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ABSTRACT 
 

Over the past few years, we have witnessed the emergence of Internet of Things (IoT) networks that 

bring significant benefits to citizens, society, and industry. However, their heterogeneous and 

resource-constrained nature makes them vulnerable to a wide range of threats and an attractive 

target to attackers with a wide spectrum of motivations ranging from criminal intents, aimed at 

financial gain, to industrial espionage and cyber-sabotage. Consequently, security solutions 

protecting IoT networks from attackers are critical for the acceptance and wide adoption of such 

networks in the coming years. Nevertheless, the high resource requirements of conventional 

security mechanisms cannot be afforded by (i) the resource-constrained IoT nodes and/or (ii) the 

constrained environment in which the IoT nodes are deployed. Therefore, there is an urgent need 

for developing novel security mechanisms to address the pressing security challenges of IoT 

networks in an effective and efficient manner, taking into consideration their resource-constrained 

inherent limitations, before they gain the trust of all involved stakeholders and reach their full 

potential in the IoT market. Toward this direction, considerable research efforts have recently been 

put into the design and development of novel Anomaly-based Intrusion Detection Systems (AIDSs), 

tailored to the resource-constrained characteristics of IoT networks, because of their ability to 

detect not only known but also new, zero-day attacks, in IoT networks. However, although the 

concept of IoT AIDSs is promising, it cannot be materialised before the significant gap of the scarcity 

of benchmark datasets for training and evaluating Machine Learning (ML) models for IoT AIDSs is 

addressed. In fact, the current scarcity of benchmark IoT datasets constitutes a significant research 

gap that should be addressed in order to enable the development of more accurate and efficient IoT 

AIDSs whose effectiveness is evaluated based on their performance to successfully detect IoT attacks 

that is a process reliant on up-to-date, representative and well-structured IoT-specific benchmark 

datasets that until now have been missing. Therefore, contribution to filling this research gap is the 

main target of this thesis. In particular, the focus of this thesis is on the generation of new labelled 

IoT datasets that will be publicly available to the research community and include the following 

required information so as to be considered as benchmark IoT datasets for training and evaluating 

ML models for IoT AIDSs: (a) information reflecting multiple benign and attack scenarios from 

current IoT network environments, (b) sensor measurement data, (c) network-related information 

(e.g., packet-level information) from IoT networks, and (d) information related to the behaviour of 

the IoT devices deployed within IoT networks. 
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CHAPTER 1 Introduction  
 

1.1 Motivation  

Despite the significant benefits that the Internet of Things (IoT) networks bring to citizens, society, 

and industry, the fact that these networks incorporate a wide range of different communication 

technologies (e.g., WLANs, Bluetooth, and Zigbee) and types of nodes/devices (e.g., 

temperature/humidity sensors), which are vulnerable to various types of security threats, raises 

many security and privacy challenges in IoT-based systems  [1], [2], [3], [4]. For instance, attackers 

may compromise IoT networks to manipulate sensing data (e.g., by injecting fake data) and cause 

malfunction to the IoT-based systems that rely on the compromised IoT networks. It is worthwhile 

mentioning that IoT networks can become an attractive target to attackers with a wide spectrum of 

motivations ranging from criminal intents, aimed at financial gain, to industrial espionage and cyber-

sabotage [5], [6], [7]. Consequently, security solutions protecting IoT networks from attackers are 

critical for the acceptance and wide adoption of such networks in the coming years. Nevertheless, 

the high resource requirements of conventional security mechanisms cannot be afforded by (i) the 

resource-constrained IoT nodes (e.g., sensors) with limited processing power, storage capacity, and 

battery life; and/or (ii) the constrained environment in which the IoT nodes are deployed and 

interconnected using lightweight communication protocols [1], [8]. Therefore, there is an urgent 

need for developing novel security mechanisms to address the pressing security challenges of IoT 

networks with reasonable cost in terms of processing and energy, taking into consideration their 

resource-constrained inherent limitations, before they gain the trust of all involved stakeholders and 

reach their full potential in the IoT market [2], [3], [5], [9].  

Towards this direction, considerable research efforts have recently been put into the design and 

development of novel Anomaly-based Intrusion Detection Systems (AIDSs), tailored to the resource-

constrained characteristics of IoT networks, because of their ability to detect not only known but 

also new, zero-day attacks, in IoT networks [10], [11], [12], [13]. However, although the concept of 

IoT AIDSs is promising, it cannot be materialised before the significant gap of the scarcity of 

benchmark datasets for training and evaluating Machine Learning models for IoT AIDSs is addressed 

[14], [15]. In fact, the current scarcity of benchmark IoT datasets constitutes a significant research 

gap that should be addressed in order to enable the development of more accurate and efficient IoT 

AIDSs whose effectiveness is evaluated based on their performance to successfully detect IoT attacks 

that is a process reliant on up-to-date, representative and well-structured IoT-specific benchmark 

datasets that until now have been missing. 

 

1.2 Research Challenges 

Although several datasets, such as KDDCUP99 [16], NSL-KDD [17], UNSW-NB15 [18], and CICD2017 

[19], have been created over the past two decades for evaluation purposes of network-based 

Intrusion Detection Systems (IDSs), they do not include any specific characteristics of IoT networks 

as these datasets do not contain sensors’ reading data or any IoT network traffic [14], [13]. To 

respond to this major issue, few efforts focused on the generation of ΙοΤ-specific datasets have also 

been seen in the literature recently. Yet, they are characterised by some limitations in terms of the 

IoT-specific information they include. For instance the datasets proposed in [20] and [21] are ΙοΤ-

specific datasets but they lack of events reflecting attack scenarios. To address this limitation, the 
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ΙοΤ-specific and network-related datasets proposed in [22] and [23] contain events reflecting attack 

scenarios, however, they do not cover a diverse set of attack scenarios and do not include sensors’ 

reading data or information related to the behaviour of the IoT devices (e.g., sensors/actuators) 

within the network. Therefore, these IoT datasets can mainly be used for detecting only a limited 

number of network-based attacks against IoT networks as they do not contain adequate 

information for detecting a wide range of network-based attacks and/or attacks that manipulate 

sensor measurement data or compromise IoT devices within the IoT network. 

Consequently, there is an urgent need for comprehensive IoT-specific datasets containing not only 

network-related information (e.g., packet-level information) but also information reflecting 

multiple benign and attack scenarios from current IoT network environments, sensor 

measurement data, and information related to the behaviour of the IoT devices deployed within 

the IoT network for efficient and effective training and evaluation of AIDSs suitable for IoT networks. 

Towards this direction, the recent work [14], has proposed, for the first time, to the best of our 

knowledge, a new dataset that includes events of a variety of IoT-related attacks and legitimate 

scenarios, IoT telemetry data collected from heterogeneous IoT data sources, network traffic of IoT 

network, and audit traces of operating systems [14].  

Therefore, it is clear that more benchmark IoT datasets including the following required 

information: i) information reflecting multiple benign and attack scenarios, ii) sensor 

measurement data, iii) network-related information, and iv) information related to the behaviour 

of the IoT devices are essential to be generated and become publicly available to the research 

community so as to fill the significant research gap of the scarcity of benchmark IoT datasets that 

will enable the development of more accurate and efficient IoT AIDSs.  

 

1.3 Scope of the Research 

Contribution to filling the significant gap of the scarcity of benchmark IoT datasets for training and 

evaluating Machine Learning models for IoT AIDSs is the main target of this PhD research work. In 

particular, the scope of this PhD research work is the generation of new labelled IoT datasets that 

will be publicly available to the research community and include the following required information 

so as to be considered as benchmark IoT datasets:  

a. information reflecting multiple benign and attack scenarios from current IoT network 

environments;  

b. sensor measurement data;  

c. network-related information (e.g., packet-level information) from IoT networks; and  

d. information related to the behaviour of the IoT devices deployed within IoT networks.   

It is worthwhile mentioning that the new labelled IoT datasets are generated by implementing 

various benign IoT network scenarios and IoT network attack scenarios in the Cooja simulator which 

is the companion network simulator of the open source Contiki Operating System (OS) that is one of 

the most popular OSs for resource constrained IoT devices [24], [25]. To the best of our knowledge, 

this is the first time that the Cooja simulator is used, in a systematic way, to generate benchmark IoT 

datasets. In addition, the implemented attack scenarios cover the following types of IoT network 

attacks which have not been considered in the datasets proposed in [14]: UDP flooding attack, 

blackhole attack, sinkhole attack, and sleep deprivation attack. 
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The new labelled IoT datasets generated by the Cooja simulator are not to be considered as a 

replacement of datasets captured from real IoT networks or real IoT testbeds, but instead to be 

considered as complementary datasets that will contribute to fill the current gap of the scarcity of 

benchmark datasets for training and evaluating Machine Learning models for IoT AIDSs. 

Furthermore, the generated datasets are analysed to select important raw features for the detection 

of anomalies as well as extract new features, more informative and non-redundant, based on the 

raw features. Finally, different Machine Learning (ML) algorithms for IoT AIDSs (e.g., Naïve Bayes, K-

Nearest Neighbour, Random Forest, Logistic Regression, etc.) are applied to evaluate their 

performance on the generated malicious datasets and validate that the generated malicious 

datasets can be used for training and testing effectively ML algorithms for IoT AIDSs.  

 

1.4 Thesis Contribution 

The main contributions of this PhD research work lie in the following:  

• Generation of a set of benign IoT datasets from a benign IoT network scenario 

implemented in the Cooja simulator. The generated IoT-specific information from the 

simulated scenario was captured from the Contiki plugin “powertrace” (i.e., features 

such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic 

features) to generate the “powertrace” dataset and the network traffic dataset, 

respectively, within csv files. The generated datasets constitute the benign IoT datasets 

for the simulated benign IoT network scenario. Furthermore, a detailed description of 

the approach proposed to generate the set of benign IoT datasets has also been 

provided and published in Generating Datasets for Anomaly-based Intrusion Detection 

Systems in IoT and Industrial IoT Networks [26]. This contribution is covered in Chapter 

3. In addition, we generated a set of malicious datasets from the following attack 

scenarios implemented in the Cooja simulator: i) UDP flooding attack, ii) blackhole 

attack, iii) sinkhole attack, and iv) sleep deprivation attack. The generated IoT-specific 

information from the simulated attack scenarios was captured from the Contiki plugin 

“powertrace” and the Cooja tool “Radio messages” in order to generate the 

corresponding “powertrace” and network traffic datasets for each of the simulated 

attack scenarios within csv files. The generated datasets constitute the malicious IoT 

datasets for the simulated IoT attack scenarios. Moreover, a detailed description of the 

approach proposed to generate the set of the malicious IoT datasets has also been 

given. The description of the approach proposed to generate the set of the UDP flooding 

attack datasets  has been published in Generating Datasets for Anomaly-based Intrusion 

Detection Systems in IoT and Industrial IoT Networks [26]. This contribution is covered in 

Chapter 4. 

• Analysis of the malicious “powertrace” datasets to investigate whether their raw 

features can be important in the detection of anomalies in the network-level power 

profiling of low-power IoT devices (i.e., motes) due to UDP flooding attacks, blackhole 

attacks, sinkhole attacks, or sleep deprivation attacks. Based on the results and the 

observations in Section 5.2.1, the following 5 features have been identified as the most 

important for all malicious “powertrace” datasets:  “transmit”, “cpu”, “lpm”, “listen”, 

and “idle_listen”. Furthermore, we extracted new features, more informative and non-

redundant, based on the raw features of the generated benign and malicious 

“powertrace” datasets. To this end, the total energy consumption of each mote in an IoT 
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network was investigated in Section 5.2.2 as a valuable feature for training and 

evaluating IoT AIDSs. According to the observations and conclusions in Section 5.2.2, the 

total energy consumption of each mote in an IoT network can play a valuable role in 

anomaly-based intrusion detection for the following types of attacks in IoT networks: 

UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack. 

Besides that, we extracted new features, more informative and non-redundant, based 

on the raw features of the generated benign and malicious network traffic datasets. The 

generated benign and malicious network traffic datasets were also analysed in Section 

5.3.1 and the new feature that was extracted was the “RPL packets overhead”. This new 

feature provides information about the number of RPL packets (per mote and total) 

transmitted over the total number of exchanged messages within the IoT network, 

indicating a blackhole or sinkhole attack when its value is high and a UDP flooding attack 

or sleep deprivation attack when its value is low. This contribution is covered in Chapter 

5. 

 

• Validation of the generated malicious “powertrace” datasets by applying the following 

most popular ML algorithms for IoT AIDS to evaluate their performance on the 

generated malicious datasets: naïve Bayes (NB), decision tree (DT), random forest (RF), 

logistic regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN). 

Using five-fold cross validation, these algorithms were trained and tested over the same 

labelled dataset for each attack scenario. Furthermore, the traditional metrics of 

accuracy, precision, recall, and F1-score were used to evaluate the performance of the 

ML algorithms on the generated datasets. The evaluations results demonstrated that the 

RF, KNN, and DT algorithms presented very high values regarding accuracy (between 

0.93 and 1.0) and outperform the other algorithms regarding precision, recall and F1-

score for all malicious datasets. In particular, it is worthwhile mentioning that the RF, 

KNN, and DT algorithms achieved precision between 0.84 and 1.0 for the “udp-flood-

pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, and the “sleep_depr-

pwrtrace_label.csv”. In principle, the evaluations results demonstrated that the 

generated malicious datasets can be used for training and testing effectively ML 

algorithms for IoT AIDSs. This contribution is covered in Chapter 6.   
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This PhD research work has led to the following 5 peer reviewed publications: 3 journal papers, 1 

book chapter, and 1 conference paper (https://www.gre.ac.uk/people/rep/faculty-of-engineering-

and-science/ismael-essop).   

Journal papers (3) 

1. Zachos, Georgios, Essop, Ismael, Mantas, Georgios, Porfyrakis, Kyriakos, Ribeiro, Jose, 

Rodriguez, Jonathan (2021), An anomaly-based intrusion detection system for internet of 

medical things networks. Electronics, 10: 2562 (21) 2079-9292 (Online) (doi: 

https://doi.org/10.3390/electronics10212562). 

2. Essop, Ismael, Ribeiro, José C., Papaioannou, Maria, Zachos, Georgios, Mantas, Georgios, 

Rodriguez, Jonathan (2021), Generating datasets for anomaly-based intrusion detection 

systems in IoT and industrial IoT networks. Sensors, 21: 1528 (4) 1424-8220 (Online) (doi: 

https://doi.org/10.3390/s21041528). 

3. Papaioannou, Maria, Karageorgou, Marine, Mantas, Georgios, Sucasas, Victor, Essop, Ismael, 

Rodriguez, Jonathan, Lymberopoulos, Dimitrios (2020), A Survey on security threats and 

countermeasures in Internet of Medical Things (IoMT). Transactions on Emerging 

Telecommunications Technologies: e4049 ISSN: 2161-3915 (Print), (doi: 

https://doi.org/10.1002/ett.4049). 

  Book Chapters (1) 

1. Karageorgou, Marina, Mantas, Georgios, Essop, Ismael, Rodriguez, J , Lymberopoulos, D 

(2020), Cybersecurity Attacks on Medical IoT Devices for Smart City Healthcare Services. In: 

Fadi AI-Turjman, Muhammad Imran (eds.), IOT Technologies in Smart-Cities: From Sensors to 

Big Data, Security and Trus. Institution of Engineering & Technology, pp. 171-187. ISBN: 

9781785618697 (doi: https://doi.org/10.1049/PBCE128E). 

Conference Papers (1) 

1. Zachos, Georgios, Essop, Ismael, Mantas, Georgios, Kyriakos, Porfyrakis , Jose, Ribeiro , 

Jonathan, Rodriguez (2021), Generating IoT Edge Network Datasets based on the TON_IoT 

telemetry dataset. (1st) . pp. 1-6 . ISBN: 9781665417792ISSN: 2378-4865 (Print), 2378-4873 

(Online) (doi: https://doi.org/10.1109/CAMAD52502.2021.9617799). 
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1.5 Organisation of the Thesis 

The remaining Chapters of this thesis are organized as follows. 

• Chapter 2 gives a comprehensive overview of the four main pillars of this PhD research 

work: i) Internet of Things (IoT), ii) Machine Learning (ML) algorithms for anomaly-based 

intrusion detection in IoT networks, iii) evaluation metrics for the performance of ML 

algorithms, and iv) existing datasets for training and evaluation of anomaly-based 

intrusion detection in IoT networks. Therefore, the Chapter starts with an overview of 

the IoT concept. Afterwards, the three-layer IoT architecture, which is the typical IoT 

architecture in the literature, is presented where the Perception Layer (i.e., IoT 

network), the focal point of this PhD research work, is discussed. Following this, an 

overview of the main security attacks against IoT networks is given along with security 

and privacy protection requirements for IoT and security considerations for developing 

secure IoT ecosystems. Next, the most popular ML algorithms used in IoT Anomaly-

based Intrusion Detection Systems (AIDS) are reviewed and their main advantages and 

drawbacks are discussed, followed by the metrics based on which their performance is 

evaluated. Last but not least, five of the most well-known existing datasets for training 

and evaluation of IoT AIDSs are reviewed.  

