregulated and uncoordinated [55]. Spectrum access in a licensed 

band by D2D links can either be via shared channels with cellular users (referred to as shared 

mode, also called underlay) or via exclusive use of dedicated channels (referred to as dedicated 

mode, also called overlay). Due to the high cost associated with a license fee and scarcity of 

dedicated radio resources, spectrum sharing is now receiving increased interest [56]. 

Furthermore, spectrum efficiency in 5G-and-beyond systems will depend on developing 

sharing techniques to offload the already congested network and expand capacity. While 

resource-sharing tends to improve spectrum utilisation, the main challenge is how to address 

co-channel interference. As a result, new spectrum sharing schemes are essential to satisfy the 

target QoS/QoE of coexisting users. The use of dedicated channels by D2D links, on the other 

hand, may lead to an under-utilisation of limited spectrum resources, but interference between 

D2D users and cellular users is avoided because of orthogonal channel assignment. Orthogonal 

channels are channels that are sufficiently distant from each other such that interference can be 

avoided [57]. 
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2.2.3   Performance Requirements in a Wireless Smart Manufacturing Environment 

To measure the efficiency of connectivity solutions of the current wireless communication 

technologies for diverse use cases and applications, the operational requirements and metrics 

needed for the deployment of these services should be considered. 5GPPP identified five 

manufacturing Use Cases (UC) to describe these requirements [5] as presented in Table 2.3. 

These requirements encompass both performance and design requirements for the various use 

cases. Latency, reliability, and data rates are further elaborated and investigated in this research 

work as they critical QoS metrics for efficient radio resource management for Industrial IoT 

(IIoT) applications. These metrics are interdependent and impact the overall performance of 

IIoT systems. 

Table 2.3: Communication requirements for different smart manufacturing use cases [5] 

  Latency Reliability Bandwidth Coverage Security Heterogeneity Autonomy 

UC1 Time-critical 

process 

optimisation 

Very low Very high Low to 

high 

Indoor Critical Important Less 

Critical 

UC2 Non-time critical 

optimisation 

Less 

stringent 

High Low to 

high 

Indoor + On 

site outdoor 

Critical Important Critical 

UC3 Remote control Less 

stringent 

High Low to 

high 

Wide area Critical Important Less 

Critical 

UC4 Inter-/Intra- 

Enterprise 

Communication  

Very low 

to less 

stringent 

High Low to 

high 

Wide area 

(On 

site/outdoor) 

Critical Important Less 

Critical 

UC5 Less stringent Less 

stringent 

Low Low to 

high 

Wide area Important Important Critical 

 

a) Latency 

Latency is expressed in terms of end-to-end delay perceived by the user [58]. End-to-End (E2E) 

latency includes queuing delay, propagation delay, transmission, and re-transmission (if 

allowed) delay and processing delay [59].  Critical MTC has hard latency requirements which 

vary from one URLLC application to the other. Typical values of E2E delay for motion control 

in factory automation are down to 1ms, or less depending on the application [60] A shorter 

frame structure for an LTE system with a duration of 1ms transmission time interval (TTI) was 

proposed in [61] to reduce transmission delay. Direct communication via Device-to-Device 

(D2D) communication can also reduce transmission delay [62]. 
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b) Reliability and Availability 

Reliability can be described as the successful or guaranteed packet delivery within the latency 

bound and typically expressed as a target maximum Block Error Rate (BLER) or Packet Error 

Ratio (PER) depending on the layer of the communication protocol stack [16].  Factory 

automation is characterised by a reliability of at least 99.999% or PER not higher than 10-5 

[63]. Reliability and availability are terms often used interchangeably for cMTC, but, are 

generally often referred to as “reliability”. Reliability is related to short-term communication 

quality and is impacted by multipath fading and rapidly changing interference in a dynamic 

environment. Multipath fading is a characteristic of a wireless channel which occurs when 

signals reach a receiver via more than one path. This leads to variations in their signal strengths 

and phases, which may result in signal distortion [64,65]. Availability is usually defined in 

terms of geographic service coverage. It is the long-term service quality of the end-users and 

is impacted by path loss, shadowing and other slowly varying channel characteristics [66]. 

Reliable wireless communication requires a higher immunity to interference and environmental 

clutter. Reliability against factors such as bandwidth, latency budget, interference power level, 

are discussed in more detail in [15,22,67]. 

c) Data rate 

Various use case families in the manufacturing industry are characterised by applications with 

diverse data rate requirements ranging from low to high. For example, some sensors may 

communicate (measurements, control commands and signalling) at a low bit rate (typically 

100kbps [68]), but with ultra-high reliability and low latency, whereas AR, VR, vision-

controlled robot arms or mobile robots may require high-bandwidth communication [5]. 

Typical packet sizes for video-operated remote control are up to 250kbytes [69] 

2.2.4      RRM challenges in achieving QoS requirements for smart manufacturing 

Factory automation is considered one of the most demanding 5G-and-beyond use cases, as 

some of its applications have stringent latency requirements typically of few milliseconds [60].  

To achieve the QoS demands for D2D-enabled factory automation, the main challenges to 

address include interference management, power consumption, heterogeneity and self-

organisation and autonomy. These issues are discussed as follows: 
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a) Spectrum and interference management 

Achieving ultra-reliability and low latency pose challenges in terms of bandwidth 

requirements. The work in [22] studied the transmission bandwidth needed to enable URLLC 

for factory automation and found that the system bandwidth depends on the number of 

connected user equipment and the behaviour of their traffic. The scarcity of radio resources 

and the limitations on the available system bandwidth makes spectrum sharing a necessity for 

D2D implementation of MTC for factory automation [67]. RRM schemes need to be efficiently 

designed for interference management and coordination, while guaranteeing tight URLLC 

demands. Channel reuse among active devices in the same cell will generate interference which 

degrades system performance. Interference management is crucial to ensure efficient utilisation 

of available. Interference coordination is particularly challenging in deployment scenarios 

where DUEs share cellular resources. Spectrum and interference management is an important 

concern in sixth-generation (6G) networks that needs addressing.  

Ningombam et al, developed a model to determine the minimum number of channels for real-

time traffic scheduling for a given local cell while coordinating the interference to achieve high 

reliability and low-latency communication in a factory automation use case [70]. A reliable 

real-time scheduling assignment was obtained using a heuristic algorithm with near-optimal 

results. However, power management was not considered, which is pivotal to interference 

control and enhancing the quality of the solution. The effect of the increased interference due 

to high user density on data rates and packet latency for smart industrial environments was 

investigated in [63]. Multi-connectivity, multi-hop and D2D communication were highlighted 

as possible means to improve availability in the presence of interference and channel clutter. 

In [71], a Stackelberg game was used to model the interactions between D2D and cellular users 

to study interference management problems, with D2D links reusing multiple cellular channels. 

The eNodeB (eNB), as the leader in the game, sets the price for channel reuse by the D2D links 

so that the interference generated by the D2D users to the cellular communication is lower than 

a predefined threshold. Thus, the D2D users can regulate their transmit powers over the 

channels to maximise their data transmission rates. Price relates to a monetary payment made 

by the users for spectrum access [71], or cost of interference generated by a user to the BS, as 

in [72]. Results from [71] show that the throughput of D2D communication was improved for 

multiple channels compared to a single-channel reuse. However, the stability of the algorithm 

applies only to the D2D users. In [73], a heuristic algorithm was applied to obtain the optimal 
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D2D links with the potential of extending the network capacity and improving the spectrum 

efficiency by considering the outage probability of cellular communication and the D2D links. 

Their proposed method minimised the interference from D2D communication while the QoS 

of the D2D users are guaranteed. In [74], the Poisson Point Process (PPP), which is a model 

used to generate time series of discrete, stochastic events [75], was used to model the 

distribution of the network entities in order to study the effect of interference on network 

communication. Matching theory was then, used to assign cellular resources to the D2D links 

while mitigating the impact of interference. The authors assumed that the transmit power of 

the user equipment is fixed, hence, the impact of power control on the proposed solution was 

not considered. A joint mode selection and power control scheme was used in [76] to realise 

interference management. Specifically, power control was used to dynamically regulate the 

interference-limited area, therefore, managing interference and satisfying the minimum QoS 

requirements of the users. The proposed solution was able to achieve an improved sum data 

rate, particularly, for high-density systems. However, resource allocation, which could provide 

practical value for QoS gain improvement was not considered. 

b) Power Consumption and Energy Efficiency 

Low power consumption is a major target as most smart devices are battery-powered expected 

to operate for few years before replacement. Power consumption increases with range as data 

is transmitted from one smart device to the other. Smart devices are energy-constrained and 

mostly battery-powered, requiring frequent charging. Even with the use of ‘green’ sources 

(e.g., solar, wind) and energy harvesting, energy demands are still challenging.  

Power control and allocation play a crucial role in interference mitigation and achieving the 

desired data rate. New RRM mechanisms that will ensure communication in industrial IoT in 

an energy-efficient manner are necessary. Power control is used to regulate the transmit power 

of users in order to ensure the desired transmission rate is guaranteed. In 5G-and-beyond 

systems, the introduction of D2D communication into legacy cellular communication for 

shared spectrum access, makes power control significant in resource allocation. This is because 

of the potential of power control to manage intra-cell interference and to limit the power 

consumption of short-range communication, therefore, prolonging the battery lifetime of the 

user terminal. In [77], a power allocation method was used to achieve optimal power 

assignment, where the D2D transmitters use minimum power, while guaranteeing system 
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throughput maximisation. The link quality of the cellular and D2D users is estimated using 

stochastic geometry. Results from the proposed approach showed significant system sum-rate 

improvement compared to fixed power and random power allocation. However, since the 

objective is to maximise the overall system throughput, transmit power resources may be 

available which could possibly further increase the system throughput [21]. That is, the transmit 

power of users can be increased to achieve a higher system throughput given the predefined 

power limit is not exceeded. The power allocation problem was addressed in [78] with an 

iterative procedure to maximise the sum data rates of the cellular and D2D communication 

considering a multicell scenario. The power optimisation problem was solved by jointly 

considering multiple reuses of the cellular resource blocks by the D2D users, while keeping 

the adjacent cell interference below a predefined threshold. Semasinghe et al, proposed a power 

allocation technique based on the Nash bargaining solution and Nash competitive game [79]. 

The resource allocation problem was first reformulated as a convex optimisation before 

obtaining a solution. The Karush-Kuhn-Tucker (KKT) condition was applied and a closed- 

form solution for Nash Equilibrium was obtained. Results show that cooperation among the 

D2D users helped them to achieve a higher data rate.  A double-layer resource and power 

allocation scheme were designed in [80] for D2D energy efficiency maximisation. Fractional 

programming was used to transform the non-convex optimisation problem into a subtractive 

form, then the power control problem was solved iteratively. The results of the proposed 

approach showed an improved energy efficiency compared to other considered power control 

schemes. 

c) Self-organisation 

Self-organisation is a core element envisioned to meet the needs of dense wireless networks. 

The large-scale nature of IoT environments necessitates a shift towards RRM approaches that 

support learning and can be implemented in a decentralised manner. This will reduce 

centralised processing and signalling overheads at the BS. Smart devices and networks are 

expected to learn from their immediate environment and adapt accordingly, while making 

autonomous, independent decisions for performance optimisation. Self-organisation is the 

inter-operation of self-configuration, self-optimisation, and self-healing to achieve 

performance optimisation, maintenance, monitoring and learning with minimal human 

intervention [81]. RRM techniques with learning capabilities are therefore necessary. Self-

organisation is presently considered a key concept to introduce intelligence and autonomy, 
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reduced complexity, cost of operation and network management and improve the reliability of 

RRM design. Self-organisation requires RRM decisions to be based on local information [82], 

which is usually facilitated by a distributed RRM scheme. Autonomy is identified as one of the 

high-level communication requirements smart manufacturing use cases defined by 5GPPP [5]. 

d) Heterogeneity 

Smart factories are characterised by heterogeneity. Different device types with different service 

requirements in terms of energy consumption, cognitive abilities and resource demands are 

expected. A resource management framework that captures diverse device types and QoS 

requirements is necessary to ensure seamless, ubiquitous, and interoperable connectivity [5]. 

e) Scalability 

Future expansion of the network requires that demands of new users, applications and services 

are met when introduced to an existing system, without compromising the QoS of existing 

users. A scalable RRM scheme with bounded computation complexity is, therefore, needed for 

future growth [25]. For scalable deployment of D2D communication for MTC in cellular 

networks, traffic balancing needs to be considered in the design of RRM schemes to ensure 

distributed spectrum usage as the number of users rises. 

2.3   The Main Radio Resource Management (RRM) Approaches 

The major RRM issues to be addressed have been outlined and discussed in the previous 

section. The approaches to tackle these challenges are reviewed in this section. There are two 

main approaches to RRM, namely: centralised and distributed. In centralised RRM, a central 

controller coordinates and controls the resource allocation policies, whereas distributed RRM 

is user terminal-centric. 

a) Centralised RRM 

In the centralised approach, the network has a single central controller e.g., BS or AP, that 

coordinates and controls the resource allocation policies [83]. This central entity obtains 

information such as channel quality and resource requirements from the user equipment (UE). 

Based on the information obtained, the central entity allocates the required amount of radio 

resources to each UE. With the global network information, the RRM problem can be 

formulated as an optimisation problem where the QoS (or performance) requirements of users 
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are the constraints. Nevertheless, these optimisation problems are often complex and hard to 

be solved directly. Consequently, several methods have been presented in the literature where 

the problem is broken into multiple steps to obtain a local optimal or sub-optimal solution. The 

centralised approach may provide globally optimal or near optimal resource allocation for 

cellular networks, but often results in increased signalling overheads and increased complexity 

[84]. Therefore, it has been suggested that centralised schemes may not be viable for high-

density networks [85]. Most RRM schemes are implemented in a centralised manner where the 

D2D users have to report local Channel State Information (CSI) to the BS for centralised 

decision-making. Centralised resource allocation is challenging for D2D-enabled cellular 

networks because a large number of devices will be required to report their CSI to the BS. The 

CSI feedback and update rate greatly increase the signalling overheads. Therefore, there is a 

paradigm shift towards distributed resource management which has the potential to mitigate 

these issues. 

b) Distributed RRM  

The distributed RRM approaches are mainly terminal-centric. In distributed RRM, the UE is 

capable of making decisions with reference to resource utilisation based on local information. 

This enables a reduction in network complexity, signalling and computation load, particularly 

in heterogeneous environments, hence it does not require a central entity. Autonomous 

decision-making entails integrating cognition, such as environmental sensing and learning 

capabilities, into the UEs [86]. With a distributed learning approach, cellular systems can learn 

from their wireless environment and make decisions to determine the optimal resource 

allocation. A distributed RRM scheme is favourable because of its low implementation 

complexity and signalling overheads and is more feasible for high-density networks. Since IoT 

environments are characterised by some level of intelligence, a distributed RRM mechanism 

that supports self-organisation and autonomy would be required. However, optimal resource 

allocation among the UEs may be difficult to achieve [85]. In a distributed approach, it is 

assumed that UEs are selfish, which means that their primary objective is to maximise their 

individual utility functions, which may not necessarily optimise the overall system 

performance. Selfishness and rationality are characteristic features of distributed and intelligent 

users, as the output of a centralised resource allocation may not be in the interest of some UEs.  

Another drawback of the distributed approach is message passing among the devices which 

tends to increase signalling overheads across the whole network [87]. 
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c) Hybrid RRM 

Although both centralised and distributed approaches have their merits and drawbacks, trade-

offs can be achieved. The trade-off between performance and signalling overhead for both 

centralised and distributed resource allocation remains an open research question that need 

investigating. Such RRM schemes are said to be “hybrid”. A hybrid scheme combines 

centralised and distributed approaches in allocating resources among UEs.  For example, the 

central unit performs global RRM functions, such as the gathering of channel state and traffic 

information, while UEs are responsible for local RRM functions, such as packet scheduling. 

Such schemes could be well suited for moderately dense networks. The large-scale nature of 

IoT environments, such as in a smart factory, poses a limitation on a purely centralised 

approach because a large amount of information exchange is often incurred leading to increased 

complexity, and signalling overheads [88]. On the other hand, a distributed approach may just 

be able to achieve a near-optimal solution [89]. 

2.4    Discussion of some Relevant RRM Techniques 

RRM techniques can rely on centralised or distributed approaches as described above. Different 

methodologies can be used to realise an RRM framework depending on the system under 

consideration. Mathematical optimisation [90], matching theory [91, 92] and machine learning 

[93, 94] are the major tools investigated and considered in this thesis. 

a) Mathematical Optimisation 

Mathematical optimisation involves techniques used for the minimisation or maximisation of 

a utility function with a given set of constraints. The goal of optimisation is to determine the 

best possible value from some available sets of alternatives. Common optimisation methods 

applied in resource allocation include combinatorial optimisation, heuristics, nonlinear 

programming and integer programming [95]. Mathematical optimisation techniques have been 

used for overall network throughput or data rate maximisation [96], energy efficiency [97] and 

delay optimisation [98]. A heuristic centralised scheme for maximising the sum rate of cellular 

users was proposed in [90]. This was achieved by transforming the reliability and latency 

requirements of vehicle-to-vehicle communication (V2V) into computable optimisation 

constraints. A minimum vehicle-to-infrastructure (V2I) capacity maximisation framework was 

designed in [99], to improve the overall throughput. A joint mode selection, power and 

spectrum allocation scheme was proposed in [100] with the aim of maximising the total sum 
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rates for varying network load. Mathematical optimisation schemes as in [90,99,100] often 

adopt centralised approaches and require large information exchange which renders it 

unfeasible for ultra-dense networks due high signalling overheads incurred. Mathematical 

optimisation techniques will be developed and used a baseline for comparing the performance 

of the newly developed schemes reported in thesis. 

b) Matching Theory 

Matching theory is a sub-category of game theory having the capability to provide low-

complexity distributed and self-organised solutions to resource allocation problems. Matching 

theory is a model traditionally applied in mathematics and economics to provide tractable 

solutions to the assignment problem of matching players in distinct sets. As such, matching 

theory has emerged as a promising method for resource allocation in wireless networks because 

it can overcome some of the limitations of traditional game theory such as high information 

exchange and complexity, slow convergence to equilibrium, and the notion of one-sided 

stability which may be impractical where there are distinct sets of players with diverse 

objectives; and optimisation which is characterised by the high cost of information 

acquisition/gathering. Some of the advantages of matching theory include [101]: 

i. Suitability to represent interactions between heterogeneous entities with diverse 

classes, goals and information. 

ii. Ability to define ‘preferences’ related to heterogeneous QoS requirements. 

iii. Suitability to provide stable and optimal solutions with respect to different system 

objectives. 

iv. Tractable and self-organising algorithmic implementation.  

The Stable Marriage Problem (SMP) is a popular illustrative example of a matching model. A 

stable assignment can be achieved by the Deferred Acceptance (DA) algorithm (also known as 

the Gale Shapley (GS) algorithm). The basic elements, terms and definitions of matching 

problems are as follows: 

i. Players: The matching problem is defined by two distinct sets of players. The sets of 

players here are the decision-makers. The matching output 𝝁 assigns the players 

(resource 𝒄 ∈  𝑪)  in one set to the players (user 𝒅 ∈  𝑫) of the other set.  
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ii. Quota: This defines the maximum number of players with which each player can be 

matched. Denote 𝒒𝒄 and 𝒒𝒅 as the quota of resource 𝒄 and user 𝒅, respectively, such 

that |𝝁(𝒄)| ≤ 𝒒𝒄 and |𝝁(𝒅)| ≤ 𝒒𝒅. 

iii. Utility function: This defines the value each player attributes to the players of the other 

set. For certain assignment problem, the utility function 𝑼 evaluates specific QoS of 

the network. 𝑼𝒅𝒄  denotes the utility function of player 𝒅 from being matched to 𝒄. 

iv. Preference relation: A preference relation ≻ is a complete, reflexive, and transitive 

binary relation between the players of sets 𝑪 and 𝑫. A player ( 𝒅 ∈  𝑫) builds its 

preference relation over player in set 𝑪 by ranking them according to the utility 

generated (based on local information). Let ≻𝒅 denote the preference relation of player  𝒅 over set 𝑪, then 𝒄𝟏 ≻𝒅 𝒄𝟐 if and only if 𝑼𝒅𝒄𝟏 > 𝑼𝒅𝒄𝟐. The notation 𝒄𝟏 ≻𝒅 𝒄𝟐 implies 

that the player 𝒅 ∈  𝑫  prefers 𝒄𝟏 to  𝒄𝟐.  

v. Matching game solution: The game solution is the output of the matching and defined 

as function 𝝁:𝑪 → 𝑫 such that (i) ∀𝒄 ∈ 𝑪, 𝝁(𝒄) ∈ 𝑫 and |𝝁(𝒄)| ≤ 𝒒𝒄 (ii) ∀𝒅 ∈ 𝑫, 𝝁(𝒅) ∈ 𝑪 and |𝝁(𝒅)| ≤ 𝒒𝒅, and (iii) 𝒄 ∈ 𝝁(𝒅) if and only if 𝒅 ∈ 𝝁(𝒄). 
vi. Matching output stability: A matching output 𝝁 is a set of matched pair of players 

from two distinct sets 𝑪 and 𝑫. It is stable if and only if there exist no blocking pair 

(𝒄, 𝒅), where 𝒄 ∈  𝑪, 𝒅 ∈  𝑫, such that 𝒄 ≻𝒅  𝝁(𝒅) and 𝒅 ≻𝒄  𝝁(𝒄), where 𝝁(𝒄) and 𝝁(𝒅) represent, respectively, the current assigned partner of 𝒄 and 𝒅. 

The conventional matching game is classified according to the value of the quota. In one-to-

one matching, the quota of each player is one (i.e., the players can be matched to a maximum 

of one member of the opposite set). For many-to-one matching, at least one player can be 

matched to multiple members of the opposite set, while players in the other set have their quotas 

set to one. In many-to-many matching, players from the two sets can be matched to multiple 

players. The DA algorithm is an efficient algorithm often used to solve the many-to-one and 

one-to-one matching problem [102], with the existence of at least one stable matching.  The 

DA algorithm has been widely applied and adapted to achieve stable matchings for other 

models and applications. 
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In the context of wireless communication, the players 𝒄 ∈  𝑪, 𝒅 ∈  𝑫 (i.e., the user equipment 

(UE) and base station in the considered cases) can define their utility function 𝑼 based on the 

local information they possess for other players [101]. The primary goal of the matching for 

wireless RRM is to provide an optimal assignment of users and resources (e.g., spectrum 

channels, power levels) while considering the network constraints. Matching theory can 

provide a framework that allows IoT devices and entities to make some form of interdependent 

choices and the DA algorithm can achieve a distributed resource allocation solution. 

Matching theory can also be categorised into three classes to characterise RRM in wireless 

networks namely: Class I-canonical matching, Class II-matching with externalities and Class 

III-matching with dynamics [101]. Class I type is the reference class in which the preference 

of a player depends exclusively on the information available to the player and its potential 

matched partners. In Class II, there are interdependencies between the preferences of the 

players (i.e., the preference of a player depends on the information to the player and matching 

of other players). For the Class III type, the preference of a player is time-varying and must be 

considered in the matching solution. 

Information exchange during a matching routine can be implemented in a distributive, semi-

distributive or centralised manner. This implies that some processes are carried out based on 

the local information acquired by the players; some may partially involve the participation of 

the BS, while for others, the operations take place entirely at BS, which acts as the matchmaker 

as in [103]. In this case, the estimated CSI at the receiver of the D2D link will need to be 

reported to the BS, for building the preference profiles of the D2D links. Prior to the execution 

of the matching subroutine, the preference profiles of the players need to be formed, which can 

be set up through the local acquisition of channel state information by each player. For 

example, in SMP, a set of 𝑿 men and a set of 𝒀 women are the players or agents in the game. 

Each player in 𝑿 will build a preference list from 𝒀. Similarly, each player in 𝒀 will construct 

a preference list over players in 𝑿 that they find acceptable. After obtaining the information, 

the players will order the players of other sets according to preference based on a certain QoS 

criteria, in increasing or decreasing order. The players do not need to have a knowledge of the 

preferences of the other players. Therefore, the preference profile of each player can be 

established, and the DA algorithm can be executed in a distributed manner without requiring a 

central controller or coordination [101]. 
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The matching phase involves proposing and accepting/rejecting operations. A proposal is sent 

through a communication signal from one player type in a set 𝑿 to the other type of player in 

a set 𝒀 (the one that receives the proposal). The player that receives the proposal sends a 

communication signal with accept and reject overheads to the ones accepted and rejected 

respectively, taking into account the set quota, while giving consideration to its most preferred 

or highest-ranked member of set 𝑿. The matching matrices are then updated. The rejected 

players of set 𝑿 will start to initiate new proposals to the next most preferred member of set 𝒀 

in its preference list depending on whether there are still players in the preference list that has 

not been proposed to before. The iteration will continue until no further proposals are made 

and members of set 𝒀 are matched to 𝑿. The exchange of proposals during the matching incurs 

additional signalling overheads. A matching is stable if no pair of 𝒙 ∈ 𝑿 and 𝒚 ∈ 𝒀 have an 

incentive to leave their current partners and be matched to each other. 

Matching game algorithms have been applied to address resource allocation problems in D2D-

based networks.  In [104], the DA algorithm was used to associate D2D pairs to cellular 

resources and introduced the concept of ‘cheating’ to allow further improvements for D2D 

pairs. A proximity-based matching game was developed in [105] to maximise the system rate 

but did not consider the actual channel condition. A constrained-DA algorithm was proposed 

in [106] to assign pre-allocated macrocell users subchannels to multiple D2D users and Remote 

Radio Head (RRH) users for channel reuse. It was demonstrated through numerical simulations 

that the proposed scheme improved the overall system throughput compared to the 

conventional DA.  This shows that the framework of the DA algorithm can be modified for a 

resource allocation problem to obtain an enhanced system performance. In [107], the DA 

algorithm was adopted to match the remote resource heads (RRHs) to cellular users then 

applied a resource exchange policy that conforms with the Kaldor-Hicks principles to improve 

system throughput. An alteration in resource allocation is said to be Kaldor-Hicks efficient 

when it produces more gains than losses (i.e., those who are made better off 

could theoretically, compensate those who are made worse off).  A decentralised spectrum 

allocation scheme was proposed in [108], to maximise the D2D sum-rate in a downlink but 

only focused on protecting the cellular users from interference posed by the D2D transmitter. 

The interference from the BS to the D2D receivers were not considered, hence no QoS 

guarantee for the D2D communication. 
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The DA algorithm is often used to solve the SMP in matching theory for equally sized sets of 

elements. From the viewpoint of spectrum reuse and resource allocation for D2D 

communication within cellular networks, the DA algorithm may not give an optimal solution 

when there are variations in the sizes of the sets of players (devices and cellular users in this 

case) and the preference lists. This research work further develops and extends the DA 

technique to address these shortcomings will be presented Chapter 5. 

c) Machine Learning (ML) 

The densification of future wireless networks requires the implementation of increased 

intelligence in network functions. This can be achieved by Self-Organising Networks (SON) 

to reduce the Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) as well as 

complexity and simplify network management [109]. Machine Learning (ML) comprises a set 

of promising tools to perform predictions, support learning and decision-making of smart 

devices. Thus, ML algorithms should possess the necessary “intelligence” to realise a SON 

[110]. ML techniques are currently investigated to study intelligent spectrum selection and 

interference mitigation for radio entities by learning from experience in a dynamic environment 

[81].   

By learning, smart devices can dynamically adapt to the environment, manage their limited 

resources, and satisfy strict QoS requirements [23]. Machine learning was originally designed 

and developed for computers to learn and make decisions that will yield better performance for 

a given task without being explicitly programmed [111].  With a machine learning-based RRM 

solution, wireless network entities such as the UEs, can learn from their environment and make 

autonomous decisions to determine their optimal resource allocation which is adaptable to the 

dynamics of the network. ML and AL are pivotal to the realisation of 6G wireless networks 

[27,112].  

There are three main categories of ML depending on how learning is performed, namely 

supervised, unsupervised and reinforcement learning [113,114]. Supervised learning 

algorithms require learning from training data sets. The input data is labelled before it is used 

to train and test the model. After training, a relationship between the input and output data is 

established and used to categorise new and unknown data. Data labelling is the process of 

identifying raw data by adding attributes to it so that the ML model can learn from it. For input 

variable (𝒙) and output variable (𝒚), the supervised ML algorithm learns the mapping function 
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from the input to the output, 𝒚 = 𝒇(𝒙). The objective is to approximate the mapping function 

efficiently and to determine a model such that with new and unknown input data fed into the 

learned model, the output for that data can be predicted. Supervised learning algorithms include 

linear regression, random forest, and support vector machine [115]. 

Unsupervised learning algorithms require a given set of raw, unlabelled input data to be trained 

by identifying patterns and trends in the raw set of data. The objective of unsupervised learning 

is to model the underlying framework or distribution in the given data to learn about the data 

and correctly deduce the output without a trainer. Common unsupervised learning algorithms 

applied in SON are K-means, Self-Organising Maps (SOM) and anomaly detectors [113].  

Reinforcement learning is a machine learning technique in which an agent learns through 

interactions with its environment by trial and error using the feedback from its actions and 

experiences. The agent learns from the consequences of its action rather than by being trained. 

Differently from supervised learning, where the feedback to the agents are correct sets of 

actions for carrying out a given task, reinforcement learning uses rewards and penalties as 

signals for good and bad actions respectively.  

Unsupervised learning and reinforcement learning differ in terms of their objectives. The goal 

of unsupervised learning is to deduce the similarities and dissimilarities between data sets, 

whereas reinforcement learning aims to find a suitable model that would maximise the 

accumulated reward of the agent. Comparing the three major categories of ML, reinforcement 

learning is therefore, well-suited to support decision making in 5G-and-beyond networks with 

uncertainties, for example, in the case of distributed resource allocation with partial 

information of network conditions.  

For this reason, only reinforcement learning is investigated and further developed in Chapter 

6. One of the most common reinforcement learning algorithms is 𝑸-Learning, which is 

developed further in this thesis. Others include multi-arm bandit games and Markov Decision 

Process (MDP). Fig. 2.3., illustrates the basic components of reinforcement learning. 
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                               Fig. 2.3.   Block diagram illustrating a reinforcement learning system [116] 

The basic elements of such a system are described below. 

i. Environment: This is the physical surrounding where the agent operates. It defines 

the states and sets of actions an agent can take. 

ii. Agent: This is the entity that senses and explores the environment. 

iii. State: This is the current status of the agent reported by the environment after each 

action taken by the agent. 

iv. Reward function: This is the feedback from the environment that provides the 

assessment of the current state and gives reward or punishment based on the 

outcome of the previous action taken by the agent. 

v. Value function: This evaluates the future reward that an agent would receive for 

the action taken in a certain state. 𝑸-learning is a model-free reinforcement learning technique in which an agent learns the 

optimal policy to adopt by interacting with the environment. It is formulated as a four-tuple (𝑺, 𝑨, 𝑷, 𝑹) where 𝑺 represents a finite set of states, 𝒔𝒕 ∈ S, 𝑨 is the finite set of agent discrete 

actions , 𝒂𝒕 ∈ 𝑨,  𝑷: 𝑺 × 𝑨 → 𝑷(𝑺) is the state transition probability function that defines the 

probability of the next states 𝒔𝒕+𝟏 if the agent is at state 𝒔𝒕 and takes action 𝒂𝒕, 𝒓𝒕: 𝑺 × 𝑨 → 𝑹(𝒔𝒕, 𝒂𝒕, 𝒔𝒕+𝟏) is the reward function that acts as feedback from the environment based on 

action taken at state 𝒔𝒕 and informs the agent of next action to take as it transitions to the next 

state 𝒔𝒕+𝟏 and reward 𝒓𝒕. 
At each discrete time step 𝒕, the agent interacts with the environment and senses the current 

state 𝒔𝒕  ∈ 𝑺 and takes an action 𝒂𝒕 ∈ 𝑨 according to a policy 𝝅, which is a function that maps 

Agent 

Environment 

Action Reward State 
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state to action defined as 𝝅 ∶ 𝑺 → 𝑨, and receives an observation which includes a reward 𝒓𝒕. 
The environment transitions to a new state 𝒔𝒕+𝟏 and reward 𝒓𝒕+𝟏corresponding to the transition 

(𝒔𝒕, 𝒂𝒕, 𝒔𝒕+𝟏). The process is repeated until the optimal policy 𝝅∗ is obtained. The objective of 

an agent in reinforcement learning is to determine the optimal policy 𝝅∗ that maximises the 

total expected reward. For a policy 𝝅, the state-value or value of a state 𝒔 , 𝑽𝝅(𝒔), is the 

expected return if an agent is in this state at time 𝒕, 𝒔𝒕 = 𝒔 and given as: 

                                                    𝑽𝝅(𝒔)=𝔼{∑ 𝜼𝒌∞𝒌=𝟏 𝒓𝒕+𝒌+𝟏 ∣ 𝒔𝒕 = 𝒔 }                                (2.1) 

where 𝟎 ≤ 𝜼 ≤ 𝟏 is a discount factor, 𝔼{. } denotes the expectation operation and 𝑽𝝅(𝒔) 
represents the expected discounted reward. Through learning repeatedly, an optimal action 𝒂∗ ∈ 𝑨 can be obtained by maximising a cumulative measurement of rewards over time. To 

build an optimal policy, the agent is faced with the trade-off notion of exploring new states 

(exploration) versus maximising the reward of current known action (exploitation) [116].  