• Chapter 3 provides a detailed description of the approach followed to generate a set of 

benign datasets from a benign IoT network scenario implemented in the Cooja 

simulator. The generated IoT-specific information from the simulated scenario was 

captured from the Contiki plugin “powertrace” (i.e., features such as CPU consumption) 

and the Cooja tool “Radio messages” (i.e., network traffic features) to generate the 

“powertrace” dataset and the network traffic dataset, respectively, within csv files. The 

generated datasets constitute the benign IoT datasets for the simulated benign IoT 

network scenario. 

• Chapter 4 is focused on the generation of a set of malicious datasets from the following 

attack scenarios implemented in the Cooja simulator: i) UDP flooding attack, ii) blackhole 

attack, iii) sinkhole attack, and iv) sleep deprivation attack. The generated IoT-specific 

information from the simulated attack scenarios was captured from the Contiki plugin 

“powertrace” (i.e., features such as CPU consumption) and the Cooja tool “Radio 

messages” (i.e., network traffic features) in order to generate the corresponding 

“powertrace” and network traffic datasets for each of the simulated attack scenarios 

within csv files. The generated datasets constitute the malicious IoT datasets for the 

simulated IoT attack scenarios. 

• Chapter 5 is focused on the analysis of the generated benign “powertrace” and network 

traffic datasets, presented in Chapter 3, and the generated malicious “powertrace” and 

network traffic datasets, demonstrated in Chapter 4. The Chapter starts with the 

analysis of the malicious “powertrace” datasets to investigate whether their raw 

features can be important in the detection of anomalies in the network-level power 

profiling of low-power IoT devices due to UDP flooding attacks, blackhole attacks, 

sinkhole attacks, or sleep deprivation attacks. Next, the Chapter continues with 

investigating the extraction of new features, more informative and non-redundant, 

based on the raw features of the generated benign and malicious datasets. The new 

features are intended to constitute valuable features for anomaly-based detection of 

UDP flooding attacks, blackhole attacks, sinkhole attacks and sleep deprivation attacks in 
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IoT networks. To this end, the total energy consumption of each mote is investigated as 

a valuable feature in Section 5.2.2. Last but not least, the generated benign and 

malicious network traffic datasets are also analysed in Section 5.3.1 to derive new 

features more informative in terms of the behaviour of the network traffic. 

• Chapter 6 is focused on the validation of the generated malicious “powertrace” 

datasets, presented in Chapter 4, by applying different Machine Learning (ML) 

algorithms for IoT AIDSs to evaluate their performance on the generated malicious 

datasets. In particular, the following most popular ML algorithms for IoT AIDSs, reviewed 

in Section 2.3, were applied: naïve Bayes (NB), decision tree (DT), random forest (RF), 

logistic regression (LR), support vector machines (SVM), and k-nearest neighbor (KNN). 

Using five-fold cross validation, these algorithms were trained and tested over the same 

labelled dataset for each attack scenario. Furthermore, the following four traditional 

metrics, reviewed in Section 2.4, were used to evaluate the performance of the ML 

algorithms on the generated datasets when these algorithms are used for anomaly 

detection in IoT AIDSs: accuracy, precision, recall, and F1-score. In all experiments, the 

Python language (version 3.8.2) was used, along with the Scikit-Learn library [27] and a 

Python script created, utilizing specific functions of the Scikit-Learn library, to perform 

training and testing of the ML algorithms. 

• Chapter 7 concludes this PhD thesis and provides future research objectives. 
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Chapter 2 Related Work 

2.1 Introduction 

This Chapter is focused on giving a comprehensive overview of the four main pillars of this PhD 

research work: i) Internet of Things (IoT), ii) Machine Learning (ML) algorithms for anomaly-based 

intrusion detection in IoT networks, iii) evaluation metrics for the performance of ML algorithms, and 

iv) existing datasets for training and evaluation of anomaly-based intrusion detection in IoT 

networks. Therefore, the Chapter starts with an overview of the IoT concept. Afterwards, the three-

layer IoT architecture, which is the typical IoT architecture in the literature, is presented where the 

Perception Layer (i.e., IoT network), the focal point of this PhD research work, is discussed. Following 

this, an overview of the main security attacks against IoT networks is given along with security and 

privacy protection requirements for IoT and security considerations for developing secure IoT 

ecosystems. Next, the most popular ML algorithms used in IoT Anomaly-based Intrusion Detection 

Systems (AIDS) are reviewed and their main advantages and drawbacks are discussed, followed by 

the metrics based on which their performance is evaluated. Last but not least, five of the most well-

known existing datasets for training and evaluation of IoT AIDSs are reviewed.   

2.2 Internet of Things (IoT)  

In this Section, an overview of the IoT concept along with its fundamental characteristics and high-

level requirements is given. Then, the three-layer IoT architecture, which is the typical IoT 

architecture in the literature, is presented and an overview of the main security attacks against IoT 

networks is provided. Furthermore, the security and privacy protection requirements for IoT, 

according to ITU-T Recommendation Y.2066 [28], are presented. Concluding this Section, concerns 

that limit the consolidation of secure IoT ecosystems, according to ENISA in [29], are discussed.    

2.2.1 An Overview  

The Internet of Things (IoT) is the latest development in the long and continuing revolution of 

computing and communications [30]. Its size, ubiquity, and influence on everyday lives, business, 

and government dwarf any technical advance that has gone before. 

The Internet of Things (IoT) is a term that refers to the expanding interconnection of smart devices, 

ranging from appliances to tiny sensors [30]. A dominant theme is the embedding of short-range 

mobile transceivers into a wide array of gadgets and everyday items, enabling new forms of 

communication between people and things, and between things themselves. The Internet now 

supports the interconnection of billions of industrial and personal objects, usually through cloud 

systems. The objects deliver sensor information, act on their environment, and in some cases modify 

themselves, to create overall management of a larger system, such as a factory or city [30]. 

The IoT is primarily driven by deeply embedded devices [30]. These devices are low-bandwidth, low-

repetition data capture, and low-bandwidth data-usage appliances that communicate with each 

other and provide data via user interfaces. Embedded appliances, such as high-resolution video 

security cameras, video VoIP phones, and a handful of others, require high bandwidth streaming 

capabilities. Yet countless products simply require packets of data to be intermittently delivered. 
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 2.2.1.1 Evolution 

With reference to the end systems supported, the Internet has gone through roughly four 

generations of deployment culminating in the IoT [30]: 

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought as IT devices 

by enterprise IT people, primarily using wired connectivity. 

2. Operational technology (OT): Machines/appliances with embedded IT built by non-IT 

companies, such as medical machinery, SCADA (supervisory control and data acquisition), 

process control, and kiosks, bought as appliances by enterprise OT people, primarily using 

wired connectivity. 

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT devices by 

consumers (employees) exclusively using wireless connectivity and often multiple forms of 

wireless connectivity. 

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT, and OT 

people exclusively using wireless connectivity, generally of a single form, as part of larger 

systems. The fourth generation is usually thought of as the IoT, and which is marked by using 

billions of embedded devices. 

2.2.1.2 Useful Definitions 

Before providing the fundamental characteristics, high-level requirements and ITU reference of the 

IoT, attention must be drawn to some basic IoT-related definitions provided by ITU-T Y.2060 

(06/2012) [31] in order to establish good understanding:  

• Device: With regard to the IoT, this comprises a piece of equipment enabled with obligatory 

communication capabilities and other optional capabilities such as sensing, actuation, data 

capture, data storage and data processing capabilities.  

• Internet of Things: A global information infrastructure that supports advanced services by 

interconnecting physical and/or virtual Things based on existing and/or evolving 

interoperable technologies. In particular, an IoT enables services for identification, data 

capture, processing, and communication to a wide variety of applications whilst ensuring 

security and privacy requirements. 

• Thing: An object inside the IoT system enabled with capabilities of being identified and 

integrated into communication systems. The thing might be physical or virtual. Physical 

Thing is an object of the physical world enabled with capabilities of being sensed, actuated, 

and connected to other Things and /or systems (e.g., industrial robots, electrical equipment 

etc.). On the other hand, Virtual Thing is an object in the information world enabled with 

capabilities of being stored, processed and accessed (e.g., multimedia content, application 

software etc.).  

2.2.1.3 Concept of IoT 

The Internet of things (IoT) can be perceived as a far-reaching vision with technological and societal 

implications [31]. IoT has become a very popular topic of Research and Innovation mainly due to the 

ubiquitous transformation of computing. Devices have come to be “smart” enabled with capabilities 

to sense, communicate in a pervasive way and interact with their environment making possible a 

wide range of useful applications and solutions to the humanity such as Health, Transportation, 

Agriculture, Home and Industrial Automation, Retail and many more. The 2005 ITU Internet Report 
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[32] was the first to add a 3rd dimension to the legacy “ANY PLACE” and “ANY TIME” communication: 

the “ANY THING” communication, as illustrated in Figure 2.1. This addition changed the way we used 

to perceive the word “telecommunication” to communication between everything rather than 

communication between individuals only. This implied an expected exponential growth of “smart” 

interconnected devices leading to network connections which should be facilitated by powerful 

networks [33].  

 

Figure 2.1. The new Dimension of IoT. (Source: [32]) 

To ensure connectivity and interoperability, it important to establish a common accepted reference 

IoT architecture upon which all IoT applications would be based. Towards this direction, the 

International Telecommunications Union (ITU) has started an effort to standardize the functional 

architecture model for IoT providing a 3-layer architecture in 2012 [31]. In the following, based on 

[31], we present the fundamental characteristics of IoT, its high-level requirements, the IoT 

reference model proposed by ITU, fundamentals on IoT security, and finally some baseline security 

recommendations provided by ENISA [34]. 

2.2.2 Fundamental Characteristics and High-Level Requirements of the IoT 

2.2.2.1 Fundamental Characteristics of the IoT 

In [31], ITU-T has also identified the fundamental characteristics of an IoT system. According to their 

findings, those characteristics are the following: 

• Heterogeneity: refers to the various heterogeneous IoT devices that comprise an IoT 

network. These devices although they have very different hardware and networking 

characteristics, they get connected to each other and interact with other IoT devices and/or 

platforms on various types of networks.  

• Interconnectivity: refers to the fact that any IoT device is enabled with capabilities to 

interconnect/be interconnected with the global Information and Communication 

Infrastructure. 
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• Enormous scale: refers to the number of devices required to be interconnected and 

managed is significantly larger in an IoT environment. This practically means that the 

communication initialized by devices is much higher than the one that is initialized by 

humans. Even more important is the management and the analysis of the data generated. 

This relates to semantics of data, as well as efficient data handling. 

• Things-related services: The IoT provisions services related to the connected “things” within 

their constraints such as privacy protections and semantic consistency between physical 

things and their associated virtual things. To provide these thing-related services within the 

constraints of things requires that both the underlying technologies and the physical and 

information world change.  

• Dynamic Changes: While roaming and interacting in an IoT system, the state of devices 

dynamically change (e.g., get connected or disconnected, sleeping and waking up). Besides, 

the context of devices dynamically changes (e.g., location speed). Additionally, the number 

of interconnected devices changes dynamically as well within IoT systems.  

2.2.2.2 High-level Requirements 

In [31], ITU-T has provided a set of high-level IoT System Requirements for the development of an 

IoT Reference Model based on the fundamental characteristics of an IoT system identified above. 

According to their findings, those requirements are the following: 

• Identification-based connectivity: refers to capabilities that enable the smart “Things” to be 

connected to the IoT networks based on their identifiers. This includes a unified processing 

of identifiers which might be heterogeneous. 

• Interoperability: needs to be ensured within IoT networks to support a variety of 

information and services given the fact that IoT networks are highly heterogeneous and 

distributed systems. 

• Autonomic services provisioning: refers to specific operations of the IoT network 

infrastructure that will enable IoT services to be provided by automatically capturing, 

communicating and processing of the data of the “Things” according to the rules configured 

by the operators and/or configured by the subscribers. Autonomic services may depend on 

automatic data fusion and data mining techniques.  

• Automatic Networking: refers to specific operations of the IoT network infrastructure that 

will enable automatic networking including self-management, self-configuration, self-

healing, self-optimization, and self-protection for supporting and facilitating adaptation in 

different application domains, different communication environments and large number and 

types of devices.  

• Location-based capabilities: Localization is a key enabling technology in IoT considering that 

location-based services must be supported. Towards this direction, smart Things should be 

enabled with capabilities to track their position to facilitate the provision of services which 

depend on their location. Attention must be drawn to the fact that, nowadays, location-

based communication and services are highly restricted by Regulations and Laws and thus, 

when addressing this requirement, we should keep in mind that we need to comply with 

them. 

• Privacy protection: Data acquired by “Things” may contain sensitive private information of 

the consequent users. It is very important that privacy concerns should comply with the 
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relevant established privacy Regulations and Laws and privacy protection to be taken into 

consideration during all processes related to data such as data transmission, data 

aggregation, data storage, data mining and data processing while, at the same time, not 

setting a barrier to data source authentication.  

• Security: refers to the necessity to integrate security policy and measures related to the 

things and their communication in an IoT framework. This is mainly because the capabilities 

of Things to connect at any time, any place and any (other) thing introduces significant 

security threats against CIA (Confidentiality, Integrity and Authenticity) for both data and 

services within IoT networks. Therefore, security comprises an important requirement that 

needs be addressed in advance in order for the emerging IoT applications to gain the trust of 

all involved stakeholders and reach their full potential in the 5G market. 

• High quality and highly secure human body related services: refers to the requirement of 

guaranteeing high data quality, data accuracy and data security for data derived 

automatically or through human intervention for particular services that are based on the 

capturing, communicating, and processing of data related to human static features and 

dynamic behaviour with or without human intervention.  

• Manageability: generally, the applications in an IoT system have to work automatically and 

without or insignificant human intervention or participation. Towards this direction, there is 

the necessity for the whole operation process to be easily manageable by the relevant 

entities in order to ensure normal network operations without significant delays.  

• Plug and Play: refers to plug and play capabilities of IoT systems in order to enable or 

facilitate on-the-fly generation, composition and acquisition of semantic-based 

configurations to seamlessly integrate an internetwork of things with the respective 

applications and efficiently respond to these applications’ requirements.   

2.2.3 IoT Architecture 

The three-layer IoT architecture, shown in Figure 2.2, is the typical IoT architecture consisting of 

three main layers [1], [35]: 1) perception layer; 2) network layer; and 3) application layer, which are 

further described below. In this PhD work, the simulated scenarios in the Cooja simulator are 

restricted only to the perception layer of the 3-layer IoT architecture.  



 

14 
 

 
Figure 2.2. Three-layer IoT Architecture. 

Perception Layer: This layer consists of devices (i.e., sensors) that enable the perception of their 

environment and thus, it can also be perceived as the Device Layer in the ITU-T reference model 

[31].  The Perception Layer can be considered as an analogue to the senses or nerve endings of a 

human being such as the eyes, ears, nose, skin, etc. In particular, the perception layer includes 

sensing devices such as thermometers, humidity sensors, and medical sensors [36], [37], [38], [39] 

that measure and gather information about different parameters or conditions in their surrounding 

environment at a Gateway, and send it, through the Network Layer, to the Application Layer where 

it is processed and stored. In addition to its sensing capabilities, this layer also includes devices (i.e., 

actuators) which are responsible to perform actions (e.g., control commands) based on the decisions 

taken at the Application Layer.  

Network Layer: It is the transmission layer and its main function is to to receive the data, gathered 

by the Perception Layer, through a Gateway, and determine the routes so as to transmit them to the 

Application Layer through integrated networks. On the other hand, the Network Layer is responsible 

to transmit the required actions (e.g., control commands) determined at the Application Layer to the 

actuators in the Perception Layer, through a Gateway. The Network Layer might be implemented 

using the current or the evolving network and mobile technologies such as IEEE802.11 standards, 

4G, 5G, Bluetooth, Zigbee, and also numerous types of networking and data collection protocols 

such as MQTT, TCP/IP etc [39], [40], [41], [42]. In addition to its capabilities for connectivity and 

networking, this layer includes management operation for the seamless and flawless operation of 

the integrated IoT systems. 

Application Layer: This layer is in charge of delivering IoT application services to the 

users/subscribers. To do this, it utilizes the gathered context from the layers below to deliver 

intelligent applications such as smart-home, e-health, smart-transport etc. to the end users [43], 

[44], [45], [46], [47]. This layer comprises the final goal of the IoT system consolidating inputs from 

the underlying technologies to offer useful and user-friendly applications to the end users. It 

therefore mostly includes intelligent software development functions. It can be seen as the means to 

converge between the social IoT needs and the industrial technology in such a way as to have a 

broad impact on the global or local economic or social development. 
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2.2.3.1 Device and Gateway Capabilities of IoT networks 

In general, the leading purpose of IoT is to connect objects (e.g., physical things, virtual things etc.) 

into the IoT network, and to measure, gather and handle the information provided by these objects 

through IoT devices of the IoT edge network (i.e., perception layer) that transmit the gathered 

information to the next layer (i.e., network layer) of the IoT-based smart system via domain 

interfaces [48]. To achieve that, IoT networks are enabled with capabilities that logically can be 

classified into two main categories [31]: i) device capabilities that mainly include the direct 

interaction with the communication network, indirect interaction with the communication network, 

ad-hoc networking, and sleeping and waking-up capabilities, and (ii) gateway capabilities that 

include multiple interfaces support and protocol conversion as there are generally two situations 

where protocol conversion is required. The first situation is when communications at the device 

layer use different device layer protocols, such as Bluetooth technology protocols and ZigBee 

technology protocols. While the second one is when communications involve two different layers 

(i.e., perception/device layer and network layer) and different protocols are utilized at each layer 

(e.g., a Bluetooth technology protocol at the perception/device layer and a 4G/5G technology 

protocol at the network layer) [31]. 

 

2.2.4 Security Attacks in the IoT Network – Perception Layer Environment 

Security on IoT network – Perception Layer is a significant challenge due to the heterogeneity and 

vast number of its IoT devices and connections [3], [6], [49], [50], [51]. As the main purpose of the 

IoT network is to gather data, attackers mainly target to forge/steal transmitted/collected IoT data, 

damage perception IoT devices, and make the whole IoT network or specific IoT nodes unavailable, 

as presented below. 

2.2.4.1 Sinkhole attacks 

In this type of attacks, a compromised IoT node (i.e., IoT gateway) in the Perception Layer proclaims 

very appealing false capabilities of power, computation and communication (e.g., shortest route) [1] 

so that nearby nodes (i.e., adjacent IoT sensors) will choose it as the forwarding node in the routing 

process due to its very attractive capabilities. As a consequence, the compromised IoT node can 

increase the amount of obtained IoT data that in turn are dropped or modified before they are 

delivered to the Application Layer system via the Network Layer. Therefore, a sinkhole attack can 

not only compromise the confidentiality of the IoT data but also can constitute an initial step to 

launch additional attacks such as DoS/DDoS attacks [1], [51], [52]. 

2.2.4.2 Node capture attacks 

In this type of attack, the adversary is able to extract important information about the captured 

node, such as the group communication key, radio key, etc. Additionally, the adversary can copy the 

important information related to the captured node to a malicious node, and afterwards fake the 

malicious node as a legitimate node to connect to the IoT network (i.e., Perception Layer). This type 

of attack is also known as node cloning/replication attack. This attack may lead to compromising the 

security of the complete IoT-based system [1], [53].  

2.2.4.3 Malicious code injection attacks 

An attacker can take control of an IoT node or device in the Perception Layer by exploiting its 

security vulnerabilities in software and hardware and injecting malicious code into its memory. 

Afterwards, using the malicious code, the attacker can force the node or device to perform 

unintended operations. For example, the infected IoT node(s) or device(s) can be used as a bot(s) to 
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launch further attacks (e.g., DoS, DDoS) against other devices or nodes within the Perception Layer 

or even against the other Layers. In addition, the attacker can use the injected malicious code in the 

infected device or node to get access into the IoT-based  system and/or get full control of the system 

[1], [6], [54]. 

2.2.4.4 False data injection attacks 

After capturing an IoT node or device in the Perception Layer, the adversary can inject false data in 

place of benign data measured by the captured IoT node or device and transmit the false data to the 

Application Layer via the Network Layer. Thereafter, receiving the false data, the Application Layer 

may provide wrong services, which further negatively impacts the effectiveness of IoT-based system 

relying on the Perception Layer [1], [55].  

2.2.4.5 Replay attacks 

In the Perception Layer, the attacker can use a malicious IoT node or device to transmit to the 

destination host (i.e., IoT gateway) with legitimate identification information, already received by 

the destination host, so that the malicious node or device can become a trusted node/device to the 

destination host. Replay attacks are commonly launched in authentication process to destroy the 

validity of certification [1].  

2.2.4.6 Eavesdropping 

As the IoT nodes and devices in Perception Layer communicate via wireless networks, an attacker 

(i.e., eavesdropper) can retrieve sensitive IoT data by overhearing the wireless transmission. For 

instance, an adversary within the Perception Layer can eavesdrop exchanged information by tracking 

wireless communications and reading the contents of the transmitted packages. The eavesdropper 

can passively intercept the wireless communication between a sensor (e.g., environment industrial 

sensors or sensors on the machine resources) and the IoT gateway, and extract confidential data 

(e.g., through traffic analysis) in order to maliciously use them [1], [56], [57].  

2.2.4.7 Sleep deprivation attacks or Denial of Sleep attacks 

These attacks target to drain the battery of the resource constrained IoT nodes of the Perception 

Layer. In principle, the IoT nodes in the Perception Layer are usually programmed to follow a sleep 

routine when they are inactive in order to reduce the power consumption and extend their life cycle. 

However, an adversary may break the programmed sleep routines and keep the IoT nodes 

continuously active until they are shut down due to a drained battery. Attackers can achieve this by 

running infinite loops in these resources using malicious code or by artificially increasing their power 

consumption [1], [3], [58]. 

2.2.4.8 Sybil attacks 

In a sybil attack, a malicious or sybil node or device can illegitimately claim multiple identities, 

allowing it to impersonate them within the Perception Layer. For instance, the malicious node can 

achieve to connect with several other devices in order to maximize its influence and even deceive 

the complete system to draw incorrect conclusions[1], [59], [60]. 

2.2.4.9 Blackhole attacks 

In a blackhole attack, the intention of the attacker is to create an artificial packet loss in the 

Perception Layer. To achieve that, a compromised IoT node drops the received packets that have to 

be routed to other IoT nodes [61]. This attack can be very damaging when combined with a sinkhole 

attack causing the loss of a large part of the traffic. If the compromised node is located at a strategic 

position in the network it can isolate several nodes [62], [63].     
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2.2.4.10 Denial of Service (DoS) attacks 

The main target of these attacks is to deplete resources of the Perception Layer in order to make the 

whole IoT network or specific nodes or devices (e.g., IoT gateway) unavailable. For instance, 

jamming attacks are a type of DoS attacks where an attacker transmits a high-range signal to 

overload the communication channel between two communicating entities and disrupt their 

communication. Within the Perception Layer, jamming attacks can disrupt the communication 

between the IoT sensors and the Gateway in order to prevent IoT data from being transmitted to the 

Gateway, leading to malfunctions in the provided services to the authorized users. Jamming attacks 

can be performed by passively listening to the wireless medium so as to broadcast on the same 

frequency band as the legitimate transmitting signal. Moreover, a DoS attack can be carried out 

within the Perception Layer by a compromised IoT node flooding the Gateway with a lot of 

transmitted data/requests (e.g., UDP packets) and render it unavailable or disrupt its normal 

operations [1], [35], [64], [65]. 

 

2.2.5 IoT Security and Privacy Requirements 

According to ITU-T Recommendation Y.2066 [66], a list of security and privacy protection 

requirements for IoT is provided. The requirements refer to the functional requirements during 

capturing, storing, transferring, aggregating, and processing the data of things, as well as to the 

provision of services which involve things. These requirements are related to all the IoT actors. The 

requirements are the following: 

• Communication security:  Secure, trusted, and privacy protected communication capability 

is required so that unauthorized access to the content of data can be prohibited, data 

integrity can be guaranteed, and privacy-related content of data can be protected during 

data transmission or transfer in IoT. 

• Data management security:  Secure, trusted, and privacy protected data management 

capability is required so that unauthorized access to the content of data can be forbidden, 

data integrity can be guaranteed, and privacy-related content of data can be secured when 

storing or processing data in IoT. 

• Service provision security:  Secure, trusted, and privacy protected service provision 

capability is required so that unauthorized access to service and illicit service provision can 

be forbidden and privacy information related to IoT users can be protected. 

• Integration of security policies and techniques:  The ability to integrate different security 

policies and techniques is required in order to ensure a consistent security control over the 

variety of devices and user networks in IoT. 

• Mutual authentication and authorization:  Before a device (or an IoT user) can access the 

IoT, mutual authentication and authorisation between the device (or the IoT user) and IoT is 

essential to be performed based on predefined security policies. 

• Security audit:  Security audit is necessary to be supported in IoT. Any data access or 

attempt to access IoT applications are required to be fully transparent, traceable and 

reproducible based on appropriate regulation and laws. In particular, IoT is required to 

support security audit for data transmission, storage, processing, and application access. 
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2.2.6 Security Requirements of the Gateway 

A key element in achieving security in an IoT deployment is the Gateway. ITU-T Recommendation 

Y.2067 in [28] provides specific security requirements that the Gateway should implement, some of 

which are illustrated in Figure 2.3. 

 
Figure 2.3. IoT Gateway Security Functions. 

 

In particular, according to [28], the Gateway is required to: 

• support identification of each access to the connected devices. 

• support authentication with devices. Based on application requirements and device 

capabilities, the Gateway is required to support mutual or one-way authentication with 

devices.  

• support mutual authentication with applications. 

• support the security of the data that are stored in devices and the Gateway, or 

transferred between the Gateway and devices, or transferred between the Gateway and 

applications – the Gateway is required to support the security of these data based on 

security levels. 

• support mechanisms to protect confidentiality for devices and the Gateway. 

2.2.6 Security Considerations 

As time passes, we are becoming increasingly dependent on smart, interconnected devices for a lot 

of tasks in our everyday lives. Nevertheless, the same devices or “things” can be the target of attacks 

and intrusions that can cause malfunction of devices and endanger our personal privacy and public 

safety. Thus, it is evident that security is one of the main challenges that should be seriously 

considered together with safety in IoT. These two matters are always closely connected with the 

physical world. Furthermore, one more issue concerns the administration of IoT devices, meaning 

who will be the supervisor and manage the devices. The difficulty of the administration task can be 

better understood, considering the inherent complexity and diversity of the IoT ecosystem and its 

scalability issues [29]. 

There are a lot of different concerns that limit the consolidation of secure IoT ecosystems. Below, 

some of these concerns are presented [29]: 

• Very large attack surface: IoT-related risks and threats are many in number and are 

constantly changing. Also, IoT devices and services affect citizens’ health, safety and privacy 

since devices gather, exchange and process data from various sources sometimes including 
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sensitive data. Because of the aforementioned, the attack range related to IoT is extremely 

wide. 

• Limited device resources: Technical constraints in IoT means that conventional security 

practices cannot be applied as they are, but significant reengineering will be required. A 

characteristic of a majority of IoT devices is their inherent limited capabilities as far as 

processing, storage and power are concerned. Therefore, advanced security controls cannot 

be effectively implemented. 

• Complex ecosystem: One more reason that security concerns regarding IoT are enhanced is 

that IoT is often depicted as a collection of independent devices. In reality, it should be 

considered as a large and diverse ecosystem including devices, communications, interfaces 

and people. 

• Fragmentation of standards and regulations: IoT security concerns are additionally 

complicated due to the fact that standards and regulations about IoT security measures are 

slowly adopted, and simultaneously new technologies are constantly emerging. 

• Widespread deployment: Not only commercial IoT applications, but also Critical 

Infrastructures (Cis) have recently started to migrate toward Smart ones. This is achieved by 

implementing IoT on top of legacy infrastructures. 

• Security integration: The potentially opposing viewpoints and requirements from all 

involved stakeholders complicate matters relating to security integration. An instance of that 

would be IoT systems with different authentication methods, which should be able to 

communicate and operate with each other seamlessly.  

• Safety aspects: The presence of actuators or other devices which operate on the physical 

world turns security threats into safety threats in the IoT context.  

• Low cost: As IoT and its advanced functionalities are employed in several sectors, the 

potential for considerable cost savings is further highlighted. The reduced costs can be 

achieved by implementing features such as data flows, advanced monitoring, and 

integration. However, the low cost of IoT devices and systems can become an important 

obstacle in implementing security solutions. Manufacturers tend to care more about 

decreasing production costs. As a result, security features become more limited and product 

security possibly cannot protect against specific IoT attacks. 

• Lack of expertise: Since the IoT domain is a comparatively new one, not a lot of people 

possess the suitable skillset and experience in IoT cybersecurity. 

• Security updates: It is extremely challenging to apply security updates to IoT systems. IoT 

User interfaces, in their majority, do not allow traditional update mechanisms. Securing of 

those mechanisms, especially considering Over-The-Air updates, is in itself a really difficult 

task. 

• Insecure programming: The “time to market” pressure for products of the IoT domain is 

higher compared to other domains and thus, limitations are imposed on the efforts to 

develop security and privacy by design. For this reason, and sometimes also due to budget 

issues, more emphasis is directed towards the functionality of the IoT products rather than 

their integrated security.  
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• Unclear liabilities: The assignment of liabilities is unclear. Therefore, in case of security 

incidents, many ambiguities and conflicts can be raised, especially considering the large and 

complex supply chain involved in IoT. On top of that, the challenge of how to manage 

security if one single component was shared by several parties remains open. Last but not 

least, enforcing liability is another major challenge.  
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2.3 Machine Learning Algorithms for Anomaly-based Intrusion Detection in 

IoT Networks 

In this Section, we review the most popular ML algorithms used in IoT Anomaly-Based Intrusion 

Detection Systems (AIDS). In particular, the most commonly used algorithms in the literature are the 

following: naïve Bayes (NB), decision tree (DT), random forest (RF), linear regression (LR), logistic 

regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN). In [67], the authors 

stated that the aforementioned ML algorithms have been commonly used in the design and 

development of various efficient and effective AIDS for IoT. On top of that, in [14], the authors also 

highlighted that k-nearest neighbor (KNN), logistics regression (LR), support vector machines (SVM), 

decision tree (DT), random forest (RF), and naïve Bayes (NB) constitute suitable ML algorithms for 

the design and development of efficient and effective AIDS for IoT. At the end of the section, we 

provide Table 2.1 with an overview of all ML algorithms presented in this section, along with their 

main advantages and drawbacks when applied in the design and development of anomaly detection 

systems for IoT. 

2.3.1 Naïve Bayes (NB) 

Naive Bayes (NB) is a supervised ML algorithm that operates by applying Bayes’ theorem to calculate 

the probability of occurrence of an event (i.e., normal or abnormal [68]) based on previous 

observations of similar events with the “naive” assumption of conditional independence between 

every pair of features given the value of the class variable in order to simplify the process of 

modelling [69]. Regardless this controversial assumption, it is anticipated that Naïve Bayes is a fast 

classifier and has a great performance in practice for many domains. The NB classifier is a commonly 

employed supervised classifier with main advantages the ease of implementation and its simplicity.  

Given events Y and X with 𝑃(𝑋) ≠ 0, Bayes’ theorem states the following: 

𝑃(𝑌|𝑋) =
𝑃(𝑌)𝑃(𝑋|𝑌)

𝑃(𝑋)
 

where,  

𝑃(𝑌|𝑋) represents the conditional probability of Y occurring given that X is true, 

𝑃(𝑋|𝑌) represents the conditional probability of X occurring given that Y is true, 

𝑃(𝑌) represents the probability of Y occurring without any condition, and 

𝑃(𝑋) represents the probability of X occurring without any condition. 

Nevertheless, in a real case classification problem, there can be multiple X variables depending on 

the features of the training data. Hence, in the situation, Bayes Theorem is extended to Naïve Bayes 

considering that features are independent: 

𝑃(𝑌|𝑋1, ⋯ , 𝑋𝑛) =
𝑃(𝑌)𝑃(𝑋1, ⋯ , 𝑋𝑛|𝑌)

𝑃(𝑋1, ⋯ , 𝑋𝑛)
 

(2.1) 

Based on the “naive” assumption of class-conditional independence, the features are conditionally 

independent of one another given the class, thus:   

𝑃(𝑋1, ⋯ , 𝑋𝑛|𝑌) = 𝑃(𝑋1|𝑌) ⋯ 𝑃(𝑋𝑛|𝑌) = ∏ 𝑃(𝑋𝑖|𝑌)
𝑛

𝑖=1
 

(2.2) 
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Based on (2.1) and (2.2), we have: 

𝑃(𝑌|𝑋1, ⋯ , 𝑋𝑛) =
𝑃(𝑌) ∏ 𝑃(𝑋𝑖|𝑌)𝑛

𝑖=1

𝑃(𝑋1, ⋯ , 𝑋𝑛)
 

(2.3) 

Since 𝑃(𝑋1, ⋯ , 𝑋𝑛) is constant given the input, we can use the following classification rule: 

𝑃(𝑌|𝑋1, ⋯ , 𝑋𝑛) ∝ 𝑃(𝑌) ∏ 𝑃(𝑋𝑖|𝑌)

𝑛

𝑖=1

 

�̂� = 𝑎𝑟𝑔 max
𝑌

𝑃(𝑌) ∏ 𝑃(𝑋𝑖|𝑌)

𝑛

𝑖=1

 

In addition, we can use Maximum A Posteriori (MAP) estimation to estimate 𝑃(𝑌) and 𝑃(𝑋𝑖|𝑌); the 

former is then the relative frequency of class Y in the training set. This was, computing posterior 

probability, the algorithm classifies new unlabeled instances as normal or abnormal. Another 

advantage of NB is that in both binary and multi-label classification problems it does not require 

many samples for its proper running during its training phase. However, its feature independence 

assumption might negatively impact its accuracy as the NB classifier fails to perceive 

interdependencies among the features of a dataset [67]. 