According to Bellman optimality criterion [117], there is at least one optimal strategy 𝝅∗ such 

that: 

                               𝑽∗(𝒔) =𝑽𝝅∗ (𝒔)=𝐦𝐚𝐱𝒂∈𝑨 {𝑹(𝒔, 𝒂) + 𝜼∑ 𝑷𝒔,𝒔′(𝒂)𝒔′∈𝑺 𝑽∗(𝒔′)}                   (2.2) 

where max(.) is an operation to maximise the input, 𝑽∗(𝒔) is the optimised value function under 

the optimised policy 𝝅∗, 𝑹(𝒔, 𝒂) is the expectation of 𝒓(𝒔, 𝒂) and 𝑷𝒔,𝒔′ is transition probability 

from state 𝒔 to state 𝒔′. The expression ∑ 𝑷𝒔,𝒔′(𝒂)𝒔′∈𝑺 𝑽∗(𝒔′) is the expected return of the next 

state 𝒔′. The optimised policy can be obtained from 𝑽𝝅∗ (𝒔) as: 

                                𝝅∗(𝒔) = 𝐚𝐫𝐠𝐦𝐚𝐱𝒂∈𝑨 {𝑹(𝒔, 𝒂) + 𝜼∑ 𝑷𝒔,𝒔′(𝒂)𝒔′∈𝑺 𝑽∗(𝒔′)}                        (2.3) 

where argmax(.) is an operation that finds the argument that returns the maximum value from 

the input function. The 𝑸-value (or action-value function) is the expected reward of taking 

action 𝒂 in state 𝒔 using policy 𝝅: 

                                𝑸𝝅(𝒔, 𝒂) = 𝑹(𝒔, 𝒂) + 𝜼∑ 𝑷𝒔,𝒔′(𝒂)𝒔′∈𝑺 𝑸(𝒔′, 𝒂)                                 (2.4) 

The optimal policy 𝑸∗(𝒔, 𝒂) ≡ 𝑸𝝅∗ (𝒔, 𝒂), ∀𝒔, 𝒂 

Then, 

                                 𝑽∗(𝒔) = 𝐦𝐚𝐱𝒂∈𝑨 { 𝑸∗(𝒔, 𝒂)}                                                                     (2.5) 



36 

 

With 𝑸-learning, the agent tries to learn the optimal policy 𝝅∗ without prior knowledge of the 

dynamics of the environment. The 𝑸-learning algorithm adjusts 𝑸-values according to the 

update rule as described in equation (2.6) where 𝝈 ∈ [𝟎, 𝟏] is the learning rate. 𝑸𝒕+𝟏(𝒔𝒕, 𝒂𝒕) =𝑸𝒕(𝒔𝒕, 𝒂𝒕) + 𝝈 [𝒓𝒕+𝟏 + 𝜼𝐦𝐚𝐱𝒂′ 𝑸𝒕(𝒔𝒕+𝟏, 𝒂𝒕+𝟏)−𝑸𝒕(𝒔𝒕, 𝒂𝒕)]   𝐢𝐟  𝒔 = 𝒔𝒕,   𝒂 = 𝒂𝒕                 
                                                                                                                                            (2.6a) 

which may also be written as: 

                      𝑸(𝒔, 𝒂) = 𝑸(𝒔, 𝒂) + 𝝈 [𝒓(𝒔, 𝒂) + 𝜼𝐦𝐚𝐱𝒂′ 𝑸(𝒔′, 𝒂′) −𝑸(𝒔, 𝒂)]                  (2.6b) 

In wireless communication scenarios, the agents are the network entities, such as the CUEs, 

DUEs and the BS. The actions 𝒂𝒕 could be the selection of transmit power levels and/or 

resource blocks. The reward 𝒓𝒕 is often formulated to reflect some QoS performance metrics 

such as throughput or SINR. The agents keep a 𝑸-table with states 𝒔𝒕 and actions 𝒂𝒕, in which 

the 𝑸-values are updated iteratively according to (2.6) and an optimal value is chosen based on 

the 𝑸-values after training.  𝑸-learning is associated with the problem of the ‘curse of dimensionality’, which is the 

exponential growth of the state-action space when the number of states and actions increases 

(sufficiently large), leading to slow convergence. Additionally, the memory requirement for 

the 𝑸-table for every agent, state and action may limit its adaptability to practical scenarios 

[118]. Deep Reinforcement Learning (DRL), which is an ML technique that combines 

reinforcement learning and deep learning, is used to address these issues by using Deep Neural 

Networks (DNNs) to approximate the tables [119]. However, the practicality of DRL is argued 

to suffer from high complexity and infeasible amount of data required to learn [120,121] and 

therefore, is not investigated further in this research work.  

Reinforcement learning techniques have been widely investigated to study intelligent power 

level and spectrum channel allocations for D2D-enabled cellular networks. In [82], a stochastic 

non-cooperative game is used to formulate the interactions among the D2D users. A finite-state 

Markov Decision Process (MDP) is used to model the game dynamics and a 𝑸-learning method 

is derived for channel selection in the multiagent environment. Rather than relying on the 

global knowledge of the strategies of other players, each DUE estimated their beliefs about the 

strategy of other players.  A proof of convergence of the approach to a mixed-strategy Nash 
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Equilibrium was presented. However, the stability achieved is one-sided as the learning 

environment consists of one ‘type’ of agents i.e., only DUEs, which may not be feasible when 

considering resource allocation between two disjointed sets of agents (CUEs and DUEs) with 

diverse goals. Moreover, the protection of cellular users from the interference generated by 

D2D users was not considered in the cellular reuse scenario of [82]. In [87], a framework was 

proposed that involves cooperation between the D2D users and sharing of all historical 

information (states, actions, and policies) in a centralised training which, consequently, will 

increase processing workload at the base station and the amount of signalling overheads due to 

information gathering. In [87,116,122], the reward function was designed to capture the QoS 

metric of the cellular users in a centralised 𝑸-learning approach, which leads to increased 

signalling overheads as well.  

The afore-mentioned works focused on the operations of D2D communication and did not 

consider the preferences and satisfaction of cellular users and furthermore, the achieved 

stability that may be achieved is single -sided as the multi-agent environment comprises only 

one set of agents i.e., DUEs. Meanwhile, the issues of rationality and selfishness of intelligent 

nodes may cause instability in practical scenarios where the D2D and cellular users have 

conflicting objectives, and the final resource allocation solution may not be in the interest of 

some cellular users.  

Matching stability is an important concept in intelligent radio resource allocation which refers 

to robustness to deviations that can benefit resource owners (i.e., the cellular users) and the 

users (i.e., the D2D links). For instance, a CUE and a DUE might decide to leave their current 

partners and be matched to each other because they prefer each other to current partners (i.e., 

they are both better off being matched together compared to being with their current partners). 

Such unstable matchings may lead to undesirable network operations if it is large-scale [104]. 

Designing an RRM scheme that balances the trade-off between performance, complexity and 

signalling overheads as well as guaranteeing stability, is an open research question. It is the 

aim of this research work to address some of these challenges. 

2.5    Summary of Main Findings from Literature Review and Implications for  

         Research Work 

In this chapter, the state-of-the art in D2D communication and its applications to wireless 

industrial settings was discussed. The major RRM issues that need to be addressed to achieve 
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optimal QoS requirements for the deployment in D2D communication and its applications to 

FoF, were identified. The critical survey of the main approaches to RRM, highlighting their 

advantages and disadvantages, their suitability for different use cases and outcomes of previous 

related works, was presented. Below is the summary of the main findings of the above critical 

literature review. 

1. Massive connections of IoT/smart devices and sensors such as in mMTC, pose some 

challenges in the design and deployment of future industrial wireless networks. These 

challenges include limited spectrum resources and power consumption issues. 

2. D2D communication deployed into a wireless smart factory environment can be used to 

create mMTC. D2D communication is considered a promising technology to address the 

challenges of spectrum insufficiency and under-utilisation, as well as improve performance 

requirements such as latency and reliability. 

3. Spectrum access with D2D links coexisting with cellular users may result in co-channel 

interference which may cause performance degradation. New intelligent RRM techniques 

are required to ensure that the QoS requirements for all intended users are met.   

4. RRM approaches are broadly classified into two major categories: centralised and 

distributed. Mathematical optimisation is an example of the centralised approach.  

Distributed approaches, on the other hand, includes matching theory, which is a game 

theoretic approach and machine learning techniques.  

5. The centralised scheme may provide a global-optimal solution, but generally incurs large 

signalling overheads and high complexity due to the global acquisition of information of 

network entities by a central controller. Consequently, there is a shift towards distributed 

RRM solutions, especially when a large number of links and devices are present. 

Furthermore, self-organisation is envisaged to be an integral component of 5G-and-beyond 

networks, and a distributed solution is key to achieving self-organisation and autonomy. 

6. From the study of different RRM techniques, the following knowledge gaps were identified 

in the application of matching theory (a subset of game theory) and machine learning 

(specifically reinforcement learning) respectively to address RRM issues and challenges 

for D2D enabled wireless industrial networks. 

i. The DA algorithm is often used to solve the SMP in matching theory for ‘equally 

sized sets’ of players, where every member of one set ranks the members of the 
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other set. However, from the perspective of spectrum sharing for D2D 

communication links in a cellular network, the DA algorithm may not result in an 

optimal solution when there are variations in the size of the sets of players (CUEs 

and DUEs in the case under consideration) and the preference lists. 

ii. The preference and satisfaction of cellular users in the learning environment were 

seldomly considered. In reality, D2D and cellular users may have conflicting 

objectives and the final resource allocation solution may not be in the interest of 

some cellular users, thereby potentially causing instability in an SON system.  

The solutions to many RRM optimisation problems are often non-convex. Non-convex 

optimisation problems are non-linear programming problems where the objectives or 

constraints are non-convex. Such problems may have multiple feasible solution regions and 

multiple locally optimal points within each region [123]. They are usually complex, intractable 

and unscalable. In addition, optimal resource allocation often utilises full CSI of all active links 

and involves a large amount of information exchange and updates in a dynamic environment. 

This poses significant challenges due to the corresponding large overheads that will be 

generated. Consequently, new RRM techniques are needed with a good trade-off between 

performance and applicability, and a good balance between conflicting requirements. 

2.6   Chapter Conclusions 

Based on the above, the research reported in this thesis focusses on the development of new 

RRM techniques targetting D2D in wireless industrial scenarios, while mitigating the identified 

gaps, using the following main approaches. 

i. Mathematical optimisation (centralised approach, also used as a baseline for 

comparison) 

ii. Matching theory (distributed approach) 

iii. Machine learning (distributed approach) 

The developed techniques presented in Chapters 3, 4, 5 and 6 were compared to conventional 

methods using key performance metrics to determine the approach that offers the most efficient 

solution for the considered target scenarios. The following research points are investigated: 
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1. Spectrum Sharing for D2D-Enabled Communication in Cellular Networks 

As stated above, D2D is a promising technology for performance improvements for 5G-and- 

beyond networks. However, interference and spectrum management are key challenges that 

need to be addressed, particularly for resource-sharing scenarios, to satisfy the QoS/QoE 

requirements of the intended users. Therefore, the focus of this use case is to investigate the 

resource-sharing for D2D communication in cellular networks. Two scenarios are considered: 

i. Energy-efficient D2D communication with cellular throughput maximisation (Chapter 

3). 

ii. Interference-aware resource allocation in a multi-tier HetNet with D2D links (Chapter 

4). 

2. Resource Allocation for D2D URLLC in Cellular Networks for Smart Wireless 

Environment  

A typical application relating to this use case is a factory located within the coverage of a 

cellular network comprising of traditional cellular users and devices (sensors/actuators) as D2D 

users, aiming to reuse resources of the cellular users. The following techniques are developed 

and presented. 

i. Joint admission and power control for a reliable D2D communication (Chapter 5). 

ii. Autonomous channel selection using a learning-based approach for URLLC (Chapter 

6). 
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Chapter 3 

Energy-Efficient D2D Communication  

with Cellular Throughput Maximisation 

As discussed in Chapter 2, energy and spectrum efficiency are major concerns for the 

deployment of 5G and beyond networks. Future networks will feature devices characterised by 

diverse QoS requirements. An example is the coexistence of high-data rate cellular services, 

such as high-definition video applications together D2D communication between factory 

sensors with low data rates and high-power saving requirements (in the case of frequent packet 

exchange for reduced latency).  

Power control plays a crucial role in interference management and meeting the data rate 

demand of different users. Some of the works reported in the literature [105,108] focus on 

achieving higher Signal-to-Interference-Plus-Noise-Ratio (SINR) and in turn, higher data rates 

for users, even if a higher than needed SINR value has no practical effect on the QoS (e.g., low 

data rate applications such as voice) [124]. As opposed to QoS maximisation, the objective of 

achieving the minimum satisfactory QoS levels can provide several benefits such as [125]:  

i. Reduced power consumption;   

ii. Tighter fixed data rate service compliance;  

iii. A good performance perception of QoE by users, as users are often insensitive to small 

changes in the level of QoS, thus, making allowance for power savings;  

iv. Cost-effective solutions. 

A Fixed-Target-SIR-Tracking Power Control (TPC) was proposed in [126] to allow each user 

to track its own predefined SIRs with the minimum possible transmit power. In [127], an 

extended-distributed TPC was adopted for joint power control and mode selection where a 

DUE selects its communication mode and adjusts it transmit power level such that the QoS of 

users are satisfied. However, there was no constraint on the transmit power of individual users.  

In the following, an energy-efficient D2D communication scheme in a cellular network is 

presented, where CUEs and DUEs share Resource Blocks (RB) such that the QoS constraints 

of all users are satisfied. In this scenario, the CUEs have high data rate demands with the 

objective of throughput maximisation, whereas the DUEs aim at energy-efficiency 
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maximisation through power control. The resource allocation problem is formulated as a multi-

objective Mixed-Integer Non-linear Programming (MINLP) optimisation problem which 

cannot be solved directly. To solve this optimisation problem, two heuristic algorithms with 

reduced computation complexity are developed and presented in the following sections. A 

Power-Rate Reduction Ratio (PRR) scheme is designed to maximise the energy-efficiency of 

the DUEs while guaranteeing the QoS requirement of the CUEs. This method is compared to 

the approach in which the DUEs adopt the TPC scheme to transmit at power levels sufficient 

to attain a satisfactory QoS.  

3.1    System Model  

The uplink transmission of a D2D-enabled cellular network with a BS, 𝑵 CUEs and 𝑴 DUEs 

is considered. Fig. 3.1 is an illustration of D2D communication in a cellular network. Resource 

sharing between CUEs and DUEs will cause co-channel interference from the D2D transmitter 

to the BS and from the CUE to the D2D receiver. The QoS requirements of the CUEs and 

DUEs must be satisfied before they can share the same channel.  The CUEs, denoted by set 𝑪 = {𝒄𝟏, 𝒄𝟐, … , 𝒄𝑵}, have a high data rate demand and require a minimum SINR to guarantee 

their target data rates. The DUEs, denoted by set 𝑫 = {𝒅𝟏, 𝒅𝟐, … , 𝒅𝑴},  aim at achieving a 

high Energy-Efficiency (EE) through power control.  D2D pairing is implemented during the 

proximal device discovery phase, which is out of the scope of this research work. Therefore, it 

is assumed that the D2D links have already been established. The total resource block in the 

uplink period is divided into 𝑵 sub-channels denoted by set 𝑲 = {𝒌𝟏, 𝒌𝟐, … , 𝒌𝑵} which is 

allocated to the CUEs.  

 

Fig. 3.1   An illustration of D2D communication in a cellular network 
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To reduce co-channel interference in a resource sharing scheme, a DUE can re-use the sub-

channel of only one CUE and a CUE sub-channel can be re-used by one DUE. The BS or 

evolved NodeB (eNB) is assumed to have full instantaneous CSIs of all the users. The channel 

gain of the signal link, 𝒉𝒄,𝑩, between CUE 𝒄𝒊  and the BS can be expressed as follows: 

                                𝒉𝒄,𝑩=𝑮𝒌𝝌𝒄,𝑩𝑳𝒄,𝑩−𝜶𝒌                                      (3.1)   

The channel gain is composed of pathloss with exponent 𝜶𝒌 and shadowing, which has a slow 

fading gain 𝝌𝒄,𝑩 with a log-normal distribution [128]. 𝑳𝒄,𝑩 is the distance from CUE 𝒄𝒊  to the 

BS B and 𝑮𝒌 denotes the pathloss constant, which depends on the frequency and antenna gains 

[65]. The channel gain of the interference link between CUE 𝒄𝒊 and DUE receiver 𝒅𝑹  is 

denoted by  𝒉𝒄,𝒅𝑹, between DUE transmitter 𝒅𝑻 and the BS B by 𝒉𝒅𝑻,𝑩. The channel gain of the 

DUE link 𝒅𝒋 and signal link between CUE 𝒄𝒊 and the BS is denoted by 𝒉𝒅𝑻,𝒅𝑹 and  𝒉𝒄,𝑩 

respectively. 𝝈𝑵𝟐  is the variance of the Additive White Gaussian Noise (AWGN) at the receiver. 𝛌𝒋𝒊  ∈{0,1}is the resource-sharing index between the CUE and the DUE. 𝛌𝒋𝒊=1 if DUE 𝒅𝒋 is 

assigned to CUE 𝒄𝒊  subchannel and  𝛌𝒋𝒊= 0 otherwise. 𝐏𝒄𝒊  and 𝐏𝒅𝒋  denotes the transmit powers 

of the CUE 𝒄𝒊 and DUE 𝒅𝒋 respectively. The received SINR at the CUE receiver, and at the 

DUE receiver is denoted by 𝚪𝒄𝒊 and  𝚪𝒅𝒋  respectively and given by (3.2) and (3.3). 

                                                 𝚪𝒄𝒊  = 𝐏𝒄𝒊𝒉𝒄,𝑩𝛌𝒋𝒊𝐏𝒅𝒋𝒉𝒅𝑻,𝑩 + 𝝈𝑵𝟐                                                            (3.2) 

                                                                          𝚪𝒅𝒋  = 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹𝛌𝒋𝒊𝐏𝒄𝒊𝒉𝒄,𝒅𝑹  + 𝝈𝑵𝟐                                                              (3.3)   

The total throughput of the CUEs is given as: 

                                                 𝐓𝑪 = ∑ 𝐖𝒊 𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒄𝒊 )𝒄𝒊 ∈𝑪                                             (3.4) 

The total EE (in b/s/Hz/W) of the DUEs is the ratio of the total DUE spectrum efficiency to the 

total power of the DUEs, and given by:     

   

                     (3.5) 
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The expression 𝐥𝐨𝐠𝟐 (𝟏 + 𝚪𝒅𝒋 ) is the spectrum efficiency (in b/s/Hz) of DUE 𝒅𝒋  ∈ 𝑫 or the 

data rate normalised by the bandwidth 𝐖𝒊 [129].                       

The resource allocation optimisation problem can be formulated as follows: 

 

                                                   𝐦𝐚𝐱𝐓𝑪                                                                          (3.6) 

        𝐦𝐚𝐱𝐄𝐄𝑫 

subject to 

                                        𝚪𝒄𝒊  ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧           ⩝ 𝒄𝒊  ∈ 𝑪                                           (3.6a) 

                                        𝚪𝒅𝒋  ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧         ⩝ 𝒅𝒋  ∈ 𝑫                                           (3.6b) 

                                                   ∑ 𝛌𝒋𝒊𝒄𝒊∈𝑪 ≤ 𝟏            ⩝ 𝒅𝒋 ∈ 𝑫                     (3.6c) 

                                        ∑ 𝛌𝒋𝒊𝒅𝒋∈𝑪 ≤  𝟏           ⩝ 𝒄𝒊 ∈ 𝑪                     (3.6d) 

                                        𝐏𝒄𝒊 ≤ 𝐏𝒄𝒊,𝐦𝐚𝐱             ⩝ 𝒄𝒊 ∈ 𝑪                     (3.6e) 

                                        𝐏𝒅𝒋 ≤ 𝐏𝒅𝒋,𝐦𝐚𝐱             ⩝ 𝒅𝒋 ∈ 𝑫                                (3.6f) 

The optimisation goal is to maximise the throughput of the CUEs and the EE of the DUEs. 

Constraints (3.6a) and (3.6b) set the SINR for CUEs and DUEs, respectively.  𝚪𝒄𝒊,𝐦𝐢𝐧  and 𝚪𝒅𝒋,𝐦𝐢𝐧 denote the minimum acceptable SINR for a CUE and DUE link respectively. 

Constraints (3.6c) - (3.6d) indicate channel association between a CUE and a DUE. With 

constraints (3.6e) and (3.6f), the maximum CUE transmit power is 𝐏𝒄𝒊,𝐦𝐚𝐱, while 𝐏𝒅𝒋,𝐦𝐚𝐱 is the 

maximum transmit power for DUE. The multi-objective optimisation problem is an MINLP 

which is a non-deterministic Polynomial (NP)-hard and cannot be solved directly.  

To reduce the computation complexity, the problem is solved by setting the objective function 

to the maximisation of the QoS of ‘one type’ of user (e.g., CUEs) while maintaining QoS of 

the ‘other type’ of user (e.g., DUEs) as constraints and vice-versa. A heuristic channel 

assignment and power control algorithm is then developed to address the resulting optimisation 

problem. 

In resource-sharing mode, the DUE transmitter 𝒅𝑻 will interfere with the BS, while the CUE 

will interfere with the DUE receiver 𝒅𝑹. To meet the QoS requirements as stated in (3.6), the 

minimum SINR for all the links must be satisfied. Since the objective of the CUEs is to 

maximise data rates, the transmit power is fixed to the maximum allowable value, 𝐏𝒄𝒊,𝐦𝐚𝐱, 
while the transmit powers of the DUEs are controlled to achieve energy efficiency. Two 
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heuristic centralised algorithms are developed to address this problem. The first approach aims 

to maximise the CUE throughput while guaranteeing the QoS of the DUEs. The second 

approach aims to maximise the DUE energy efficiency, while satisfying the minimum 

performance requirement of the CUEs. The approach that provides better system utility, which 

is defined in terms of the CUE throughput, DUE EE and the number of admitted DUEs, is 

evaluated. 

3.2   Fixed-Target SINR Tracking Power Control (TPC) for Cellular Throughput    

        Maximisation 

In this TPC approach, a DUE sets its power by tracking its SINR to meet a predefined 

minimum. With the CUE 𝒄𝒊 transmit power set as 𝐏𝒄𝒊,𝐦𝐚𝐱, the optimisation problem in (3.6) 

can be reformulated as (3.7). The optimisation problem (3.7) is set to maximise the CUE data 

rate, while attaining the minimum required SINR for the DUEs. With the TPC approach, the 

DUE 𝒅𝒋 computes the transmit power 𝐏𝒅𝒋,𝐦𝐢𝐧, defined in (3.8), on the subchannel of the CUE  𝒄𝒊  that achieves  𝚪𝒅𝒋,𝐦𝐢𝐧. 𝐏𝒅𝒋,𝐦𝐢𝐧 is the minimum transmit power for DUE 𝒅𝒋 to guarantee its 

target SINR; which implies CUE 𝒄𝒊 can attain the highest possible throughput with 𝐏𝒄𝒊,𝐦𝐚𝐱. 
The SINR value of CUE 𝒄𝒊 resulting from sharing its resource DUE 𝒅𝒋 can determined from 

equation (3.9).   𝐦𝐚𝐱𝐓𝐂  =∑ 𝐖𝒊 𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒄𝒊 )𝒄𝒊 ∈𝑪                              (3.7) 

                            subject to 

                                       𝚪𝒄𝒊  ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧            ⩝ 𝒄𝒊  ∈ 𝑪           (3.7a) 

                                       𝚪𝒅𝒋  = 𝚪𝒅𝒋,𝐦𝐢𝐧           ⩝ 𝒅𝒋  ∈ 𝑫           (3.7b) 

                                                  ∑ 𝛌𝒋𝒊𝒄𝒊∈𝑪 ≤ 𝟏             ⩝ 𝒅𝒋 ∈ 𝑫           (3.7c) 

                                       ∑ 𝛌𝒋𝒊𝒅𝒋∈𝑪 ≤  𝟏           ⩝ 𝒄𝒊 ∈ 𝑪                  (3.7d) 

                                       𝐏𝒄𝒊 = 𝐏𝒄𝒊,𝐦𝐚𝐱            ⩝ 𝒄𝒊 ∈ 𝑪           (3.7e) 

                                       𝐏𝒅𝒋 ≤ 𝐏𝒅𝒋,𝐦𝐚𝐱            ⩝ 𝒅𝒋 ∈ 𝑫            (3.7f) 

 

                                𝐏𝒅𝒋,𝐦𝐢𝐧 = 𝐦𝐢𝐧 { 𝚪𝒅𝒋,𝐦𝐢𝐧(𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝒅𝑹  +𝝈𝑵𝟐 )𝒉𝒅𝑻,𝒅𝑹 . , 𝐏𝒅𝒋,𝐦𝐚𝐱}                                (3.8) 

                                                         𝚪𝒄𝒊∗ = 𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝑩𝐏𝒅𝒋,𝐦𝐢𝐧𝒉𝒅𝑻,𝑩 + 𝝈𝑵𝟐                                               (3.9) 
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DUE  𝒅𝒋 is a potential reuse partner for CUE 𝒄𝒊 if 𝚪𝒄𝒊∗ ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧. For CUEs with more than one 

potential re-use partners, the optimal re-use partner for CUE 𝒄𝒊 is the DUE 𝒅𝒋∗ that maximises 

CUE’s rate as follows: 

                                                 𝒅𝒋∗ = 𝐚𝐫𝐠𝐦𝐚𝐱 𝒅𝒋 ∈  𝑹𝒄𝒊𝒅 (𝐖𝒊𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒄𝒊∗ ))                       (3.10) 

where  𝑹𝒄𝒊𝒅  is the set of potential DUE reuse partners for CUE 𝒄𝒊. The TPC resource allocation 

scheme is set out in Algorithm 3.1. 

Algorithm 3.1.   The TPC Algorithm 

1: Input 𝑪 and 𝑫 as sets of CUEs and DUEs respectively. 𝐏𝒄𝒊,𝐦𝐚𝐱 and  𝐏𝒅𝒋,𝐦𝐚𝐱 are the     

    maximum transmit powers of the CUEs and DUEs. The CUEs are pre-allocated a channel   

    each, the DUEs are waiting to be assigned a CUE subchannel; 

  2: for 𝒄𝒊 ∈ 𝑪      1≤ 𝒊 ≤ 𝑵 do 

  3:     Set up  𝑹𝒄𝒊𝒅  as set of potential CUE reuse partners for  𝒅𝒋; 
  4: for 𝒅𝒋 ∈ 𝑫   do  

  5:              compute  𝐏𝒅𝒋,𝐦𝐢𝐧 according to (3.8) 

  if 𝚪𝒅𝒋  ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧 then 

  6:        compute 𝚪𝒄∗ with 𝐏𝒅𝒋,𝐦𝐢𝐧 according to (3.9) 

  7:        if  𝚪𝒄∗ ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧  then 

  8:                                       𝑹𝒄𝒊𝒅  =   𝑹𝒄𝒊𝒅 + 𝒅𝒋 
  9:          end if 

10:  end if 

11:         end for 

12:  if  𝑹𝒄𝒊𝒅 ≠ ∅ then 

13:  obtain optimal re-use partner 𝒅𝒋∗,  for 𝒄𝒊 according to (3.10); 

14:  𝑫 = 𝑫 − 𝒅𝒋∗; 
15:       end if 

16: end for 
 

3.3  Power-Rate Reduction Ratio (PRR) Scheme for D2D Energy Efficiency Maximisation 

The TPC scheme discussed in the previous section can achieve throughput maximisation for 

the CUEs and a high-power saving for the DUEs, but EE for the DUEs may not be optimal. 

This is because transmitting at 𝐏𝒅𝒋,𝐦𝐢𝐧  (minimum power of DUE 𝒅𝒋 to guarantee its QoS) only 

satisfies the best effort throughput for the DUEs. The disadvantage of this approach is that 

additional transmit power resources that may be used to achieve a higher rate and perhaps a 

better energy efficiency are unused and made redundant.  
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To address this, a PRR scheme is presented, which aims to maximise the EE of DUE while 

guaranteeing the minimum QoS of the CUE. Therefore, the optimisation problem in (3.6) is 

reformulated as (3.11). The transmit power of the CUE is set to 𝐏𝒄𝒊,𝐦𝐚𝐱 to optimise the achieved 

rate of the CUE (i.e., ensure the CUEs achieve the highest throughput possible) while 

maximising the EE of the DUEs. 

                                        𝐦𝐚𝐱𝐄𝐄𝑫 =∑ 𝛌𝒋𝒊𝒅𝒋 ∈𝑫 [𝐥𝐨𝐠𝟐(𝟏+𝚪𝒅𝒋 )𝐏𝒅𝒋 ]                                       (3.11) 

                                        subject to 

                                               𝚪𝒄𝒊  ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧            ⩝ 𝒄𝒊  ∈ 𝑪                                  (3.11a) 

                                               𝚪𝒅𝒋  ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧           ⩝ 𝒅𝒋  ∈ 𝑫                    (3.11b) 

                                                          ∑ 𝛌𝒋𝒊𝒄𝒊∈𝑪 ≤ 𝟏            ⩝ 𝒅𝒋 ∈ 𝑫                               (3.11c) 

                                               ∑ 𝛌𝒋𝒊𝒅𝒋∈𝑪 ≤  𝟏           ⩝ 𝒄𝒊 ∈ 𝑪                    (3.11d) 

                                               𝐏𝒄𝒊 = 𝐏𝒄𝒊,𝐦𝐚𝐱             ⩝ 𝒄𝒊 ∈ 𝑪                               (3.11e) 

                                               𝐏𝒅𝒋 ≤ 𝐏𝒅𝒋,𝐦𝐚𝐱            ⩝ 𝒅𝒋 ∈ 𝑫                               (3.11f) 

 

The TPC scheme is adopted to obtain 𝐏𝒅𝒋,𝐦𝐢𝐧, as in (3.8) and 𝐑𝒅𝒋,𝐦𝐢𝐧 is the achieved data rate 

of DUE 𝒅𝒋 for transmitting with 𝐏𝒅𝒋,𝐦𝐢𝐧 and expressed in (3.12). 

                                          𝐑𝒅𝒋,𝐦𝐢𝐧 = 𝐖𝒊𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒅𝒋,𝐦𝐢𝐧𝒉𝒅𝑻,𝒅𝑹𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒅𝑹  + 𝝈𝑵𝟐  )                                 (3.12) 

Next, the transmit power of DUE 𝒅𝒋 for which its data rate is maximum, while satisfying the 

QoS of the DUE and CUE, is obtained from the optimisation problem in (3.13). 

 

         𝐏𝒅𝒋,𝐦𝐚𝐱∗ = 𝐚𝐫𝐠𝐦𝐚𝐱 {𝐏𝒅𝒋,𝐦𝐢𝐧≤𝐏𝒅𝒋≤𝐏𝒅𝒋,𝐦𝐚𝐱} [𝐖𝒊𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒅𝑹  + 𝝈𝑵𝟐  ) ]          (3.13) 

                    subject to 

               𝚪𝒄𝒊  ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧                                               (3.13a) 

               𝚪𝒅𝒋  ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧                                              (3.13b) 

The data rate of DUE 𝒅𝒋 from 𝐏𝒅𝒋,𝐦𝐚𝐱∗  is given in (3.14)   

                                           𝐑𝒅𝒋,𝐦𝐚𝐱∗ = 𝐖𝒊𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒅𝒋,𝐦𝐚𝐱∗ 𝒉𝒅𝑻,𝒅𝑹𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒅𝑹  +𝝈𝑵𝟐  )                                 (3.14) 

Therefore, the feasible power bound of the DUE that satisfies the minimum QoS of CUE 𝒄𝒊 ∈𝑪 and DUE 𝒅𝒋 ∈ 𝑫 is 𝐏𝒅𝒋,𝐦𝐢𝐧 ≤ 𝐏𝒅𝒋 ≤ 𝐏𝒅𝒋,𝐦𝐚𝐱∗ , while 𝐏𝒄𝒊 = 𝐏𝒄𝒊,𝐦𝐚𝐱.  From (3.5), intuitively, a 

high 𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒅𝑹  +𝝈𝑵𝟐  ) and low 𝐏𝒅𝒋 means a high 𝐄𝐄𝑫. An optimal transmit power 
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𝐏𝒅𝒋𝐨𝐩𝐭 is desired, for which the reduction ratio from 𝐏𝒅𝒋,𝐦𝐚𝐱∗  to  𝐏𝒅𝒋 is higher than the reduction 

ratio of the corresponding data rate from 𝐑𝒅𝒋,𝐦𝐚𝐱∗  to 𝐑𝒅𝒋. 𝐏𝒅𝒋𝐨𝐩𝐭power that maximises the energy 

efficiency of DUE 𝒅𝒋  and given in (3.15). 