It is worthwhile to highlight that there are different types of NB classifiers mainly based on the 

assumptions they make regarding the distribution of 𝑃(𝑋𝑖|𝑌). In general, these assumptions to 

define the likelihood of the features are strongly depending on the type of the data (e.g., categorical 

data, multinomially distributed data etc.), as well as on the application (e.g., text classification, 

binary classification, large scale classification etc.). For instance, it implements Bernoulli NB for data 

that are distributed based on multivariate Bernoulli distributions; i.e., there may be multiple 

features on a given training dataset, however each one is assumed to be a binary-valued (i.e., 

Bernoulli, Boolean) variable. 

2.3.2 Decision Tree (DT) 

A decision tree (DT) is a supervised ML algorithm used for classification. The main target of DTs 

classifier is to extract features of the training dataset and then organize an ordered tree based on 

the value of these features [69]. In a DT, a node corresponds to a feature of the training dataset and 

the branches of that node correspond to the values of that feature. The construction of the ordered 

tree starts from the origin node of the tree which is known as the root node. The main challenge of 

DTs algorithm is to select the feature, which will be the root node of the tree, in order to optimally 

split up the training dataset into subsets, one for every value of the selected feature. Afterwards, the 

process might be repeated recursively for each branch, using only those training instances that 

actually reach the branch (i.e., they have the feature value of the particular branch). If at any time all 

training instances at a node have the same classification, then the development of that part of the 

tree is stopped, and this class is considered the terminal node (detect or not an anomaly in the 

system). In order to determine which feature to split on in order to create the ordered tree, various 

metrics, such as Gini Index, Entropy and Information Gain, are utilized for identification of the 

feature that will be considered the root node, which will optimally divide the training dataset [67], 

[69], and for identification of which feature to split on. An example of a DT classifier is illustrated in 

Figure 2.4. 
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Figure 2.4. Generic Structure of Decision Tree Model. 

In [67], the authors discuss that DTs algorithms carry out two different processes: the induction 

process and the inference process [70]. During the induction process, the algorithm combines 

unoccupied nodes and branches to construct the DT. Initially, the optimal feature is selected as the 

root node of the DT based on the Gini Index, Entropy and Information Gain or other measures. Then, 

in each subsequent step, the induction process continues by selecting more features as tree nodes 

constructing that way the ordered tree. The main idea during the selection of the features is to keep 

to the minimum the overlapping among the different classes of the training dataset. In the end, the 

ordered tree is constructed by identifying and classifying the leaves of each sub-DT according to 

their corresponding classes. 

On the other hand, the inference process involves the classification of new unknown instances and 

thus, occurs in a constructed DT. During the inference process, the algorithm, through an iterative 

comparison with the created DT, classifies unknown instances. This process is completed when a 

matching leaf node is found, and under this node the unknown instance is classified [67]. The 

authors in [71] performed experiments using the Gini index as a measure to select both the root 

node of the DT and the rest of the tree nodes. In addition, they set to 10 the minimum number of 

samples per leaf node in order to avoid overfitting and to end up with a pruned tree [71], [72]. 

2.3.3 Linear Regression (LR) 

Linear Regression (LR) is a statistical supervised ML algorithm that functions by predicting the 

quantitative value of a variable forming a linear relationship with one or more independent features 

[69], as it is illustrated in Figure 2.5. In order to build a LR model, it is required to take into 

consideration the following assumptions [69]: 

• Every independent feature in the data should be Normally Distributed. This can be examined 

using visualization techniques such as histogram, Q-Q plot, etc. 

• The independent variables should have a linear relationship with the dependent variables. 

This can be also examined using visualization techniques such as Scatter plot, pairplot, 

Heatmap etc. in order to visualize each feature of the data in one particular plot. 

• The variance of the residual should remain consistent throughout the data. This property is 

also referred to as homoscedasticity and can be confirmed with the residual vs fitted plot.  

• The mean of the residual should be zero. Residual is the difference between the observed 

and predicted y-values and thus, residuals virtually zero show that the model is working well. 
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• Finally, there should be little or no autocorrelation in the data. Autocorrelation appears 

when the residuals are not independent with each other. This typically can be examined in 

time series analysis plotting the ACF plot or performing Durbin-Watson test. Generally, when 

performing Durbin-Watson test: 

o if the output is 2, there is no autocorrelation; 

o if the output is a value less than 2, the autocorrelation is positive; and  

o if the output is a value greater than 2 and less than 4, the autocorrelation is 

negative.  

There are 2 different types of linear regression models. The very simplest type of linear regression is 

when there is a single predictor variable x and a single response variable y, also referred to as simple 

linear regression. The extension to multiple predictor variables (i.e., X1, X2,.. Xi,) is known as 

multiple linear regression. In fact, multiple linear regression is a generalization of simple linear 

regression when there are more than one independent variables. The basic models for simple and 

multiple linear regression are following: 

𝑦 = 𝑏0 + 𝑏1𝑥1  (2.4) 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2+. . +𝑏𝑖𝑥𝑖 + 𝜖  (2.5) 

where: 

𝑦: dependent variable 

𝑏0: constant 

𝑏1, 𝑏2, … , 𝑏𝑖: coefficients 

𝑥1, 𝑥2, … , 𝑥𝑖: independent variables 

 
Figure 2.5. Simple Linear Regression Model. 

2.3.4 Logistic Regression (LR) 

A logistic regression (LR) algorithm functions by estimating the probability of a particular instance to 

belong in a specific class and is commonly used in an effective and efficient manner in classification 

problems for spam filtering (e.g., in [73]) and intrusion detection (e.g., in [74]), as illustrated in Figure 
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2.6. Additionally, the authors, in [75], designed and implemented a security solution based on a LR 

algorithm and discussed that it is possible to secure an IoT-based production line against DDoS 

attacks by using ML algorithms and commonly available tools for network traffic analysis. 

 
Figure 2.6. Logistic Regression Model. 

The LR algorithm classifies new unknown instances utilizing a predetermined probability threshold. 

For example, in the case of binary classification problem (i.e., normal or abnormal activity), a 

threshold of 50% would mean that an instance is normal if its estimated probability is less than 50%. 

If the estimated probability is greater than 50%, then the LR classifier will output that this is an 

attack instance. The LR algorithm operates estimating this probability utilizing the following 

equation: 

ℎ𝜃(𝑥)  =  𝜎(𝜃𝛵  ×  𝑥) (2.6) 

where:  

hθ is the hypothesis function, which outputs the estimated probability,  

x is the feature vector of the instance,  

θ is the model’s parameter,  

θT is the transpose of θ, and  

σ(.) is a sigmoid (i.e., logistic) function that defines the threshold.  

 

The equation of the sigmoid function σ(.) is the following: 

𝜎(𝑧)  =  
1

(1 + 𝑒(−𝑧))
 (2.7) 

𝑧 =  (𝜃𝛵  ×  𝑥) (2.8) 

It is worthwhile mentioning that the output of the sigmoid function is a value between 0 and 1. In 

particular, a number closer to 0 indicates an observation of a normal behaviour, whereas a number 
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closer to 1 indicates an observation of an abnormal behaviour, or in other words an attack 

observation. During the training phase, the LR model calculates the parameter θ. 

2.3.5 Support Vector Machine (SVM) 

The SVM classification algorithm operates by creating an optimal hyperplane in the feature space 

which accurately demarks the two or more different classes. Optimal hyperplane is considered the 

separating hyperplane which maximizes the distance – also referred to as ‘Margin’ - between the 

nearest training instances (i.e., from both classes, meaning from both sides of the hyperplane) and 

the hyperplane. In particular, a margin is considered to be good if the separation is larger for both 

classes, and points belonging to one class should not cross to another class. In the initialization of 

SVM algorithm, the algorithm plots x random hyperplanes along with the training data, as for 

instance it is shown in Figure 2.7 (i.e., 7a) where three hyperplanes, namely ‘A’, ‘B’ and ‘C’, have 

been considered. After that, SVM attempts to adjust the orientation of the hyperplanes in such a 

way that it homogeneously divides the given classes. In Figure 2.7 (i.e., 7b), we can observe that all 

three hyperplanes, namely ‘A’, ‘B’ and ‘C’, segregate the two classes (i.e., yellow and green circles 

that represent sample of normal and abnormal observations) well. The main challenge then is to 

decide which of all created hyperplanes is the most appropriate (i.e., optimal) hyperplane for the 

particular application with the given training instances. The answer to this is to select the hyperplane 

with the higher margin from the nearest training instances. In this way, SVM achieves higher degree 

of robustness as the chance of misclassification is lower. In the example in Figure 2.7b, the 

hyperplane ‘B’ is selected as the optimal hyperplane given that the margin for hyperplane ‘B’ is 

comparatively higher than both hyperplanes ‘A’ and ‘C’. Therefore, the hyperplane ‘B’ is considered 

as the optimal hyperplane [69].  

 
Figure 2.7. SVM model. 

The best use case for SVMs is when the classification problem relates to classes with large feature 

sets and fewer data instances [67]. In these cases, SVM appears to have many advantages. First of 

all, a SVM classifier is considered to be highly scalable, due to its simplicity during both training and 

operating phases. Furthermore, its main advantage in intrusion detections classification problems is 

that SMV classifier is able to efficiently operate tasks such as anomaly-based intrusion detection in 

real-time, including real-time learning. In addition, a SVM classifier does not require much storage or 
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memory to implement and does not requires many initialization parameters for each proper running 

[67]. As a result, due to their scalability and low requirements, SVMs appear to be suitable for use in 

IDSs that are implemented in a resource-constrained IoT system, and thus they require more 

lightweight solutions in order to operate in an effective and efficient manner. However, it is crucial 

to carefully consider and select the kernel function that the SVM algorithm will apply to optimally 

split the training data in the case that the data are not linearly separable. After finding the best 

kernel function to achieve a specific classification, its performance speed has always been a 

challenge [67]. The authors in [71], tested several functions and parameters in their SVM model for 

performing anomaly-based intrusion detection and in their experiments they selected an SVM 

classifier with a Gaussian radial basis function (RBF) kernel. 

2.3.6 K-Nearest Neighbor (KNN) 

The k-Nearest Neighbor (k-NN) classifier serves as an illustration of a non-parametric statistical 

approach and does not require any initial parameter for its proper working. The main idea of k-NN 

classifier is that it predicts the label of a new unclassified instance after observing the labels of the k 

closest training instances to this new instance (i.e., the k-nearest neighbors), and the majority class 

of the k closest training instances is assigned to the new instance. To achieve this, it determines the 

k closest training instances using a distance metric, and selects the dominant class label among them 

as the relevant class [69]. Generally, the Euclidean distance is typically used, while other options 

include Chebyshev, Manhattan, and Minkowski distances [69]. 

It is noteworthy that the choice of k - which defines the number of closest training instances (i.e., 

nearest neighbors) required to accurately classify the new instance - constitutes an important 

parameter that affects the overall performance of the classifier [69], [76], [77]. Nevertheless, the k 

can be determined experimentally, i.e., starting with k=1, we estimate the accuracy of the classifier, 

and the process is repeated increasing the number of the k-nearest neighbors used to predict the 

label of the new unclassified instance. Then, the k-value that achieves the higher accuracy may be 

selected. In general, the larger the number of training instances is, the larger the value of k will be.  

In Figure 2.8, we can observe that the yellow circles depict the instances of observations of normal 

behavior, the green squares depict the instances of observations of abnormal behavior, or in other 

words an attack observation, while the new unclassified instance is represented by a dark red 

square. This new unclassified instance will be classified under a known class (i.e., normal or 

abnormal behaviour) based on the majority class of the k closest training instances. As mentioned 

previously, k is the number of nearest neighbors used for the classification of the new instance and it 

is worthwhile to highlight that the classification might be different depending on the chosen value of 

k [69]. 
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Figure 2.8. k-NN Classifier. 

2.3.7 Ensemble Learning (EL) 

Ensemble Learning (EL) functions by combining the classification results of several classification 

algorithms and then generating a majority vote out for the final classification [67], as shown in 

Figure 2.9. This way, EL builds on the strong points of the utilized classifiers and through this 

combination of various homogeneous/heterogeneous classifiers’ outputs significantly improves 

classification accuracy [78], [79]. In [80], the author showed that the accuracy of every ML 

classification algorithm strongly depends on the application as well as the associated data (i.e., 

training and testing data). Hence, there is not a single ML algorithm that can be described as “one 

size fits all solution” with high accuracy for various generalized applications. On the contrary, EL 

schemes which combine a variety of classification results derived from several classification 

algorithms might comprise an optimal solution for generalized applications as they appear to be best 

suited for maximizing accuracy through a reduction in variance and avoiding overfitting [67]. 

 
Figure 2.9. EL Classification. 
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Nevertheless, the high accuracy of EL classifiers has a result of high cost in terms of increased time 

and complexity, due to the use of multiple classifiers at the same time [81]. There are various studies 

in the literature that have examined the efficiency of EL for the intrusion detection problem [82], 

[83], [84]. Furthermore, there are research works on the feasibility of EL in resource-constrained 

environments such as IoT networks. For instance, in [85], the authors proposed a generalized 

application lightweight EL framework being proposed for online anomaly detection in IoT networks. 

On top of that, the authors in this study demonstrated that the proposed EL framework outputted 

better and more accurate results than each member classifier individually [85]. 

2.3.7.1 Random Forest (RF) 

A random forest (RF) is a supervised ensemble ML algorithm used for classification, regression and 

other tasks that functions by constructing a multitude of DTs at training time, as it can be seen in 

Figure 2.10. This way, it achieves error resistant classifications, while it is proved to be more 

accurate than simple DTs [67], [71], [72]. To do this, during the training phase, the algorithm 

constructs random DTs from the features of the training dataset and afterwards the model is trained 

to classify new unknown instances based on to majority voting of those DTs [67], [71], [72]. The DTs 

that constitute an RF classifier are trained in a different way compared to the simple DTs described 

in Section 2.3.2. In particular, the difference relies on the fact that the ruleset of a simple DT is 

created based on the given training dataset during the training phase, while in a RF ensemble ML 

model the various DTs are generated using randomly picked instances from the training dataset as 

an input [86]. 

 
Figure 2.10. Generic Structure of Random Forest Model. 
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According to [67], [71], [72], the inherent randomness during the training of a RF model outputs a 

more robust and accurate model, and on top of that, the output RF model appears to be more 

resistant to overfitting. Apart from that, it does not require proper feature selection, and thus it 

needs significantly less inputs for each proper running. In [87],  the authors showed that a RF 

classifier performs better, more accurately and efficiently detection of DDoS attacks in IoT networks 

rather than other classifications algorithms including the SVM, the KNN, and an artificial neural 

network (ANN) classifiers. The authors in [71] performed their experiments using the Gini index to 

construct the various DT components, setting to 10 the minimum number of samples per leaf node 

in order to avoid over fitting, as suggested in [72], demonstrating significant classification results. 

2.3.7.2 AdaBoost 

Adaptive Boosting or AdaBoost is a statistical classification meta-algorithm (i.e., it is not an ML 

algorithm by itself, but rather uses other (basic) algorithms to build a stronger one) and is the most 

widely used and studied for EL, with applications in numerous fields [69], [88]. AdaBoost can be 

applied in conjunction with many other types of learning algorithms in order to improve 

performance [89], [90]. The final output of the boosted classifier is represented by the weighted sum 

of the output of the several other learning algorithms/classifiers, as shown in Figure 2.11, also 

referred to as “weak learners”. AdaBoost is considered adaptive as the subsequent “weak learners” 

are tweaked in favor of those instances misclassified by previous classifiers [69], [88]. AdaBoost 

appears to be less susceptible to the overfitting problem than other learning algorithms, in 

particular, in classification problems [91]. It is important to highlight that although the individual 

learners might be weak in terms of performance, as long as their individual performance is slightly 

better than random guessing, then, the final model can be proven to converge to a strong learner. 

Attention must be drawn to the fact that every ML algorithm tends to suit better to particular 

problem types [88], [89], [90], [91]. On top of that, each ML algorithm typically has various 

parameters and configurations that need to be adjusted in order to achieve optimal performance on 

a certain dataset. 

 
Figure 2.11. An Example of AdaBoost Classifier. 

 

https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Meta-algorithm
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2.3.8 Conclusions 

A summary of the main advantages and drawbacks of the reviewed ML algorithms is given below in 

Table 2.1. 

ML Algorithm Advantages Drawbacks 

Naïve Bayes 

▪ Can be used in both binary and 

multi-class classification. 

▪ Simple to use. 

▪ Few samples required to train. 

▪ The assumption about features 

independence can lead to low 

classification accuracy. 

▪ “Zero frequency” problem. In the case 

where a class does not appear during 

training, it will be assigned a probability 

of zero. 

Decision Tree 

▪ Simple to use.  

▪ Performance is not different for 

linearly and non-linearly separated 

parameters. 

▪ Vulnerable to overfitting.  

▪ Unstable (i.e., small data variation may 

result in the construction of extremely 

different DTs). 

Linear 

Regression 

▪ Simple to use.  

▪ Computationally efficient.  

▪ Overfitting can be reduced by 

regularization. 

▪ Prone to underfitting.  

▪ Prone to noise and overfitting.  

▪ Sensitive to outliers.  

▪ Limited use due to several assumptions 

that LR takes into consideration for its 

running. 

Logistic  

Regression 

▪ Simple to use.  

▪ Easy to implement. 

▪ Difficult to perform classification in case 

of non-linearly separable classes. 

Support 

Vector  

Machine 

▪ Better performance in datasets 

with few classes and many 

instances per class.  

▪ Scalable.  

▪ Reduced storage requirements. 

▪ Finding the most appropriate kernel 

function is a challenge. 

K-Nearest 

Neighbor 

▪ Simple to use.  

▪ Easy to implement. 

▪ Difficult to find the optimal k.  

▪ The computational speed decreases as 

the number of the k variable, the 

number of data points, or the number of 

classes increases. 

Random 

Forest 

▪ Resistant to overfitting.  

▪ Feature selection is performed 

inherently.  

▪ Fewer inputs required. 

▪ Fast only in the case of a small number 

of trees.   

▪ May require large datasets. 

AdaBoost 

▪ Robust to overfitting.  

▪ Low computational complexity 

and error rates.  

Sensitive to noisy data and outliers. 

Table 2.1. Main advantages and drawbacks of the reviewed ML algorithms. 

 



 

32 
 

2.4 Evaluation Metrics 

Various metrics are used to evaluate the performance of ML algorithms based on testing datasets. In 

order to calculate the evaluation metrics, the first step is the calculation of the values of the 

confusion matrix. The confusion matrix is generated when a trained ML model is used to classify the 

instances of a testing dataset. The confusion matrix compares values regarding the actual labels of 

the instances of the testing dataset and the corresponding labels predicted by the ML model. Table 2 

shows the 2-by-2 confusion matrix regarding a classification problem with two classes (i.e., normal 

and attack). 

 
Predicted Label 

Positive (Attack) Negative (Normal) 

Actual Label 
Positive (Attack) True Positive (TP) False Negative (FN) 

Negative (Normal) False Positive (FP) True Negative (TN) 

Table 2.2  Confusion Matrix for Binary Classification Problems. 

The true positive (TP) and true negative (TN) relate to the correctly classified attack instances and 

normal instances, respectively. The false positive (FP) and false negative (FN) refer to the incorrectly 

classified normal instances and attacks instances, respectively. Based on these values, it is possible 

to compute several evaluation metrics, as shown in [67], [92], [93], [94]. In our case, the metrics of 

accuracy, precision, recall, and F1-score were used, and each metric is shortly presented below, 

along with its equation. 

• Accuracy: shows the overall success of the model by comparing the amount of the correctly 

classified attack and normal instances to the total amount of instances. 

Accuracy = (TP + TN)/(TP + TN + FP + FN) (9) 

• Precision: estimates the overall effectiveness of the model by calculating the percentage that an 

observation recognized as an attack is actually an attack observation. 

Precision = TP/(TP + FP) (10) 

• Recall: shows the overall success of the model by computing the percentage that an actual attack 

observation is correctly classified. 

Recall = TP/(TP + FN) (11) 

• F1-score: is calculated by the precision and recall metrics as their harmonious mean. It is a 

statistical function for estimating the accuracy of the model. As the precision and recall of a 

model approach the value of 100%, the F1-score and accuracy are maximized, and every instance 

is classified correctly. 

F1-score = 2 × (Recall × Precision)/(Recall + Precision) (12) 
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2.5 Datasets for Anomaly-based Intrusion Detection in IoT Networks 

In this Section, the following five of the most well-known existing datasets for training and 

evaluation of IoT AIDSs are reviewed: (i) the LWSNDR dataset [20], (ii) the dataset presented in [21] 

for classifying IoT devices using network traffic characteristics, (iii) the “Bot-IoT” dataset [22], (iv) the 

dataset presented in [23] for detecting DoS attacks on IoT devices using network traffic traces, and 

(v) the “TON_IoT Telemetry” dataset [14], which is the most recent and representative data-driven 

IoT/IIoT-based dataset [95]. 

2.5.1 LWSNDR Dataset 

The authors in [20] created two wireless sensor networks (WSNs) in order to serve as testbeds for 

the simulation of a single-hop sensor-data collection scenario and a multi-hop sensor-data collection 

scenario, respectively. In both scenarios, Crossbow TelosB motes were used as sensor nodes, and 

real humidity–temperature sensor data were collected.  

In the single-hop scenario, four motes are used as sensor nodes and one mote as the base station 

node. The four sensor nodes were split into two sets of two nodes, and the first set of nodes 

collected indoor data, whereas the other set of nodes collected outdoor data. Both sets of sensor 

nodes transmitted the gathered data to the base station node. In addition, anomalies were 

introduced to one sensor node in each set (i.e., indoor and outdoor) by utilizing a hot water kettle 

that alters both the temperature and the humidity simultaneously. 

In the multi-hop scenario, four motes are used as sensor nodes, two motes as router nodes, and one 

mote as the base station node. The router nodes exist in the testbed because the sensor nodes are 

placed at a distance from where they cannot directly transmit their data to the base station node. 

The sensor nodes and the router nodes are split in two sets. In each set, two sensor nodes are 

connected to one router node, whereas the router node connects to the base station node. The two 

sensor nodes collect humidity–temperature data and send these data to the router node, which 

then transmits the data to the base station node. The sensor nodes of the first set are responsible 

for gathering indoor sensor readings, whereas the sensor nodes of the other set collect outdoor 

sensor readings. Similar to the single-hop scenario, in the multi-hop scenario, anomalies were also 

introduced to one sensor node in each set (i.e., indoor and outdoor) using a hot water kettle, which 

leads to an increase in both the temperature and the humidity simultaneously. 

In both the single-hop and multi-hop scenarios, real labeled data were generated and were 

organized in a labelled dataset in order to be used for the purpose of evaluating anomaly detection 

algorithms. However, the produced dataset (i.e., “LWSNDR” dataset) contains only pure sensor 

telemetry data, and no information related to either the sensor behavior (e.g., energy consumption) 

or the network traffic flowing through the WSN is included. In addition, the given dataset does not 

include any specific attack scenarios, as also mentioned in [14]. Finally, the “LWSNDR” dataset was 

created in 2010 and cannot be easily considered as recent and representative regarding the current 

IoT devices or the attacks targeting them. 

2.5.2 A Dataset for Classifying IoT Devices Using Network Traffic Characteristics  

The authors in [21], designed and developed a robust framework that performs the classification of 

IoT devices separately, in addition to one class of non-IoT devices, with high accuracy, utilizing 

statistical attributes derived from network traffic characteristics. One of the authors’ contributions 

was the creation of a smart environment infrastructure that served as a testbed in order to gather 
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and synthesize traffic traces from several IoT devices. The smart environment contains a wide range 

of IoT devices (i.e., 28 unique IoT devices), non-IoT devices (e.g., smart phones, laptops) and a Wi-Fi 

access point (i.e., TP-Link access point). The Wi-Fi access point enables the IoT devices and non-IoT 

devices to communicate with the Internet servers via a gateway [21]. The authors considered the 

following types of IoT devices: cameras, controllers/hubs, energy management devices (e.g., lights, 

plugs, motion sensors), appliances, and health-monitors. 

Using the created smart environment, traffic traces were collected and synthesized for a period of 

six months. The traffic traces were collected using the “tcpdump” tool and were stored as “pcap” 

files on an external USB hard drive of 1 terabyte (TB) storage attached to the gateway. The captured 

IoT traffic traces comprise (a) traffic produced by the IoT devices without any human interaction 

(e.g., DNS, NTP), and (b) traffic produced because of the users’ interaction with the IoT devices (e.g., 

motion sensors, lightbulb color change upon user request). Next, the traffic traces were analyzed to 

gain insight on how to utilize them in order to perform classification of the IoT devices. The analysis 

of the authors showed that network traffic characteristics, such as activity cycles, port numbers, 

signaling patterns, and cipher suites, can be exploited in order to properly classify each IoT device. 

A subset of these traffic traces was made publicly available as a dataset in order to be used by the 

scientific community. However, these traffic traces were not generated based on a specific type of 

attack scenario, and, as a result, they are not representative regarding the behavior of IoT devices or 

the traffic of IoT networks when under attack. 

2.5.3 Bot-IoT Dataset  

The authors in [22] generated a dataset, named as the “Bot-IoT” dataset, by incorporating simulated 

legitimate IoT network traffic, as well as IoT network traffic related to several different types of 

attacks. In order to generate the “Bot-IoT” dataset, a realistic testbed was developed, with the aim 

of being representative of an IoT network, and it comprises three components: (i) the network 

platforms, (ii) the simulated IoT services, and (iii) the extracting features and forensics analytics. 

Initially, as far as the network platforms of the testbed are concerned, both normal and attacking 

virtual machines (VMs) with additional network devices (i.e., firewall, tap) were included. 

Furthermore, the Node-RED tool [96] was employed in order to simulate certain IoT services (e.g., 

weather station, smart fridge). Finally, regarding the extracting features and forensics analytics, after 

the authors gathered the normal and attack traffic of the testbed in “pcap” files, they employed the 

Argus tool in order to extract the flow data and used a MySQL database in order to further process 

the extracted flow data. Then, statistical models were used in order to identify the most important 

features for discriminating normal and abnormal instances, and ML techniques were trained and 

evaluated so as to assess the value of the dataset in comparison to other benchmark datasets [22]. 

The produced dataset contains both normal and attack network traffic based on benign scenarios 

and botnet scenarios, respectively. The botnet scenarios include probing, DoS, DDoS, data theft, and 

keylogging attacks. 

The “Bot-IoT” dataset contains over 72 million records of network traffic, and a scaled-down version 

of the dataset with roughly 3.6 million records is also provided by the authors for evaluation 

purposes. However, the “Bot-IoT” dataset does not include a variety of attack types (e.g., 

ransomware and XSS cross-site scripting), as mentioned in [14]. Additionally, the “Bot-IoT” dataset 

was made available to the scientific community in 2018 and, thus, cannot be easily considered as the 

most recent and representative dataset containing information about normal or attack traffic of a 

current IoT network and information about the behavior of IoT devices when they function under 

normal operation conditions, as well as when they function under attack. 
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2.5.4 A Dataset for Detecting DoS Attacks on IoT Devices Using Network Traffic 

Traces  

The authors in [23] created an IoT-based dataset by collecting both normal traffic and traffic 

generated when various types of DoS attacks (e.g., TCP SYN flooding, Ping of Death) were carried 

out. A testbed was designed and comprises (i) a TPLink gateway with OpenWrt firmware, (ii) several 

IoT devices (e.g., WeMo motion sensor, Samsung smart-camera, Philips Hue bulb), (iii) two attackers, 

and (iv) two victims. One attacker was placed locally (inside the LAN) and the other attacker existed 

remotely (on the Internet). Moreover, both attackers were capable of attacking both victims. In 

order to store the network packet traces of all of the network traffic, a 1 TB external hard disk was 

attached to the gateway. The packet traces were stored as “pcap” files using the “tcpdump” tool. 

In addition, two types of attacks were implemented: (a) direct attacks (i.e., ARP spoofing, TCP SYN 

flooding, UDP flooding, and Ping of Death), and (b) reflection attacks (i.e., SNMP, SSDP, TCP SYN, and 

Smurf). All of the types of DoS attacks were performed using different traffic rates (i.e., how many 

packets were sent to the victim). Furthermore, the attacks originated from either one of the 

attackers or both of them and targeted either one of the victims or both of them. 

The authors made their dataset available to the community. The released dataset refers to a one-

month period of benign and attack traffic relating to ten IoT devices, and annotations of those 

attacks are included. The dataset consists of 30 “pcap” files, and each file corresponds to a trace 

collected over a day [23]. Nevertheless, this dataset does not have a variety of attack types (e.g., 

ransomware and XSS cross-site scripting), as mentioned in [14]. In addition, similarly to the “Bot-IoT” 

dataset mentioned in Section 2.5.3, this dataset was made available to the community in 2018 and, 

therefore, cannot be easily considered as the most recent and representative dataset containing 

information about normal or attack traffic of a current IoT network and information about the 

behavior of IoT devices when they function under normal operation conditions, as well as when they 

function under attack. 

2.5.5 ToN_IoT Telemetry Dataset  

The “TON_IoT Telemetry” dataset includes events of a variety of IoT-related attacks and legitimate 

scenarios, IoT telemetry data collected from heterogeneous IoT/IIoT data sources, network traffic of 

the IoT/IIoT network, and audit traces of operating systems. Each of the classes of the “TON_IoT 

Telemetry” dataset describes either a normal record or the related type of attack in the case of an 

attack record. In [14], the authors presented the testbed that they developed in order to generate 

the “TON_IoT Telemetry” dataset [97]. The authors developed a testbed integrating IoT sensors 

(e.g., weather and modbus sensors), physical network components (e.g., switches, routers), several 

virtual machines (e.g., VMs of offensive Kali systems, VMs of Windows client systems), hacking 

platforms, cloud platforms, and fog platforms, and the testbed components were organized into the 

three layers of “Edge”, “Fog”, and “Cloud”. In addition, the testbed employed a software-defined 

network (SDN) and network function virtualization (NFV) through the NSX-VMware platform [98]. 

The NSX-VMware platform enabled: a) the establishment of a virtualized “Fog” layer and a 

virtualized “Cloud” layer that simultaneously operated to offer the IoT/IIoT and network services; b) 

the emulation and control of multiple virtual machines (VMs) in the testbed for both hacking and 

normal operations, and c) the management of the interaction between the three layers. 
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2.5.5.1 Testbed “Edge” Layer  

The “Edge” layer is fundamental in IoT/IIoT applications because its devices measure real-world 

physical conditions and transmit the collected information to the “Fog” or “Cloud” for further 

analysis [99]. The “Edge” layer of the testbed contains various IoT/IIoT devices (e.g., weather and 

light bulb sensors) and physical gateways (i.e., routers and switches) to the Internet, as well as host 

systems. Besides, the “Edge” layer includes the physical host systems “NSX-VMware Server” and 

“vSphere System” used to deploy the “Fog” layer and the “Cloud” layer, respectively, by means of 

virtualization through the NSX-VMware platform [98] and the NSX-VMware hypervisor platform, 

respectively. The “Edge” layer of the testbed is linked to the “Fog” layer through the “vSwitch”. 

2.5.5.2 Testbed “Fog” Layer  

The purpose of the “Fog” layer is to extend the Cloud computing and services to the “Edge” layer of 

the network in order to provide limited computing capacity and storage near to the data sources 

[99]. The “Fog” layer of the testbed consists of the VMs and the virtualization technology that 

manages the VMs and their services using the NSX-VMware platform [14]. The included VMs and 

their roles are as follows: 

• VMs where the Offensive Kali systems [100] are installed and include the scripts to simulate 

various attack scenarios; 

• VMs (i.e., Metaspoitable3, OWASP security Shepherd, and Damn Vulnerable Web App 

(DVWA)) which offer vulnerabilities that can be exploited by the Offensive Kali systems [100] 

; 

• VMs of client systems (i.e., Windows 7 and 10); 

• an Ubuntu 18.04 Middleware server where the Node-Red [96] and Mosquitee MQTT broker 

tools were deployed to manage the IoT/IIoT services and to operate seven IoT/IIoT sensors: 

weather, smart garage door, smart fridge, smart TCP/IP Modbus, GPS tracker, motion-

enabled light, and smart thermostat; 

• an Ubuntu 14.04 LTS orchestrated server that offered network services, including DNS (i.e., 

mydns.com), HTTP(s), DHCP, email server (i.e., Zimbra), Kerberos, and FTP, and generated 

network traffic between VMs; and 

• a VM with the Security Onion tool that is used to log the network data of all the active 

systems in the testbed. 

2.5.5.3 Testbed “Cloud” Layer 

The general purpose of the “Cloud” layer is to host large-size data centers with a significant capacity 

for both computation power and storage in order to support IoT/IIoT applications and satisfy the 

resource requirements for big data analysis. The “Cloud” layer of the testbed includes: 

• a Hive-MQTT broker [101] that is used to publish and subscribe the sensing data of the 

IoT/IIoT services using the Node-Red tool; 

• a vulnerable PHP website [102] used to execute injection attacking events; and 

• Cloud centers services (e.g., Microsoft Azure IoT Hub [103] and Amazon Web Services 

Lambda [104]) that were configured to subscribe and publish IoT/IIoT topics between them 

and the VMs of the “Fog” layer through the MQTT protocol. 
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2.5.5.4 ToN_IoT Datasets 

The authors in [14] simulated several different types of attack scenarios (i.e., scanning, DoS, DDoS, 

ransomware, backdoor, data injection, cross-site scripting (XSS), password cracking, and man-in-the-

middle (MITM)) on their testbed, and collected data from the different components of their testbed 

in dataset files. All of the datasets are provided in files that follow the “csv” (comma separated 

values) format. The datasets files are split into two main folders: (i) the “Processed” datasets folder, 

and (ii) the “Train_Test” datasets folder. 