𝐏𝒅𝒋𝐨𝐩𝐭 = 𝐚𝐫𝐠𝐦𝐚𝐱 {𝐏𝒅𝒋,𝐦𝐢𝐧≤𝐏𝒅𝒋≤𝐏𝒅𝒋,𝐦𝐚𝐱∗ } [𝐏𝒅𝒋,𝐦𝐚𝐱∗ −𝐏𝒅𝒋𝐏𝒅𝒋,𝐦𝐚𝐱∗ − 𝐑𝒅𝒋,𝐦𝐚𝐱∗ −𝐑𝒅𝒋𝐑𝒅𝒋,𝐦𝐚𝐱∗  ]                     (3.15) 

where 

                                             𝐑𝒅𝒋 = 𝐖𝒊𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒅𝒋𝒈𝒅𝑻,𝒅𝑹𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄𝒊,𝒅𝑹  + 𝝈𝑵𝟐  )                                   (3.16) 

 

Equation (3.15) implies that 𝐏𝒅𝒋𝐨𝐩𝐭 will have the least corresponding impact on 𝐑𝒅𝒋,𝐦𝐚𝐱∗  when 

DUE transmit power is reduced from 𝐏𝒅𝒋,𝐦𝐚𝐱∗ . Denote 𝐄𝐄𝒅𝒋∗  as the EE of 𝒅𝒋 for power level 𝐏𝒅𝒋,𝐦𝐚𝐱∗  and 𝐄𝐄𝒅𝒋𝐨𝐩𝐭 be the optimal EE for reducing 𝐏𝒅𝒋,𝐦𝐚𝐱∗  to  𝐏𝒅𝒋𝐨𝐩𝐭, it follows that: 

                            𝐄𝐄𝒅𝒋∗ = 𝒇(𝐏𝒅𝒋,𝐦𝐚𝐱∗  ) ≜ 𝐥𝐨𝐠𝟐(𝟏+ 𝐏𝒅𝒋,𝐦𝐚𝐱∗ 𝒉𝒅𝑻,𝒅𝑹𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒅𝑹 +𝝈𝑵𝟐  )𝐏𝒅𝒋,𝐦𝐚𝐱∗  = 𝐑𝒅𝒋,𝐦𝐚𝐱∗ 𝐖𝒊⁄  𝐏𝒅𝒋,𝐦𝐚𝐱∗                      (3.17) 

                            𝐄𝐄𝒅𝒋𝐨𝐩𝐭 = 𝒇(𝐏𝒅𝒋𝐨𝐩𝐭 ) ≜ 𝐥𝐨𝐠𝟐(𝟏+ 𝐏𝒅𝒋𝐨𝐩𝐭𝒉𝒅𝑻,𝒅𝑹𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒅𝑹 +𝝈𝑵𝟐  )𝐏𝒅𝒋𝐨𝐩𝐭 = 𝐑𝒅𝒋∗ 𝐖𝒊⁄  𝐏𝒅𝒋𝐨𝐩𝐭                             (3.18) 

 The reduction ratios are given by: 

                                                               𝝈𝑷 = 𝐏𝒅𝒋,𝐦𝐚𝐱∗ −𝐏𝒅𝒋𝐨𝐩𝐭𝐏𝒅𝒋,𝐦𝐚𝐱∗                                                  (3.19a)                                     

                                                               𝝈𝑹 = 𝐑𝒅𝒋,𝐦𝐚𝐱∗ −𝐑𝒅𝒋∗𝐑𝒅𝒋,𝐦𝐚𝐱∗                                                  (3.19b) 

For 𝐏𝒅𝒋𝐨𝐩𝐭 to be the optimal EE, 𝝈𝑷 > 𝝈𝑹 as in (3.15). Denote 𝝈𝑫 as difference of the 

reduction ratios given by: 

                                                                𝝈𝑫 = 𝝈𝑷 − 𝝈𝑹                                                    (3.20) 

                             𝐄𝐄𝒅𝒋𝐨𝐩𝐭 = 𝐑𝒅𝒋∗ 𝐖𝒊⁄  𝐏𝒅𝒋𝐨𝐩𝐭 = 𝐑𝒅𝒋,𝐦𝐚𝐱∗𝐖𝒊 (𝟏−𝝈𝑹)𝐏𝒅𝒋,𝐦𝐚𝐱∗ (𝟏−𝝈𝑷) = 𝐄𝐄𝒅𝒋∗ (𝟏−𝝈𝑷+𝝈𝑫𝟏−𝝈𝑷 )                                (3.21) 
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                                            𝐄𝐄𝒅𝒋𝐨𝐩𝐭 = 𝐄𝐄𝒅𝒋∗ (𝟏 + 𝝈𝑫)                                                          (3.22) 

 

Therefore, if the transmit power of DUE 𝒅𝒋 ∈ 𝑫 is reduced from 𝐏𝒅𝒋,𝐦𝐚𝐱∗  to 𝐏𝒅𝒋𝐨𝐩𝐭 (i.e., reduced 

by 
𝟏𝟏−(𝝈𝑫 + 𝝈𝑹), the EE is increased by (1+𝝈𝑫).   

Algorithm 3.2 presents the PRR scheme in detail.           

Algorithm 3.2    The PRR Algorithm 

 

  1: Input 𝑪 and 𝑫 as sets of CUEs and DUEs respectively. 𝐏𝒄𝒊,𝐦𝐚𝐱 and  𝐏𝒅𝒋,𝐦𝐚𝐱 are the  

      maximum transmit powers of the CUEs and DUEs. The CUEs are pre-allocated a channel  

      each, the DUEs are waiting to be assigned a CUE subchannel; 

  2: for 𝒄𝒊 ∈ 𝑪      1≤ 𝒊 ≤ 𝑵 do 

  3:       Set up  𝑹𝒄𝒊𝒅  as set of potential DUE 𝒅𝒋reuse partner for  𝒄𝒊;  
  4: for 𝒅𝒋 ∈ 𝑫   do  

  5:            compute  𝐏𝒅𝒋,𝐦𝐢𝐧 according to (3.8) 

  6:  if 𝚪𝒅𝒋  ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧 then 

  7:         compute 𝚪𝒄∗ with 𝐏𝒅𝒋,𝐦𝐢𝐧 according to (3.9) 

  8:         if  𝚪𝒄∗ ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧  then 

  9:   compute 𝐑𝒅𝒋,𝐦𝐢𝐧 according to (3.12) 

10:   compute 𝐏𝒅𝒋,𝐦𝐚𝐱∗  and 𝐑𝒅𝒋,𝐦𝐚𝐱∗  according (3.13) and (3.14) respectively 

11:   compute 𝐏𝒅𝒋∗  according to (3.15) 

12:                               𝑹𝒄𝒊𝒅 =   𝑹𝒄𝒊𝒅 + 𝒅𝒋 
13:           end if 

14:  end if 

15:         end for 

16:    if  𝑹𝒄𝒊𝒅 ≠ ∅ then 

17:       obtain optimal re-use partner for 𝒄𝒊,  𝒅𝒋∗ = 𝐚𝐫𝐠𝐦𝐚𝐱 𝒅𝒋 ∈  𝑹𝒄𝒊𝒅 [𝐖𝒊 𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝑩𝐏𝒅𝒋∗ 𝒉𝒅𝑻,𝑩 +𝝈𝑵𝟐)] 
18:        𝑫 = 𝑫 − 𝒅𝒋∗; 
19:         end if 

20: end for 
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3.4   Simulation Case Study and Analysis 

In this section, example simulations are presented to validate the presented algorithms.  The 

uplink of a single-cell network is considered, with a radius of 400m. The CUEs and DUEs are 

randomly distributed within the coverage of the BS. The main simulation parameters are shown 

in Table 3.1 and as guided by LTE-A and 5G-NR standards. 

To evaluate the performances of the TPC and PRR schemes, the results are compared to a 

scheme, Pmax, where the active UEs transmit at maximum power i.e., no power optimisation 

was adopted. The same power values are used for the CUEs and DUEs, i.e., 𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝐏𝒅𝒋,𝐦𝐚𝐱 
to demonstrate the effect of power control. The number of DUE 𝑴 = 𝟐𝟎 and 𝑵 is varied from 𝟐𝟓% to 𝟏𝟎𝟎% of 𝑴. Firstly, the performances of the three schemes are compared in terms of 

the number of admitted DUEs, 𝑫𝒎, which is the number of DUEs that have been assigned to 

share or reuse CUE channels such that the QoS of the CUE-DUE match is not violated. 

Table 3.1:  Main simulation parameters for the TPC and PRR algorithms [127,129-131] 

Parameter Value 

Carrier frequency, 𝒇𝒄 𝟐𝐆𝐇𝐳 

RB bandwidth, 𝐖𝒊 𝟏𝟖𝟎 𝐤𝐇𝐳 
Maximum CUE transmit power, 𝐏𝒄𝒊,𝐦𝐚𝐱 𝟐𝟑𝐝𝐁𝐦 

Maximum DUE transmit power, 𝐏𝒅𝒋,𝐦𝐚𝐱 𝟐𝟑𝐝𝐁𝐦 

Maximum D2D distance, 𝑳𝒅𝑻,𝒅𝑹 50m 

CUE SINR Threshold, 𝚪𝒄𝒊,𝐦𝐢𝐧 20 dB 

DUE SINR Threshold, 𝚪𝒅𝒋,𝐦𝐢𝐧 20 dB 

Noise power density −𝟏𝟕𝟒𝐝𝐁𝐦𝐇𝐳  

UE-UE Pathloss 𝟐𝟖. 𝟎𝟑 + 𝟒𝟎𝐥𝐨𝐠𝟏𝟎(𝐝[𝐦]) dB 

BS-UE Pathloss 𝟏𝟓. 𝟑 + 𝟑𝟕. 𝟔𝐥𝐨𝐠𝟏𝟎(𝐝[𝐦]) dB 

BS-UE Shadowing standard deviation  𝟖dB 

UE-UE Shadowing standard deviation 𝟔dB 

 

It can be concluded from Fig. 3.2 that the number of admitted DUEs increases with 𝑵 because 

more CUE-DUE partnerships are established as more 𝑵 is introduced into the system. The 

Pmax method shows the least number of admitted DUEs 𝑫𝒎, as expected. This is because the 

active UEs are transmitting at maximum powers and no power control is implemented to 

mitigate interference when the QoS requirements of the CUEs/DUEs are not met. The TPC 

method performed slightly better than the PRR method particularly at 𝑵 > 𝟏𝟓, showing up to 
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𝟔. 𝟔𝟕% higher in 𝑫𝒎. This can be attributed to the fact that the DUEs only aim to achieve their 

minimum target SINR and transmit at the lowest possible powers. 

 

Fig. 3.2. The number of admitted DUEs, 𝑫𝒎 varying the number of CUEs, 𝑵 in the network  

where 𝑴 = 𝟐𝟎, 𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝟐𝟑𝐝𝐁𝐦 

A plot of the total CUE throughput is shown in Fig. 3.3. Expectedly, the throughput of the 

CUEs 𝐓𝑪, increases with 𝑵 for all considered algorithms. The Pmax scheme has the worst 

performance because no optimisation is implemented. Since the active UEs are transmitting at 

their maximum powers, the effect of interference is higher compared to other approaches. TPC 

shows the best CUE throughput performance with up to 𝟏𝟖. 𝟓𝟕% higher throughput than PRR. 

This is because the impact of interference generated by the DUEs to CUEs is low; the DUEs 

transmit at powers sufficient just to achieve 𝚪𝒅𝒋,𝐦𝐢𝐧. Therefore, a CUE can attain a high 

throughput, while a DUE can simultaneously achieve a low power consumption for a CUE-

DUE pairing, which may not be necessarily optimal in terms of energy efficiency for the DUE 

as can be seen in Fig. 3.5. 

The total power consumption by the DUEs is shown in Fig. 3.4. The Pmax scheme shows the 

highest power as expected. The PRR algorithm shows the least power consumption with up to 𝟒𝟗. 𝟑𝟗% reduction transmit power compared to the TPC scheme. This is because the PRR 

scheme tries to optimise power relative to the achieved rate which results in different matchings 

by the PRR and TPC algorithms.  
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Fig. 3.3.    Sum-throughput of the cellular users with respect to the number of CUEs, 𝑵 in the network  

where 𝑴 = 𝟐𝟎 

 

 

Fig. 3.4.    Total power consumed by the DUE with respect to the number of CUEs, 𝑵 in the network  

where 𝑴 = 𝟐𝟎 
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Fig. 3.5. Energy efficiency of admitted DUEs, 𝑫𝒎 varying the number of CUEs, 𝑵 in the network  

where 𝑴 = 𝟐𝟎 

 

The EE of the DUEs is shown in Fig. 3.5. The Pmax scheme performed worst, as there is no 

EE optimisation objective in the resource allocation. The PRR technique shows up to 𝟏𝟎𝟐. 𝟔𝟐%  improvement in EE at 𝑵 = 𝟓 in particular, compared to the TPC approach. This 

is because the PRR algorithm targets a DUE transmit power 𝐏𝒅𝒋 that results in where the 

power reduction ratio is higher than the corresponding rate reduction ratio. 

The objective function of the TPC algorithm is centred on CUE throughput maximisation, 

while guaranteeing the QoS constraints of the DUEs, whereas the objective function of the 

PRR scheme is focused on maximising the EE of the DUEs, while satisfying the QoS 

requirements of the CUEs. The best method is determined by evaluating a system utility metric  𝑺𝒖, which is a unitless metric and defined as the weighted sum of the total CUE throughput, 

DUE energy efficiency and the number of admitted DUEs. The min-max scaling [132] is used 

to normalise the parameters of the system utility expressed as: 

                                         𝑺𝒖=𝐓𝑪 + 𝑬𝑬𝑫 + 𝑫𝒎                                                                 (3.17) 

As seen in Fig. 3.6., the system utility of the PRR technique shows resulting in a better 

satisfaction of the system objectives compared to TPC and Pmax. The Pmax scheme, where no 
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power optimisation is done shows a consistent worst performance for all the considered metrics 

and expectedly, in terms of system utility. 

 

Fig. 3.6.    System utility with respect to the number of CUEs, 𝑵 in the network and where 𝑴 = 𝟐𝟎 

3.5    Chapter Conclusions 

Resource-efficient algorithms were presented for the coexistence of D2D users with cellular 

user in a single-cell scenario. The joint optimisation of CUE throughput and DUE energy 

efficiency was considered. A fixed-target SINR TPC scheme was presented that allows a DUE 

to select a CUE subchannel for resource-sharing if the DUE target SINR is achieved, while 

satisfying the QoS of the CUE. The TPC algorithm is able to achieve high CUE throughput 

and a high-power saving for the DUE which may not be necessarily energy-efficient because 

the DUE transmits with the minimum possible power. To address this, the PRR scheme was 

presented, where a DUE selects a power level with a higher reduction ratio compared to the 

corresponding reduction ratio of the data rate. The simulation results show the PRR algorithm 

offers a better system utility compared to the TPC and Pmax schemes. The PRR and TPC adopt 

a separate optimisation approach in which system objectives are optimised independently, 

producing low-complexity solutions. Joint optimisation of the resource allocation problem 

could be a promising way to extend this work. While this approach may offer a more optimal 

solution as it considers the interactions between system objectives and variables, it could also 

be more complex and computationally demanding. 
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Chapter 4 

Interference-Aware Resource Allocation  

in Multi-Tier Heterogeneous Networks (HetNet) 

Resource allocation for a D2D-enabled cellular network with diverse QoS requirements, where 

the CUEs and DUEs have conflicting objectives, was considered in Chapter 3. In this chapter, 

resource allocation of D2D users in a multi-tier Heterogeneous Network (HetNet) where D2D 

and femtocells users are to share cellular resources, is investigated.  

Cellular service providers are able to mitigate problems such as poor indoor coverage and low 

data rates at edge of the cell, by allowing users to connect to the cellular network, via a 

femtocell, which is a small cell base station [20]. The integration of femtocells into a larger 

network, called a macrocell, forms a two-tier Heterogeneous Network (HetNet) [116].  

This structure has the potential of increasing the network capacity but will also increase the 

demand for spectrum resources. Furthermore, co-channel use among the macro-cell and femto-

cells may result in cross-tier interference. The introduction of D2D communication in such a 

multi-tier network can increase the overall network throughput, however, interference becomes 

more challenging when D2D and femtocell users have to reuse the macro-cell resources. 

Therefore, efficient interference management is crucial, in order to satisfy the QoS/QoE 

demands of users for D2D-enabled multi-tier HetNet. In this chapter, an interference aware 

resource-efficient allocation scheme is developed and presented to solve the optimisation 

problem of maximising network throughput with the constraints of guaranteeing the minimum 

QoS requirements of all users. 

4.1   System Model  

The uplink of a typical D2D-enabled multi-tier HetNet is considered as illustrated in Fig. 4.1. 

The network comprises D2D communication, and a set of femtocell base stations (FBS) 

denoted by a set  𝑯 = {𝒉𝟏, 𝒉𝟐, … , 𝒉𝑷} deployed under the coverage of a macro-cell base station 

(MBS). The set of 𝑵 CUEs is denoted by 𝑪 = {𝒄𝟏, … , 𝒄𝒊, … , 𝒄𝑵}, the set of 𝑴 DUEs is denoted 

by 𝑫 = {𝒅𝟏, … , 𝒅𝒋, … , 𝒅𝑴} and the set of  𝑳 FUEs denoted by 𝑭 = {𝒇𝟏, … , 𝒇𝒌, … , 𝒇𝑳}. The DUEs 

and FUEs are to coexists and reuse the same cellular uplink, allowing for a maximum of three 
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users per channel.  It is assumed that the CSI of the communication links are available at the 

MBS. 

 

 

Fig. 4.1.   An illustration of a D2D-enabled cellular two-tier HetNet 

The channel gain is due to pathloss and shadowing as presented in Chapter 3. The signal 

channel gain from CUE 𝒄𝒊 to the MBS, from DUE transmitter 𝒅𝑻 to its receiver 𝒅𝑹, from 

FUE transmitter 𝒇𝑻 to FUE receiver 𝒇𝑹 (i.e., the FBS) is represented by 𝒉𝒄,𝑩, 𝒉𝒅𝑻,𝒅𝑹, and 𝒉𝒇𝑻,𝒇𝑹 , respectively. The interference caused to the Macro Base Station (MBS) is generated 

by the DUE transmitter 𝒅𝑻 and FUE transmitter 𝒇𝑻, and the interference gains of the links is 

signified by 𝒉𝒅𝑻,𝑩  and 𝒉𝒇𝑻,𝑩, respectively.  

Let 𝒉𝒄,𝒅𝑹  and 𝒉𝒇𝑻,𝒅𝑹  represent the interference gains of the links from the CUE 𝒄𝒊 and the FUE 

transmitter to the DUE receiver, respectively. The interference gains of the links from the CUE 𝒄𝒊 and the DUE transmitter to FUE receiver are denoted by 𝒉𝒄,𝒇𝑹 and 𝒉𝒅𝑻,𝒇𝑹, respectively. 

CUEs, DUEs and FUEs are considered to be using the same on the same channel. The received 

SINR of the CUE 𝒄𝒊 , DUE 𝒅𝒋 and FUE 𝒇𝒌  are denoted by 𝚪𝒄𝒊, 𝚪𝒅𝒋  and 𝚪𝒇𝒌 , respectively and 

are given by (4.1). 
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                                     𝚪𝒄𝒊  = 𝐏𝒄𝒊𝒉𝒄,𝑩∑ 𝛌𝒋𝒊𝐏𝒅𝒋𝒉𝒅𝑻,𝑩  + ∑ 𝛌𝒌𝒊 𝐏𝒇𝒌𝒉𝒇𝑻,𝑩  + 𝒇𝒌∈𝑭𝒅𝒋∈𝑫 𝝈𝑵𝟐                       (4.1a) 

  𝚪𝒅𝒋  = 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹  ∑ 𝛌𝒋𝒊𝐏𝒄𝒊𝒉𝒄,𝒅𝑹  + ∑ 𝛌𝒌𝒋 𝐏𝒇𝒌𝒉𝒇𝑻,𝒅𝑹  + 𝒇𝒌∈𝑭𝒄𝒊∈𝑪 𝝈𝑵𝟐                        (4.1b)                       

                        𝚪𝒇𝒌  = 𝐏𝒇𝒌𝒉𝒇𝑻,𝒇𝑹  ∑ 𝛌𝒌𝒊 𝐏𝒄𝒊𝒉𝒄,𝒇𝑹  + ∑ 𝛌𝒌𝒋 𝐏𝒅𝒋𝒉𝒅𝑻,𝒇𝑹  + 𝒅𝒋∈𝑫𝒄𝒊∈𝑪 𝝈𝑵𝟐                        (4.1c)                                                    

where 𝐏𝒄𝒊, 𝐏𝒅𝒋, and 𝐏𝒇𝒌 denote the transmit powers of the CUE 𝒄𝒊, DUE 𝒅𝒋 and FUE 𝒇𝒌, 
respectively. The variance of the Additive White Gaussian Noise (AWGN) at the receiver is 

denoted by 𝝈𝑵𝟐 . 𝛌𝒋𝒊 = 𝟏 when DUE 𝒅𝒋 shares the channel of CUE 𝒄𝒊, otherwise 0. 𝛌𝒌𝒊 = 𝟏 when 

FUE 𝒇𝒌 shares the channel of CUE 𝒄𝒊, otherwise 0. 𝛌𝒌𝒋 = 𝟏 when DUE 𝒅𝒋 and FUE 𝒇𝒌 share 

the channel of CUE 𝒄𝒊, otherwise 0. 

Resource-sharing between a DUE and FUE using the same CUE channel will result in mutual 

interference among devices. The system objective is to maximise the total throughput with 

maximum transmit power and SINR threshold constraints. It is assumed that each CUE channel 

cannot be reused by more than one underlay (sharing) user in the same category. Using the 

Shannon Capacity formula [133], the objective function and constraints for the optimisation 

problem are expressed as follows:  

         𝐦𝐚𝐱𝐓𝑹 = 𝐖𝒊 [∑ 𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒄𝒊  )𝒄𝒊 ∈𝑪 + ∑ (𝛌𝒋𝒊 + 𝛌𝒌𝒋 ) 𝐥𝐨𝐠𝟐 (𝟏 + 𝚪𝒅𝒋  )𝒅𝒋 ∈𝑫 +                                                  ∑ (𝛌𝒌𝒊 + 𝛌𝒌𝒋 )𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒇𝒌  )𝒇𝒌 ∈𝑭 ]                                            (4.2) 

         with 

                            𝚪𝒄𝒊  ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧          ⩝ 𝒄𝒊  ∈ 𝑪                                  (4.2a) 

                            𝚪𝒅𝒋  ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧         ⩝ 𝒅𝒋  ∈ 𝑫                      (4.2b) 

                                       𝚪𝒇𝒌  ≥ 𝚪𝒇𝒌,𝐦𝐢𝐧          ⩝ 𝒇𝒌  ∈ 𝑭                                            (4.2c) 

                      ∑ (𝛌𝒋𝒊 + 𝛌𝒌𝒋 )𝒄𝒊∈𝐂 ≤ 𝟏     ⩝ 𝒅𝒋  ∈ 𝑫                      (4.2d) 

                      ∑ (𝛌𝒌𝒊 + 𝛌𝒌𝒋 )𝒄𝒊∈𝑪 ≤ 𝟏      ⩝ 𝒇𝒌  ∈ 𝑭                      (4.2e) 

                  𝐏𝒄𝒊 ≤ 𝐏𝒄𝒊,𝐦𝐚𝐱            ⩝ 𝒄𝒊 ∈ 𝑪                      (4.2f)           

                             𝐏𝒅𝒋 ≤ 𝐏𝒅𝒋,𝐦𝐚𝐱            ⩝ 𝒅𝒋 ∈ 𝑫                                                    (4.2g) 

                   𝐏𝒇𝒌 ≤ 𝐏𝒇𝒌,𝐦𝐚𝐱            ⩝ 𝒇𝒌 ∈ 𝑭                                                   (4.2h) 

     

Constraints (4.2a)- (4.2c) represent the minimum QoS requirements with 𝚪𝒄𝒊,𝐦𝐢𝐧, 𝚪𝒅𝒋,𝐦𝐢𝐧 and 𝚪𝒇𝒌,𝐦𝐢𝐧, denoting the SINR thresholds of the CUEs, DUEs and FUEs, respectively. Constraints 

(4.2d) - (4.2e) represent the channel associations of the UEs. Constraints (4.2f) - (4.2h) is to 
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ensure the transmit powers of the UEs do not exceed the limit. The optimisation problem in 

(4.2) is a MINLP, which is NP-hard and cannot be solved directly. To reduce the computation 

complexity, the problem is decomposed into sub-problems and a centralised heuristic 

interference-aware algorithm is developed to solve the problem in phases as described in the 

following sections. 

4.2    Interference-Aware Spectrum Management (ISA) Scheme 

In this ISA scheme, interference management is through power allocation. Firstly, the 

maximum allowable interference from the combined reuse of a channel CUE 𝒄𝒊 with a DUE 𝒅𝒋 and FUE 𝒇𝒌 is obtained. From (4.1a) and constraint (4.2a), the interference limit to guarantee 

the received SINR at the BS on the channel of CUE 𝒄𝒊  is denoted by 𝐈𝑩,𝐦𝐚𝐱𝒊  and given as: 

                                           𝐈𝑩,𝐦𝐚𝐱𝒊 = 𝐏𝒄𝒊𝒉𝒄,𝑩𝚪𝒄𝒊,𝐦𝐢𝐧 − 𝝈𝑵𝟐                  ⩝ 𝒄𝒊  ∈ 𝑪                                   (4.3) 

With priority given to the CUEs, 𝐏𝒄𝒊 = 𝐏𝒄𝒊,𝐦𝐚𝐱, ⩝ 𝒄𝒊 ∈ 𝑪. Assuming that 𝝈𝑵𝟐  is neglected, the 

minimum transmit power of DUE 𝒅𝒋 and FUE 𝒇𝒌 is given by (4.4a) and (4.4b). 

              𝐏𝒅𝒋,𝐦𝐢𝐧 = 𝐦𝐢𝐧 {𝐏𝒅𝒋,𝐦𝐚𝐱,    𝚪𝒅𝒋,𝐦𝐢𝐧 [𝐏𝒄𝒊,𝐦𝐚𝐱 ( 𝒉𝒄,𝒅𝑹  𝒉𝒅𝑻,𝒅𝑹  ) + 𝐏𝒇𝒌,𝐦𝐚𝐱 (𝒉𝒇𝑻,𝒅𝑹  𝒉𝒅𝑻,𝒅𝑹  )]}             (4.4a) 

              𝐏𝒇𝒌,𝐦𝐢𝐧 = 𝐦𝐢𝐧 {𝐏𝒇𝒌,𝐦𝐚𝐱,     𝚪𝒇𝒌,𝐦𝐢𝐧 [𝐏𝒄𝒊,𝐦𝐚𝐱 ( 𝒉𝒄,𝒇𝑹  𝒉𝒇𝑻,𝒇𝑹  ) + 𝐏𝒅𝒋,𝐦𝐚𝐱 (𝒉𝒅𝑻,𝒇𝑹  𝒉𝒇𝑻,𝒇𝑹  )]}            (4.4b) 

𝐏𝒅𝒋,𝐦𝐚𝐱𝒄  and 𝐏𝒇𝒌,𝐦𝐚𝐱𝒄  are the upper bounds of the transmit powers of DUE 𝒅𝒋 and FUE 𝒇𝒌 

respectively, to guarantee the SINR of CUE 𝒄𝒊, 𝚪𝒄𝒊,𝐦𝐢𝐧. Similarly, and 𝐏𝒇𝒌,𝐦𝐚𝐱𝒅  is the limit of the 

transmit power of FUE 𝒇𝒌 to guarantee the SINR of DUE 𝒅𝒋, 𝚪𝒅𝒋,𝐦𝐢𝐧, while 𝐏𝒅𝒋,𝐦𝐚𝐱𝒇
 is the upper 

bound of the transmit power of DUE 𝒅𝒋 to guarantee the SINR of FUE 𝒇𝒌, 𝚪𝒇𝒌,𝐦𝐢𝐧. Equations in 

(4.5) are set to the maximum transmit power to eliminate infeasible transmit powers. For 

example, if  𝐏𝒅𝒋,𝐦𝐚𝐱𝒄 ≤ 𝟎, DUE 𝒅𝒋 cannot transmit (i.e., 𝐏𝒅𝒋 is invalid), hence 𝛌𝒌𝒋 = 𝟎, since the 

QoS of DUE 𝒅𝒋 cannot be satisfied. This may happen if there is a high interference gain from 

the FUE transmitter 𝒇𝑻 to the MBS, therefore, 𝐏𝒅𝒋,𝐦𝐚𝐱𝒄 = 𝐏𝒅𝒋,𝐦𝐚𝐱. 
 



59 

 

𝐏𝒅𝒋,𝐦𝐚𝐱𝒄 = {  
  𝐏𝒄𝒊,𝐦𝐚𝐱𝚪𝒄𝒊,𝐦𝐢𝐧 ( 𝒉𝒄,𝑩𝒉𝒅𝑻,𝑩  ) − 𝐏𝒇𝒌,𝐦𝐚𝐱 (𝒉𝒇𝑻,𝑩  𝒉𝒅𝑻,𝑩  ) , 𝐏𝒄𝒊,𝐦𝐚𝐱𝚪𝒄𝒊,𝐦𝐢𝐧 ( 𝒉𝒄,𝑩𝒉𝒅𝑻,𝑩  ) > 𝐏𝒇𝒌,𝐦𝐚𝐱 (𝒉𝒇𝑻,𝑩  𝒉𝒅𝑻,𝑩  )𝐏𝒅𝒋,𝐦𝐚𝐱 , 𝐏𝒄𝒊,𝐦𝐚𝐱𝚪𝒄𝒊,𝐦𝐢𝐧 ( 𝒉𝒄,𝑩𝒉𝒅𝑻,𝑩  ) ≤ 𝐏𝒇𝒌,𝐦𝐚𝐱 (𝒉𝒇𝑻,𝑩  𝒉𝒅𝑻,𝑩  ) 

                                (4.5a) 

𝐏𝒇𝒌,𝐦𝐚𝐱𝒄 = {  
  𝐏𝒄𝒊,𝐦𝐚𝐱𝚪𝒄𝒊,𝐦𝐢𝐧 ( 𝒉𝒄,𝑩𝒉𝒇𝑻,𝑩  ) − 𝐏𝒅𝒋,𝐦𝐚𝐱 (𝒉𝒅𝑻,𝑩  𝒉𝒇𝑻,𝑩  ) , 𝐏𝒄𝒊,𝐦𝐚𝐱𝚪𝒄𝒊,𝐦𝐢𝐧 ( 𝒉𝒄,𝑩𝒉𝒇𝑻,𝑩  ) > 𝐏𝒅𝒋,𝐦𝐚𝐱 (𝒉𝒅𝑻,𝑩  𝒉𝒇𝑻,𝑩  )𝐏𝒇𝒌,𝐦𝐚𝐱 , 𝐏𝒄𝒊,𝐦𝐚𝐱𝚪𝒄𝒊,𝐦𝐢𝐧 ( 𝒉𝒄,𝑩𝒉𝒇𝑻,𝑩  ) ≤ 𝐏𝒅𝒋,𝐦𝐚𝐱 (𝒉𝒅𝑻,𝑩  𝒉𝒇𝑻,𝑩  ) 

                   (4.5b) 

  𝐏𝒅𝒋,𝐦𝐚𝐱𝒇 = {  
  𝐏𝒇𝒌,𝐦𝐚𝐱𝚪𝒇𝒌,𝐦𝐢𝐧 (𝒉𝒇𝑻,𝒇𝑹  𝒉𝒅𝑻,𝒇𝑹  ) − 𝐏𝒄𝒊,𝐦𝐚𝐱 ( 𝒉𝒄,𝒇𝑹  𝒉𝒅𝑻,𝒇𝑹  ) , 𝐏𝒇𝒌,𝐦𝐚𝐱𝚪𝒇𝒌,𝐦𝐢𝐧 (𝒉𝒇𝑻,𝒇𝑹  𝒉𝒅𝑻,𝒇𝑹  ) > 𝐏𝒄𝒊,𝐦𝐚𝐱 ( 𝒉𝒄,𝒇𝑹  𝒉𝒅𝑻,𝒇𝑹  )𝐏𝒅𝒋,𝐦𝐚𝐱 , 𝐏𝒇𝒌,𝐦𝐚𝐱𝚪𝒇𝒌,𝐦𝐢𝐧 (𝒉𝒇𝑻,𝒇𝑹  𝒉𝒅𝑻,𝒇𝑹  ) ≤ 𝐏𝒄𝒊,𝐦𝐚𝐱 ( 𝒉𝒄,𝒇𝑹  𝒉𝒅𝑻,𝒇𝑹  ) 

                                                       (4.5c) 

𝐏𝒇𝒌,𝐦𝐚𝐱𝒅 = {  
  𝐏𝒅𝒋,𝐦𝐚𝐱𝚪𝒅𝒋,𝐦𝐢𝐧 (𝒉𝒅𝑻,𝒅𝑹  𝒉𝒇𝑻,𝒅𝑹  ) − 𝐏𝒄𝒊,𝐦𝐚𝐱 ( 𝒉𝒄,𝒅𝑹  𝒉𝒇𝑻,𝒅𝑹  ) , 𝐏𝒅𝒋,𝐦𝐚𝐱𝚪𝒅𝒋,𝐦𝐢𝐧 (𝒉𝒅𝑻,𝒅𝑹  𝒉𝒇𝑻,𝒅𝑹  ) > 𝐏𝒄𝒊,𝐦𝐚𝐱 ( 𝒉𝒄,𝒅𝑹  𝒉𝒇𝑻,𝒅𝑹  )𝐏𝒇𝒌,𝐦𝐚𝐱 , 𝐏𝒅𝒋,𝐦𝐚𝐱𝚪𝒅𝒋,𝐦𝐢𝐧 (𝒉𝒅𝑻,𝒅𝑹  𝒉𝒇𝑻,𝒅𝑹  ) ≤ 𝐏𝒄𝒊,𝐦𝐚𝐱 ( 𝒉𝒄,𝒅𝑹  𝒉𝒇𝑻,𝒅𝑹  ) 

                   (4.5d) 

The set of feasible transmit power for DUE 𝒅𝒋 and FUE 𝒇𝒌 are given by (4.6)  

𝑷𝑫 = {𝐏𝒅𝒋,𝐦𝐢𝐧 ,𝐦𝐢𝐧 (𝐏𝒅𝒋,𝐦𝐚𝐱𝒄  , 𝐏𝒅𝒋,𝐦𝐚𝐱) ,𝐦𝐢𝐧 (𝐱𝟏𝐏𝒅𝒋,𝐦𝐚𝐱𝒇  , 𝐏𝒅𝒋,𝐦𝐚𝐱) ,  𝐏𝒅𝒋,𝐦𝐚𝐱}        ⩝ 𝒅𝒋 ∈ 𝑫       (4.6a) 

𝑷𝑭 = {𝐏𝒇𝒌,𝐦𝐢𝐧 ,𝐦𝐢𝐧(𝐏𝒇𝒌,𝐦𝐚𝐱𝒄  , 𝐏𝒇𝒌,𝐦𝐚𝐱) ,𝐦𝐢𝐧(𝐱𝟐𝐏𝒇𝒌,𝐦𝐚𝐱𝒅  , 𝐏𝒇𝒌,𝐦𝐚𝐱) ,  𝐏𝒇𝒌,𝐦𝐚𝐱}         ⩝ 𝒇𝒌 ∈ 𝑭      (4.6b) 

where 𝐱𝟏 and 𝐱𝟐 are used to set 𝐏𝒅𝒋,𝐦𝐚𝐱𝒇
 and 𝐏𝒇𝒌,𝐦𝐚𝐱𝒅  in (4.6), respectively, for channel associations 𝛌𝒋𝒊, 𝛌𝒌𝒊  and 𝛌𝒌𝒋 , ⩝ 𝒄𝒊 ∈ 𝑪. For 𝛌𝒋𝒊, 𝑷𝑭 = ∅,  whereas  𝑷𝑫 = ∅ for 𝛌𝒌𝒊 . The values for 𝐱𝟏 and 𝐱𝟐 

are given in (4.7). 

                                        

{  
  𝛌𝒌𝒋 ,     𝐱𝟏 = 𝐱𝟐 = 𝟏𝛌𝒋𝒊,     𝐱𝟏 = 𝐏𝒅𝒋,𝐦𝐚𝐱𝐏𝒅𝒋,𝐦𝐚𝐱𝒇𝛌𝒌𝒊 ,     𝐱𝟐 = 𝐏𝒇𝒌,𝐦𝐚𝐱𝐏𝒇𝒌,𝐦𝐚𝐱𝒋

                                                                   (4.7) 
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The ISA scheme is presented to solve the resource allocation problem by jointly considering 

the power allocation and channel assignment in two phases, ISA-I and ISA-II. First, ISA-I is 

used to determine 𝛌𝒌𝒋 , then the optimal power allocation for DUE 𝒅𝒋 and FUE 𝒇𝒌 reusing the 𝒊th CUE channel is evaluated. Next, the optimal CUE-DUE-FUE resource-sharing partners are 

determined. The underlay users (i.e., DUEs and FUEs) unassigned from ISA-I, because the 

minimum QoS constraints for them to coexist on a cellular channel are not satisfied, are 

assigned to unmatched cellular resources in ISA-II. This is to determine 𝛌𝒋𝒊 (CUE-DUE 

assignments) and  𝛌𝒌𝒊  (CUE-FUE assignments). The two phases of the algorithm are presented 

in Algorithms 4.1 and 4.2. 
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Algorithm 4.1.   ISA Phase I 
 

Phase I: To determine ∑ ∑ ∑ 𝛌𝒌𝒋𝒇𝒌∈𝐃𝒅𝒋∈𝐃𝒄𝒊∈𝐂  

  1: Input 𝑪, 𝑫 and 𝑭; 𝐏𝒄𝒊,𝐦𝐚𝐱, 𝐏𝒅𝒋,𝐦𝐚𝐱, and  𝐏𝒇𝒌,𝐦𝐚𝐱; 𝚪𝒄𝒊,𝐦𝐢𝐧, 𝚪𝒅𝒋,𝐦𝐢𝐧 and 𝚪𝒇𝒌,𝐦𝐢𝐧 

  2: Initialisation:  𝐱𝟏 = 𝐱𝟐 = 𝟏 

  3:  for 𝒄𝒊 ∈ 𝑪      1≤ 𝒊 ≤ 𝑵 do 

  4:      Compute 𝐈𝑩,𝐦𝐚𝐱𝒊  

  5:      for 𝒅𝒋 ∈ 𝑫    𝟏 ≤ 𝒊 ≤ 𝑴 do 

  6:         𝑭𝟏 = ∅ 

  7:         for 𝒇𝒌 ∈ 𝑭    𝟏 ≤ 𝒊 ≤ 𝑭 do 

  8:           𝑷�̅� = 𝒇𝑨𝟏 (𝐏𝒅𝒋) ≜ 𝐏𝒅𝒋𝒉𝒅𝑻,𝑩  < 𝐈𝑩,𝐦𝐚𝐱𝒊 , ∀𝐏𝒅𝒋 ∈ 𝐏𝑫 

  9:             if 𝑷�̅� ≠ ∅ then 

10:                    Compute 𝒇𝑨𝟐 (𝐏𝒅𝒋) ≜ 𝐈𝑩,∆𝒊 = 𝐈𝑩,𝐦𝐚𝐱𝒊 − 𝒇𝑨𝟏 (𝐏𝒅𝒋) , ∀𝐏𝒅𝒋 ∈ 𝑷�̅� 

11:                    Compute 𝒇𝑩(𝐏𝒇𝒌) ≜ 𝐏𝒇𝒌𝒉𝒇𝑻,𝑩   
12:                     𝑷𝑫𝑭 = {(𝐏𝒅𝒋 , 𝐏𝒇𝒌)𝟏 , … , (𝐏𝒅𝒋 , 𝐏𝒇𝒌)|𝑷𝑫𝑭|} ≜ 𝒇𝑩(𝐏𝒇𝒌) − 𝒇𝑨𝟐 (𝐏𝒅𝒋) ≤  𝟎, ∀𝐏𝒇𝒌 ∈ 𝑷𝑭 

13:             if 𝑷𝑫𝑭 ≠ ∅ then 

14:                             𝑷𝑫𝑭∗ = {(𝐏𝒅𝒋∗ , 𝐏𝒇𝒌∗ )𝟏 , … , (𝐏𝒅𝒋∗ , 𝐏𝒇𝒌∗ )|𝑷𝑫𝑭∗ |} 
                                  ≜

{  
  
  𝒇𝑫𝟏 (𝐏𝒅𝒋 , 𝐏𝒇𝒌) ≜ 𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝑩𝐏𝒅𝒋𝒉𝒅𝑻,𝑩  +  𝐏𝒇𝒌𝒉𝒇𝑻,𝑩 +  𝝈𝑵𝟐  ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧𝒇𝑫𝟐 (𝐏𝒅𝒋 , 𝐏𝒇𝒌) ≜ 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹  𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝒅𝑹  +  𝐏𝒇𝒌𝒉𝒇𝑻,𝒅𝑹  +  𝝈𝑵𝟐 ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧𝒇𝑫𝟑 (𝐏𝒅𝒋 , 𝐏𝒇𝒌) ≜ 𝐏𝒇𝒌𝒉𝒇𝑻,𝒇𝑹  𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒇𝑹  + 𝐏𝒅𝒋𝒉𝒅𝑻,𝒇𝑹  +   𝝈𝑵𝟐 ≥ 𝚪𝒇𝒌,𝐦𝐢𝐧∀(𝐏𝒅𝒋 , 𝐏𝒇𝒌) ∈ 𝑷𝑫𝑭

 

15:                             if  𝑷𝑫𝑭∗ ≠ ∅  then  

           (𝐏𝒅𝒋∗ , 𝐏𝒇𝒌∗ ) = 𝐚𝐫𝐠𝐦𝐚𝐱  (𝐏𝒅𝒋 ,𝐏𝒇𝒌) ∈ 𝑷𝑫𝑭∗  𝐖𝒊 [𝐥𝐨𝐠𝟐 (𝟏 + 𝒇𝑫𝟏 (𝐏𝒅𝒋 , 𝐏𝒇𝒌)) +                                          𝐥𝐨𝐠𝟐 (1 + 𝒇𝑫𝟐 (𝐏𝒅𝒋 , 𝐏𝒇𝒌))    + 𝐥𝐨𝐠𝟐 (𝟏 + 𝒇𝑫𝟑 (𝐏𝒅𝒋 , 𝐏𝒇𝒌))]  
16:                                       𝑭𝟏 =   𝑭𝟏 + 𝒇𝒌 

17:                             end if 

18:                      end if 

19:             end if 

20:         end for 

21:      𝑹𝒅𝒋𝑭𝟏 = {(𝒅𝒋, 𝒇𝒌)𝟏, … , (𝒅𝒋, 𝒇𝒌)|𝑭𝟏|} 
22:     end for 

23:      𝑹𝑫𝑭∗ = {𝝅𝒅𝟏𝐅𝟏 , … , 𝝅𝒅𝒋𝐅𝟏 , … , 𝝅𝝅𝑫𝑭∗𝐅𝟏 } 
24:  Obtain optimal re-use partner for 𝒄𝒊, (𝒅𝒋∗, 𝒇𝒌∗ ) = 𝐚𝐫𝐠𝐦𝐚𝐱 (𝒅𝒋,𝒇𝒌) ∈ 𝑹𝑫𝑭∗ 𝐖𝒊 [𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝑩𝐏𝒅𝒋∗ 𝒉𝒅𝑻,𝑩  +  𝐏𝒇𝒌∗ 𝒉𝒇𝑻,𝑩 +  𝝈𝑵𝟐  ) +                                           𝐥𝐨𝐠𝟐 (1 + 𝐏𝒅𝒋∗ 𝒉𝒅𝑻,𝒅𝑹  𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝒅𝑹  +  𝐏𝒇𝒌∗ 𝒉𝒇𝑻,𝒅𝑹  +  𝝈𝑵𝟐) + 𝐥𝐨𝐠𝟐 (1 + 𝐏𝒇𝒌∗ 𝒉𝒇𝑻,𝒇𝑹  𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒇𝑹  + 𝐏𝒅𝒋∗ 𝒉𝒅𝑻,𝒇𝑹  +   𝝈𝑵𝟐)] 
25: 𝑭 =   𝑭 − 𝒇𝒌∗ ;    𝑫 =   𝑫 − 𝒅𝒋∗;  𝑪 =   𝑪 − 𝒄𝒊;     
26:  end for    
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Algorithm 4.2.   ISA Phase II 
Phase II: To determine ∑ ∑ ∑ (𝛌𝒋𝒊 + 𝛌𝒌𝒊 )𝒇𝒌∈𝐃𝒅𝒋∈𝐃𝒄𝒊∈𝐂  

  1: Input 𝑪, 𝑫 and 𝑭 from Algorithm 4.1.  

  2: if 𝑪 ≠ ∅ then 

  3:       Initialisation 𝐱𝟏 = 𝐏𝒅𝒋,𝐦𝐚𝐱𝐏𝒅𝒋,𝐦𝐚𝐱𝒇 , 𝐱𝟐 = 𝐏𝒇𝒌,𝐦𝐚𝐱𝐏𝒇𝒌,𝐦𝐚𝐱𝒋  

  4:     for 𝒄𝒊 ∈ 𝑪      1≤ 𝒊 ≤ |𝑪| do 

  5:        Compute 𝐈𝑩,𝐦𝐚𝐱𝒊  

  6:        Set up  𝑹𝒄𝒊𝒅 ( 𝑹𝒄𝒊𝒇 ) as set of potential DUE 𝒅𝒋 (FUE 𝒇𝒌) reuse partner for  𝒄𝒊; 
  7:          for 𝒅𝒋 ∈ 𝑫   1≤ 𝒋 ≤ |𝑫| do 

  8:               𝑷𝑭 = ∅; 
  9:               𝑷�̅� = 𝒇𝑨𝟏 (𝐏𝒅𝒋) ≜ 𝐏𝒅𝒋𝒉𝒅𝑻 ,𝑩  < 𝐈𝑩,𝐦𝐚𝐱𝒊 , ∀𝐏𝒅𝒋 ∈ 𝑷𝑫 

10:               if 𝑷�̅� ≠ ∅ then 

11:             𝑷𝑫∗ = {𝐏𝒅𝒋 , … , 𝐏𝒅|𝑷𝑫∗ |} ≜ {  
  𝒇𝑫𝟏 (𝐏𝒅𝒋) ≜ 𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝑩𝐏𝒅𝒋𝒉𝒅𝑻,𝑩  +  𝝈𝑵𝟐  ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧𝒇𝑫𝟐 (𝐏𝒅𝒋) ≜ 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹  𝐏𝒄𝒊,𝐦𝐚𝐱  𝒉𝒄,𝒅𝑹  +  𝝈𝑵𝟐 ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧∀𝐏𝒅𝒋 ∈ 𝑷�̅�  

12:                             if  𝑷𝑫∗ ≠ ∅  then 

13:                               𝐏𝒅𝒋∗ = 𝐚𝐫𝐠𝐦𝐚𝐱  𝐏𝒅𝒋  ∈ 𝑷𝑫∗  𝐖𝒊 [𝐥𝐨𝐠𝟐 (𝟏 + 𝒇𝑫𝟏 (𝐏𝒅𝒋)) + 𝐥𝐨𝐠𝟐 (𝟏 + 𝒇𝑫𝟐 (𝐏𝒅𝒋))]             
14:                                       𝑹𝒄𝒊𝒅  =    𝑹𝒄𝒊𝒅  + 𝒅𝒋 
15:                             end if  

16:                 end if 

17:           end for 

18:           for 𝒇𝒌 ∈ 𝑭   1≤ 𝒌 ≤ |𝑭| do 

19:                    𝑷𝑫 = ∅; 

20:                     𝑷�̅� = 𝒇𝑨𝟐(𝐏𝒇𝒌) ≜ 𝐏𝒇𝒌𝒉𝒇𝑻,𝑩  < 𝐈𝑩,𝐦𝐚𝐱𝒊 , ∀𝐏𝒇𝒌 ∈ 𝐏𝑭 

21:                 if 𝑷�̅� ≠ ∅ then 

22:              𝑷𝑭∗ = {𝐏𝒇𝒌 , … , 𝐏𝒇|𝑷𝑭∗ |} ≜ {  
  𝒇𝑫𝟑(𝐏𝒇𝒌) ≜ 𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝑩𝐏𝒇𝒌𝒉𝒇𝑻,𝑩  +  𝝈𝑵𝟐  ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧𝒇𝑫𝟒(𝐏𝒇𝒌) ≜ 𝐏𝒇𝒌𝒉𝒇𝑻,𝒇𝑹  𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝒇𝑹  +  𝝈𝑵𝟐 ≥ 𝚪𝒇𝒌,𝐦𝐢𝐧∀𝐏𝒇𝒌 ∈ 𝑷�̅�  

23:                         if  𝑷𝑭∗ ≠ ∅  then 

24:   𝐏𝒇𝒌∗ = 𝐚𝐫𝐠𝐦𝐚𝐱  𝐏𝒇𝒌  ∈ 𝑷𝑭∗  𝐖𝒊 [𝐥𝐨𝐠𝟐 (𝟏 + 𝒇𝑫𝟑(𝐏𝒇𝒌)) + 𝐥𝐨𝐠𝟐 (𝟏 + 𝒇𝑫𝟒(𝐏𝒇𝒌)) ]  
25:                                      𝑹𝒄𝒊𝒇  =    𝑹𝒄𝒊𝒇  + 𝒇𝒌 

    end if 

26:                  end if 

27:            end for 

28:       𝑹𝒄𝒊𝑫𝑭 = { 𝑹𝒄𝒊𝒅 +  𝑹𝒄𝒊𝒇 } ≜ {𝑹𝒉, … , 𝑹𝑯}     𝒉 = 𝟏, 𝟐, . . 𝑯,     𝑯 = | 𝑹𝒄𝒊𝑫𝑭| 
29:      𝒉∗ ≜ 𝒅𝒋∗(𝒇𝒌∗ ) = 𝐚𝐫𝐠𝐦𝐚𝐱 𝒉 ∈  𝑹𝒄𝒊𝑫𝑭  𝐖𝒊 [𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒄𝒊,𝐦𝐚𝐱  𝒉𝒄,𝑩𝐏𝒅𝒋∗ 𝒉𝒅𝑻,𝑩  ( 𝐏𝒇𝒌∗ 𝒉𝒇𝑻,𝑩 )+  𝝈𝑵𝟐  ) + 𝐥𝐨𝐠𝟐 (1 +𝐏𝒅𝒋∗ 𝒉𝒅𝑻,𝒅𝑹   (𝐏𝒇𝒌∗ 𝒉𝒇𝑻,𝒇𝑹  )𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝒅𝑹  (𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒇𝑹  )  +  𝝈𝑵𝟐)] 
30:       𝒉∗ = {𝒅𝒋∗, 𝑫 = 𝑫 − 𝒅𝒋∗𝒇𝒌∗ , 𝑭 = 𝑭 − 𝒇𝒌∗  

31:     end for  

32: end if 
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Table 4.1:  Main simulation parameters for the ISA Algorithm [130,131]  

Parameter Value 

Carrier frequency, 𝒇𝒄 𝟐𝐆𝐇𝐳 

RB bandwidth 𝟏𝟖𝟎 𝐤𝐇𝐳 
FBS radius 𝟓𝟎𝐦 

Maximum CUE transmit power, 𝐏𝒄𝒊,𝐦𝐚𝐱 𝟐𝟑𝐝𝐁𝐦 

Maximum DUE transmit power, 𝐏𝒅𝒋,𝐦𝐚𝐱 𝟐𝟑𝐝𝐁𝐦 

Maximum FUE transmit power, 𝐏𝒇𝒌,𝐦𝐚𝐱 𝟏𝟎𝐝𝐁𝐦 

MaximumD2D distance, 𝑳𝒅𝑻,𝒅𝑹 𝟓𝟎𝐦 

CUE SINR Threshold, 𝚪𝒄𝒊,𝐦𝐢𝐧 𝟐𝟎 𝐝𝐁 

DUE SINR Threshold, 𝚪𝒅𝒋,𝐦𝐢𝐧 𝟐𝟎 𝐝𝐁 

FUE SINR Threshold, 𝚪𝒇𝒌,𝐦𝐢𝐧 𝟐𝟎 𝐝𝐁 

Noise power density −𝟏𝟕𝟒𝐝𝐁𝐦/𝐇𝐳 
BS-UE Pathloss model 𝟐𝟖. 𝟎𝟑 + 𝟒𝟎𝐥𝐨𝐠𝟏𝟎(𝐝[𝐦]) dB 

UE-UE Pathloss model 𝟏𝟓. 𝟑 + 𝟑𝟕. 𝟔𝐥𝐨𝐠𝟏𝟎(𝐝[𝐦]) dB 

 

4.3   Simulation Case Study and Analysis 

The performance of the ISA scheme presented above is verified by considering the uplink of a 

two-tier HetNet with FBSs underlaying cellular system and the MBS positioned at the center 

with radius of 400m.  There are 𝑷 FBSs of 50m radius with 𝑳 FUEs, 𝑴 DUEs and 𝑵 CUEs 

randomly distributed within the coverage of the MBS. The main simulation parameters are 

summarised in Table 4.1 guided by 4G and 5G standards. 

The presented ISA scheme is evaluated in terms of overall network throughput since this is aim 

of the optimisation problem. The system throughput gain and the total number of admitted 

underlay (sharing) users are also determined to assess the impact of spectrum sharing on 

expanding network capacity. The scheme is compared to ISA-Pmax, where the all the active 

CUEs, DUEs and FUEs transmit at peak power (i.e., no power control is implemented). ISA-

Pmax is implemented using Algorithm 4.1 and 4.2 with  𝐏𝒄𝒊, 𝐏𝒅𝒋, and 𝐏𝒇𝒌 set to 𝐏𝒄𝒊,𝐦𝐚𝐱, 𝐏𝒅𝒋,𝐦𝐚𝐱 
and 𝐏𝒇𝒌,𝐦𝐚𝐱, respectively. A scenario where there is no underlay or sharing users (No-UDU) is 

also considered. There is no impact of interference on the cellular users in this scenario since 

there is no spectrum sharing. 

The total number of admitted underlay users, 𝐃𝒖=∑ ∑ ∑ (𝛌𝒌𝒋 + 𝛌𝒋𝒊 + 𝛌𝒌𝒊 )𝒇𝒌∈𝐅𝒅𝒋∈𝐃𝒄𝒊∈𝐂  with 𝑴 =𝟐𝟎, 𝑳 = 𝟐𝟎 and varying 𝑵, for the ISA and ISA-Pmax schemes, is shown in Fig. 4.2. It can be 
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seen that 𝐃𝒖 increases with 𝑵 for both methods, with ISA showing up to 80% higher number 

of accessed DUEs compared to ISA-Pmax at 𝑵 = 𝟏𝟒. This is due to the fact that power is not 

optimised in ISA-Pmax, which may have increased the potential resource-sharing partners for 

the CUEs. The number of admitted underlay or sharing users 𝐃𝒖, are limited since the UEs are 

transmitting at maximum power.   

 

Fig. 4.2.    The number of admitted underlay users, 𝑫𝒖 varying the number of CUEs, 𝑵 in the network  

where 𝑳 = 𝑴 = 𝟐𝟎   

 

Fig. 4.3.    System throughput, 𝑻𝑹 for different number of CUEs, 𝑵 in the network where 𝑳 = 𝑴 = 𝟐𝟎 
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The effect of varying 𝑵 on the performance of the system throughput, 𝐓𝑹, is shown in Fig. 4.3. 

It can be seen from the figure that 𝐓𝑹 increases with 𝑵 for the three algorithms. The ISA scheme 

performed best, showing up to 25.27% and 67.57% higher system throughput compared to 

ISA-Pmax and No-UDU schemes, respectively, particularly at 𝑵 = 𝟏𝟒. This can be attributed 

to the higher re-use gain of the ISA scheme as a result of spectrum-sharing.  

The system throughput gain is shown in Fig. 4.4.  The system throughput gain 𝐓𝑮 is the increase 

in the overall network throughput due to spectrum sharing [134] and is evaluated using (4.9). 

𝐓𝑮 =  𝐖𝒊 ∑ 𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝑩𝐏𝒅𝒋∗ 𝒉𝒅𝑻,𝑩  +  𝐏𝒇𝒌∗ 𝒉𝒇𝑻,𝑩 +  𝝈𝑵𝟐  )𝒄𝒊∈𝑪  

+ 𝐖𝒊 ∑ 𝐥𝐨𝐠𝟐 ( 𝐏𝒅𝒋∗ 𝒉𝒅𝑻 ,𝒅𝑹  𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝒅𝑹  +  𝐏𝒇𝒌∗ 𝒉𝒇𝑻,𝒅𝑹  +  𝝈𝑵𝟐 )𝒅𝒋∈𝑫  

+ 𝐖𝒊 ∑ 𝐥𝐨𝐠𝟐 ( 𝐏𝒇𝒌∗ 𝒉𝒇𝑻,𝒇𝑹  𝐏𝒄𝒊,𝐦𝐚𝐱𝒉𝒄,𝒇𝑹  + 𝐏𝒅𝒋∗ 𝒉𝒅𝑻,𝒇𝑹  +    𝝈𝑵𝟐)𝒇𝒌∈𝑭  

   −  𝐖𝒊 ∑ 𝐥𝐨𝐠𝟐 (𝟏 + 𝐏𝒄𝒊,𝐦𝐚𝐱 𝒉𝒄,𝑩 𝝈𝑵𝟐  )𝒄𝒊∈𝑪  

                                                                                                                                                                          (4.9) 

It can be seen that 𝐓𝑮 increases with 𝑵. The ISA shows up to 51.26% higher throughput gain 

in comparison to ISA-Pmax. This can be due to the impact of the power optimisation which 

translates to an increase in 𝐃𝒖 and 𝐓𝑮. 

The impact of the DUE distance on the system throughput performance is shown in Fig. 4.5. It 

can be seen that the system throughput decreases as the DUE distance increases for the 

considered scenario. This is because increasing the DUE distance decreases the channel gain. 

Therefore, a higher transmit power is required for the DUE minimum SINR to be satisfied. 
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Fig. 4.4.    System throughput gain, 𝑻𝑮 for different number of CUEs, 𝑵 in the network  

where 𝑳 = 𝑴 = 𝟐𝟎 

 

Fig. 4.5.    Effect of varying the DUE link distance on the system throughput 𝑻𝑹,where  𝑳 = 𝑴 = 𝑵 = 𝟐𝟎 

4.4    Chapter Conclusions 

An interference-aware spectrum allocation scheme denoted as ISA, is developed for system 

throughput maximisation in a two-tier HetNet D2D-enabled cellular network. The network 

comprises D2D users and femtocell users as underlay to the cellular network.  ISA is a heuristic 
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joint power and channel allocation algorithm presented to solve resource optimisation problem. 

The objective of the ISA scheme to ensure tolerable interference level among users sharing a 

channel and the minimum SINR for each user is achieved. The presented solution is compared 

to schemes with no power control (ISA-Pmax) and with no underlay users (No-UDU). 

Numerical results show that the presented ISA scheme is resource-efficient, with 25.27% and 

65.57% higher throughput compared to Pmax and No-UDU, respectively.  
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Chapter 5 

Joint Power Control and Spectrum Allocation 

 for a Reliable D2D Communication  

in an Industrial Wireless Environment 

In the previous two chapters, interference, and spectrum management, were considered for 

D2D communication in cellular and multi-tier HetNet. The resource allocation problem was 

addressed using centralised approaches where the CSI of the links is available at the BS.  

Current and next-generation wireless networks are ultra-dense and will be deployed in 

environments with rapidly varying network conditions. The centralised approach requires 

global information gathering which incurs high signalling overheads resulting from 

information exchange (which in turn increases the latency in the system), as well as increased 

computation and complexity as the number of users increase.  

To address the aforementioned challenges, a distributed approach, which can capture fast-

changing network conditions becomes necessary. Centralised approaches may achieve better 

performances in comparison to the distributed approaches [100]. However, centralised schemes 

suffer from higher signalling overheads due to the global acquisition of channel information. 

For a distributed approach, it is assumed that UEs are ‘selfish’, which means that their primary 

objective is to maximise their individual utility functions. The output of a centralised resource 

allocation approach may not be in the interest of some UEs. Selfishness and rationality are 

characteristic features of distributed and intelligent users. Matching theory and machine 

learning are inherently distributive and can support self-organising resource allocation 

solutions [26,27]. The distributed approach is device or user-centric. The UEs are capable of 

making resource management decisions based on local information and partially relying on a 

centralised controller. The UEs can measure their received SINR values based on locally.  

Distributed approaches such as matching theory will be investigated and developed below, 

because of their scalability and due to their inherent characteristics of self-organisation in high-

density deployments such as in FoF.  The use case scenario of interest is a scenario with high 
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reliability and moderate latency, as in the case of non-time critical quality control and sensor 

data capturing on the factory floor [5] will be considered. 

A system consisting of DUEs, which are industrial devices enabled for direct D2D 

communication and CUEs, is considered. The D2D links are to share channel resources with 

the cellular users given that the target QoS requirements are satisfied for all users. The CUE 

and DUE links are characterised by minimum SINR requirements to guarantee their target data 

rates. Additionally, the DUEs have minimum reliability requirements which are ensured by 

maintaining the outage probability below a certain threshold. The resource allocation problem 

is first formulated using a centralised optimisation approach, namely, MINLP which is 

complex and cannot be solved directly.  

A distributed approach is then introduced based on the Stable Marriage Problem (SMP) game 

theoretic framework. To guarantee the minimum SINR requirement, co-channel interference 

of the CUEs and DUEs is mitigated based on the distance between the signal link and 

interfering link so that those users resulting in large interference are avoided. The minimum 

distance metric was used in [135,136] to determine potential CUE-DUE partners. However, 

the reuse candidates were obtained before allocating the optimal transmit power, thus possibly 

missing some potential reuse candidates.  

To increase the feasibility of obtaining potential sets of CUE-DUE pairs, the set of power pairs 

that satisfies the distance metric for potential reuse partners are first obtained.  Subsequently, 

the set of power pairs that guarantees the reliability requirement of the DUEs are then obtained. 

The optimal power allocation that maximises the sum throughput of all users is finally 

identified.  

5.1    System Model 

The uplink of a typical D2D-enabled cellular network for an industrial factory scenario is 

considered as illustrated in Fig. 5.1. The network is composed of  𝑵 CUEs and 𝑴 DUEs 

deployed randomly. The DUEs are sensors/actuators which are enabled for direct D2D 

communication and are deployed along the production lines or fixed on the robots. The UEs 

are considered to be static or quasi-static. 𝑪 = {𝒄𝟏, … , 𝒄𝒊, … 𝒄𝑵}  denotes the set of CUEs with 

minimum SINR threshold values to guarantee the data rate requirements.  The DUEs are 

URLLC links denoted by the set 𝑫 = {𝒅𝟏, … , 𝒅𝒋, …𝒅𝑴} with minimum SINR and reliability 
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requirements. The reliability constraint is guaranteed by controlling the outage probability 

through setting the received SINR to a minimum target value. 