The “Processed” datasets contain a processed and filtered version of the datasets with: (a) their 

standard features, (b) a label feature indicating whether an observation is normal or malicious, and 

(c) a type feature indicating the attacks’ sub-classes for multi-class classification problems [14]. On 

the other hand, the “Train_Test” datasets contain selected records of the “Processed” datasets that 

were used by the authors in [14] as training and testing datasets for training and evaluating the 

accuracy and efficiency of various ML algorithms. 

Both the “Processed” datasets and the “Train_Test” datasets consist of four types of dataset files 

(i.e., “Network”, “IoT”, “Linux”, “Windows”), with each referring to either the network traffic or a 

specific type of device (e.g., sensor, server, desktop) of the testbed, as also demonstrated in Figure 

2.12. In particular, the “Network” datasets contain the traffic data that passed through the entire 

testbed and were captured during the simulations, whereas the “IoT” datasets contain the data 

related to each of the seven IoT/IIoT sensors that were simulated in the testbed. Finally, the “Linux” 

datasets and the “Windows” datasets contain the data relating to the two Ubuntu systems and the 

two Windows systems in the testbed, respectively. 

 
Figure 2.12. ToN_IoT Telemetry datasets hierarchy. 
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2.6 An Overview of Cooja Simulator  
Open Source simulators like Cooja have only emerged within the last few years to reflect a new class 

of tools for simulating/hosting and managing IoT/IIoT based on cloud or remote deployment and an 

array of features to allow system level deployment. These platforms can be run as simulators in ways 

that could be considered more representative of deployed systems. Accurate simulation of IoT 

network nodes is nowadays often coupled to the operating system running on top of the node. Most 

of the specialised IoT operating systems provide a rather complex simulation environment for 

researchers and developers. Cooja for Contiki OS is one of the most popular representatives of this 

class of embedded IoT operating system simulators.  COOJA is a flexible Java-based simulator 

designed for simulating networks of sensors running the Contiki operating system . COOJA is flexible 

in that many parts of the simulator can be easily replaced or extended with additional functionality 

[25]. Example parts that can be expanded include the simulated radio medium, simulated node 

hardware, and plug-ins for simulated input/output. A simulated node in COOJA has three basic 

properties: its data memory, the node type, and its hardware peripherals. The node type may be 

shared between several nodes and determines features common to all these nodes. For example, 

nodes of the same type run the same program code on the same simulated hardware peripherals. 

And nodes of the same type are initialized with the same data memory. During execution, however, 

nodes' data memories will come to differ due to for example different external inputs. 

COOJA is now able to execute Contiki programs in two different ways. This can be done either by 

running the program code as compiled native code directly on the host CPU, or by running compiled 

program code in an instruction-level TI MSP430 emulator. COOJA is also capable of simulating non-

ontiki nodes, such as nodes implemented in Java or even nodes running another operating system. 

All different approaches have advantages as well as shortcomings. Java-based nodes enable much 

speedier simulations but cannot run deployable code. Hence, they are useful for the development of 

distributed algorithms. Emulating nodes provides more detailed execution details compared to Java-

based nodes or nodes running native code. Finally, native code simulations are more efficient than 

node emulations and is still able to simulate deployable code. Since the need of abstraction in a 

heterogeneous simulated network may differ between the different simulated nodes, there are 

advantages in combining several different abstraction levels in one simulation. For example, in a 

large, simulated network a few nodes may be simulated at the hardware level while the rest are 

implemented at the pure Java level. Using this method, it combines the advantages of the different 

levels. The simulation is faster than when emulating all nodes, but at the same time enables a user 

to receive fine-grained execution details from the few emulated nodes. 

 

Java-based nodes enable much faster simulations but do not run deployable code. Finally, native 

code simulations are more efficient than node emulations, and COOJA executes native code by 

making Java Native Interface calls (JNI) from the Java environment to a compiled Contiki system. The 

Contiki system comprises of the entire Contiki core, pre-selected user processes, and a set of special 

simulation glue drivers. Another interesting consequence of using JNI is the ability to debug Contiki 

code using any regular debugger, such as gdb, by attaching it to the entire Java simulator and 

breaking when the JNI call is performed. Also, entire simulation states may be saved and later 

restored, skipping back simulations over time. The hardware peripherals of simulated nodes are 

called interfaces, and enable the Java simulator to detect and trigger events such as incoming radio 

traffic or a LED being lit. Interfaces also represent properties of simulated nodes such as positions 

that the actual node is not aware of. All interactions with simulations and simulated nodes are 

performed via plugins. 
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2.7 Summary 

In this Chapter, a comprehensive overview of the four main pillars of this PhD research work was 

given: i) Internet of Things (IoT), ii) Machine Learning (ML) algorithms for anomaly-based intrusion 

detection in IoT networks, iii) evaluation metrics for the performance of ML algorithms, and iv) 

existing datasets for training and evaluation of anomaly-based intrusion detection in IoT networks. 

The Chapter started with an overview of the IoT concept along with its fundamental characteristics 

and high-level requirements. Afterwards, the three-layer IoT architecture, which is the typical IoT 

architecture in the literature, was presented where the Perception Layer (i.e., IoT network), the focal 

point of this PhD research work, was discussed. Following this, an overview of the main security 

attacks against IoT networks was given. Furthermore, the security and privacy protection 

requirements for IoT, according to ITU-T Recommendation Y.2066 [28], were presented. Concluding 

the overview on IoT, concerns that limit the consolidation of secure IoT ecosystems, according to 

ENISA in [29], were discussed. Next, the most popular ML algorithms used in IoT Anomaly-based 

Intrusion Detection Systems (AIDS) were reviewed and their main advantages and drawbacks were 

discussed, followed by the metrics based on which their performance is evaluated. Moreover, five of 

the most well-known existing datasets for training and evaluation of IoT AIDSs were reviewed.  

Finally, an overview of Cooja simulator was provided. 
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Chapter 3 Generating Benign IoT Datasets 

3.1 Introduction 

This Chapter provides a detailed description of the approach followed to generate a set of benign 

datasets by implementing a benign IoT network scenario in the Cooja simulator [25], as shown in 

Figure 3.1. The implemented scenario is an example scenario of a benign IoT network, and Cooja has 

been configured properly to simulate it as described in sections 3.3. The generated IoT-specific 

information from the simulated scenario was captured from the Contiki plugin “powertrace” (i.e., 

features such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic 

features) to generate the “powertrace” dataset and the network traffic dataset, respectively, which 

constitute the benign datasets for the simulated benign IoT network scenario. 

  
Figure 3.1. Benign IoT datasets generation by utilising the Cooja simulator. 

3.2 Benign IoT network scenario – an example 

The network topology of the simulated example benign IoT network scenario in the Cooja simulator 

environment consists of 5 yellow UDP-client motes (i.e., motes 2, 3, 4, 5, and 6) and the green UDP-

server mote (i.e., mote 1), as depicted in Figure 3.1. The simulation duration was set to 60 mins and 

the motes’ outputs were printed out in the respective window (e.g., Mote output) while simulations 

run, as shown in Figure 3.2. In addition, the yellow UDP-client motes were configured to send text 

messages every 10 seconds, approximately, to the green UDP-server mote that was configured to 

provide a corresponding response. The UDP protocol was used at the Transport Layer and the IPv6 

at the network layer. Moreover, the type of motes used in this scenario was the Tmote Sky that is an 

ultra-low power wireless module for use in sensor networks, monitoring applications, and rapid 

application prototyping. In addition, Tmote Sky motes leverage industry standards such as USB and 

IEEE 802.15.4 to interoperate seamlessly with other devices. By using industry standards, integrating 

humidity, temperature, and light sensors, and providing flexible interconnection with peripherals, 

Tmote Sky motes enable several mesh network applications [105]. 
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Figure 3.2 Cooja Simulator – motes’ outputs 

3.3 Benign “powertrace” Dataset  

3.3.1 Benign “powertrace” Dataset – Generation Process 

The “powertrace” dataset includes information about features such as such as total CPU energy 

consumption and low power mode (LPM) energy consumption. In fact, it is the dataset of the 

simulated benign IoT network scenario that includes records about information related to the 

energy consumption of the IoT devices (i.e., motes) deployed within the simulated IoT network. To 

enable the “powertrace” plugin and generate the “powertrace” dataset, the motes of the benign IoT 

network were programmed to make use of the “powertrace” plugin for collecting “powertrace” 

related features every 2 seconds. In particular, we included the “powertrace.h” library into the code 

of each mote (i.e. #include “powertrace.h”), as shown in Figure 3.3, and defined to start 

powertracing, once every 2 seconds, in the code of each mote as shown in Figure 3.4. 

 
Figure 3.3 “powertrace.h” library in the mote code. 

 

 
Figure 3.4 Powertracing Begin. 

More precisely, the “powertrace” plugin captured raw information, every 2 seconds, about the set of 

features summarised in Table 3.1. In particular, the “powertrace” plugin tracks the duration (i.e., 

number of cpu ticks) of activities of a mote being in each power state. Particularly, the outputs 

demonstrate the fraction of time in which a mote remains in a given power state. There are the 
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following six power states: i) cpu; ii) lpm; iii) transmit; iv) listen; v) idle_transmit; and vi) idle_listen, 

as shown in Table 3.1. These are measured with a hardware timer (i.e., clock frequency is defined in 

RTIMER_SECOND or 32,768 Hz for XM1000). In addition, it is worthwhile mentioning that in our 

simulated scenarios the value range for the following features was between 0 and 65535: cpu, lpm, 

transmit, listen, idle_transmit, idle_listen. This is because our acquisition time was 2 seconds and the 

hardware_timer is 32,768. Besides that, the value ranges for rimeaddr and seqno are dependent on 

the number of motes included in each simulated scenario, and the number of acquired samples 

during the monitoring time.    

Index Feature Description 

1 sim time simulation time 

2 clock_time() clock time (i.e., by default, 128 ticks/second) 

3 ID Mote ID 

4 P label 

5 rimeaddr rime address 

6 seqno sequence number 

7 all_cpu accumulated CPU energy consumption 

8 all_lpm accumulated Low Power Mode energy consumption 

9 all_transmit accumulated transmission energy consumption 

10 all_listen accumulated listen energy consumption 

11 all_idle_transmit accumulated idle transmission energy consumption 

12 all_idle_listen accumulated idle listen energy consumption 

13 cpu CPU energy consumption for this cycle 

14 lpm LPM energy consumption for this cycle 

15 transmit transmission energy consumption for this cycle 

16 listen listen energy consumption for this cycle 

17 idle_transmit idle transmission energy consumption for this cycle 

18 idle_listen idle listen energy consumption for this cycle 

Table 3.1 Set of Captured Features by “powertrace” plugin. 

In Figure 3.1, the depicted Mote output window displays the captured “powertrace” information 

every 2 seconds and also the messages sent/received by each mote (printouts/printf from each 

mote). 

 
Figure 3.5 Cooja Simulator—Mote output window. 

Furthermore, the Simulation script editor, shown in Figure 3.6, is a Cooja tool used to display 

messages and set a timer on the simulation. As shown in Figure 3.6, the upper part of the Simulation 
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script editor was used to create scripts and the lower part to show the captured “powertrace” 

information and the printouts (i.e., printf messages) from the motes until the timeout occurs. In our 

implementation, we considered the simulation duration to be 60 mins and thus, the timeout was set 

at 3,600,000 ms. When the timeout occurred, the simulation stopped, and all the captured 

information and prints were stored in the log file named “COOJA.testlog”. 

 
Figure 3.6 Simulation script editor. 

Having collected all the captured raw information from the “powertrace” plugin in the 

“COOJA.testlog” file, the challenging task was to extract this information from the “COOJA.testlog” 

file to a csv file that would be the “powertrace” dataset of the simulated benign IoT network 

scenario including records about the energy consumption of the motes. To address this challenge, 

the “IoT_Simul.sh” bash file was developed to extract all the required “powertrace” information 

from the “COOJA.testlog” file to the “pwrtrace.csv” file. An extract of the “IoT_Simul.sh” bash file is 

shown in Figure 3.7. 

 
Figure 3.7 Extract of the “IoT_Simul.sh” file. 
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Initially, the “IoT_Simul.sh” file created the root folder named with the simulation date and time 

(i.e., “2020-11-19-17-45-22” folder), as shown below in the left part of Figure 3.8. Afterwards, the 

bash file created the “log” folder, inside the “2020-11-19-17-45-22” folder, where the 

“COOJA.testlog” file was copied from the “…/cooja/build” folder located in the Cooja Simulator 

environment.  

 

Figure 3.8 Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “IoT_Simul.sh” file. 

In addition, in the “IoT_Simul.sh” file, the Linux tool “grep” was used to extract the required 

“powertrace” information by selecting the label “P” in each “powertrace” row from the 

“COOJA.testlog” file and save it in the “pwrtrace.csv” file in the “dataset” folder that was also 

created by the batch file inside the “2020-11-19-17-45-22” folder, as shown in the left part of Figure 

3.8. In particular, it was implemented with the following command:  
  

grep "P" log/COOJA.testlog >> dataset/pwrtrace.csv 
 

However, in the “dataset” folder, apart from the “pwrtrace.csv” file, the “IoT_Simul.sh” file 

generated two more files, based on the information included in the “COOJA.testlog” file, as shown in 

Figure 3.8; the “recv.csv” file and the “send.csv” file that include the “received” and “sent”messages 

printed by the motes, respectively. 

Finally, the “IoT_Simul.sh” file extracted the information related to each mote, from the 

“pwrtrace.csv” file, and generated one csv file for each mote with the corresponding information 

from “pwrtrace.csv” file. It was implemented with the following command, where “n” is the mote 

number (i.e., 1 to 6): 
 

grep "ID:"$n dataset/pwrtrace.csv >> motedata/mote$n.csv 
 

The generated 6 csv files (i.e., mote1.csv, mote2.csv, mote3.csv, mote4.csv, mote5.csv, mote6.csv) 

were stored in the “motedata” folder, as shown in Figure . The “motedata” folder was also created 

by the “IoT_Simul.sh” file inside the “2020-11-19-17-45-22” folder.  

 
Figure 3.9 Location of the generated “mote1.csv”, “mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, “mote6.csv 

files” by the “IoT_Simul.sh” bash file.    
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An overview of the described process followed to extract the required information from the 

“COOJA.testlog” file to the “pwrtrace.csv”, “recv.csv”, “send.csv”, “mote1.csv”, “mote2.csv”, 

“mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv” files are depicted in Figure . 

 
Figure 3.10 An overview of the process followed by the “IoT_Simul.sh” file to extract all the required “powertrace” 

information from the “COOJA.testlog” file. 

 

3.3.2 Benign “powertrace” Dataset – Generated Results 
The “powertrace” dataset consists of the following csv files: “pwrtrace.csv”, “mote1.csv”, 

“mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv” files. In this Section, we 

present sets of records from the “pwrtrace.csv”, and in Appendix 1 we present sets of records from 

“mote1.csv”, and “mote3.csv” files.  

3.3.2.1 Benign “pwrtrace.csv” 

The generated benign “pwrtrace.csv” file consists of 10,794 records and its first 38 records (i.e., 1–

38) and its last 38 records (10,757–10,794) are depicted in Figure 3.11  and Figure 3.12, respectively. 
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Figure 3.11 Benign “pwrtrace.csv”—1 to 38 records. 

 
Figure 3.12 Benign “pwrtrace.csv”—10,757 to 10,794 records. 
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3.4 Benign Network Traffic Dataset 

3.4.1 Benign Network Traffic Dataset – Generation Process  

The generated network traffic dataset constitutes the dataset of the simulated benign IoT network 

scenario that includes records consisting of IoT network traffic features such as source/destination 

IPv6 address, packet size, and communication protocol. The Cooja simulator provides the “Radio 

messages” tool that allowed the collection of data related to the corresponding network traffic 

features. In Figure 3.13, the “Radio messages” output window is depicted along with the three 

configuration options that are provided by the “Radio messages” tool: 

 
Figure 3.13 “Radio messages” tool—output window. 

The “6LoWPAN Analyzer with PCAP” option was selected and the “Radio messages” tool saved the 

captured network traffic data from the simulated IoT network into a pcap file whose file-naming 

format was as follows: “radiolog-“+ System.currentTimeMillis()+“.pcap”. During the simulation, the 

network traffic information about the transmitted data was also being shown in the top part of the 

“Radio messages” output window as depicted in the top part of Figure 3.14. When the simulation 

stopped, the generated pcap file was saved as “radiolog-1605811324302.pcap” within the 

“…/cooja/build” folder.  