 

Fig. 5.1.    An illustration of D2D communication in the factory underlaying a cellular network 

The network is served by a set of orthogonal Physical Resource Blocks (PRBs) following the 

OFDMA structure, as defined in the 4G and 5G standards. These channels are pre-assigned to 

the CUEs but can be reused by the DUE links once the minimum QoS requirements of CUEs 

and DUEs are jointly satisfied. Interference generated by DUE transmitters in the uplink 

resource-sharing mode only affects the base station. The channel gains for the different links 

can be expressed as follows: 

                                           {  
  𝒉𝒄,𝑩=𝑮𝟏𝛄𝒄,𝑩𝝌𝒄,𝑩𝑳𝒄,𝑩−𝜶𝟏 ≜ 𝜻𝒄,𝑩𝑳𝒄,𝑩−𝜶𝟏𝒉𝒅𝑻,𝑩=𝑮𝟐𝛄𝒅𝑻,𝑩𝝌𝒅𝑻,𝑩𝑳𝒅𝑻,𝑩−𝜶𝟐 ≜ 𝜻𝒅𝑻,𝑩𝑳𝒅𝑻,𝑩−𝜶𝟐𝒉𝒅𝑻,𝒅𝑹=𝑮𝟑𝛄𝒅𝑻,𝒅𝑹𝝌𝒅𝑻,𝒅𝑹𝑳𝒅𝑻,𝒅𝑹−𝜶𝟑 ≜ 𝜻𝒅𝑻,𝒅𝑹𝑳𝒅𝑻,𝒅𝑹−𝜶𝟑𝒉𝒄,𝒅𝑹=𝑮𝟒𝛄𝒄,𝒅𝑹𝝌𝒄,𝒅𝑹𝑳𝒄,𝒅𝑹−𝜶𝟒 ≜ 𝜻𝒄,𝒅𝑹𝑳𝒄,𝒅𝑹−𝜶𝟒

                        (5.1) 

where 𝒉𝒄,𝑩,  is the channel gain from CUE 𝒄𝒊 to the BS. The channel gain from DUE link 𝒅𝒋 
of transmitter 𝒅𝑻 to the receiver 𝒅𝑹 is 𝒉𝒅𝑻,𝒅𝑹, the channel gain of the interference link from 𝒅𝑻 

to the BS is 𝒉𝒅𝑻,𝑩 and from CUE 𝒄𝒊 to DUE 𝒅𝒋 receiver is 𝒉𝒄,𝒅𝑹.  Rayleigh fading channel is 

considered with a small-scale fading gain 𝜸𝒒,𝒓 and assumed to have an exponential distribution 

with unit mean [137]. The large-scale fading is composed of pathloss with exponent 𝜶𝒌 and 

shadowing, which has a slow fading gain 𝝌𝒒,𝒓 with a log-normal distribution. 𝑮𝒌 is the pathloss 

constant which is depends on antenna gains and frequency [40]. 𝑳𝒒,𝒓 is the distance from 
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terminal 𝒒 to terminal 𝒓. The received SINR at the BS from CUE 𝒄𝒊  and at the DUE 𝒅𝒋 receiver 𝒅𝑹 are denoted by 𝚪𝒄𝒊 and 𝚪𝒅𝒋 respectively, and given as follows: 

                                                          𝚪𝒄𝒊 = 𝐏𝒄𝒊𝒉𝒄,𝑩𝝈𝑵𝟐  + ∑ 𝛌𝒋𝒊𝐏𝒅𝒋𝒉𝒅𝑻,𝑩𝒅𝒋∈𝑫                                              (5.2) 

                                                          𝚪𝒅𝒋 = 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹𝝈𝑵𝟐  + ∑ 𝛌𝒋𝒊𝐏𝒄𝒊𝒉𝒄,𝒅𝑹𝒄𝒊∈𝑪                                               (5.3) 

where 𝐏𝒄𝒊 and 𝐏𝒅𝒋 are the transmit powers of CUE 𝒄𝒊 and DUE 𝒅𝒋 respectively, 𝝈𝑵𝟐  is the 

variance of additive white Gaussian noise of each channel. 𝛌𝒋𝒊 ∈ {𝟎, 𝟏} is the resource reuse 

indicator, 𝛌𝒋𝒊 = 𝟏 if DUE 𝒅𝒋 reuses CUE 𝒄𝒊 subchannel and otherwise is 0. The reliability of 

DUE 𝒅𝒋 is expressed in terms of the maximum tolerable outage probability, 𝒑𝑹𝟎.  The outage 

probability constraint, 𝒑𝑹, is given in (5.4) where 𝐏𝐫(. ) denotes the probability of the input 

and 𝚪𝒅𝒋,𝐦𝐢𝐧 is the minimum target SINR for 𝒅𝒋. 
                                                          𝒑𝑹 = 𝐏𝐫 (𝚪𝒅𝒋 ≤ 𝚪𝒅𝒋,𝐦𝐢𝐧) ≤ 𝒑𝑹𝟎                                  (5.4) 

The optimisation objective is to maximise the overall system throughput 𝐓𝑹 and formulated 

as follows: 

       𝐦𝐚𝐱𝛌𝒋𝒊 ,𝑷𝒄𝒊 ,𝑷𝒄𝒋  𝐓𝑹 = 𝑾𝒊( ∑ (𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒄𝒊)𝒄𝒊 ∈𝑪 + ∑ 𝛌𝒋𝒊 𝐥𝐨𝐠𝟐 (𝟏 + 𝚪𝒅𝒋)𝒅𝒋 ∈𝑫𝔼 ))                     (5.5) 

 subject to 

                                                      𝚪𝒄𝒊 ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧             ⩝ 𝒄𝒊  ∈ 𝑪           (5.5a) 

                                   𝚪𝒅𝒋 ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧            ⩝ 𝒅𝒋  ∈ 𝑫𝔼           (5.5b) 

                                     𝛌𝒋𝒊𝒑𝑹 ≤ 𝒑𝑹𝟎             ⩝ 𝒅𝒋  ∈ 𝑫𝔼                    (5.5c) 

                                   𝐏𝒄𝒊 ≤ 𝐏𝒄𝒊,𝐦𝐚𝐱             ⩝ 𝒄𝒊  ∈ 𝑪              (5.5d) 

                                   𝐏𝒅𝒋 ≤ 𝐏𝒅𝒋,𝐦𝐚𝐱            ⩝ 𝒅𝒋  ∈ 𝑫𝔼                                    (5.5e)                

                                                      ∑ 𝛌𝒋𝒊𝒄𝒊∈𝑪 ≤ 𝟏            ⩝ 𝒅𝒋  ∈ 𝑫𝔼               (5.5f) 

                                    ∑ 𝛌𝒋𝒊𝒅𝒋∈𝑫𝔼 ≤ 𝟏           ⩝ 𝒄𝒊  ∈ 𝑪                      (5.5g) 

where 𝑾𝒊 is the bandwidth, 𝑫𝔼 (𝑫𝔼 ⊆ 𝑫) denotes the set of admissible DUEs,  𝚪𝒄𝒊,𝐦𝐢𝐧 is the 

minimum SINR for 𝒄𝒊. 𝐏𝒄𝒊,𝐦𝐚𝐱 and 𝐏𝒅𝒋,𝐦𝐚𝐱 denote the maximum transmit powers of 𝒄𝒊 and 𝒅𝒋, 
respectively. Constraints 5.5(a) and 5.5(b) are the minimum SINR requirements for 𝒄𝒊 and 𝒅𝒋, 
respectively. Constraints 5.5(c) is the outage requirement for a valid matching between 𝒄𝒊 and 𝒅𝒋. Constraints 5.5(d) and 5.5(e) are to guarantee that the transmit of powers of  𝒄𝒊 and 𝒅𝒋 lie 
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within the acceptable limits. Constraints 5.5(f) and 5.5(g) ensure a one-to-one assignment 

between CUEs and DUEs. 

The optimisation problem in (5.5) is an MINLP which is NP-hard. Direct solution to this 

problem is difficult to obtain. The problem is therefore solved by decomposing it into simpler 

sub-problems as described in the following section. In the first step, the admission and power 

control are jointly solved to determine whether 𝒄𝒊 and 𝒅𝒋 are potential resource-sharing 

partners. The optimal power allocation that maximises the sum throughput is then obtained. 

Subsequently, the matching (channel assignment) is identified to find the optimal reuse partner. 

5.2   Joint Power and Admission Control (JPAC) 

The optimisation problem in (5.5) is solved by first determining whether a DUE is admissible 

by a CUE. For a DUE 𝒅𝒋 to share resources with a CUE 𝒄𝒊, constraints 5.5(a) to 5.5(e) must be 

satisfied. Relaxing the channel assignment constraints (5.5f) and (5.5g), the following is 

obtained: 

                                                   𝚪𝒄𝒊 = 𝐏𝒄𝒊𝜻𝒄,𝑩𝑳𝒄,𝑩−𝜶𝟏𝝈𝑵𝟐  + 𝐏𝒅𝒋𝜻𝒅𝑻,𝑩𝑳𝒅𝑻,𝑩−𝜶𝟐 ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧                                     (5.6a)

                                𝚪𝒅𝒋 = 𝐏𝒅𝒋𝜻𝒅𝑻,𝒅𝑹𝑳𝒅𝑻,𝒅𝑹−𝜶𝟑𝝈𝑵𝟐  + 𝐏𝒄𝒊𝜻𝒄,𝒅𝑹𝑳𝒄,𝒅𝑹−𝜶𝟒 ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧                                       (5.6b) 

                                                    𝒑𝑹 = 𝐏𝐫 (𝚪𝒅𝒋 ≤ 𝚪𝒅𝒋,𝐦𝐢𝐧) ≤ 𝒑𝑹𝟎                                      (5.6c) 

                                                    𝐏𝒄𝒊 ≤ 𝐏𝒄𝒊,𝐦𝐚𝐱, 𝐏𝒅𝒋 ≤ 𝐏𝒅𝒋,𝐦𝐚𝐱                                           (5.6d) 

Equations 5.6(a) and 5.6(b) indicate that the received SINR at the BS and at 𝒅𝑹 has to be 

greater than minimum target threshold values. Considering the relative distances between all 

participating devices and BS: 

                                                     { 𝑳𝒅𝑻,𝑩 ≥ 𝚫𝟏(𝑳𝒄,𝑩)𝜶𝟏𝜶𝟐𝑳𝒄,𝒅𝑹 ≥ 𝚫𝟐(𝑳𝒅𝑻,𝒅𝑹)𝜶𝟑𝜶𝟒                                                    (5.7) 

where                                         {  
  𝚫𝟏 = ( 𝐏𝒅𝒋𝚪𝒄𝒊,𝐦𝐢𝐧𝜻𝒅𝑻,𝑩𝐏𝒄𝒊𝜻𝒄,𝑩−𝝈𝑵𝟐 𝚪𝒄𝒊,𝐦𝐢𝐧(𝑳𝒄,𝑩)𝜶𝟏) 𝟏𝜶𝟐
𝚫𝟐 = (𝚪𝒅𝒋,𝐦𝐢𝐧[𝐏𝒄𝒊𝜻𝒄,𝒅𝑹+𝝈𝑵𝟐 (𝑳𝒄,𝒅𝑹)𝜶𝟑]𝐏𝒅𝒋𝜻𝒅𝑻,𝒅𝑹 ) 𝟏𝜶𝟒 

Setting 𝜶𝟏 = 𝜶𝟐 and 𝜶𝟑 = 𝜶𝟒, (5.7) becomes: 
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                                                          { 𝑳𝒅𝑻,𝑩 ≥ 𝚫𝟏𝑳𝒄,𝑩𝑳𝒄,𝒅𝑹 ≥ 𝚫𝟐𝑳𝒅𝑻,𝒅𝑹                                                   (5.8) 

From (5.8) it can be inferred that the distance of the interfering link should be greater than the 

distance of the intended signal link. Therefore, to mitigate interference and guarantee the 

minimum SINR requirements of  𝒄𝒊 and 𝒅𝒋, the relative distance between DUE 𝒅𝒋 transmitter 𝒅𝑻 and the BS should be greater than the distance between the CUE 𝒄𝒊 and the BS by 𝚫𝟏. 

Similarly, the distance from CUE 𝒄𝒊 to the DUE 𝒅𝒋 receiver should be greater than the distance 

of the DUE link by 𝚫𝟐 . Next, the power allocations for which (5.8) is valid is determined. The 

power pair extrema values that can be allocated to 𝒄𝒊 and 𝒅𝒋 while satisfying (5.7) are given in 

(5.9). For 𝚪𝒄𝒊,𝐦𝐢𝐧 to be satisfied, the minimum transmit power of 𝒅𝒋 are expressed in 5.9(a) and 

5.9(b). Similarly, for the SINR threshold   𝚪𝒅𝒋,𝐦𝐢𝐧 to be guaranteed, the minimum transmit 

power of 𝒅𝒋 and the maximum transmit power 𝒄𝒊 are expressed in 5.9(c) and 5.9(d).  

                                                    𝐏𝒄𝒊,𝐦𝐢𝐧 = 𝚪𝒄𝒊,𝐦𝐢𝐧(𝝈𝑵𝟐  + 𝒉𝒅𝑻,𝑩𝐏𝒅𝒋,𝐦𝐚𝐱)𝒉𝒄,𝑩                                      (5.9a) 

                                                    𝐏𝒅𝒋,𝐦𝐚𝐱𝒄 = 𝒉𝒄,𝑩𝐏𝒄𝒊,𝐦𝐚𝐱  − 𝝈𝑵𝟐 𝚪𝒄𝒊,𝐦𝐢𝐧𝒉𝒅𝑻,𝑩𝚪𝒄𝒊,𝐦𝐢𝐧                                         (5.9b) 

                                                    𝐏𝒅𝒋,𝐦𝐢𝐧 = 𝚪𝒅𝒋,𝐦𝐢𝐧(𝝈𝑵𝟐  + 𝒉𝒄,𝒅𝑹𝐏𝒄𝒊,𝐦𝐚𝐱)𝒉𝒅𝑻𝒅𝑹                                      (5.9c) 

                                                    𝐏𝒄𝒊,𝐦𝐚𝐱𝒅 = 𝒉𝒅𝑻𝒅𝑹𝐏𝒅𝒋,𝐦𝐚𝐱 – 𝝈𝑵𝟐 𝚪𝒅𝒋,𝐦𝐢𝐧𝒉𝒄,𝒅𝑹𝚪𝒅𝒋,𝐦𝐢𝐧                                       (5.9d) 

𝑷𝑪 and 𝑷𝑫 denote the set of transmit extrema power for 𝒄𝒊 and 𝒅𝒋, respectively. 

                                                    𝑷𝑪 = {𝐏𝒄𝒊,𝐦𝐚𝐱,  𝐏𝒄𝒊,𝐦𝐚𝐱𝒅 , 𝐏𝒄𝒊,𝐦𝐢𝐧}                                     (5.10a) 

                                                    𝑷𝑫 = {𝐏𝒅𝒋,𝐦𝐚𝐱,  𝐏𝒅𝒋,𝐦𝐚𝐱𝒄 , 𝐏𝒅𝒋,𝐦𝐢𝐧}                                   (5.10b) 

The possible set of power pairs for 𝒄𝒊 and 𝒅𝒋 to share the same sub-channel is the Cartesian 

product of 𝑷𝑪 and 𝑷𝑫 and expressed in (5.11) as: 

    𝑷𝑪𝑫 = 𝑷𝑪 × 𝑷𝑫 ≜ {(𝐏𝒄𝒊,𝐦𝐚𝐱 , 𝐏𝒅𝒋,𝐦𝐚𝐱) , (𝐏𝒄𝒊,𝐦𝐚𝐱 , 𝐏𝒅𝒋,𝐦𝐚𝐱𝒄 ) , … , (𝐏𝒄𝒊,𝐦𝐢𝐧 , 𝐏𝒅𝒋,𝐦𝐢𝐧)}      (5.11) 

The invalid power pairs are eliminated from 𝑷𝑪𝑫. A power pair is invalid if any of the transmit 

powers in the pair exceed 𝐏𝒄𝒊,𝐦𝐚𝐱, 𝐏𝒅𝒋,𝐦𝐚𝐱. This is due to the dependence of the transmit powers 
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in (5.10) on the channel conditions. For example, a high interference and a low signal channel 

gain, the transmit power will tend to rise to compensate for the poor channel condition in order 

to meet the minimum SINR requirement [124]. 

Let 𝑷𝑪𝑫~  denote the set of invalid power pairs, 𝑷𝑪𝑫~   ⊂ 𝑷𝑪𝑫: ⩝ (𝐏𝒄𝒊 , 𝐏𝒅𝒋) ∈ 𝑷𝑪𝑫, 𝐏𝒄𝒊 > 𝐏𝒄𝒊,𝐦𝐚𝐱  or 𝐏𝒅𝒋 > 𝐏𝒅𝒋,𝐦𝐚𝐱 or both and 𝑷𝑪𝑫−  denote the set of valid power pairs. 

                                 𝑷𝑪𝑫− = 𝑷𝑪𝑫 − 𝑷𝑪𝑫~ ≜ {(𝑷𝒄𝒊,−  𝑷𝒅𝒋,− )𝟏 , … , (𝑷𝒄𝒊,−  𝑷𝒅𝒋,− )|𝑷𝑪𝑫− |.}                 (5.12) 

Having obtained the set of valid power pairs, the set of power pairs for which the minimum 

SINR threshold values for  𝒄𝒊 and 𝒅𝒋 are guaranteed is determined as described in Lemma 1. 

Lemma 1. Denoting 𝒇𝟏 (𝐏𝒄𝒊 , 𝐏𝒅𝒋) ≜ 𝚫𝟏(𝑳𝒄,𝑩)𝜶𝟏𝜶𝟐 and 𝒇𝟐 (𝐏𝒄𝒊 , 𝐏𝒅𝒋) ≜ 𝚫𝟐(𝑳𝒅𝑻,𝒅𝑹)𝜶𝟑𝜶𝟒, 𝑷𝑪𝑫′   is 

the set of power pairs for which the minimum SINR of 𝒄𝒊 and 𝒅𝒋 are satisfied. 

                    𝑷𝑪𝑫′ ≜ {(𝑷𝒄𝒊,′  𝑷𝒅𝒋,′ )𝟏 , … , (𝑷𝒄𝒊,′  𝑷𝒅𝒋,′ )|𝑷𝑪𝑫′ |.} = {  
  𝑳𝒅𝑻,𝑩 ≥ 𝒇𝟏 (𝐏𝒄𝒊 , 𝐏𝒅𝒋)𝑳𝒄,𝒅𝑹 ≥ 𝒇𝟐 (𝐏𝒄𝒊 , 𝐏𝒅𝒋)∀ (𝐏𝒄𝒊 , 𝐏𝒅𝒋) ∈ 𝑷𝑪𝑫−            (5.13) 

The reliability constraint 5.6(c) is next evaluated. Reliability is expressed in terms of the outage 

probability. The outage probability of DUE 𝒅𝒋 is defined as the probability that the received 

SINR 𝚪𝒅𝒋, falls below the minimum SINR, 𝚪𝒅𝒋,𝐦𝐢𝐧 and expressed as [138]. The reliability 

requirement is to  

                                    𝐏𝐫 (𝚪𝒅𝒋 ≤ 𝚪𝒅𝒋,𝐦𝐢𝐧) = ∫ 𝒇𝜸𝚪𝒅𝒋,𝐦𝐢𝐧𝟎 (𝚪𝒅𝒋)𝒅𝚪𝒅𝒋 = 𝑭𝜸(𝚪𝒅𝒋,𝐦𝐢𝐧)              (5.14) 

where  𝒇𝜸(. ) and 𝑭𝜸(. )  denote the Probability Distribution Function (PDF) and Cumulative 

Distribution Function (CDF), respectively. A closed form expression of the outage 

probability of DUE 𝒅𝒋 conditioned on the selected CUE 𝒄𝒊 is defined as [99]:  

                                    𝒑𝑹 = 𝐏𝐫 (𝚪𝒅𝒋 ≤ 𝚪𝒅𝒋,𝐦𝐢𝐧) = 𝟏 − 𝐏𝒅𝒋𝒈𝒅𝑻,𝒅𝑹𝐞𝐱𝐩(−𝚪𝒅𝒋,𝐦𝐢𝐧𝝈𝑵𝟐𝐏𝒅𝒋𝒈𝒅𝑻,𝒅𝑹)𝐏𝒅𝒋𝒈𝒅𝑻,𝒅𝑹  +𝚪𝒅𝒋,𝐦𝐢𝐧𝐏𝒄𝒊𝒈𝒄,,𝒅𝑹 ≤ 𝒑𝑹𝟎    (5.15) 

where 𝒈𝒅𝑻,𝒅𝑹=𝑮𝟑𝝌𝒅𝑻,𝒅𝑹𝑳𝒅𝑻,𝒅𝑹−𝜶𝟑  and 𝒈𝒄,𝒅𝑹=𝑮𝟒𝝌𝒄,𝒅𝑹𝑳𝒄,𝒅𝑹−𝜶𝟒 . It is assumed that 𝛄𝒄,𝑩 and 𝛄𝒅𝑻,𝒅𝑹 are 

Independent and Identically Distributed (I.I.D) exponential random variables. 



75 

 

Having obtained the set of power pairs, 𝑷𝑪𝑫′ , for which the minimum SINR of 𝒄𝒊 and 𝒅𝒋 is 

satisfied in (5.13), the solution to the reliability constraint of 𝒅𝒋 is expressed using the following 

Lemma. 

Lemma 2. Denoting 𝒇𝟑 (𝐏𝒄𝒊 , 𝐏𝒅𝒋) ≜ 𝒑𝑹, the set of power pairs, 𝑷𝑪𝑫𝑹  that satisfies the minimum 

outage probability of 𝒅𝒋, for a pairing between 𝒄𝒊 and 𝒅𝒋 with minimum SINR requirement can 

be expressed as: 

                      𝑷𝑪𝑫𝑹 ≜ {(𝑷𝒄𝒊,𝑹  𝑷𝒅𝒋,𝑹 )𝟏 , … , (𝑷𝒄𝒊,𝑹  𝑷𝒅𝒋,𝑹 )|𝑷𝑪𝑫𝑹 | } = {𝒇𝟑 (𝐏𝒄𝒊 , 𝐏𝒅𝒋) ≤ 𝒑𝑹𝟎∀(𝐏𝒄𝒊 , 𝐏𝒅𝒋) ∈ 𝑷𝑪𝑫′             (5.16) 

The minimum QoS of 𝒄𝒊 and 𝒅𝒋 can be satisfied from (5.16) and expressed using Lemma 3. 

Lemma 3. CUE 𝒄𝒊 and DUE 𝒅𝒋 are potential resource-sharing partners if 𝑷𝑪𝑫𝑹 ≠ ∅. 

Having addressed the admission and power control to satisfy the minimum QoS requirement 

for a pairing between 𝒄𝒊 and 𝒅𝒋, then the optimal transmit power pair for CUE 𝒄𝒊 and DUE 𝒅𝒋 
that maximise the sum throughput is evaluated. This can be expressed as follows:  

                                (𝐏𝒄𝒊,∗  𝐏𝒅𝒋∗ ) = 𝐚𝐫𝐠𝐦𝐚𝐱𝐏𝒄𝒊 ,𝐏𝒅𝒋[𝑾𝒊(𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒄𝒊) + 𝐥𝐨𝐠𝟐 (𝟏 + 𝚪𝒅𝒋) )]          (5.17) 

                                 subject to (5.6a) – (5.6d) 

The optimisation problem in (5.17) aims at finding the power pairs within the set 𝑷𝑪𝑫𝑹 , that 

maximise the sum throughput of 𝒄𝒊 and 𝒅𝒋 and expressed in the following Lemma. 

Lemma 4. Denoting  𝒇𝟒(𝐏𝒄𝒊 , 𝐏𝒅𝒋) ≜  𝑾𝒊(𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒄𝒊) + 𝐥𝐨𝐠𝟐 (𝟏 + 𝚪𝒅𝒋) ), the optimal 

power pair (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ )  in (5.17) is: 

                                   (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ) = 𝐚𝐫𝐠 𝐦𝐚𝐱(𝐏𝒄𝒊 ,𝐏𝒅𝒋) ∈ 𝑷𝑪𝑫𝑹 𝒇𝟒 (𝐏𝒄𝒊 , 𝐏𝒅𝒋)                                        (5.18) 

From the above Lemma, it is shown that for a pair (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ), either the CUE or DUE has to 

transmit at peak power to maximise the sum throughput as will be also demonstrated in the 

example simulation results. 

To identify the resource-sharing pairs satisfying minimum QoS requirements and the optimal 

power allocations to maximise sum throughput, let 𝑹𝒄𝒊𝒅  be the set of reuse (or admissible) DUEs 

for CUE 𝒄𝒊 and  𝑹𝒅𝒋𝒄  be the set of CUEs that 𝒅𝒋 can share resources with. CUEs (DUEs) with 
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 𝑹𝒄𝒊𝒅 ≠ ∅ ( 𝑹𝒅𝒋𝒄 ≠ ∅ ) is referred to as eligible CUEs (admissible DUEs). The set of all 

admissible DUEs, 𝑫𝔼 = { 𝑹𝒄𝟏𝒅 ∪  𝑹𝒄𝒊𝒅 ∪ …∪  𝑹𝒄𝑵𝒅 } ≜ {𝒅𝟏, … , 𝒅𝒋, … , 𝒅𝒎} where 𝒎 = |𝑫𝔼| 
whereas the set of all eligible CUEs, 𝑪𝔼 = { 𝑹𝒅𝟏𝒄 ∪  𝑹𝒅𝟐𝒄 ∪ …∪  𝑹𝒅𝑴𝒄 } ≜ {𝒄𝟏, … , 𝒄𝒊, … , 𝒄𝒏} 
where 𝒏 = |𝑪𝔼|, with | . | indicating the cardinality  of the set.   

The Joint Power and Admission Control Algorithm (JPAC) to determine the set of eligible 

CUEs and admissible DUEs with guaranteed minimum QoS requirements, is described in 

Algorithm 5.1. 

Algorithm 5.1    The JPAC Algorithm                              

  1: Input: 𝑪, 𝑫, 𝚪𝒄𝒊,𝐦𝐢𝐧, 𝚪𝒅𝒋,𝐦𝐢𝐧, 𝐏𝒄𝒊,𝐦𝐚𝐱 and 𝐏𝒅𝒋,𝐦𝐚𝐱 
  2: Set up the set of admissible DUEs for 𝒄𝒊 , 𝑹𝒄𝒊𝒅  ,  𝑹𝒄𝒊𝒅 = ∅ , ⩝ 𝒄𝒊  ∈ 𝑪 

  3: Set up the set of eligible CUEs for 𝒅𝒋 , 𝑹𝒅𝒋𝒄 ,  𝑹𝒅𝒋𝒄 = ∅, ⩝ 𝒅𝒋  ∈ 𝑫 

  4: for 𝒄𝒊  ∈ 𝑪     𝟏 ≤ 𝒊 ≤ 𝑵   do 

  5:       for 𝒅𝒋  ∈ 𝑫    𝟏 ≤ 𝒋 ≤ 𝑴 do 

  6:           compute valid set of power pair 𝑷𝑪𝑫−  as in (5.12) 

  7:           compute set of power pair  𝑷𝑪𝑫′ , for which 𝚪𝒄𝒊,𝐦𝐢𝐧 and 𝚪𝒅𝒋,𝐦𝐢𝐧 is satisfied as in     

                (5.13)   

  8:           if 𝑷𝑪𝑫′ ≠ ∅ then   

  9:                 compute set of power pair 𝑷𝑪𝑫𝑹  for which 𝒑𝑹 is satisfied as in (5.16)                        

10:                 if 𝑷𝑪𝑫𝑹 ≠ ∅ then                                                                                                        

11:                       𝒅𝒋 is a reuse candidate for 𝒄𝒊 
12:                        𝑹𝒄𝒊𝒅 = 𝑹𝒄𝒊𝒅 + 𝒅𝒋 
13:                       𝑹𝒅𝒋𝒄 = 𝑹𝒅𝒋𝒄 + 𝒄𝒊 
14:                       compute optimal power allocation (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ) as in (5.18)        

15:                 end if 

16:             end if 

17:          end for 

21: end for 

22: 𝑪𝔼 = { 𝑹𝒅𝟏𝒄 ∪  𝑹𝒅𝟐𝒄 ∪ …∪  𝑹𝒅𝑴𝒄 } 
23: 𝑫𝔼 = { 𝑹𝒄𝟏𝒅 ∪  𝑹𝒄𝒊𝒅 ∪…∪  𝑹𝒄𝑵𝒅 } 
24: Output 𝑪𝔼, 𝑫𝔼,  𝑹𝒄𝒊𝒅  ⩝ 𝒄𝒊  ∈ 𝑪𝔼 ,  𝑹𝒅𝒋𝒄 ⩝ 𝒅𝒋  ∈ 𝑫𝔼 and (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ) for potential (𝒄𝒊, 𝒅𝒋)      
      pairing 
                                                        

5.3    Matching between CUEs and DUEs 

Having obtained the sets of eligible CUEs and admissible DUEs, the aim is to find the optimal 

reuse partner for the CUEs ⩝ 𝒄𝒊  ∈ 𝑪 with multiple reuse candidates. The optimal resource 

sharing partner for CUE 𝒄𝒊 is DUE 𝒅𝒋 that achieves the highest sum rate. When DUE 𝒅𝒋  ∈ 𝑫𝔼  

reuses the resource of 𝒄𝒊  ∈ 𝑪𝔼,  the sum rate of the two users is expressed as: 
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                      𝐓𝒄𝒊,𝒅𝒋 = 𝑾𝒊 (𝐥𝐨𝐠𝟐 [1 + 𝑷𝒄𝒊∗ 𝒉𝒄,𝑩𝝈𝑵𝟐   + 𝑷𝒅𝒋∗ 𝒉𝒅𝑻,𝑩] + 𝐥𝐨𝐠𝟐 [1 + 𝑷𝒅𝒋∗ 𝒉𝒅𝑻,𝒅𝑹𝝈𝑵𝟐   +  𝑷𝒄𝒊∗ 𝒉𝒄,𝒅𝑹])              (5.19) 

where (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ) is optimal power as obtained in Lemma 4. Thus, the optimal partner of  𝒄𝒊 
when there are multiple DUEs is given as: 

                                                                   𝒅𝒋∗ = 𝐦𝐚𝐱𝒅𝒋 ∈ 𝑹𝒄𝒊𝒅 𝐓𝒄𝒊,𝒅𝒋                                             (5.20) 

For multiple DUEs and CUEs, the resource allocation procedure becomes complicated as 

different CUEs can have the same optimal partners and may have varying size of  𝑹𝒄𝒊𝒅 . The 

resource allocation problem can be formulated as:  

                                                                   𝐦𝐚𝐱𝒄𝒊 ∈𝑪𝔼,𝒅𝒋 ∈𝑫𝔼 𝛌𝒋𝒊𝐓𝒄𝒊,𝒅𝒋                                           (5.21) 

                                 such that 

                                                                   ∑ 𝛌𝒋𝒊𝒅𝒋∈𝑫𝔼 ≤ 𝟏                                                 (5.21a) 

                                                                   ∑ 𝛌𝒋𝒊𝒄𝒊∈𝑪𝔼 ≤ 𝟏                                                 (5.21b) 

To solve the assignment problem in (5.21), matching theory techniques, namely, Deferred 

Acceptance (DA) and Priced Deferred Acceptance (P-DA) are presented, in the following 

section. 

    

5.4     Matching Theory – The Stable Marriage Problem  

The Stable Marriage Problem (SMP) is a category of matching theory or matching game. The 

resource allocation problem in (5.5) is modelled using the framework of the SMP. The players 

in the game are a set of eligible CUEs 𝑪𝔼 and a set of admissible DUEs 𝑫𝔼 (obtained from 

Algorithm 5.1), with preference profiles that allow them to build their preference list of 

potential partners. The output of the game is the matching of a CUE channel to a DUE. The 

definition of matching is given as follows [139]: 

Definition 1: A matching 𝝁 between eligible DUEs and eligible CUEs is a function that maps 

the set of 𝑫𝔼 DUEs to set of 𝑪𝔼 CUEs such that: 

1. 𝝁(𝒅𝒋) ∈ 𝑪𝔼 ∪ {∅} and |𝝁(𝒅𝒋)| ∈ {𝟎, 𝟏} 
2. 𝝁(𝒄𝒊 ) ∈ 𝑫𝔼 ∪ {∅} and |𝝁(𝒄𝒊)| ∈ {𝟎, 𝟏} 
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where 𝝁(𝒅𝒋) = {𝒄𝒊}   ⇔ 𝝁(𝒄𝒊) = {𝒅𝒋}, ∀𝒅𝒋 ∈ 𝑫𝔼, ∀𝒄𝒊 ∈ 𝑪𝔼  and |𝝁(. )| indicates the 

cardinality of the outcome. Definition 1 states that 𝝁 is a one-to-one matching which implies 

one eligible DUE can reuse only one eligible CUE subchannel and an eligible CUE can share 

its resource with only one eligible DUE to satisfy (5.21). 𝝁(𝒄𝒊 ), 𝝁(𝒅𝒋 ) = ∅  implies there is 

no resource-sharing between an eligible CUE and eligible DUE. For any DUE 𝒅𝒋 ∈ 𝑫𝔼 and 𝒄𝒊 ∈ 𝑪𝔼  such that 𝒄𝒊 ∈ 𝝁(𝒅𝒋 ), 𝒄𝒊 and 𝒅𝒋 prefers to be matched to each other than being 

unmatched. 

Utility Function and Preference Profile 

The utility 𝒄𝒊  ∈ 𝑪𝔼 obtains from sharing its subchannel with DUEs  𝒅𝒋 ∈ 𝑹𝒄𝒊𝒅  is the CUE’s 

throughput and defined as:  

                                                          𝑼𝒄𝒊𝒅𝒋 = 𝑾𝒊 𝐥𝐨𝐠𝟐 (𝟏 + 𝑷𝒄𝒊∗ 𝒉𝒄,𝑩𝝈𝑵𝟐  + 𝑷𝒅𝒋∗ 𝒉𝒅𝑻,𝑩)                          (5.22) 

while the utility of any eligible DUE 𝒅𝒋  ∈ 𝑫𝔼 obtains from reusing subchannel of CUE   𝒄𝒊 ∈ 𝑹𝒅𝒋𝒄  is the DUE’s throughput when matched to the CUE and defined as: 

                                         𝑼𝒅𝒋𝒄𝒊 = 𝑾𝒊𝐥𝐨𝐠𝟐 (𝟏 + 𝑷𝒅𝒋∗ 𝒉𝒅𝑻,𝒅𝑹𝝈𝑵𝟐  + 𝑷𝒄𝒊∗ 𝒉𝒄,𝒅𝑹)                             (5.23) 

Definition 2: A preference relation ≻ is a complete, reflexive and transitive binary relation 

between the set of CUE 𝒄𝒊  ∈ 𝑪𝔼 and DUE 𝒅𝒋  ∈ 𝑫𝔼. ∀𝒄𝒊  ∈ 𝑪𝔼 define a strict preference 

relation ≻𝒄 over a set of DUEs  𝑹𝒄𝒊𝒅  ⊆ 𝑫𝔼 such that any two DUEs 𝒅𝟏, 𝒅𝟐 ∈  𝑹𝒄𝒊𝒅  , 𝒅𝟏 ≠ 𝒅𝟐,  

                                          𝒅𝟏 ≻𝒄𝒊 𝒅𝟐 ⇔ 𝑼𝒄𝒊𝒅𝟏 > 𝑼𝒄𝒊𝒅𝟐                                              (5.24) 

This implies that 𝒄𝒊 prefers 𝒅𝟏 to 𝒅𝟐. ∀𝒅𝒋  ∈ 𝑫𝔼, a strict preference relation ≻𝒅 is defined over 

a set of CUEs  𝑹𝒅𝒋𝒄 ⊆ such that any two CUEs 𝒄𝟏, 𝒄𝟐 ∈ 𝑹𝒅𝒋𝒄  𝒄𝟏 ≠ 𝒄𝟐, 

                                                        𝒄𝟏 ≻𝒅𝒋 𝒄𝟐 ⇔ 𝑼𝒅𝒋𝒄𝟏 > 𝑼𝒅𝒋𝒄𝟐                                             (5.25)    

This implies that 𝒅𝒋 prefers 𝒄𝟏 and 𝒄𝟐. 

With the preference relation, ∀𝒄𝒊  ∈ 𝑪𝔼 and ∀𝒅𝒋  ∈ 𝑫𝔼 can build their preference list 𝑷𝑳𝒄𝒊 and 𝑷𝑳𝒅𝒋 by ranking 𝑹𝒄𝒊𝒅  and 𝑹𝒅𝒋𝒄 , respectively, giving priority to the ones that provides higher 



79 

 

utility. The solution to the game is a match 𝝁 defined on the set 𝑪𝔼 and 𝑫𝔼 that assigns a DUE 

to a CUE. 

Definition 3: A matching 𝝁 is stable if there does not exist any pair of CUEs 𝒄𝒊, 𝒄𝒊′ ∈ 𝑪𝔼 

assigned respectively to DUEs 𝒅𝒋′ , 𝒅𝒋 ∈ 𝑫𝔼, although 𝒄𝒊 prefers 𝒅𝒋 to 𝒅𝒋′  i.e., 𝒅𝒋 ≻𝒄𝒊 𝒅𝒋′ and 𝒅𝒋 prefers 𝒄𝒊 to 𝒄𝒊′  i.e., 𝒄𝒊  ≻𝒅𝒋 𝒄𝒊′. (𝒄𝒊, 𝒅𝒋) are said to be blocking pairs. 

5.4.1     Deferred Acceptance (DA) 

In a standard SMP, there are two disjoint finite sets (𝑿 men and 𝒀 women) equal in size. In 

DA, each member of the set ranks the members of the other set.  Each 𝒙 ∈ 𝑿 proposes to 𝒚 ∈ 𝒀 

its preference list, starting with the most preferred 𝒚 and ceases when a proposal is considered, 

but continues if a proposal is rejected. When 𝒚 receives a proposal, it is rejected if there is a 

more preferable proposal, and otherwise agreed to be held for consideration. The algorithm 

terminates when no 𝒙 needs to propose [102,104]. 

When |𝑿| = |𝒀|, with all member of 𝒀 is acceptable to 𝒙 ∈ 𝑿, ∀𝒙 ∈ 𝑿 and all members of 𝑿 

is acceptable to 𝒚 ∈ 𝒀, ∀𝒚 ∈ 𝒀, then the cardinality of the output of the matching is |𝑿| = |𝒀|, 
i.e., each member of 𝑿 will be matched to a member 𝒀 and vice versa.  If |𝑿| ≠ |𝒀|, there will 

be an incomplete preference list and some player(s) will remain unmatched or matched to 

themselves i.e., µ(𝒙) = 𝒙, µ(𝒚) = 𝒚. For |𝑿| < |𝒀|,  there are |𝑿| matchings i.e., all members 

of  𝑿 are matched and |𝒀 − 𝑿|  are unmatched, given that all members of 𝒀 is acceptable to 𝒙 ∈ 𝑿, ∀𝒙 ∈ 𝑿 and all members of 𝑿 is acceptable by 𝒚 ∈ 𝒀, ∀𝒚 ∈ 𝒀. For |𝑿| > |𝒀|,  there are |𝒀| matchings i.e., all members of 𝒀 are matched and |𝑿 − 𝒀| are unmatched, given that all 

members of 𝒀 is acceptable by 𝒙 ∈ 𝑿, ∀𝒙 ∈ 𝑿 and all members of 𝑿 is acceptable to 𝒚 ∈ 𝒀, ∀𝒚 ∈ 𝒀. For a scenario where |𝑿| ≠ |𝒀| and there are variations in the sizes of the preference 

lists of each agent i.e., where some or all members of 𝑿 are not acceptable to ∀𝒚 ∈ 𝒀 and vice 

versa, the number of matchings will vary. This can occur, for example, if a DUE 𝒅𝒋  ∈ 𝑫 is not 

in the preference list of a CUE 𝒄𝒊  ∈ 𝑪 because resource sharing will violate the QoS 

requirements. In such scenarios, applying DA might not achieve the optimal matching because 

the sizes of the sets and the length of the preference lists of each of the player are unequal. 

Acceptability is defined as the inclusion of a player 𝒙 ∈ 𝑿 in the preference list of 𝒚 ∈ 𝒀 

because it satisfies its requirements and vice versa. The CUEs are assumed to be 𝑿 and DUEs 

to be 𝒀. The sizes of sets in the problem under consideration depends on 𝒏 = |𝑪𝔼| and 𝒎 =
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|𝑫𝔼|. Moreover, ∀𝒄𝒊  ∈ 𝑪𝔼 (∀𝒅𝒋  ∈ 𝑫𝔼), only the members of   𝑹𝒄𝒊𝒅  ( 𝑹𝒅𝒋𝒄 )  is ranked and not 

set 𝑫 (set 𝑪) to construct its preference list.  

Definition 4: For 𝒏 ≠ 𝒎, ∃𝒄𝒊 ∈ 𝑪𝔼 for which |𝑷𝑳𝒄𝒊| = 𝟏 = {𝒅𝒋} and 𝒄𝒊 ≠ 𝐦𝐚𝐱𝑷𝑳𝒅𝒋, then 𝝁(𝒄𝒊) = ∅. This states that if there exist a CUE 𝒄𝒊 ∈ 𝑯𝒄, with only one potential DUE partner 𝒅𝒋 in its preference list and 𝒄𝒊 is not the highest ranked (most preferred) by 𝒅𝒋 then 𝒄𝒊 will 

certainly be unmatched at the output 𝝁. Therefore, the output of the matching may not be 

optimal from a resource sharing point of view using the DA approach, as some eligible CUE(s) 

might not be matched. To overcome this challenge and maximise number of eligible CUEs 

sharing their channels, ‘Priced’ Deferred Acceptance (P-DA) algorithm is presented. 

5.4.2    Priced-Deferred Acceptance (P-DA) 

It is assumed that each connected UE is charged with fees corresponding to the achieved data 

rate. Let 𝝅𝒄𝒊 and 𝝅𝒅𝒋 represent the price charged per connection for the CUEs and DUEs 

respectively.  

                                                      {𝝅𝒄𝒊 = 𝝍𝑾𝒊 𝐥𝐨𝐠𝟐(𝟏 +𝚪𝒄𝒊)𝝅𝒅𝒋 = 𝝍𝑾𝒊 𝐥𝐨𝐠𝟐(𝟏 +𝚪𝒅𝒋)                                          (5.26) 

where 𝝍  is the price per unit rate and assumed to be uniform for all the UEs. Therefore, the 

total revenue generated by the BS is given by (5.27).   

                                    𝑼𝑩(𝝅) = ∑ 𝝅𝒄𝒊𝒄𝒊 ∈𝑪 + ∑ 𝝅𝒅𝒋𝒅𝒋 ∈𝑫𝔼                                (5.27) 

with 𝟏 ≤ 𝒊 ≤ 𝑵 and 𝟏 ≤ 𝒋 ≤ 𝑫𝒎, where 𝑫𝒎 is the number of admitted DUEs. To increase the 

number of CUE-DUE pairing and the number of admitted DUEs (or reuse gain), 𝒅𝒋 ∈ 𝑫𝔼  

considers the size of the preference list 𝑷𝑳𝒄𝒊, of ∀𝒄𝒊 ∈ 𝑪𝔼 that proposes at each iteration round 

and gives priority to the most preferred CUE with the least size of  𝑷𝑳𝒄𝒊. This is because CUEs 

with larger sizes of 𝑷𝑳𝒄𝒊 will have more DUEs to propose to after being rejected in a previous 

round of proposals and vice versa. In particular, at iteration 𝒌, ∀𝒅𝒋 ∈ 𝑫𝔼 will consider the 

proposal of the most preferred CUE with least size of preference list at iteration 𝒌 + 𝟏, |𝑷𝑳𝒄𝒊(𝒌+𝟏)| , defined in (5.28). 

                                 |𝑷𝑳𝒄𝒊(𝒌+𝟏)| ≜ |𝑷𝑳𝒄𝒊(𝒌−𝟏)| − 𝒅𝒋(𝒌)                                  (5.28) 
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Definition 5: For  𝒄𝒊, 𝐜𝒊′, 𝐜𝒊′′ ∈ 𝑪𝔼,  𝒄𝒊 ≠ 𝐜𝒊′  ≠ 𝐜𝒊′′, that proposes to 𝒅𝒋 such that 𝑼𝒅𝒋𝐜𝒊′ > 𝑼𝒅𝒋𝒄𝒊 >𝑼𝒅𝒋𝐜𝒊′′,  |𝑷𝑳𝐜𝒊′| > |𝑷𝑳𝒄𝒊|, |𝑷𝑳𝐜𝒊′′| and |𝑷𝑳𝒄𝒊| = |𝑷𝑳𝐜𝒊′′|, 𝐜𝒊′ is the most preferred CUE, while 𝒄𝒊 is 

the most preferred CUE with the least size of preference list, then 𝒅𝒋 will consider the proposal 

of 𝒄𝒊 and reject the rest. However, (𝐜𝒊′, 𝒅𝒋) will form a blocking pair at the matching output 𝝁, 

if  𝐜𝒊′ is the highest ranked CUE that proposes to 𝒅𝒋 when the algorithm terminates. 

To ensure stability, a monetised incentive-based mechanism to balance the utility loss of 𝒅𝒋 is 

presented. Since utility is in terms of the achieved rate, 𝒅𝒋 will demand from the BS, a reduction 

in its price which is equivalent to its rate loss from being paired with 𝒄𝒊 rather than 𝐜𝒊′, else 𝒅𝒋 
will deviate from the matching. 

𝐓𝒅𝒋,[𝒄𝒊] and 𝐓𝒅𝒋,[𝐜𝒊′] denotes the achieved rate from (𝒄𝒊 𝒅𝒋) and (𝐜𝒊′ 𝒅𝒋) pairing, respectively. 

The rate loss of 𝒅𝒋 is given in (5.29). 

                                                  𝝉 = 𝐓𝒅𝒋,[𝐜𝒊′] − 𝐓𝒅𝒋,[𝒄𝒊]                                                       (5.29) 

where 

                                          𝝉 = { 𝟎,                                        𝒄𝒊 = 𝐜𝒊′𝐓𝒅𝒋,[𝐜𝒊′] ≤ 𝝉 < 𝐓𝒅𝒋,[𝒄𝒊],         𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞                                                         
The price of the rate loss is given as follows: 

                                                                𝝅𝓛= 𝝍 𝝉                                                              (5.30) 

The new rate price for  𝒅𝒋 for (𝒄𝒊 𝒅𝒋) pairing for that balances its rate loss and new revenue for 

the BS is expressed in (5.31) and (5.32) respectively. 

                                       𝝅𝒅𝒋∗ =𝝅𝒅𝒋 − 𝝅𝓛                                                          (5.31) 

                                                   𝑼𝑩∗ (𝝅) = ∑ 𝝅𝒄𝒊𝒄𝒊 ∈𝑪 + ∑ 𝝅𝒅𝒋∗𝒅𝒋 ∈𝑫𝔼                      (5.32)  

The characteristics of the output of the P-DA matching with respect to DA matching in the  

CUE-DUE pairings are described. In what follows, let 𝒄𝒊 denote the most preferred CUE and 𝐜𝒊′ as the most preferred CUE with least preference list at iteration 𝒌. Let 𝑫𝑴 be set of admitted 

DUE, where 𝑫𝒎 = |𝑫𝑴|. 𝑫𝑴 is characterised by subsets of DUEs denoted by 𝑫𝑫𝑨, 𝑫− and 𝑫+. Let 𝐜𝒊∗ be the matched partner of 𝒅𝒋 under P-DA and 𝐜𝒊−∗ be the matched partner of 𝒅𝒋 
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under DA. Without loss of generality, it is assumed that 𝐜𝒊∗ is matched (or makes it final 

proposal) at iteration 𝒌. 

• 𝑫𝑫𝑨 is the set of DUEs under P-DA having CUE partners identical with the matching in 

DA: This implies  𝒅𝒋 ∈ 𝝁(𝐜𝒊∗) = 𝒅𝒋 ∈ 𝝁(𝐜𝒊−∗), hence 𝑼𝐜𝒊∗𝒅𝒋 = 𝑼𝐜𝒊−∗𝒅𝒋
. This happens if DUE 𝒅𝒋 

accepts 𝐜𝒊∗ because 𝐜𝒊∗ = 𝒄𝒊 = 𝐜𝒊′ under DA and 𝐜𝒊−∗ = 𝐜𝒊′, thus 𝐜𝒊∗ = 𝐜𝒊−∗. 
• 𝑫− is the set of DUEs under P-DA having CUE partners with utilities lower than the 

matched partners in DA: This implies  𝒅𝒋 ∈ 𝝁(𝐜𝒊∗) under P-DA will generate lower utility  

for 𝒅𝒋 than 𝒅𝒋 ∈ 𝝁(𝐜𝒊−∗) under DA, hence, 𝑼𝐜𝒊∗𝒅𝒋 < 𝑼𝐜𝒊−∗𝒅𝒋  . If CUE  𝐜𝒊−∗ = 𝐜𝒊′, then DUE 𝒅𝒋 
will consider the proposal of 𝐜𝒊−∗ under DA, and reject 𝐜𝒊−∗ under P-DA if 𝐜𝒊−∗ ≠ 𝒄𝒊 and be 

matched to 𝐜𝒊∗ = 𝒄𝒊, while the BS incentivises 𝒅𝒋 with rate loss price, 𝝅𝓛 to remain matched 

to 𝐜𝒊∗. 
• 𝑫+ is the set of DUEs under P-DA having CUE partners with utilities higher than matched 

partners DA (𝒅𝒋 ∈ 𝝁(∅) in DA inclusive): This implies 𝒅𝒋 ∈ 𝝁(𝐜𝒊∗) under P-DA generate 

higher utility for 𝒅𝒋 than 𝒅𝒋 ∈ 𝝁(𝐜𝒊−∗) under DA, thus 𝑼𝐜𝒊∗𝒅𝒋 > 𝑼𝐜𝒊−∗𝒅𝒋
. This happens if 𝐜𝒊−∗ has 

been held for consideration by 𝒅𝒋 because 𝐜𝒊−∗ = 𝒄𝒊, while 𝐜𝒊∗ is rejected by a DUE 𝒅𝒋′ under 

P-DA but 𝐜𝒊−∗ = 𝐜𝒊′  under DA at some previous iteration 𝒌 − 𝒍. At iteration 𝒌, 𝒅𝒋 will be 

reject 𝐜𝒊−∗ and be matched to 𝐜𝒊∗ = 𝒄𝒊 = 𝐜𝒊′. 
Based on the above analysis, the rate loss price, 𝝅𝒍 paid by the BS as incentive to 𝒅𝒋 ∈ 𝑫− is 

offset by the rate price gain due to rate increase by 𝒅𝒋 ∈ 𝑫+. The DA and P-DA algorithms are 

set out in Algorithms 5.2 and 5.3, respectively. 
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Algorithm 5.2        The DA Algorithm 

  1: Input 𝑪𝔼, 𝑫𝔼,  𝑹𝒄𝒊𝒅  ⩝ 𝒄𝒊  ∈ 𝑪𝔼 ,  𝑹𝒅𝒋𝒄 ⩝ 𝒅𝒋  ∈ 𝑫𝔼 and (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ) for potential (𝒄𝒊, 𝒅𝒋)       
      pairing from Algorithm 5.1. 

  2: Set up the preference list of eligible CUEs, 𝑷𝑳𝒄𝒊, ⩝ 𝒄𝒊 ∈ 𝑪𝔼 

  3: Set up the preference list of admissible DUEs, 𝑷𝑳𝒅𝒋, ⩝ 𝒅𝒋 ∈ 𝑫𝔼 

  4: Set up a list of unmatched 𝑼𝑴 = {𝒄𝒊: ∀𝒄𝒊 ∈ 𝑪𝔼}  
  5: while 𝑼𝑴 ≠ ∅ do 

  6:     𝒄𝒊 proposes to its most preferred 𝒅𝒋 ∈ 𝑫𝔼 that it has not proposed to in its preference  

          list, ⩝ 𝒄𝒊 ∈ 𝑼𝑴; 

  7:     if  ⩝ 𝒅𝒋 ∈ 𝑫𝔼 that receives a proposal from 𝒄𝒊 ∈ 𝑼𝑴, 𝒄𝒊 is more preferred to its current  

          match 𝐜𝒊′ then 

  8:      𝒅𝒋 accepts 𝒄𝒊 and rejects 𝐜𝒊′; 
  9:      𝑼𝑴 = 𝑼𝑴 − 𝒄𝒊; 
10:      𝑼𝑴 = 𝑼𝑴 + 𝐜𝒊′; 
11:    else 

12:     𝒅𝒋 rejects 𝒄𝒊 and remain matched to 𝐜𝒊′; 
13:    end if 

14: end while 

15: output matching 𝝁  

 

Proposition 1: The matching 𝝁 returned by the P-DA algorithm is stable. 

Proof: The P-DA algorithm will converge to stable matching after finite number of iterations 

since 𝒎 and 𝒏 are finite. The stable matching for SMP under DA always exists [98]. 

Proposition 1 is proved by contraction. Assume that the P-DA algorithm produces a matching 𝝁 with a blocking pair (𝒄𝒊, 𝒅𝒋) then ∃𝒄𝒊′ ∈ 𝝁(𝒅𝒋): 𝒄𝒊 ≻𝒅𝒋 𝒄𝒊′ and 𝒅𝒋 ≻𝒄𝒊  𝝁(𝒄𝒊). Therefore, 𝒄𝒊 
must have proposed to 𝒅𝒋. Since 𝒄𝒊 has proposed and not matched to 𝒅𝒋, it means that (i) 𝒄𝒊  
has been rejected because it not the most preferred CUE with the least preference list. Since 𝒄𝒊 
was rejected,  𝒄𝒊′ will also be rejected as 𝒄𝒊 is ranked higher than 𝒄𝒊′ . Hence, 𝒄𝒊′ ∉ 𝝁(𝒅𝒋), which 

contradicts the assumption or (ii) 𝒄𝒊 is the most preferred CUE, but 𝒅𝒋 is matched to  𝒄𝒊′ because 

the rate price of 𝒅𝒋 has been reduced by the rate loss ratio from being matched to 𝒄𝒊. If 𝒅𝒋 
rejects 𝒄𝒊′, then it is matched to 𝒄𝒊 and stable by the DA algorithm and so a contradiction to the 

assumption.  

5.5    The Centralised Optimisation Scheme 

In the DA and P-DA algorithms, CUEs select their resource-sharing partners that optimise their 

individual utilities (throughput in this case). To evaluate the performance of the DA and P-DA 
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algorithms, a centralised optimisation solution for the problem in (5.21) to realise a baseline 

for comparison, is presented Algorithm 5.4.  

Algorithm 5.3    The P-DA Algorithm 

  1: Input 𝑪𝔼, 𝑫𝔼,  𝑹𝒄𝒊𝒅  ⩝ 𝒄𝒊  ∈ 𝑪𝔼 ,  𝑹𝒅𝒋𝒄 ⩝ 𝒅𝒋 ∈ 𝑫𝔼 and (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ) for potential (𝒄𝒊, 𝒅𝒋)     
      pairing from Algorithm 5.1. 

  2: Set up the preference list of eligible CUEs, 𝑷𝑳𝒄𝒊, ⩝ 𝒄𝒊 ∈ 𝑪𝔼 

  3: Set up the preference list of admissible DUEs, 𝑷𝑳𝒅𝒋, ⩝ 𝒅𝒋 ∈ 𝑫𝔼 

  4: Set up a list of unmatched CUEs 𝑼𝑴 = {𝒄𝒊: ∀𝒄𝒊 ∈ 𝑪𝔼}  
  5: while 𝑼𝑴 ≠ ∅ do 

  6:     𝒄𝒊 proposes and sends |𝑷𝑳𝒄𝒊(𝒌+𝟏)| to its most preferred 𝒅𝒋 ∈ 𝑫𝔼 that it has not     

          proposed to in its preference list, ⩝ 𝒄𝒊 ∈ 𝑼𝑴 

  7:     if  ⩝ 𝒅𝒋 ∈ 𝑫𝔼 that receives a proposal from 𝒄𝒊 ∈ 𝑼𝑴, 𝒄𝒊 is the more preferred CUE with  

          the least preference list, |𝑷𝑳𝒄𝒊(𝒌+𝟏)|,  compared to its current match 𝐜𝒊′′  and 𝐜𝒊′ is the    

          most preferred CUE then 

  8:      𝒅𝒋 accepts 𝒄𝒊 and rejects 𝐜𝒊′ and 𝐜𝒊′′; 
  9:      𝑼𝑴 = 𝑼𝑴 − 𝒄𝒊; 
10:      𝑼𝑴 = 𝑼𝑴 + 𝐜𝒊′; 
11:  𝑼𝑴 = 𝑼𝑴 + 𝐜𝒊′′; 
12:   𝒅𝒋 obtains its rate loss as in (5.29); 

13:     else 

14:     𝒅𝒋 rejects 𝒄𝒊 and remain matched to 𝐜𝒊′′; 
15:    end if 

16: end while 

17: output matching 𝝁 

 

Algorithm 5.4       The Centralised Optimisation Scheme 

  1: Input 𝑪𝔼, 𝑫𝔼,  𝑹𝒄𝒊𝒅  ⩝ 𝒄𝒊  ∈ 𝑪𝔼 ,  𝑹𝒅𝒋𝒄 ⩝ 𝒅𝒋  ∈ 𝑫𝔼  and (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ) for potential (𝒄𝒊, 𝒅𝒋)    
      pairing from Algorithm 5.1. 

  2: Set up a set of unmatched CUEs,  𝑼𝑴 = {𝒄𝒊: ∀𝒄𝒊 ∈ 𝑪𝔼}  
  3: while 𝑼𝑴 ≠ ∅ do 

  4:      Sort 𝑼𝑴 in ascending order of | 𝑹𝒄𝒊𝒅 | 
  5:      Start with 𝒄𝒊  ∈ 𝑪𝔼 with least | 𝑹𝒄𝒊𝒅 |  
  6:      if  ∃𝒄𝒊, 𝐜𝒊′ ∈ 𝑪𝔼, 𝒄𝒊 ≠ 𝐜𝒊′ ∶ | 𝑹𝒄𝒊𝒅 | = | 𝑹𝐜𝒊′𝒅 | = 𝟏, 𝐓𝒄𝒊,𝒅𝒋 > 𝐓𝐜𝒊′,𝒅𝒋 then 

  7:           𝑼𝑴 = 𝑼𝑴 − 𝐜𝒊′ 
  8:      end if 

  9:      𝒅𝒋∗ = 𝐚𝐫𝐠𝐦𝐚𝐱𝒅𝒋 ∈ 𝑹𝒄𝒊𝒅 𝐓𝒄𝒊,𝒅𝒋    
10:      𝑼𝑴 = 𝑼𝑴 − 𝒄𝒊 
11:      𝑹𝒄𝒊𝒅 =  𝑹𝒄𝒊𝒅 − 𝒅𝒋∗   ⩝ 𝒄−𝒊  ∈ 𝑼𝑴 

12: end while 

13: Output matching  
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5.6    Simulation Case Study and Performance Evaluation 

Examples of simulations are carried out to validate and compare the presented algorithms. An 

industrial environment with a factory floor dimension of 𝟑𝟎𝟎𝐦× 𝟑𝟎𝟎𝐦 is simulated. The BS 

has a 𝟒𝟎𝟎𝐦 cell radius, positioned at the center of the factory layout. 𝑵 CUEs are randomly 

distributed within the cell coverage and the 𝑴 DUEs or factory devices (i.e., sensors and/or 

actuators enabled for D2D communications links) are also randomly distributed within the 

factory floor. 

For communication between the DUEs, the channel is modeled using the A1-Indoor scenario 

of the Winner II project [140]. This is a suitable representation of the factory environments 

where it is assumed the D2D links are usually in proximity, with little spatio-temporal 

dynamics and are static or quasi-static. The main simulation parameters [127] are summarised 

in Table 5.1 and the summary of the channel models for the CUE and DUE links are given in 

Table 5.2. The performance of the P-DA and DA algorithms are investigated and compared to 

the centralised approach and a random approach. 

Table 5.1:   Main simulation parameters for the JPAC, DA, P-DA and Centralised Algorithms  

Parameter Value 

Carrier frequency, 𝒇𝒄 𝟐𝐆𝐇𝐳 

System bandwidth 𝟏𝟎𝐌𝐇𝐳 

Number of resource blocks (RB), 𝑲 𝟓𝟎 

RB bandwidth 𝟏𝟖𝟎 𝐤𝐇𝐳 
Maximum CUE transmit power, 𝐏𝒄𝒊,𝐦𝐚𝐱 𝟐𝟑𝐝𝐁𝐦 

Maximum DUE transmit power, 𝐏𝒅𝒋,𝐦𝐚𝐱 𝟐𝟑𝐝𝐁𝐦 

D2D distance, 𝑳𝒅𝑻,𝒅𝑹 𝟏𝟎𝐦 ≤ 𝑳𝒅𝑻,𝒅𝑹 ≤ 𝟐𝟎𝐦 

CUE SINR Threshold, 𝚪𝒄𝒊,𝐦𝐢𝐧 𝟕 𝐝𝐁 

DUE SINR Threshold, 𝚪𝒅𝒋,𝐦𝐢𝐧 𝟑 𝐝𝐁 

Noise power density −𝟏𝟕𝟒𝐝𝐁𝐦𝐇𝐳  

Number of CUEs, 𝑵 𝟓𝟎 

Number of DUEs, 𝑴 𝟓𝟎 

Reliability for DUE, 𝒑𝑹𝟎 𝟏𝟎−𝟓 
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Table 5.2:  Channel models for P-DA, DA and Centralised Algorithms [130,131,140] 

Parameter In-factory DUE link UE-UE link BS-UE link 

Pathloss 

model 

𝟑𝟔. 𝟖 𝐥𝐨𝐠𝟏𝟎(𝒅[𝐤𝐦]) + 𝟗𝟒. 𝟐 +𝟐𝟎 𝐥𝐨𝐠𝟏𝟎 𝒇𝒄(𝑴𝐇𝐳)𝟓  dB 

𝟒𝟎 𝐥𝐨𝐠𝟏𝟎(𝒅[𝐤𝐦]) +𝟒𝟗 +𝟑𝟎 𝐥𝐨𝐠𝟏𝟎 𝒇𝒄(𝐌𝐇𝐳) dB 

𝟑𝟕. 𝟔 𝐥𝐨𝐠𝟏𝟎(𝒅[𝐤𝐦]) +𝟓𝟖. 𝟖𝟑 +𝟐𝟏 𝐥𝐨𝐠𝟏𝟎 𝒇𝒄(𝐌𝐇𝐳) dB 

Shadowing 𝟒𝐝𝐁 𝟔𝐝𝐁 𝟖𝐝𝐁 

Fast Fading Rayleigh Fading Rayleigh Fading Rayleigh Fading 

  

It is assumed that each CUE has been pre-allocated a sub-channel. Since the aim of the 

optimisation problem is system throughput maximisation for spectrum sharing scenarios, the 

metrics for evaluating the performance of the algorithms are the achieved throughput and 

number of admitted DUEs 𝑫𝒎, which corresponds to the number of shared channels. The JPAC 

algorithm is used to determine the eligible CUEs and admissible DUEs, which are inputs to the 

centralised optimisation, DA and P-DA algorithms. The centralised approach is used as the 

reference or baseline algorithm for comparison with the other approaches.  

Initially, the impact of varying the outage probability of the DUEs, 𝒑𝑹𝟎, on the number of 

admissible DUEs, 𝒏 , is evaluated. As seen in Fig. 5.2., 𝒏 gets larger as higher 𝒑𝑹𝟎 is allowed. 

This can be attributed to the fact higher outage probabilities of the DUEs make them more 

tolerant of interference from the CUEs, thus enabling more CUEs to find potential partners for 

resource sharing. 

 

Fig. 5.2. The number of admissible DUEs, 𝒏 varying the outage probability, 𝒑𝑹𝟎, where 𝑴 = 𝑵 = 𝟓𝟎. 



87 

 

 

Fig. 5.3. The number of admitted DUEs, 𝑫𝒎 varying the number of DUEs, 𝑴 in the network where 𝑵 = 𝟓𝟎, 𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝟐𝟑𝐝𝐁𝐦 

The number of admitted DUEs 𝑫𝒎 is shown in Fig. 5.3., with 𝑵 = 𝟓𝟎 and varying 𝑴 from 𝟏𝟎% to 𝟏𝟎𝟎% of 𝑵 (5 to 50).   𝑫𝒎 remains constant when resource-sharing is not possible 

due to the violation of QoS requirements as illustrated at 𝑴 = 𝟏𝟎 and 𝑴 = 𝟐𝟎, for all four 

algorithms. 𝑫𝒎 increases as more valid pairings are established. Using DA or random 

allocation algorithms result in a lower performance. For the DA algorithm, ∀𝒄𝒊 ∈ 𝑯𝒄, will have  𝝁(𝒄𝒊)= ∅, resulting in a reduction of 𝑫𝒎, while the random approach does not consider any 

optimisation objectives in the matching process, hence, resulting in a reduced performance. 

The P-DA algorithm performance is as good as the centralised algorithm because the length of 

the preference list is considered, and priority is given to CUEs with smaller preference lists at 

every round of the iteration process. The P-DA algorithm achieves 𝟏𝟐% to 𝟏𝟒% increase in 𝑫𝒎 for  𝑴 > 𝟑𝟎 in comparison to the DA and random algorithms. As more DUEs 𝑴 are 

introduced to the system, when 𝑫𝒎 = 𝑵, the network reaches saturation and no DUE will be 

accessed. 
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Fig. 5.4. The total DUE throughput with different number of DUEs, 𝑴 in the network where 𝑵 = 𝟓𝟎,  𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝟐𝟑𝐝𝐁𝐦 

The number of admitted DUEs 𝑫𝒎, directly impacts the throughput performance. In Fig. 5.4., 

the total DUE throughput with respect to 𝑴, is shown. Random allocation has the worst 

performance as expected followed by the DA algorithm. The performance of P-DA is 

comparable to the centralised approach. The P-DA algorithm achieves 13.57% and 28.02% 

higher throughput compared to DA and random approaches, respectively. The centralised 

approach achieves 15.74% and 29.8% higher DUE throughput compared to DA and random 

algorithm, respectively, at 𝑴 > 𝟑𝟓. 