 
Figure 3.14 Network traffic information from the benign scenario in the “Radio messages” output window. 
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Having now saved all the captured raw network traffic information, through the “Radio messages” 

tool, into a pcap file, the challenging task was to extract this information from the pcap file to a csv 

file that would be the network traffic dataset of the simulated benign IoT network scenario. This 

challenge was addressed by utilising the “IoT_Simul.sh” file that was also used in the “powertrace” 

dataset generation process, as described in Section 3.3.1, and the well-known network protocol 

analyser Wireshark [106].  

In particular, the first step was the use of the “IoT_Simul.sh” file in order to copy the “radiolog-

1605811324302.pcap” file from the “…/cooja/build” folder located in the Cooja Simulator 

environment to the “nettraffic” folder that was created by the “IoT_Simul.sh” file inside the root 

folder “2020-11-19-17-45-22” that was also created by the “IoT_Simul.sh” during the “powertrace” 

dataset generation process. The “nettraffic” folder inside the root folder “2020-11-19-17-45-22” and 

the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic” folder are shown in Figure . 

 
Figure 3.15 The “nettraffic” folder inside the root folder “2020-11-19-17-45-22” and the copy of the “radiolog-

1605811324302.pcap” file. 

After having the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic” folder, the next 

step was the extraction of the stored network traffic information from the “radiolog-

1605811324302.pcap” file to the “radiolog.csv” file. This was achieved through Wireshark as 

Wireshark allows opening a pcap file and exporting data to a csv file. In Figure 3.16, the upper panel 

of the Wireshark window shows the seventeen first packets included in the “radiolog-

1605811324302.pcap” file that was opened via Wireshark. The middle panel shows the protocol 

details of the 10th packet selected in the upper panel and the bottom panel presents the protocol 

details of the selected 10th packet in both HEX and ASCII format. 
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Figure 3.16 The first seventeenth packets in the “radiolog-1605811324302.pcap” file. 

The data from the “radiolog-1605811324302.pcap” file were exported and saved, through 

Wireshark, into the “radiolog.csv” file in the “nettraffic” folder in the project environment, as shown 

in Figure 3.17. Furthermore, it is worthwhile mentioning that we also used Wireshark to filter the 

“radiolog-1605811324302.pcap” file based on the ICMPv6 protocol and the UDP protocol and then 

exported and saved the filtered results, through Wireshark, in the “radiologICMPv6.csv” file and the 

“radiologUDP.csv” file, respectively, in the “nettraffic” folder in the project environment, as shown 

in Figure . The “radiologICMPv6.csv” file and the “radiologUDP.csv” file facilitated the analysis of the 

capture traffic as shown in Chapter 5. 

 
Figure 3.17 The “radiolog.csv” file in the “nettraffic” folder in the project environment. 

 
Figure 3.18 The “radiologICMPv6.csv” file and the “radiologUDP.csv” file in the “nettraffic” folder in the project 

environment. 

Finally, an overview of the above-described process followed to extract the required information 

from the “radiolog-1605811324302.pcap” file to the “radiolog.csv”, “radiologICMPv6.csv” and 

“radiologUDP.csv” files is depicted in Figure 3.20. 
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Figure 3.20 An overview of the process followed to extract all the required network traffic information from the 

“radiolog-1605811324302.pcap” file. 

3.4.2 Benign Network Traffic Dataset – Generated Results 

The network traffic dataset consists of the following csv files which are located in the “nettraffic” 

folder in the project environment as described in Section 3.4.1: “radiolog.csv”, 

“radiologICMPv6.csv”, and “radiologUDP.csv” files. In this Section, we present sets of records from 

these files. 

3.4.2.1 Benign “radiolog.csv” 

The generated benign “radiolog.csv” file consists of 116,463 records and its first 40 records (i.e., 1–

40) and its last 40 records (116,424-116,463) are depicted in Figure 3.21 and Figure 3.22, 

respectively. 
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Figure 3.21 Benign “radiolog.csv”—1 to 40 records. 

 
Figure 3.22 Benign “radiolog.csv” – 116,424-116,463 records. 
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3.4.2.2 Benign “radiologICMPv6.csv”  

The generated benign “radiologICMPv6.csv” file consists of 7,975 records and its first 25 records 

(i.e., 1–25) and its last 27 records (i.e., 7,948–7,975) are depicted in Figure 3.23 and Figure 3.24, 

respectively. 

 
Figure 3.23 Benign “radiologICMPv6.csv”—1 to 25 records. 

 

 
Figure 3.24 Benign “radiologICMPv6.csv”—7,948 to 7,975 records. 
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3.4.2.3 Benign “radiologUDP.csv” 

The generated benign “radiologUDP.csv” file consists of 104,048 records and its first 28 records (i.e., 

1–28) and its last 37 records (i.e., 104,012–104,048) are depicted in Figure 3.25 and Figure 3.26, 

respectively. 

 
Figure 3.25 Benign “radiologUDP.csv”—1 to 28 records. 

 

 
Figure 3.26 Benign “radiologUDP.csv”—104,012 to 104,048 records. 
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3.5 Summary  

In this Chapter, a detailed description of the approach proposed to generate a set of benign IoT 

datasets from a benign IoT network scenario implemented in the Cooja simulator was provided. The 

IoT-specific information from the simulated scenario was captured from the Contiki plugin 

“powertrace” and the Cooja tool “Radio messages” in order to generate the “powertrace” dataset 

and the network traffic dataset within csv files, respectively, which constitute the benign IoT 

datasets for the simulated benign IoT network scenario. In particular, the “powertrace” dataset 

consists of the following csv files: the “pwrtrace.csv” file and one csv file for each mote 

(i.e.,“mote1.csv”, “mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv”) with its 

corresponding information from the “pwrtrace.csv” file , while the network traffic dataset consists of 

the following csv files: “radiolog.csv”, “radiologICMPv6.csv”, and “radiologUDP.csv”. The structure of 

the generated benign IoT datasets from the benign IoT network scenario implemented in the Cooja 

simulator, as described in this Chapter, is shown in Figure 3.27. 

 

Figure 3.27 Generated Benign IoT Datasets Structure 

 

In principle, the proposed approach in this Chapter can be extended for generating benign IoT 

datasets from j different benign scenarios, where each scenario, implemented in the Cooja 

simulator, may include n different motes. The generic structure of benign IoT datasets generated 

according to the proposed approach is shown in Figure 3.28. 
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Figure 3.28 Benign IoT Datasets – Generic Structure 
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Chapter 4 Generating Malicious IoT Datasets 

4.1 Introduction 

This Chapter is focused on the generation of a set of malicious datasets by implementing four 

scenarios of the following IoT attacks: i) UDP flooding attack,  ii) blackhole attack, iii) sinkhole 

attack, and iv) sleep deprivation attack. The implemented scenarios are example scenarios and 

Cooja has been configured properly to simulate them, as described in Sections 4.2.1, 4.3.1, 4.4.1, 

and 4.5.1. Similar to the approach followed for the generation of the benign datasets in Chapter 3, 

the generated IoT-specific information from the simulated attack scenarios was captured from the 

Contiki plugin “powertrace” (i.e., features such as CPU consumption) and the Cooja tool “Radio 

messages” (i.e., network traffic features) in order to generate the corresponding “powertrace” and 

network traffic datasets for the simulated attack scenarios. 

4.2 UDP Flooding Attack Datasets 

In this Section, we provide a detailed description of the approach followed to generate a set of 

malicious datasets by implementing a UDP flooding attack scenario in the Cooja simulator, as shown 

in Figure 4.1.  

 

Figure 4.1. UDP Flooding Attack Datasets generation by utilising the Cooja simulator.   
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4.2.1 UDP Flooding Attack Scenario – an example 

The network topology of the simulated UDP flooding attack scenario in the Cooja simulator 

environment consists of 4 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, and 5), the violet 

(malicious) UDP-client mote (i.e., mote 6) and the green (benign) UDP-server mote (i.e., mote 1) 

which is also the target of the attack, as depicted in Figure 4.1. The simulation duration was set to 60 

mins and the motes’ outputs were printed out in the respective window (e.g., Mote output) while 

simulations run, as shown in Figure 4.2. Moreover, the 4 yellow (benign) UDP-client motes were 

configured to send text messages every 10 seconds, approximately, to the UDP-server mote that was 

configured to provide a corresponding response. On the other hand, the violet (malicious) UDP-

client mote (i.e., mote 6) was compromised with malicious code, as shown in Figure 4.3, to send UDP 

packets within a very short period of time (i.e., every 200ms). Finally, it is noteworthy to say that 

similar to the benign network scenario, the UDP protocol was used at the Transport Layer, the IPv6 

at the network layer, and the type of motes was the Tmote Sky in the UDP flooding attack scenario. 

 
Figure 4.2. Cooja Simulator — UDP flooding attack scenario — Motes’ outputs 

 

 
Figure 4.3. Malicious code in “udp-client_udp-flood.c” to significantly increase the traffic by 50 times; generating 5 

packets per second (i.e., one packet every 200ms) instead of 0.1 packets per second (i.e., one packet every 10 seconds 
for benign motes).  
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4.2.2 UDP Flooding Attack “powertrace” Dataset 

4.2.2.1 UDP Flooding Attack “powertrace” Dataset – Generation Process 

The approach followed for the “powertrace” dataset generation from the UDP flooding attack 

scenario was similar to the approach followed for the “powertrace” dataset generation from the 

benign IoT network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly 

enabled for collecting “powertrace” related features, summarised in Table 3, from the motes of the 

attack scenario every two seconds. In Figure 4.4, the depicted mote output window displays the 

captured “powertrace” information every two seconds and also the messages sent and received by 

each mote during the simulation time (60 mins). 

 
Figure 4.4 Cooja Simulator — UDP flooding attack scenario — Mote output window. 

When the timeout occurred, the simulation stopped, and all the captured information and prints 

were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file, described in Section 

3.3.1, created a) a new root folder named as “2020-12-09-14-59-59”, and b) the “log” folder, inside 

the “2020-12-09-14-59-59” folder, where the “COOJA.testlog” file was copied from the 

“…/cooja/build” folder located in the Cooja Simulator. Then, the “IoT_Simul.sh” file following the 

same process, as described in Section 3.3.1, extracted the required “powertrace” information from 

the “COOJA.testlog” file and saved it in the “udp-flood-pwrtrace.csv” file in the “dataset” folder that 

was also created by the batch file inside the “2020-12-09-14-59-59” folder, as shown below in the 

left part of Figure 4.5. In the “dataset” folder, apart from the “udp-flood-pwrtrace.csv” file, the 

“IoT_Simul.sh” file generated two more files (i.e., “udp-flood-recv.csv” and “udp-flood-send.csv”), 

following the same process as in Section 3.1.1. The “udp-flood-recv.csv” file and the “udp-flood-

send.csv” file include the “received” and “sent” messages printed by the motes, respectively. 

 
Figure 4.5 Location of the generated “udp-flood-pwrtrace.csv”, “udp-flood-recv.csv”, and “udp-flood-send.csv” files by 

the “IoT_Simul.sh” file. 

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the 

“IoT_Simul.sh” file extracted the information related to each mote from the “udp-flood-

pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from 

the “udp-flood-pwrtrace.csv” file. The generated six csv files (i.e., “udp-flood-mote1.csv”,…, “udp-

flood-mote6.csv”) were stored in the “motedata” folder, created also by the “IoT_Simul.sh” file, as 

shown in the left part of Figure 4.5. 
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4.2.2.2 UDP Flooding Attack “powertrace” Dataset – Generated Results 

The UDP flooding attack “powertrace” dataset consists of the following csv files: “udp-flood-

pwrtrace.csv”, “udp-flood-mote1.csv”, “udp-flood-mote2.csv” “udp-flood-mote3.csv” “udp-flood-

mote4.csv” “udp-flood-mote5.csv”, and “udp-flood-mote6.csv”. In this Section, we present sets of 

records from the “udp-flood-pwrtrace.csv”, and in Appendix 1 we present sets of records from “udp-

flood-mote1.csv”, “udp-flood-mote2.csv” and “udp-flood-mote6.csv” files.  

4.2.2.2.1 “udp-flood-pwrtrace.csv” 

The generated malicious “udp-flood-pwrtrace.csv” file consists of 10,794 records and its first 38 

records (i.e., 1–38) and its last 38 records (i.e., 10,757–10,794) are depicted in Figure 4.6 and Figure 

4.7, respectively. 

 
Figure 4.6 Malicious “udp-flood-pwrtrace.csv”—1 to 38 records. 

 
Figure 4.7 Malicious “udp-flood-pwrtrace.csv”—10,757 to 10,794 records. 
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4.2.3 UDP Flooding Attack Network Traffic Dataset 

4.2.3.1 UDP Flooding Attack Network Traffic Dataset – Generation Process 

The approach followed for the network traffic dataset generation from the UDP flooding attack 

scenario was similar to the approach followed for the network traffic dataset generation from the 

benign IoT network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja 

simulator, was similarly used for collecting data related to the corresponding network traffic 

features (e.g., source/destination IPv6 address, packet size, and protocol) from the network of the 

attack scenario. During the simulation, the network traffic information was being shown in the top 

part of the “Radio messages” output window as depicted in the top part of Figure 4.8. 

 
Figure 4.8 Network traffic information from the UDP flooding attack scenario in the “Radio messages” output window. 

When the simulation stopped, the generated pcap file was saved as “radiolog-1607519517066.pcap” 

within the “…/cooja/build” folder. Afterwards, the “IoT_Simul.sh” file, described in Section 3.4.1, 

created a) a new root folder named as “2020-12-09-14-59-59”, and b) the “nettraffic” folder, inside 

the “2020-12-09-14-59-59” folder, where the “radiolog-1607519517066.pcap” file, copied from the 

“…/cooja/build” folder located in the Cooja Simulator, was saved as “udp-flood-radiolog-

1607519517066.pcap”. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the 

“udp-flood-radiolog-1607519517066.pcap” file in the “nettraffic” folder are shown in Figure 4.9. 

 
Figure 4.9 The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the “udp-flood-radiolog-

1607519517066.pcap” file. 

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the 

stored network traffic information from the “udp-flood-radiolog-1607519517066.pcap” file to the 

“udp-flood-radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.10. 
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Figure 4.10 The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and its included files. 

In the “nettraffic” folder, apart from the “udp-flood-radiolog.csv” file, we also used Wireshark, 

following the same process as in Section 3.4.1, to generate two more files (i.e., the “udp-flood-

radiologICMPv6.csv” file and the “udp-flood-radiologUDP.csv” file) from the “udp-flood-radiolog-

1607519517066.pcap” file. 

4.2.3.2 UDP Flooding Attack Network Traffic Dataset – Generated Results 

The UDP flooding attack network traffic dataset consists of the following csv files which are located 

in the “nettraffic” folder as described in Section 4.2.3.1: “udp-flood-radiolog.csv”, “udp-flood-

radiologICMPv6.csv”, and “udp-flood-radiologUDP.csv” files. In this Section, we present sets of 

records from these files.  

4.2.3.2.1 “udp-flood-radiolog.csv” 

The generated malicious “udp-flood-radiolog.csv” file consists of 702,332 records and its first 25 

records (i.e., 1–25) are depicted below in Figure 4.11. 

 
Figure 4.11  Malicious “udp-flood-radiolog.csv”—1 to 25 records. 

4.2.3.2.2 “udp-flood-radiologICMPv6.csv” 

The generated malicious “udp-flood-radiologICMPv6.csv” file consists of 9,908 records and its first 

25 records (i.e., 1–25) are depicted below in Figure 4.12. 
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Figure 4.12 Malicious “udp-flood-radiologICMPv6.csv”—1 to 25 records. 

4.2.3.2.3 “udp-flood-radiologUDP.csv” 

The generated malicious “udp-flood-radiologUDP.csv” file consists of 670,671 records and its first 25 

records (i.e., 1–25) are depicted below in Figure 4.13. 

 
Figure 4.13 Malicious “udp-flood-radiologUDP.csv”—1 to 25 records. 
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4.3 Blackhole Attack Datasets 

In this Section, we provide a detailed description of the approach followed to generate a set of 

malicious datasets by implementing a blackhole attack scenario in the Cooja simulator, as shown in 

Figure 4.14.  

 
Figure 4.14 Blackhole Attack Datasets generation by utilising the Cooja simulator. 

4.3.1 Blackhole Attack Scenario – an example 

The network topology of the simulated blackhole attack scenario in the Cooja simulator environment 

consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the violet 

(malicious) UDP-client mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote 1), as 

depicted in Figure 4.14. The simulation duration was set to 60 mins and the motes’ outputs were 

printed out in the respective window (e.g., Mote output) while simulations run, as shown in Figure 

4.15. Moreover, the 8 yellow (benign) UDP-client motes were configured to send text messages 

every 30 seconds, approximately, to the UDP-server mote that was configured to provide a 

corresponding response. On the other hand, the violet (malicious) UDP-client mote (i.e., mote 10) 

was compromised with malicious code, as shown in Figure , to switch off transmission and disrupt 

the communication chain. The (malicious) mote was programmed to start as a normal mote and 

after 25 minutes later to switch off the radio, leading to a blackhole attack. Finally, it is noteworthy 

to say that similar to the benign network scenario, the UDP protocol was used at the Transport 

Layer, the IPv6 at the network layer, and the type of motes was the Tmote Sky in the blackhole 

attack scenario. 
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Figure 4.15 Cooja Simulator – Blackhole attack scenario – Motes’ outputs. 