In Fig. 5.5., it is shown that the overall system throughput performance increases with 𝑴. The 

centralised approach is comparable to the P-DA scheme and outperforms the DA and random 

approaches. This is mainly because the matching is based on CUE-DUE assignments that 

provide higher system throughput rather than the satisfaction of individual utilities. The 

performance of P-DA and DA algorithms are close and significant difference are apparent as  𝑴 > 𝟑𝟓, where the P-DA scheme shows an improved system throughput. The random 

approach has the worst performance as expected since no preference or utility maximisation is 

considered once the QoS criteria is satisfied.  
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Fig. 5.5. System throughput with different number of DUEs, 𝑴 in the network 

where 𝑵 = 𝟓𝟎, 𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝟐𝟑𝐝𝐁𝐦 

 

 

Fig. 5.6. Total CUE throughput with different number of DUEs, 𝑴 in the network where 𝑵 = 𝟓𝟎, 𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝟐𝟑𝐝𝐁𝐦 

The effects of increasing 𝑴 on the quality of the CUE links is shown in Fig. 5.6. There is a 

reduction in the total CUE throughput as 𝑴 increases as expected. Since CUEs have pre- 
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allocated sub-channels, the introduction of DUEs will cause the total CUE throughput to 

decrease as a result of the rate loss caused by interference generated by the DUEs, as 𝑫𝒎 

increases. This explains the lower performance of the centralised and the P-DA approaches 

compared to the random and DA approaches as 𝑴 ≥ 𝟑𝟓. 

The performance of the four approaches is compared by investigating the effects of varying the 

maximum transmit power 𝐏𝐦𝐚𝐱 on the number of admitted DUEs 𝑫𝒎. It is concluded that 𝑫𝒎 

increases with 𝐏𝐦𝐚𝐱 for all approaches as shown in Fig. 5.7. This is as a result of the increase 

in the | 𝑹𝒄𝒊𝒅 | and | 𝑹𝒅𝒋𝒄 | for certain CUEs and DUEs respectively. This translates to an increase 

in the number of eligible CUEs 𝒏 and admissible DUEs 𝒎, therefore increasing the potential 

of CUE-DUE pairings. It is observed that the optimal power allocation, (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ), for a pairing 

(𝒄𝒊, 𝒅𝒋) is increased by the same factor (𝟐dBm, for the studied scenario) as 𝐏𝐦𝐚𝐱 increases (i.e., 

from 𝟏𝟗dBm to 𝟐𝟏dBm, 𝟐𝟏dBm to 𝟐𝟑dBm and so on). Again, random matching achieves the 

worst performance followed by the DA algorithm. The P-DA algorithm is as good as the 

centralised optimisation approach. 

 

Fig. 5.7. The number of admitted DUEs, 𝑫𝒎 versus maximum transmit power where 𝑵 = 𝑴 = 𝟓𝟎 
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Fig. 5.8.  Optimal transmit power (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ) for CUE-DUE pairing  𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝟐𝟑𝐝𝐁𝐦 and 𝑵 = 𝑴 = 𝟓𝟎 

In Fig. 5.8., the optimal transmit power (𝑷𝒄𝒊,∗  𝑷𝒅𝒋∗ ), for a pairing (𝒄𝒊, 𝒅𝒋) is presented for all four 

algorithms with 𝑵 = 𝑴 = 𝟓𝟎. It is noted that in each case, at least one of the UEs is 

transmitting at peak power. This is consistent with [136], where it is shown that, at least one 

transmission power in the optimal power vector must be bounded by the maximum for system's 

throughput maximisation. 

The total revenue generated for the four algorithms is compared and shown in Fig. 5.9. Revenue 

in this context, is the income generated by the service providers from the UE connection 

charges.  Firstly, the impact of the rate loss price on the total revenue generated for P-DA is 

investigated, by comparing 𝑼𝑩∗ (𝝅) and 𝑼𝑩(𝝅) for different number of DUE 𝑫𝒎, as shown in 

Fig. 5.9(a). It is observed that the rate loss price 𝝅𝓛, used to incentivise the DUEs 𝒅𝒋 ∈ 𝑫− has 

a little effect on 𝑼𝑩∗ (𝝅) because it is compensated for rate price increase (or gain) by DUEs 𝒅𝒋 ∈ 𝑫+ . In particular, at 𝑴 ≤ 𝟑𝟎,  𝑼𝑩∗ (𝝅) = 𝑼𝑩(𝝅) because the DUEs belong to 𝒅𝒋 ∈ 𝑫𝑫𝑨, 

thus no incentives were given. At 𝑴 > 𝟑𝟎,  it is seen that 𝑼𝑩∗ (𝝅) is only 0.13% to 0.28% less 

than 𝑼𝑩(𝝅) which is a good tradeoff to guarantee stability, improved DUE access rate and 

throughput. In Fig. 5.9(b), it is seen that the revenue is commensurate with the achieved system 

throughput (i.e., comparing with Fig. 5.5) for all four algorithms. The P-DA (with incentives) 

and centralised algorithms are comparable and achieve higher revenues compared to the DA 



92 

 

and random algorithms. This further shows that 𝝅𝓛 did not significantly affect the total BS 

revenue. 

 

Fig. 5.9(a). Total base station revenue with different number of DUEs, 𝑴 ,𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝟐𝟑𝐝𝐁𝐦,  𝑵 = 𝟓𝟎, 𝝍 = 𝟓 × 𝟏𝟎−𝟔  for the P-DA algorithm 

 

Fig. 5.9(b). Total base station revenue for different number of DUEs, 𝑴 ,𝐏𝒄𝒊,𝐦𝐚𝐱 = 𝟐𝟑𝐝𝐁𝐦, 

 𝑵 = 𝟓𝟎, 𝝍 = 𝟓 × 𝟏𝟎−𝟔 for the four algorithms 
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5.7    Chapter Conclusions 

Resource allocation for a D2D-enabled cellular network targetting smart FoF was considered 

in this chapter. The aim was to maximise the overall system throughput comprising strict QoS 

requirements D2D links and cellular users in terms of reliability and target SINR, respectively. 

A matching theory technique, namely, a Priced-Deferred Acceptance (P-DA) algorithm which 

uses an incentive-based stability to optimise spectrum sharing was presented. Simulation 

results demonstrate that the P-DA algorithm is comparable in performance with the centralised 

optimisation approach and shows up to 13% and 28% improvement in throughput relative to 

the classical DA algorithm and the random matching method, respectively. Therefore, the P-

DA scheme offers advantages for improved spectrum utilisation in wireless industrial 

applications where machine-type connections are expected to support large numbers of 

sensors/devices. These devices predominantly have small data sizes requirements, which may 

aggregate into a massive amount of data from concurrent transmissions. 

 

 

 

 

 

 

 

 

 



94 

 

Chapter 6 

Autonomous Channel Selection 

for D2D Links in URLLC  

Matching theory techniques for D2D communication with reliability requirements in a FoF, 

were developed in the previous chapter. In this chapter, channel selection in a D2D-enabled 

cellular network is considered, focusing on industrial wireless scenarios with latency and 

reliability QoS requirements. In particular, a time-critical use case with strict requirements on 

latency and reliability, such as in Augmented Reality (AR) application for maintenance and 

training [5], will be investigated. A scheme that exploits the advantages of reinforcement 

learning and matching theory is presented, to perform an autonomous and distributed resource 

allocation with a guaranteed stable assignment. 

Recently, reinforcement learning is gaining a lot of attention because of its suitability in the 

decision-making process where prior information about the network is unknown. It is widely 

applicable for modelling dynamic wireless environments [141]. The absence of a central 

controller in a distributed scheme will result in a reduction in network complexity, signalling 

overheads and processing load, particularly in heterogeneous environments, making it more 

feasible for ultra-dense networks.  

The approaches presented in this chapter adopt stateless learning, without limiting the 

performance requirements of the DUEs in order to reduce the learning complexity and the 𝑸-

table dimension. 𝑸-table is lookup table that is used by an agent to store, update the Q-value 

after an episode and select the best action based on the Q-values. A 𝑸-table for the CUEs is 

also maintained and updated rather than having the BS report this information to the DUEs at 

each time slot. This makes it possible to satisfy not just the QoS of the CUEs but also their 

preferences, therefore achieving stability by using the DA algorithm for matching.  A semi-

distributed scheme is also presented where the DUEs upload their trained results to the BS for 

resource allocation. The performance of the presented approaches is verified using simulations 

and the results are compared with the centralised technique. 
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6.1     System Model and Problem Formulation 

The coexistence of D2D and cellular communication within a cellular network for uplink 

resource-sharing in a wireless industrial setting is considered. There are 𝑵 cellular users 

(CUEs) of a set 𝑪 = {𝒄𝟏, … , 𝒄𝒊, … 𝒄𝑵} and 𝑴 D2D users (DUEs) are industrial devices and 

represented by a set 𝑫 = {𝒅𝟏, … , 𝒅𝒋, …𝒅𝑴}  deployed randomly within the BS coverage in a 

single cell network.  The DUEs can autonomously select a resource block (RB) denoted by a 

set 𝑲 = {𝒌𝟏, … , 𝒌𝒊, … 𝒌𝑵}, from a pool of radio resources [142], which can overlap with that 

of the CUEs for the resource-sharing. The CUEs have minimum SINR requirement for data 

rate guarantee. The DUEs also have minimum SINR threshold to guarantee the rate constraints. 

In addition, the DUEs have reliability and latency requirements. The uplink transmission rate 

at the BS from 𝒊th CUE and 𝒋th DUE receiver 𝒅𝑹 from its transmitter 𝒅𝑻 over 𝒊th sub-channel 

time slot 𝒕 is given by (6.1) and (6.2), respectively.  

 

                                                    𝐓𝒄𝒊𝒌(𝒕) = 𝑾𝒊 𝐥𝐨𝐠𝟐 (𝟏 + 𝚪𝒄𝒊(𝒕))                                        (6.1) 

 

                                                     𝐓𝒅𝒋𝒌 (𝒕) = 𝑾𝒊 𝐥𝐨𝐠𝟐 (𝟏 + 𝚪𝒅𝒋(𝒕))                                      (6.2) 

where  

                                                     𝚪𝒄𝒊(𝒕) = 𝐏𝒄𝒊𝒉𝒄,𝑩(𝒕)𝝈𝑵𝟐  + ∑ 𝛌𝒋𝒊(𝒕)𝐏𝒅𝒋𝒉𝒅𝑻,𝑩(𝒕)𝒅𝒋∈𝑫                                      (6.3)     

  

                                                     𝚪𝒅𝒋(𝒕) = 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹(𝒕)𝝈𝑵𝟐  + ∑ 𝛌𝒋𝒊(𝒕)𝐏𝒄𝒊𝒉𝒄,𝒅𝑹(𝒕)𝒄𝒊∈𝑪                                       (6.4)                                                     

 𝚪𝒄𝒊(𝒕) and 𝚪𝒅𝒋(𝒕) are the instantaneous received SINR at the BS and DUE transmitter from 

respectively. The transmit power of the CUEs and DUEs are represented by 𝐏𝒄𝒊 and 𝐏𝒅𝒋 
respectively, 𝛌𝒋𝒊(𝒕) is channel selection indicator if DUE 𝒅𝒋 chooses RB 𝒊 at time slot 𝒕, where  𝛌𝒋𝒊 = 𝟏 indicates 𝒋th DUE uses 𝒊th CUE sub-channel and 𝛌𝒋𝒊 = 𝟎 otherwise.  

The channel gain form link 𝒒 to 𝒓 is given in (6.5). 

                                                            𝒉𝒒,𝒓=𝑮𝒌𝛄𝒒,𝒓𝝌𝒒,𝒓𝑳𝒒,𝒓−𝜶𝒌                                                (6.5) 
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Similar to Chapter 3, Rayleigh fading is considered, with small-scale fading gain 𝜸𝒒,𝒓 due to 

multipath propagation and assumed to have an exponential distribution with unit mean [137]. 

The large-scale fading comprises pathloss with exponent 𝜶𝒌 and shadowing which has a slow 

fading gain 𝝌𝒒,𝒓 with a log-normal distribution. 𝑮𝒌 is the pathloss constant which is depends 

on antenna gains and frequency [65]. 𝑳𝒒,𝒓 is the distance from terminal 𝒒 to terminal 𝒓 [104]. 

The channel gain from DUE link 𝒅𝒋 of transmitter 𝒅𝑻 to the receiver 𝒅𝑹 is 𝒉𝒅𝑻,𝒅𝑹, the channel 

gain of the interference link from 𝒅𝑻 to the BS is 𝒉𝒅𝑻,𝑩 and from CUE 𝒄𝒊 to DUE 𝒅𝒋 receiver 

is 𝒉𝒄,𝒅𝑹 and  𝒉𝒄,𝑩, is the channel gain from CUE 𝒄𝒊 to the BS.  

The CSI in terms of  𝒉𝒅𝑻,𝒅𝑹 and 𝒉𝒄,𝒅𝑹 can be estimated at the receiver of the DUE 𝒅𝑹 and made 

available at its transmitter 𝒅𝑻 instantaneously. Similarly, 𝒉𝒄,𝑩 and  𝒉𝒅𝑻,𝑩  can be obtained at 

BS through local information since uplink transmission is considered. The cellular channel 

gains and interference gains of the DUEs on each RB can be estimated at the BS by local 

observation and the SINR of the CUEs can be determined. The variance of the additive white 

Gaussian noise (AWGN) is represented by 𝝈𝑵𝟐 ,  𝑾𝒊 is the bandwidth of the resource blocks.  

The reliability of a DUE link 𝒅𝒋 ∈ 𝑫 is the successful or guaranteed packet delivery within the 

latency budget. For this work, reliability of 𝒅𝒋 ∈ 𝑫,  𝝃𝒅𝒋(𝒕), is defined as the probability of 

packet latency exceeding a predefined latency bound 𝒍𝒅𝒋,𝐦𝐚𝐱, for channel 𝒊 at slot 𝒕 is less than 

a threshold [143]. Only the transmission latency is considered in this work. The system 

objective is to maximise the data rate of matched CUE and DUEs, while satisfying the QoS 

requirements in terms of latency constraints as formulated below. 

             𝐦𝐚𝐱𝛌𝒋𝒊 𝐓𝑹 = 𝑾𝒊( 𝛌𝒋𝒊(∑ 𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒄𝒊)𝒄𝒊 ∈𝑪 + ∑ 𝐥𝐨𝐠𝟐 (𝟏 + 𝚪𝒅𝒋)𝒅𝒋 ∈𝑫 ))                     (6.6) 

                 subject to 𝛌𝒋𝒊𝚪𝒄𝒊 − 𝚪𝒄𝒊,𝐦𝐢𝐧 ≥ 𝟎                        ⩝ 𝒄𝒊  ∈ 𝑪                        (6.6a)                      𝐏 𝐫 (𝒍𝒅𝒋 > 𝒍𝒅𝒋,𝐦𝐚𝐱) < 𝟏 − 𝝃𝒅𝒋∗     ⩝ 𝒅𝒋  ∈ 𝑫                        (6.6b) 

                                                     ∑ 𝛌𝒋𝒊𝒄𝒊∈𝑪 ≤ 𝟏                                ⩝ 𝒅𝒋  ∈ 𝑫             (6.6c) 

                                                     ∑ 𝛌𝒋𝒊𝒅𝒋∈𝑫 ≤ 𝟏                               ⩝ 𝒄𝒊  ∈ 𝑪                    (6.6d)                            

                                             

Constraint (6.6a) is the minimum SINR condition to guarantee the data rate requirement of the 

CUEs. 𝚪𝒄𝒊,𝐦𝐢𝐧 are as defined earlier. In (6.6b), 𝒍𝒅𝒋 is the packet latency or time requirement for 

packet transmission for DUE 𝒅𝒋. Constraint (6.6b) takes into account reliability and latency of 

each DUE. The expression captures the fact that the end-to-end latency should be less than 
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𝒍𝒅𝒋,𝐦𝐚𝐱 with a probability of at least 𝟏 − 𝝃𝒅𝒋∗ . Constraints (6.6c) and (6.6d) are channel 

assignment conditions.  

The reliability of the D2D links in (6.6c) is evaluated using an empirical estimation of number 

of packets transmitted from 𝒅𝑻 to 𝒅𝑹 whose latency is within the budget 𝒍𝒅𝒋,𝐦𝐚𝐱 over the total 

number of packets sent to 𝒅𝑹 at time slot 𝒕, similar to [142]. 

                                      𝝃𝒅𝒋(𝒕) = 𝟏 − 𝐏𝐫 (𝒍𝒅𝒋 > 𝒍𝒅𝒋,𝐦𝐚𝐱) ≈ 𝟏 − 𝐋𝒅𝒋(𝒕)𝐁𝒅𝒋(𝒕) ≅ 𝐋𝒅𝒋′ (𝒕)𝐁𝒅𝒋(𝒕)               (6.7) 

where 𝐋𝒅𝒋(𝒕) is the number of packets for which 𝒍𝒅𝒋 > 𝒍𝒅𝒋,𝐦𝐚𝐱 and 𝐋𝒅𝒋′ (𝒕) is the number of 

packets transmitted with 𝒍𝒅𝒋 ≤ 𝒍𝒅𝒋,𝐦𝐚𝐱 (or number of packet delivered within the latency 

bound). 𝐁𝒅𝒋(𝒕) is total packet transmitted by DUE 𝒅𝒋 at time slot 𝒕. Reliability can also be 

measured in terms of the outage probability, which is the probability that the measured SINR 

is less than a predefined threshold. Using the closed expression of the outage probability of 𝒋th 

DUE conditioned on the selected 𝒊th channel at time slot 𝒕, [95]. 

                           𝒑𝑹(𝒕) = 𝐏𝐫 (𝚪𝒅𝒋 ≤ 𝚪𝒅𝒋,𝐦𝐢𝐧) = 𝟏 − 𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹𝐞𝐱𝐩(−𝚪𝒅𝒋,𝐦𝐢𝐧𝝈𝑵𝟐𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹)𝐏𝒅𝒋𝒉𝒅𝑻,𝒅𝑹  +𝚪𝒅𝒋,𝐦𝐢𝐧𝐏𝒄𝒊𝒉𝒄,,𝒅𝑹 ≤ 𝒑𝑹𝟎        (6.8) 

where 𝒑𝑹(𝒕) is the measured outage probability of DUE 𝒅𝒋 at time slot 𝒕 and 𝒑𝑹𝟎 is the 

maximum tolerable outage probability of 𝒅𝒋. Expressing reliability in terms of outage 

probability,  

                                                            𝝃𝒅𝒋(𝒕) = 𝟏 − 𝒑𝑹(𝒕)                                                (6.9) 

Transmission latency is given as the ratio of packet size transmitted within latency bound to 

transmission rate [144]. Combining (6.7), (6.8) and (6.9), the transmission latency of 𝒋th DUE 

on the 𝒊th RB is formulated as: 

                                                            𝒍𝒅𝒋(𝒕) = 𝐋𝒅𝒋′ (𝒕)𝑾𝒊𝐥𝐨𝐠𝟐(𝟏 + 𝚪𝒅𝒋(𝒕))                                         (6.10) 

At each time slot 𝒕, the resource allocation system has two tasks: I: Determining the SINR 𝚪𝒄𝒊 
that the 𝒊th CUE should achieve to satisfy the minimum condition and the SINR 𝚪𝒅𝒋 that the 



98 

 

𝒋th DUE should obtain in order to ensure minimum SINR and target reliability 𝝃𝒅𝒋∗  and II: 

Allocating RBs to 𝒋th DUE so that 𝐓𝑹 is maximised. 

The resource allocation problem for D2D communication in a cellular network is complex and 

a direct solution is not feasible. Firstly, a D2D resource allocation scheme, denoted as 

Reinforcement Learning-Based Matching (RLBM), is presented for a fully autonomous and 

distributed resource allocation. The second method presented is a Base Station Assisted (BS-

A) technique, which is semi-distributed. 

6.2     Stateless Reinforcement Learning for D2D Resource Allocation 

The learning objectives of the agents is to maximise the throughput in a D2D-enabled cellular 

network. At each time slot 𝒕, the DUE, observes a state 𝒔𝒕 and takes an action 𝒂𝒕 from the 

action space, (i.e., select an RB 𝒌𝒊), according to the policy π. 𝑸-learning enables an agent to 

find the optimal policy that maximises its long term expected cumulative reward [116]. The 𝑸-

value is updated as follows: 

            𝑸𝒕+𝟏(𝒔𝒕, 𝒂𝒕) = {𝑸𝒕(𝒔𝒕, 𝒂𝒕) + 𝝈 [𝒓𝒕 + 𝜼𝐦𝐚𝐱𝒂′
𝑸𝒕(𝒔𝒕+𝟏, 𝒂𝒕+𝟏) −𝑸𝒕(𝒔𝒕, 𝒂𝒕)]  𝐢𝐟  𝒔 = 𝒔𝒕,   𝒂 = 𝒂𝒕𝑸𝒕(𝒔𝒕, 𝒂𝒕) , 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞         (6.11)                      

where 𝝈 ∈ [𝟎, 𝟏] is the learning rate. Setting 𝝈 to 0 means that the Q-values are never updated, 

hence no learning has taken place; setting 𝝈 to a high value means that learning can occur 

quickly and 𝟎 ≤ 𝜼 ≤ 𝟏 is the discount factor, used to balance immediate and future reward 

[145]. 

The state space, action space and rewards function in the learning environment are defined as 

follows: 

i.   State Space: The state observed by DUE 𝒅𝒋 ∈ 𝑫, 𝑺𝒅𝒋𝒊 (𝒕), on RB 𝒌𝒊 at time slot 𝒕 is defined 

by three variables,  

                                                  𝑺𝒅𝒋𝒊 (𝒕) = {  
  𝑺𝚪𝒅𝒋𝒊𝑺𝝃𝒅𝒋𝒊𝑺𝒍𝒅𝒋𝒊 }  

  
                                                              (6.12) 



99 

 

where 𝒔 ∈ 𝑺𝒅𝒋𝒊 = {𝟎, 𝟏}. 𝑺𝚪𝒅𝒋𝒊 (𝒕) indicates the interference level measured by DUE 𝒅𝒋 ∈ 𝑫 on 

RB 𝒌𝒊 at time slot 𝒕 and defined by  

                                                   𝑺𝚪𝒅𝒋𝒊 (𝒕) = {𝟏              𝚪𝒅𝒋(𝒕) ≥ 𝚪𝒅𝒋,𝐦𝐢𝐧𝟎                       𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞                            (6.12a) 

 𝑺𝝃𝒅𝒋𝒊 (𝒕) indicates the level of reliability measured by DUE 𝒅𝒋 ∈ 𝑫 on RB 𝒌𝒊 at time slot 𝒕 and 

defined by  

                                                   𝑺𝝃𝒅𝒋𝒊 (𝒕) = { 𝟏                    𝝃𝒅𝒋(𝒕) ≥ 𝝃𝒅𝒋∗𝟎                       𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞                          (6.12b) 

𝑺𝒍𝒅𝒋𝒊 (𝒕) indicates the packet transmission time measured by DUE 𝒅𝒋 ∈ 𝑫 on RB 𝒌𝒊 at time slot 𝒕 and defined by: 

                                                   𝑺𝒍𝒅𝒋𝒊 (𝒕) = { 𝟏              𝒍𝒅𝒋(𝒕) ≤ 𝒍𝒅𝒋,𝐦𝐚𝐱𝟎                       𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞                            (6.12c) 

Given this, there are eight possible states are defined in Table 6.1. 

Table 6.1: State space for DUEs 𝑺𝚪𝒅𝒋𝒊  𝑺𝝃𝒅𝒋𝒊  𝑺𝒍𝒅𝒋𝒊  𝑺𝒅𝒋𝒊  

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 

To reduce the state-action dimension, a stateless learning is adopted. For the scenario under 

consideration, any action 𝒂𝒊 ∈ 𝑨 taken by an agent will result in the end of an episode i.e., 

states 0 and 1 are terminal states, where 𝑺𝒅𝒋𝒊 (𝒕)  = 𝟏 is the goal state of the DUEs. A stateless 𝑸-learning, therefore, can completely model the learning environment using action-reward 

only since there is state transition is not required. An agent can choose its action based solely 

on its 𝑸-value and the updated 𝑸-value of the chosen action is based on the current 𝑸-value 

and the immediate return from selecting that action. The update function in (6.11) is re-

formulated as follows: 
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                                  𝑸𝒕+𝟏(𝒂𝒕) = {𝑸𝒕(𝒂𝒕) + 𝝈[𝒓(𝒂𝒕) − 𝑸𝒕(𝒂𝒕)], 𝐢𝐟  𝒂 = 𝒂𝒕𝑸𝒕(𝒂𝒕),          𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞                    (6.13) 

where 𝒓(𝒂𝒕) is the immediate reward of selecting 𝒂. Comparing (6.11) i.e., (standard 𝑸-value 

update function) with (6.13), it can be seen that not only the state-action formation (𝒔, 𝒂), is 

not necessary but also the information of next state 𝒔𝒕+𝟏 is not required because the actions 

lead to the terminal state. This reduces the complexity of learning and the size of the 𝑸-table. 

Therefore, resulting in a 𝟏 × |𝑵| dimension 𝑸-table for 𝒋th DUE. The 𝑸-table is defined in 

terms of the actions only and updated using the immediate reward. 

To ensure the efficacy of the resource allocation the conventional CUEs need to be protected 

from the interference from the DUEs for the minimum SINR to be guaranteed. This has been 

addressed by including SINR of the CUE 𝚪𝒄𝒊 in the state space or reward function modelling. 

In this way, the DUEs can obtain the information from the BS at time slot 𝒕 as in [82,116, 

122,146]; hence, the DUEs get a positive reward if the CUE SINR on the selected RB attains 

a value which is at least 𝚪𝒄𝒊,𝐦𝐢𝐧 and a negative reward if below 𝚪𝒄𝒊,𝐦𝐢𝐧. Rather than the BS 

reporting the CUE SINR 𝚪𝒄𝒊 with the DUEs for every action 𝒂𝒕 taken at each time slot, a scheme 

is adopted in which the BS keeps a 𝑸-table of the 𝒊th CUE based on the actions on the DUEs. 

Therefore, the 𝑸-table for the 𝒊th CUE is  𝟏 × |𝑴|  considering a stateless 𝑸-learning 

formation.     

ii.  Action Space: The action space of DUE 𝒅𝒋 ∈ 𝑫 is a set of all actions denoted by 𝑨 ={𝒂𝟏,𝒕 , … , 𝒂𝒊𝒕, … 𝒂,𝑵𝒕 }, where  𝒂𝒊𝒕 as the action taken by 𝒅𝒋 ∈ 𝑫 at time slot 𝒕 and defined as the 

selection of an RB 𝒌𝒊. 
iii.   Action-Selection Strategy: There are a number of methods to select an action based on 

the current evaluation of the 𝑸-value at every time slot using a policy denoted by 𝝅. These 

methods are used to balance exploration and exploitation [123]. Epsilon greedy (𝜺-greedy) is 

one among other methods of choosing an optimal 𝑸-value and described as follows: 

                        𝝅 = {𝐚𝐫𝐠𝐦𝐚𝐱𝒂∈𝑨 𝑸(𝒂)          𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝟏 − 𝜺  (𝐞𝐱𝐩𝐥𝐨𝐢𝐭𝐚𝐭𝐢𝐨𝐧)𝐑𝐚𝐧𝐝𝐨𝐦 𝐚𝐜𝐭𝐢𝐨𝐧                𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝜺 (𝐞𝐱𝐩𝐥𝐨𝐫𝐚𝐭𝐢𝐨𝐧)          (6.14)                 

where 𝜺 is the exploration rate with 𝟎 ≤ 𝜺 ≤ 𝟏. The exploration rate is the probability that the 

agents will explore the environment rather than exploit it. 𝜺 → 𝟏 results in greater exploration 

whereas 𝜺 → 𝟎 means greater exploitation.  
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iv.  Reward Function: The reward function is designed such that it relies only on local 

observations and can be implemented independently. The rewards of the 𝒋th DUE and 𝒊th CUE 

for taking an action 𝒂𝒊𝒕 is expressed in terms of the achievable rate using the Shannon capacity 

formula. Thus, the reward is directly linked to the objective function of the optimisation 

problem. The reward function is given by (6.15). 

                                                      𝒓𝒅𝒋(𝒂𝒕) = {𝐓𝒅𝒋𝒌 (𝒕)     𝐒𝒅𝒋𝒊 (𝒕) = 𝟏 𝟎,             𝐒𝒅𝒋𝒊 (𝒕) = 𝟎                                (6.15a) 

 

                                                      𝒓𝒄𝒊(𝒂𝒕) = { 𝐓𝒄𝒊𝒌(𝒕)      𝚪𝒄𝒊 ≥ 𝚪𝒄𝒊,𝐦𝐢𝐧 𝟎,                   𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞                           (6.15b) 

 

Equation (6.15) shows that 𝒋th DUE only gets a reward when all the state variables are 1 (i.e., 

the minimum QoS requirements are met), while 𝒊th CUE gets a reward if its minimum SINR 

is satisfied at each time slot for the action taken by 𝒋th DUE. From the reward function defined 

above, learning can be implemented independently in a decentralised manner such that each 

agent will maintain a local 𝑸-table. There is no information exchange related to other agents’ 

actions or rewards and no cooperation is needed between the agents, which results in reduced 

signalling overheads and reduced complexity compared to a centralised 𝑸-learning approach. 

The Q-value of the 𝒋th DUE for selecting 𝒊th RB at time slot 𝒕 is updated as follows: 

                                   𝑸𝒅𝒋𝒊 (𝒂𝒕) = {𝑸𝒅𝒋𝒊 (𝒂𝒕) + 𝝈 [𝒓𝒅𝒋(𝒂𝒕) − 𝑸𝒅𝒋𝒊 (𝒂𝒕)] , 𝐢𝐟  𝒂 = 𝒂𝒕𝑸𝒅𝒋𝒊 (𝒂𝒕),          𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞            (6.16a) 

Similarly, the Q-value of the 𝒊th CUE for action taken by the 𝒋th DUE is updated as follows: 

                                    𝑸𝒄𝒊𝒋 (𝒂𝒕) = {𝑸𝒄𝒊𝒋 (𝒂𝒕) + 𝝈[𝒓𝒄𝒊(𝒂𝒕) − 𝑸𝒄𝒊𝒋 (𝒂𝒕)], 𝐢𝐟  𝒂 = 𝒂𝒕𝑸𝒄𝒊𝒋 (𝒂𝒕),          𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞              (6.16b) 

From (6.16), it can be seen that after the training, the Q-table of the 𝒋th DUE,  𝑸𝒅𝒋(𝒂), will 

return 𝑸𝒅𝒋𝒊 (𝒂) = 𝟎 for its action on  𝒊th RB that do not meet its QoS requirements. Similarly, 

the 𝑸-table of the 𝒊th CUE,  𝑸𝒄𝒊(𝒂), will return 𝑸𝒄𝒊𝒋 (𝒂) = 𝟎 for the action of 𝒋th DUE on 𝒊th 

RB that do not meet its QoS requirements. 
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6.2.1    Reinforcement Learning Based Matching (RLBM) 

The goal of each DUE is to obtain its own preferred cellular channel without being affected by 

other DUEs. Therefore, the DUEs can learn their strategies independently, so their actions have 

no effect on each other. Creating 𝑸-tables for the CUEs make it compliant with the structure 

of the Stable Matching Problem (SMP). A Reinforcement Learning Based Matching (RLBM) 

is presented as shown in Algorithm 6.1. After the training of the agents is accomplished, the 

local 𝑸-tables are ordered to build their preference profiles. The matching phase is 

implemented using the DA algorithm [104], which converges to a stable output with DUEs 

sending proposals and CUEs accepting/rejecting proposals. 

6.2.2     Base Station Assisted Reinforcement Learning (BS-A)  

In the RLBM technique, the matching is implemented using the DA procedure, which is a 

decentralised scheme, to find a stable assignment between the CUEs and the DUEs with sub-

optimal system throughput performance. Hence, the autonomy of the DUEs and the preferences 

of the UEs are considered in the resource allocation. However, the process of 

accepting/rejecting proposals involves messaging passing between UEs which will incur some 

amount signalling overheads.  

A Base Station Assisted (BS-A) approach to optimise the achieved system throughput, is 

presented. For this method, after the training phase, each DUE loads its Q-value table, 𝑸𝒅𝒋(𝒂),  
to the BS for centralised matching. The BS will allocate a cellular RB to the D2D link that 

maximises the total Q-values (of the CUE and DUE) on the channel and there is no need for 

information exchange between the UEs to find a preferred candidate. The BS-A is given in 

Algorithm 6.2. 
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Algorithm 6.1   The RLBM Algorithm  

  

 1: Initialise the action-value function for the DUEs 

      [𝑸𝒅𝒋(𝒂) = 𝟎|𝑸𝒅𝒋(𝒂) ≡ 𝑸𝒅𝒋𝒊 (𝒂𝒕) , 𝒊 = 𝟏, 𝟐,… ,𝑵]             ⩝ 𝒅𝒋 ∈ 𝑫 

  2: Initialise the action-value function for the CUEs    

       [𝑸𝒄𝒊(𝒂) = 𝟎|𝑸𝒄𝒊(𝒂) ≡ 𝑸𝒄𝒊𝒋 (𝒂𝒕), 𝒋 = 𝟏, 𝟐,… ,𝑴 ]            ⩝ 𝒄𝒊 ∈ 𝑪 

  3:    for 𝒅𝒋 ∈ 𝑫  𝟏 ≤ 𝒋 ≤ 𝑴  do 

  4:        while not converge do  

  5:        generate a random number 𝒙 ∈ {𝟎, 𝟏} 
  6:              if  𝒙 < 𝜺 then 

  7:                  Select action 𝒂𝒊𝒕 randomly 

  8:              else 

  9:                   Select action 𝒂𝒊𝒕=𝐚𝐫𝐠𝐦𝐚𝐱𝒂∈𝑨 𝑸𝒅𝒋(𝒂) 
10:              end if 

11:          Evaluate 𝝃𝒅𝒋 , 𝚪𝒅𝒋 and 𝒍𝒅𝒋 of 𝒅𝒋 ∈ 𝑫 for action 𝒂𝒕  
12:          Measure the SINR 𝝃𝒄𝒊, of CUE 𝒄𝒊 ∈ 𝑪 for the action 𝒂𝒕 taken by 𝒅𝒋 ∈ 𝑫 

13:          Observe immediate reward of 𝒅𝒋 ∈ 𝑫 and 𝒄𝒊 ∈ 𝑪,  𝒓𝒅𝒋(𝒂𝒕) and 𝒓𝒄𝒊(𝒂𝒕) respectively  

14:          Update action-value for action of  𝒅𝒋 ∈ 𝑫 on the 𝒊th RB  𝑸𝒅𝒋𝒊 (𝒂𝒕) = 𝑸𝒅𝒋𝒊 (𝒂𝒕) + 𝝈 [𝒓𝒅𝒋(𝒂𝒕) + 𝑸𝒅𝒋𝒊 (𝒂𝒕)] 
15:          Update action-value for 𝒄𝒊 ∈ 𝑪  for action 𝒂𝒕 of 𝒋th DUE of  

                                       𝑸𝒄𝒊𝒋 (𝒂𝒕) = 𝑸𝒄𝒊𝒋 (𝒂𝒕) + 𝝈[𝒓𝒄𝒊(𝒂𝒕) + 𝑸𝒄𝒊𝒋 (𝒂𝒕)] 
16:          end while 

17:    end for 

18: 𝑸𝒅𝒋(𝒂) = 𝑸𝒅𝒋(𝒂) − [𝑸𝒅𝒋𝒊 (𝒂𝒕) = 𝟎, 𝒊 = 𝟏, 𝟐,… ,𝑵]            ⩝ 𝒅𝒋 ∈ 𝑫 

19: 𝑸𝒄𝒊(𝒂) = 𝑸𝒄𝒊(𝒂) − [𝑸𝒄𝒊𝒋 (𝒂𝒕) = 𝟎, 𝒋 = 𝟏, 𝟐,… ,𝑴]              ⩝ 𝒄𝒊 ∈ 𝑪 

20: Order 𝑸𝒅𝒋(𝒂), 𝑸𝒄𝒊(𝒂)          ⩝ 𝒅𝒋 ∈ 𝑫, ⩝ 𝒄𝒊 ∈ 𝑪 respectively 

21: Match DUEs and CUEs using the DA algorithm and output matching 
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Algorithm 6.2      The BS-A Reinforcement Learning Algorithm 

 

 1: Initialise the action-value function for the DUEs 

       [𝑸𝒅𝒋(𝒂) = 𝟎|𝑸𝒅𝒋(𝒂) ≡ 𝑸𝒅𝒋𝒊 (𝒂𝒕) , 𝒊 = 𝟏, 𝟐,… ,𝑵]          ⩝ 𝒅𝒋 ∈ 𝑫 

  2: Initialise the action-value function for the CUEs    

       [𝑸𝒄𝒊(𝒂) = 𝟎|𝑸𝒄𝒊(𝒂) ≡ 𝑸𝒄𝒊𝒋 (𝒂𝒕), 𝒋 = 𝟏, 𝟐,… ,𝑴 ]            ⩝ 𝒄𝒊 ∈ 𝑪 

  3:    for 𝒅𝒋 ∈ 𝑫  𝟏 ≤ 𝒋 ≤ 𝑴  do 

  4:        while not converge do  

  5:  generate a random number 𝒙 ∈ {𝟎, 𝟏} 
  6:              if  𝒙 < 𝜺 then 

  7:                  Select action 𝒂𝒊𝒕 randomly 

  8:              else 

  9:                   Select action 𝒂𝒊𝒕=𝐚𝐫𝐠𝐦𝐚𝐱𝒂∈𝑨 𝑸𝒅𝒋(𝒂𝒕) 
10:              end 

11:          Evaluate 𝝃𝒅𝒋 , 𝚪𝒅𝒋 and 𝒍𝒅𝒋 of 𝒅𝒋 ∈ 𝑫 for the action 𝒂𝒕  
12:          Measure the SINR 𝝃𝒄𝒊, of CUE 𝒄𝒊 ∈ 𝑪 for the action 𝒂𝒕 taken by 𝒅𝒋 ∈ 𝑫 

13:          Observe immediate reward of 𝒅𝒋 ∈ 𝑫 and 𝒄𝒊 ∈ 𝑪,  𝒓𝒅𝒋(𝒂𝒕) and 𝒓𝒄𝒊(𝒂𝒕),  
               respectively  

14:          Update action-value for action of  𝒅𝒋 ∈ 𝑫 on the 𝒊th RB  𝑸𝒅𝒋𝒊 (𝒂) = 𝑸𝒅𝒋𝒊 (𝒂) + 𝝈 [𝒓𝒅𝒋(𝒂𝒕) + 𝑸𝒅𝒋𝒊 (𝒂)] 
15:          Update action-value for 𝒄𝒊 ∈ 𝑪 for action 𝒂𝒕 of 𝒋th DUE  

                                          𝑸𝒄𝒊𝒋 (𝒂) = 𝑸𝒄𝒊𝒋 (𝒂) + 𝝈[𝒓𝒄𝒊(𝒂𝒕) + 𝑸𝒄𝒊𝒋 (𝒂)] 
16:          end while 

17:    end for  

18:    Load 𝑸𝒅𝒋(𝒂) to the BS                      ⩝ 𝒅𝒋 ∈ 𝑫 

19:    for 𝒅𝒋 ∈ 𝑫  𝟏 ≤ 𝒋 ≤ 𝑴  do 

20:      Obtain 𝑸(𝒂) = {𝑸𝒅𝒋𝒊 (𝒂),𝑸𝒄𝒊𝒋 (𝒂)}   𝒊 = 𝟏, 𝟐, … ,𝑵 

21:      �̅�(𝒂) ⊆ 𝑸(𝒂)| {𝑸𝒅𝒋𝒊 (𝒂),𝑸𝒄𝒊𝒋 (𝒂)} ∈ ℝ+, where ℝ+  denotes  positive real number 

22:       𝑸𝐓𝐎𝐓 = 𝑸𝒅𝒋𝒊 (𝒂) + 𝑸𝒄𝒊𝒋 (𝒂)         ⩝ 𝒒 ∈ �̅�(𝒂) 
23:   end for 

24:   Set up a list for unmatched DUE 𝑫𝒖 =  {𝒅𝒋 : ⩝ 𝒅𝒋 ∈ 𝑫𝒖} 
25:   while 𝑫𝒖 ≠ ∅ do 

26:       Rank 𝑫𝒖 in increasing order of | �̅�(𝒂)| 
27:       Start DUE 𝒅𝒋 ∈ 𝑫𝒖: �̅�(𝒂) ≠ ∅ with the least | �̅�(𝒂)| 
28:        𝒄𝒊∗ = 𝐦𝐚𝐱𝒄𝒊 ∈𝑹 𝑸𝐓𝐎𝐓 

29:        𝑫𝒖 = 𝑫𝒖 − 𝒅𝒋 
30:        �̅�(𝒂) = �̅�(𝒂)\𝒄𝒊∗       ⩝ 𝒅𝒋′ ∈ 𝑫𝒖| 𝒋′ ≠ 𝒋 
31:   end while 
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Table 6.2:   Main simulation parameters for the RLBM and BS-A Algorithms [147,148] 

Parameter Value 

Carrier frequency, 𝒇𝒄 𝟐𝐆𝐇𝐳 
System bandwidth 𝟏𝟎𝐌𝐇𝐳 

Number of resource blocks (RB), 𝑲 𝟓𝟎 

RB bandwidth 𝟏𝟖𝟎 𝐤𝐇𝐳 
Maximum CUE transmit power, 𝐏𝒄𝒊,𝐦𝐚𝐱 𝟐𝟑𝐝𝐁𝐦 

Maximum DUE transmit power, 𝐏𝒅𝒋,𝐦𝐚𝐱 𝟏𝟑𝐝𝐁𝐦 

D2D distance, 𝑳𝒅𝑻,𝒅𝑹 𝟏𝟎𝐦 ≤ 𝑳𝒅𝑻,𝒅𝑹 ≤ 𝟐𝟎𝐦 

CUE SINR Threshold, 𝚪𝒄𝒊,𝐦𝐢𝐧 𝟕 𝐝𝐁 

DUE SINR Threshold, 𝚪𝒅𝒋,𝐦𝐢𝐧 𝟑 𝐝𝐁 

Noise power density −𝟏𝟕𝟒𝐝𝐁𝐦𝐇𝐳  

Number of CUEs, 𝑵 𝟓𝟎 

Number of DUEs, 𝑴 𝟓𝟎 

Reliability for DUE, 𝒑𝑹𝟎 𝟏𝟎−𝟓 

Exploration rate, 𝜺 𝟎. 𝟕 

Learning rate, 𝝈 𝟎. 𝟗 

Number of iterations, T 200 

DUE Maximum Latency, 𝒍𝒅𝒋,𝐦𝐚𝐱 𝟓𝟎𝐦𝐬 
DUE Message Size, 𝑩𝒅𝒋 𝟏𝟓𝐤𝐁 

 

                 Table 6.3:   Channel model for RLBM and B-SA Algorithms [130,131,139]  

Parameter In-factory         DUE 

link 

UE-UE link BS-UE link 

Pathloss 

model 
𝟑𝟔. 𝟖 𝐥𝐨𝐠𝟏𝟎(𝒅[𝐦]) +𝟑𝟓. 𝟖 dB 

 𝟒𝟎 𝐥𝐨𝐠𝟏𝟎(𝒅[𝐦]) +𝟐𝟖 dB 

𝟑𝟕. 𝟔 𝐥𝐨𝐠𝟏𝟎(𝒅[𝐦]) +𝟏𝟓. 𝟑 dB 

Shadowing 4dB 6dB 8dB 

 

6.3   Performance Evaluation and Results 

The performance of the algorithms is verified by considering a single-cell network in an 

industrial setting. The simulation set-up and channel models are as described in Chapter 5 and 

summarised in Table 6.2 and Table 6.3. The network dynamics are captured by generating the 

channel fading effects randomly at each time slot. The throughput is the main metric used to 

evaluate the performances of the algorithms. The performances of the RLBM and BS-A are 

compared to the centralised optimisation, DA and P-DA schemes. 

6.3.1   Throughput Performance  

The throughput performance of matched DUEs as a function of the number of DUEs in the 

system 𝑴, is shown in Fig. 6.1. It can be seen that the total DUE throughput increases with 𝑴 
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for all the considered algorithms. Expectedly, the number of admitted DUEs increases with the 

introduction of new DUEs but remains constant if a valid cellular resource to share or match it 

cannot be found because the minimum QoS requirements are not met. The performances of 

centralised, B-SA and P-DA approaches are comparable, while DA method shows the least 

performance. The P-DA shows up to 𝟏𝟎% and 𝟏𝟓. 𝟔𝟓% increase in aggregate DUE throughput 

compared to RLBM and DA methods, respectively. This is because the P-DA approach is 

optimised such that consideration is given to players based on the length of their preference 

list. The RLBM algorithm shows a peak of 𝟏𝟎. 𝟎𝟖% higher DUE throughput compared to DA. 

The BS-A algorithm outperforms the RLBM and DA algorithms by up to 𝟔% and 𝟗. 𝟔𝟗% increase in DUE throughput performance, respectively. However, it is semi-

distributive, as the final resource allocation is implemented by the BS, whereas the RLBM, DA 

and P-DA approaches are decentralised (the channel selection is user-centric and no BS 

intervention to achieve autonomy). Players can make their resource allocations choices to 

maximise their individual and ultimately, achieve system stability.  

 

Fig. 6.1.  Sum-throughput of matched DUEs with varying number of DUEs, 𝑴 in the system, for 𝑵 = 𝟓𝟎 

The effects of increasing 𝑴 on the sum throughput performance of the matched UEs (that is 

valid CUE-DUE pairings) is shown in Fig. 6.2. As seen in the figure, the sum throughput 

increases with 𝑴. The performances of the P-DA and centralised optimisation are very close 

and hardly differentiable. The BS-A approach shows better performance at 𝑴 ≤ 𝟑𝟓 with up to 
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𝟏𝟐. 𝟎𝟓% and 𝟏𝟏. 𝟑% increase in sum throughput compared to centralised and P-DA 

approaches, respectively. The centralised approach performed better at 𝑴 > 𝟑𝟓, with up to 𝟗. 𝟑𝟗% increase in throughput. The DA algorithm again shows the least performance with a 𝟕. 𝟑𝟕% decrease compared to the RLBM. 

 

Fig. 6.2.  Sum-throughput of matched UEs as a function of the number of DUEs  𝑴, in the system, for 𝑵 = 𝟓𝟎 

 

Fig. 6.3.  Effect of the DUE outage ratio   𝒑𝑹𝟎, on the sum throughput of matched CUE-DUE pair for 𝑵 = 𝑴 = 𝟓𝟎, 𝒍𝒅𝒋,𝐦𝐚𝐱 = 𝟓𝟎𝐦𝐬 
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The effect of the outage probability 𝒑𝑹𝟎, and latency 𝒍𝒅𝒋,𝐦𝐚𝐱 of DUEs on the sum rate of the 

matched UEs for all five algorithms is shown in Fig. 6.3. and Fig. 6.4. It can be concluded that 

the aggregate throughput increases with 𝒑𝑹𝟎 and 𝒍𝒅𝒋,𝐦𝐚𝐱. This is because higher 𝒑𝑹𝟎 causes the 

interference from the CUEs to be more tolerable by the DUEs, therefore making potential CUE-

DUE pairing possible. Similarly, higher 𝒍𝒅𝒋,𝐦𝐚𝐱 increases the sum throughput at fixed outage 

probability and payload because more DUEs are able to satisfy the latency constraint since it 

is less stringent, therefore, increasing the DUE access rate The DUE access rate is defined as 

number of admitted DUEs to the number of DUEs in the system. 

 

Fig. 6.4.  Effect of the latency bound, 𝒍𝒅𝒋,𝐦𝐚𝐱 on the sum throughput of matched CUE-DUE pair for 𝑵 = 𝑴 = 𝟓𝟎, 𝒑𝑹𝟎 = 𝟏𝟎−𝟓 

The impact of the size of the 𝑸-table on the aggregate throughput performance of the matched 

UEs for the RLBM algorithm is shown in Fig 6.5. The RLBM algorithm is distributed, 

however, the matching stage requires the exchange of proposals which will incur signalling 

overheads. The dimension of the Q-tables determines the number of accept/reject signals and 

invariably the message passing among the devices in the matching phase. The size of the 𝑸-

table is varied to assess the trade-off between the signalling overheads and the performance. 

The 𝑸-table is exclusive of 𝑸𝒅𝒋𝒊 (𝒂),𝑸𝒄𝒊𝒋 (𝒂) = 𝟎 for ⩝ 𝒅𝒋 ∈ 𝑫, ⩝ 𝒄𝒊 ∈ 𝑪, respectively (that is 

only actions that satisfy the minimum QoS are considered). For 𝑵 = 𝑴 = 𝟓𝟎, ⩝ 𝒅𝒋 ∈ 𝑫,  
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⩝ 𝒄𝒊 ∈ 𝑪 is varied from 𝟐𝟓% to 𝟏𝟎𝟎% of |𝑸𝒅𝒋(𝒂)|, |𝑸𝒄𝒊(𝒂)|. It can be seen from the figure 

that the throughput increases with the size of the 𝑸-table because DUE 𝒅𝒋 ∈ 𝑫 has more 

CUEs to propose to at iteration 𝒌 if it is rejected at iteration 𝒌 − 𝒍. Similarly, 𝒄𝒊 ∈ 𝑪 will be 

able to receive more proposals as the size of the Q-table increases. It can be seen that by 

reducing |𝑸𝒅𝒋(𝒂)| and  |𝑸𝒄𝒊(𝒂)|,  ⩝ 𝒅𝒋 ∈ 𝑫, ⩝ 𝒄𝒊 ∈ 𝑪, significant losses in throughput 

performance are apparent as reduction exceeds 70%. For example, at 55% size of the original 

Q-table, a 13.68%, 9.45% and 12.68% reduction can be seen in the DUE, CUE and system 

throughput, respectively. Reducing the Q-table dimension by less than 15% shows 0% loss in 

the aggregate DUE, CUE throughput and sum throughput of the matched UEs. This implies 

there is no change in the amount of signalling with 15% incomplete Q table for all 

participating UEs. This is a considerable trade-off in throughput performance for a reduced 

signalling overheads for the matching subroutine. It can be seen that the sum throughput of 

the DUE is higher than that of the CUE due to the predefined maximum outage probability, 

which makes it less tolerant to interference from the CUEs. This increases the SINR of the 

DUE, resulting in a higher throughput. 

 

Fig. 6.5.  Effect of the Q-table dimension on the throughput performance of matched UEs for the RLBM 

algorithm with  𝒑𝑹𝟎 = 𝟏𝟎−𝟓,  for 𝑵 = 𝑴 = 𝟓𝟎 
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6.3.2   Signalling Overheads and Complexity Analysis 

In this section, the signalling overheads and complexity of the presented algorithms are 

evaluated as shown in Table 6.4. The signalling overhead is evaluated in terms of the level of 

involvement of the BS i.e., BS-UE communication. The signalling overhead is an aggregation 

of channel information acquisition and information exchange by the BS-UE links. The number 

of iterations, 𝑻 depends on the network dynamics. For the centralised optimisation method, the 

CSI of all links is acquired by the BS. This information includes the CUE-BS links, DUE links 

feedback to the BS, the interference channels information of  𝒅𝑻-BS, CUE-𝒅𝑹  and the 

information signals to communicate the resource allocation summing up to 𝟒𝑴𝑻 +𝑴, where 𝑴 is the number of DUEs. For the P-DA and DA algorithms, the information needed by the 

BS includes the CUE-BS links, the interference channels information of 𝒅𝑻-BS and 

information for matching subroutine which comprises 𝑴𝑵 proposals and 𝑴𝑵 accept/reject 

signals totalling 𝟐𝑴𝑻 + 𝟐𝑴𝑵.   
Table 6.4:  Estimation of the signalling overhead by the BS for 𝑴 =  𝟑𝟎 to 𝟓𝟎,𝑵 = 𝟓𝟎 

RRM Technique BS signalling overheads  

Centralised M(1+4T) 

P-DA 2M(N+T+1) 

DA 2M(N+T) 

RLBM 2M(N+T) 

BS-A 2M(1+T) 

                                   

For the P-DA algorithm, the rate loss price has to be communicated to the DUEs by BS and 

acknowledged by the DUEs, making the total of 𝟐𝑴𝑵 + 𝟐𝑴𝑻+ 𝟐𝑴. For the RLBM 

algorithm, the BS as the receiver needs a total amount of information is 𝟐𝑴𝑻. The information 

for the proposals is 𝑴𝑵 and 𝑴𝑵 accept/reject proposals from the DUEs in the matching stage. 

The total information for RLBM aggregates 𝟐𝑴𝑻 + 𝟐𝑴𝑵. For the BS-A, the information 

acquired by the BS is 𝟐𝑴𝑻. It is assumed the that the DUE Q-table is loaded to the BS as a 

unit (exclusive  𝑸𝒅𝒋𝒊 (𝒂) = 𝟎), but upper-bounded by 𝑴 and 𝑴 information required to 

communicate the resource allocation to the DUEs summing to 𝟐𝑴𝑻 + 𝟐𝑴. 

The algorithms are also evaluated in terms of their computation complexity. The run time for 

the algorithm also depends on the number of iterations and number of users. The average run 

time for different scenarios is presented in Table 6.5. It can be seen that, overall, the centralised 
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algorithm has the highest complexity, while the DA scheme has the least complexity, showing 

a 𝟏𝟎. 𝟑𝟖% reduction in processing time compared to the centralised approach. 

An overall comparison for the presented models using the throughput, signalling overheads 

and complexity metrics is shown in Table 6.6 and Fig. 6.6. Figures in red and italics are a 

degradation in performance compared to the centralised approach. The + and – signs are used 

to indicate the increment and decrement of the values used to measure the performances of 

considered schemes relative to the centralised approach. It can be seen that the centralised 

approach has the best throughput performance but shows corresponding high signalling and 

complexity in comparison to the other approaches. DA has the least throughput performance 

and shows the least complexity, while BS-A has the least signalling overhead. The BS-A shows 

a 𝟒𝟗. 𝟖𝟏% reduction in signalling, 𝟎. 𝟗𝟒% reduction in complexity at 𝟖. 𝟓𝟖% lower 

throughput performance compared to the centralised approach, which is a good tradeoff, using 

the use case 2 scenario as an instance. 

The P-DA approach shows 𝟑𝟕. 𝟒𝟓% reduction in signalling, 𝟖. 𝟏𝟒% decrease in complexity 

with a 𝟎. 𝟓𝟖𝟖% reduction in throughput performance compared to the centralised approach, 

which is also a considerable trade-off; but up to 𝟐𝟒. 𝟔𝟑% increase in signalling compared to 

the BS-A approach. The RLBM scheme performs slightly better than DA in terms of 

throughput with a slightly higher complexity, but 𝟑𝟕. 𝟕𝟖% and 𝟐% decrease in signalling 

overhead and complexity, respectively, with a 𝟏𝟎. 𝟏𝟏% reduction in throughput relative to the 

centralised approach. The P-DA scheme has 𝟗. 𝟑𝟐% higher throughput than RLBM with a 𝟎. 𝟑𝟒% higher complexity and 𝟎. 𝟐% increase in signalling. 
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Table 6.5: Performance of different techniques for different values of 𝑴 

Technique 𝑴 Complexity 

(s) 

Sum Throughput 

(Mbps) 

Centralised  30 0.6997 70.2415  
40 0.7384 100.0366  
50 0.7696 114.7231 

P-DA 30 0.6630 70.7830  
40 0.6783 99.4483  
50 0.7592 112.6872 

DA 30 0.6456 66.8117  
40 0.6618 92.3800  
50 0.7304 101.7014 

RLBM 30 0.6969 70.3187  
40 0.7237 88.4736  
50 0.7566 103.0787 

BS-A 30 0.6748 72.7855  
40 0.7315 89.6745  
50 0.7761 107.4996 

                    

Table 6.6:   Performance of Different Techniques Explored Relative 

to the Centralised Approach 

 

 

 

 

 

 

 

 

 

 

 

 

Technique 𝑴 Signalling 

Overheads 

Complexity  Sum 

Throughput  

P-DA 30 -37.45% -5.23% +0.77% 
 

40 -37.45% -8.14% -0.59% 
 

50 -37.45% -1.34%  -1.77% 

DA 30 -37.58% -7.73% -4.88% 
 

40 -37.58% -10.38% -7.65% 
 

50 -37.58% -5.09% -11.4% 

RLBM 30 -37.58% -0.39% +2.11% 
 

40 -37.58% -2.00% -10.12% 
 

50 -37.58% -1.69% -8.89% 

BS-A 30 -49.81% -3.56% +6.39% 
 

40 -49.81% -0.94% -8.58%  
 

50 -49.81% +0.84% -5.04% 
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Fig. 6.6(a).  Overall performance comparison with the centralised approach as a reference 

Use case 1:  𝑴 = 𝟑𝟎,𝑵 = 𝟓𝟎 

 

     

Fig. 6.6(b).  Overall performance comparison with the centralised approach as a reference  

Use case 2:  𝑴 = 𝟒𝟎,𝑵 = 𝟓𝟎 
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Fig. 6.6(c).  Overall performance comparison with the centralised approach as a reference  

Use case 3:  𝑴 =  𝑵 = 𝟓𝟎 

 

6.4    Chapter Conclusions 

Reinforcement learning-based RRM techniques were presented, targetting the deployment of 

D2D links in a URLLC industrial environment. Simulation results show that RLBM and P-DA 

are promising techniques to achieve better throughput performance at lower signalling 

overheads and complexity compared to the centralised and DA approaches. Therefore, 

distributed approaches are more suitable for smart manufacturing applications with massive 

device deployment, in which device autonomy and system stability are important. For 

throughput maximisation in a low-density network in which self-organisation is not crucial, 

the centralised scheme would be the best approach to adopt at the cost of signalling and 

complexity. On the other hand, BS-A is a semi-distributive approach which offers a good trade-

off of throughput, complexity and signalling overheads compared to P-DA, RLBM and 

centralised approaches. 
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Chapter 7 

Conclusions and Directions for Future Work 

In this chapter, a summary of the main contributions of the research work developed in this 

thesis and directions for future work, are presented. 

 

7.1    Conclusions and Summary of Contributions 

Next-generation wireless networks (5G-and-beyond) are expected to address the challenges 

posed by the requirements for new applications and emerging use cases. The growth in new 

device types is putting pressure on the radio spectrum that is already considered a scarce and 

congested resource. Ultra-Reliable Low Latency Communication (URLLC) is one of the use 

cases for 5G-and-beyond technologies which supports real-time communications and mission-

critical applications. Smart manufacturing, automation and control for FoF are considered some 

of the most demanding URLLC applications in terms of reliability and latency requirements. 

D2D communication is one of the next-generation technologies with the potential to improve 

spectrum efficiency and data rates, to expand network capacity and offload traffic at the BS. 

Integrating D2D into future industrial wireless networks and next-generation manufacturing 

can support the creation of mMTCs and URLLC.  

The research work in this reported has addressed some of the challenges posed by the 

coexistence of D2D links in cellular and multi-tier HetNet and their deployment in FoF, while 

meeting URLLC requirements. These challenges include interference mitigation and 

coordination as well as spectrum and power allocation. The research process used to address 

the challenges entailed, a literature review of relevant related works, state-of-the-art in the field 

and identifying some gaps in knowledge.  

Three main RRM approaches were investigated namely, centralised optimisation, matching 

theory and machine learning. Mathematical models were formulated to represent the network 

scenarios and novel algorithms were developed to address some identified RRM challenges. 

Numerical simulations were used to verify the performance of different techniques developed 

for the scenarios considered.  The conclusions from the results are as follows: 
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• The centralised approach may provide an optimal performance for throughput 

maximisation in a low-density network in which self-organisation is not crucial.  

• Distributed schemes such as the P-DA and RLBM can support device autonomy and system 

stability with a good throughput performance and low signalling overheads and complexity. 

• The semi-distributed approach such as BS-A scheme can provide a good balance of 

throughput-complexity-signalling but does not fully support self-organisation. 

 

7.2   Impact of Research from a Practical Perspective 

The main aim of the research reported in this thesis was to investigate and develop new radio 

resource management (RRM) schemes achieving energy efficiency and optimised spectrum 

utilisation, while satisfying target performance metrics for the users and services. Regardless 

of the limitations of the developed techniques presented in this research work, the results from 

adopting these, suggest the possibility of developing a conceptual framework to assist in the 

selection of an appropriate scheme to meet specific priorities, as presented in Table 7.1. The 

table below provides a qualitative evaluation of the key techniques developed for system 

throughput maximisation, while minimising complexity and signaling overheads subject to 

predefined latency and reliability requirements.  

Table 7.1 Qualitative Evaluation of the Different Schemes 

 Cent-Opt DA P-DA RLBM B-SA 

RRM Approach Centralised Distributed Distributed Distributed Semi-distributed 

RRM 

Technique 

Mathematical 

optimisation 

Matching 

theory 

Matching 

theory 

Reinforcement 

learning 

Reinforcement 

learning 

Throughput Best Worst Average Average Average  

Complexity Worst Best Average Average Average  

Signalling 

Overheads 

Worst Average Average Average Best 

 

7.3    Directions for Future Work  

Further possible extensions of the work presented in this thesis are described below. 

1. In conventional cellular networks, each area is partitioned into cells and the BSs are 

deployed in each cell to serve UEs within their coverage. The BSs are connected together 

and to the core network through a backhaul network. Cell-Free Massive Multiple-Input-
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Multiple-Output (CF-mMIMO) systems comprise distributed Access Points (APs) 

connected to a Central Processing Unit (CPU) through the fronthaul network. In contrast 

to the cellular structure, there are no cells or cell boundaries in a CF-mMIMO network. The 

APs operate jointly and serve surrounding UEs in a wide area within the same time and 

frequency resources. CF-mMIMO is expected to facilitate uniform coverage, increased 

reliability, improved spectrum, and energy efficiency. Due to its inherent benefits, CF-

mMIMO is considered an important technology for 6G systems. In theory, CF-mMIMO 

reduces the distance between the APs and the UEs. However, in practice, this is seldomly 

the case, as the APs cannot be installed arbitrarily. Therefore, in future ultra-dense networks 

(UDNs), there are possibilities of direct D2D communication between devices if they are 

in proximity compared to the surrounding APs. This densification makes interference more 

complex if D2D and CF-mMIMO UEs are using the same radio resources. As such, 

resource management algorithms for user association, power and channel allocation should 

be studied for such scenarios. Federated learning is an evolving ML paradigm that has been 

shown to improve the training time of network entities (such as UEs and APs) and could 

be considered for investigation for the coexistence of D2D communication and in a CF-

mMIMO system and is a possible avenue for extending this work. [149,150] 

2. The spectrum sharing scenarios considered in this work are based on uplink (UL) 

transmission. Downlink (DL) spectrum reuse is more complex because the BS generates a 

high interference level to the DUEs which results in performance degradation.  The DL 

supports the demand for a higher download capacity because typically, there is more 

download than upload data traffic. However, recently, the user traffic patterns are becoming 

more dynamic, as more traffic is expected in the UL (e.g., backing up data to online or 

cloud storage services, video calls and conferences). It is expected that spectrum utilisation 

in the UL and DL will be flexible [151]. The optimisation of flexible resource allocation 

for uplink (UL) and downlink (DL) resources to meet diverse needs and provide the best 

possible user experience is, therefore, worth investigating. 

3. The DUEs considered in this work were assumed to be static or semi-static. This may be 

applicable to factory devices with low or no mobility such as in communication between 

industrial controllers and process automation. Motion control use cases such as the case of 

3D printing machine, machine tools and packaging machines have node mobility that is up 

to 20m/s, Augmented Reality (AR), up to 5m/s and inbound logistics for manufacturing, 
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up to 8m/s [152]. Therefore, RRM techniques taking into account device mobility is an 

important area of investigation and an extension to this work. 

4. The P-DA technique presented in this thesis was investigated for one-to-one associations 

between the CUEs and DUEs. Other possible extensions of the P-DA scheme are to study 

its adaptability to one-to-many assignments, where a CUE can share its resources with more 

than one DUE simultaneously. Evaluating the trade-off between matching stability, system 

revenue and performance (in terms of system sum-rate and reuse gain) are important factors 

to be considered. 

5. The spectrum sharing schemes presented in this thesis focused mainly on resource 

allocation. Technical challenges relating to security, trust and privacy issues, resulting from 

spectrum sharing between the legacy Human-Type Communication (HTC) devices and 

Machine-Type Communication (MTC) devices in UDNs need to be addressed. Blockchain 

technology uses a decentralised database that stores transaction records in a verifiable 

manner by providing a trusted channel for information exchange [153,154]. A possible 

extension of this research work is to investigate blockchain-based spectrum sharing. 
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