 
Figure 4.16 Malicious code in “contiki/core/net/ipv6/uip6.c” to cause a blackhole attack by dropping all packets that are 

to be forwarded.  
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4.3.2 Blackhole Attack “powertrace” Dataset 

4.3.2.1 Blackhole Attack “powetrace” Dataset – Generation Process 

The approach followed for the “powertrace” dataset generation from the blackhole attack scenario 

was similar to the approach followed for the “powertrace” dataset generation from the benign IoT 

network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly enabled for 

collecting “powertrace” related features, summarised in Table 3, from the motes of the attack 

scenario every two seconds. In Figure 4.17, the depicted mote output window displays the captured 

“powertrace” information every two seconds and also the messages sent and received by each mote 

during the simulation time (60 mins). 

 
Figure 4.17 Cooja Simulator – Blackhole attack scenario – Mote output window 

When the timeout occurred, the simulation stopped, and all the captured information and prints 

were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file, described in Section 

3.3.1, created a) a new root folder named as “2021-10-28-22-36-22”, and b) the “log” folder, inside 

the “2021-10-28-22-36-22” folder, where the “COOJA.testlog” file was copied from the 

“…/cooja/build” folder located in the Cooja Simulator. Then, the “IoT_Simul.sh” file following the 

same process, as described in Section 3.3.1, extracted the required “powertrace” information from 

the “COOJA.testlog” file and saved it in the “blackhole-pwrtrace.csv” file in the “dataset” folder that 

was also created by the batch file inside the “2021-10-28-22-36-22” folder, as shown below in the 

left part of Figure 4.18. In the “dataset” folder, apart from the “blackhole-pwrtrace.csv” file, the 

“IoT_Simul.sh” file generated two more files (i.e., “blackhole-recv.csv” and “blackhole-send.csv”), 

following the same process as in Section 3.3.1. The “blackhole-recv.csv” file and the “blackhole-

send.csv” file include the “received” and “sent” messages printed by the motes, respectively. 

 
Figure 4.18 Location of the generated “blackhole-pwrtrace.csv”, “blackhole-recv.csv”, and “blackhole-send.csv” files by 

the “IoT_Simul.sh” bash file. 

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the 

“IoT_Simul.sh” file extracted the information related to each mote from the “blackhole-

pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from 

the “blackhole-pwrtrace.csv” file. The generated ten csv files (i.e., “blackhole-mote1.csv”,…, 

“blackhole-mote10.csv”) were stored in the “motedata” folder, created also by the “IoT_Simul.sh” 

file, as shown in the left part of Figure 4.18. 
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4.3.2.2 Blackhole Attack “powetrace” Dataset – Generated Results 

The blackhole attack “powertrace” dataset consists of the following csv files: “blackhole-

pwrtrace.csv”, “blackhole-mote1.csv” “blackhole-mote2.csv” “blackhole-mote3.csv” “blackhole-

mote4.csv” “blackhole-mote5.csv” “blackhole-mote6.csv” “blackhole-mote7.csv” “blackhole-

mote8.csv” “blackhole-mote9.csv” and “blackhole-mote10.csv”. In this Section, we present sets of 

records from the “blackhole-pwrtrace.csv”, and in Appendix 1 we present sets of records from 

“blackhole-mote1.csv”, “blackhole-mote4.csv” and “blackhole-mote10.csv” files.  

4.3.2.2.1 “blackhole-pwrtrace.csv” 

The generated malicious “blackhole-pwrtrace.csv” file consists of 17,990 records and its first 30 

records (i.e., 1–30) and its last 30 records (17,961–17,990) are depicted in Figure 4.19 and Figure 

4.20, respectively. 

 
Figure 4.19 Malicious “blackhole-pwrtrace.csv” — 1 to 30 records. 

 

 
Figure  4.20 Malicious “blackhole-pwrtrace.csv”—17,961 to 17,990 records. 
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4.3.3 Blackhole Attack Network Traffic Dataset 

4.3.3.1 Blackhole Attack Network Traffic Dataset – Generation Process 

The approach followed for the network traffic dataset generation from the blackhole attack scenario 

was similar to the approach followed for the network traffic dataset generation from the benign IoT 

network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja simulator, was 

similarly used for collecting data related to the corresponding network traffic features (e.g., 

source/destination IPv6 address, packet size, and communication protocol) from the network of the 

attack scenario. During the simulation, the network traffic information was being shown in the top 

part of the “Radio messages” output window as depicted in the top part of Figure 4.21. 

 

 

Figure 4.21 Network traffic information from the blackhole attack scenario in the “Radio messages” output window. 

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the 

“…/cooja/build” folder. Afterwards, the “IoT_Simul.sh” file, described in Section 3.4.1, created a) a 

new root folder named as “2021-10-28-22-36-22”, and b) the “nettraffic” folder, inside the “2021-

10-28-22-36-22” folder, where the “radiolog.pcap”, copied from the “…/cooja/build” folder located 

in the Cooja Simulator, was saved as “blackhole-radiolog.pcap”. The “nettraffic” folder inside the 

root folder “2021-10-28-22-36-22” and the “blackhole-radiolog.pcap” file in the “nettraffic” folder 

are shown in Figure 4.22. 

 

Figure 4.22 The “nettraffic” folder inside the root folder “2021-10-28-22-36-22” and the “blackhole-radiolog.pcap” file. 

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the 

stored network traffic information from the “blackhole-radiolog.pcap” file to the “blackhole-

radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.23. 
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Figure 4.23 The “nettraffic” folder inside the root folder “2021-10-28-22-36-22” and its included files. 

In the “nettraffic” folder, apart from the “blackhole-radiolog.csv” file, we also used Wireshark, 

following the same process as in Section 3.4.1, to generate two more files (i.e., “blackhole-radiolog-

ICMPv6.csv” and “blackhole-radiolog-UDP.csv”) from the “blackhole-radiolog.pcap” file. 

4.3.3.2 Blackhole Attack Network Traffic Dataset – Generated Results 

The blackhole attack network traffic dataset consists of the following csv files which are located in 

the “nettraffic” folder as described in Section 4.3.3.1: “blackhole-radiolog.csv”, “blackhole-radiolog-

ICMPv6.csv”, and “blackhole-radiolog-UDP.csv” files. In this Section, we present sets of records from 

these files.  

4.3.3.2.1 “blackhole-radiolog.csv” 

The generated malicious “blackhole-radiolog.csv” file consists of 99,622 records and its first 30 

records (i.e., 1–30) are depicted below in Figure 4.24. 

 
Figure 4.24 Malicious “blackhole-radiolog.csv”—1 to 30 records. 

 

4.3.3.2.2 “blackhole-radiolog-ICMPv6.csv” 

The generated malicious “blackhole-radiolog-ICMPv6.csv” file consists of 24,011 records and its first 

30 records (i.e., 1–30) are depicted below in Figure .4.25 
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Figure 4.25 Malicious “blackhole-radiolog-ICMPv6.csv”—1 to 30 records. 

 

4.3.3.2.3 “blackhole-radiolog-UDP.csv” 

The generated malicious “blackhole-radiolog-UDP.csv” file consists of 73,551 records and its first 30 

records (i.e., 1–30) are depicted below in Figure 4.26. 
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Figure 4.26 Malicious “blackhole-radiolog-UDP.csv”—1 to 30 records. 

4.4 Sinkhole Attack Datasets 

In this Section, we provide a detailed description of the approach followed to generate a set of 

malicious datasets by implementing a sinkhole attack scenario in the Cooja simulator, as shown in 

Figure 4.27. 
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Figure 4.27 Sinkhole Attack Datasets generation by utilising the Cooja simulator. 

4.4.1 Sinkhole Attack Scenario – an example 

The network topology of the simulated sinkhole attack scenario in the Cooja simulator environment 

consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the violet 

(malicious) UDP-server mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote 1), 

as depicted in Figure 4.27. The simulation duration was set to 60 mins and the motes’ outputs were 

printed out in the respective window (e.g., Mote output) while simulations run, as shown in Figure 

4.28. Moreover, the 8 yellow (benign) UDP-client motes were configured to send text messages 

every 30 seconds, approximately, to the UDP-server mote that was configured to provide a 

corresponding response. On the other hand, the violet (malicious) UDP-server mote (i.e., mote 10) 

was compromised with malicious code, as shown in Figure 4.29 and Figure 4.30, to decrease the 

malicious mote’s  Rank number and make it the preferable parent node. With most of the 

neighbours to be connected to it, it starts dropping all the traffic that it should forward. The 

malicious mote was programmed to start 20 minutes later than the others allowing the network to 

work properly before the attack. Finally, it is noteworthy to say that similar to the benign network 

scenario, the UDP protocol was used at the Transport Layer, the IPv6 at the network layer, and the 

type of motes was the Tmote Sky in the sinkhole attack scenario. 
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Figure 4.28 Cooja Simulator – Sinkhole attack scenario – Motes’ outputs. 

 
Figure 4.29 Malicious code in “contiki_modified/core/net/rpl/rpl-private.c” to cause a sinkhole attack. 

 
Figure 4.30 Malicious code in “contiki_modified/core/net/rpl/rpl-timers.c” to cause a sinkhole attack. 
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4.4.2 Sinkhole Attack “powertrace” Dataset 

4.4.2.1 Sinkhole Attack “powertrace” Dataset – Generation Process 

The approach followed for the “powertrace” dataset generation from the sinkhole attack scenario 

was similar to the approach followed for the “powertrace” dataset generation from the benign IoT 

network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly enabled for 

collecting “powertrace” related features, summarised in Table 3, from the motes of the attack 

scenario every two seconds. In Figure 4.31, the depicted mote output window displays the captured 

“powertrace” information every two seconds and also the messages sent and received by each mote 

during the simulation time (60 mins). 

 
Figure 4.31 Cooja Simulator – Sinkhole attack scenario – Mote output window 

When the timeout occurred, the simulation stopped, and all the captured information and prints 

were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file, described in Section 

3.3.1, created a) a new root folder named as “2021-10-29-23-23-49”, and b) the “log” folder, inside 

the “2021-10-29-23-23-49” folder, where the “COOJA.testlog” file was copied from the 

“…/cooja/build” folder located in the Cooja Simulator. Then, the “IoT_Simul.sh” file following the 

same process, as described in Section 3.3.1, extracted the required “powertrace” information from 

the “COOJA.testlog” file and saved it in the “sinkhole-pwrtrace.csv” file in the “dataset” folder that 

was also created by the batch file inside the “2021-10-29-23-23-49” folder, as shown below in the 

left part of Figure 4.32. In the “dataset” folder, apart from the “sinkhole-pwrtrace.csv” file, the 

“IoT_Simul.sh” file generated two more files (i.e., “sinkhole-recv.csv” and “sinkhole-send.csv”), 

following the same process as in Section 3.3.1. The “sinkhole-recv.csv” file and the “sinkhole-

send.csv” file include the “received” and “sent” messages printed by the motes, respectively. 

 
Figure 4.32 Location of the generated “sinkhole-pwrtrace.csv”, “sinkhole-recv.csv”, and “sinkhole-send.csv” files by the 

“IoT_Simul.sh” bash file.  

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the 

“IoT_Simul.sh” file extracted the information related to each mote from the “sinkhole-pwrtrace.csv” 

file and generated one csv file for each mote with the corresponding information from the “sinkhole-

pwrtrace.csv” file. The generated ten csv files (i.e., sinkhole-mote1.csv, …, sinkhole-mote10.csv) 

were stored in the “motedata” folder, created also by the “IoT_Simul.sh” file, as shown in the left 

part of Figure 4.32. 
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4.4.2.2 Sinkhole Attack “powertrace” Dataset – Generated Results 

The sinkhole attack “powertrace” dataset consists of the following csv files: “sinkhole-pwrtrace.csv”,  

“sinkhole-mote1.csv”, “sinkhole-mote2.csv”, “sinkhole-mote3.csv”, “sinkhole-mote4.csv”, “sinkhole-

mote5.csv”, “sinkhole-mote6.csv”, “sinkhole-mote7.csv”, “sinkhole-mote8.csv”, “sinkhole-

mote9.csv”, and “sinkhole-mote10.csv” files. In this Section, we present sets of records from the 

“sinkhole-pwrtrace.csv”, and in Appendix 1 we present sets of records from “sinkhole-mote1.csv”, 

“sinkhole-mote5.csv” and “sinkhole-mote10.csv” files.  

4.4.2.2.1 “sinkhole-pwrtrace.csv” 

The generated malicious “sinkhole-pwrtrace.csv” file consists of 17,390 records and its first 30 

records (i.e., 1–30) and its last 30 records (17,361–17,390) are depicted in Figure 4.33 and Figure 

4.34, respectively. 

 
Figure 4.33 Malicious “sinkhole-pwrtrace.csv” – 1 to 30 records 

 
Figure 4.34 Malicious “sinkhole-pwrtrace.csv”— 17,361 to 17,390 records. 
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4.4.3 Sinkhole Attack Network Traffic Dataset 

4.4.3.1 Sinkhole Attack Network Traffic Dataset – Generation Process 

The approach followed for the network traffic dataset generation from the sinkhole attack scenario 

was similar to the approach followed for the network traffic dataset generation from the benign IoT 

network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja simulator, was 

similarly used for collecting data related to the corresponding network traffic features (e.g., 

source/destination IPv6 address, packet size, and communication protocol) from the network of the 

attack scenario. During the simulation, the network traffic information was being shown in the top 

part of the “Radio messages” output window as depicted in the top part of Figure 4.35. 

 
Figure 4.35 Network traffic information from the sinkhole attack scenario in the “Radio messages” output window. 

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the 

“…/cooja/build” folder. Afterwards, the “IoT_Simul.sh” file, described in Section 3.4.1, created a) a 

new root folder named as “2021-10-29-23-23-49”, and b) the “nettraffic” folder, inside the “2021-

10-29-23-23-49” folder, where the “radiolog.pcap” file, copied from the “…/cooja/build” folder 

located in the Cooja Simulator, was saved as “sinkhole-radiolog.pcap”. The “nettraffic” folder inside 

the root folder “2021-10-29-23-23-49” and the “sinkhole-radiolog.pcap” file in the “nettraffic” folder 

are shown in Figure 4.36. 

 
Figure 4.36 The “nettraffic” folder inside the root folder “2021-10-29-23-23-49” and the “sinkhole-radiolog.pcap” file. 

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the 

stored network traffic information from the “sinkhole-radiolog.pcap” file to the “sinkhole-

radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.37. 

 
Figure 4.37 The “nettraffic” folder inside the root folder “2021-10-29-23-23-49” and its included files. 
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In the “nettraffic” folder, apart from the “sinkhole-radiolog.csv” file, we also used Wireshark, 

following the same process as in Section 3.4.1, to generate two more files (i.e., “sinkhole-radiolog-

ICMPv6.csv” and “sinkhole-radiolog-UDP.csv”) from the “sinkhole-radiolog.pcap” file. 

4.4.3.2 Sinkhole Attack Network Traffic Dataset – Generated Results  

The sinkhole attack network traffic dataset consists of the following csv files which are located in the 

“nettraffic” folder as described in Section 4.4.3.1: “sinkhole-radiolog.csv”, “sinkhole-radiolog-

ICMPv6.csv”, and “sinkhole-radiolog-UDP.csv” files. In this Section, we present sets of records from 

these files.  

4.4.3.2.1 “sinkhole-radiolog.csv” 

The generated malicious “sinkhole-radiolog.csv” file consists of 463,581 records and its first 30 

records (i.e., 1–30) are depicted below in Figure 4.38. 

 
Figure 4.38 Malicious “sinkhole-radiolog.csv”—1 to 30 records. 

 

4.4.3.2.2 “sinkhole-radiolog-ICMPv6.csv” 

The generated malicious “sinkhole-radiolog-ICMPv6.csv” file consists of 404,290 records and its first 

30 records (i.e., 1–30) are depicted below in Figure 4.39. 
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Figure 4.39 Malicious “sinkhole-radiolog-ICMPv6.csv”—1 to 30 records. 

 

4.4.3.2.3 “sinkhole-radiolog-UDP.csv” 

The generated malicious “sinkhole-radiolog-UDP.csv” file consists of 52,750 records and its first 30 

records (i.e., 1–30) are depicted below in Figure 4.40. 

 
Figure 4.40 Malicious “sinkhole-radiolog-UDP.csv”—1 to 30 records.  
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4.5 Sleep Deprivation Attack Datasets 

In this Section, we provide a detailed description of the approach followed to generate a set of 

malicious datasets by implementing a sleep deprivation attack scenario in the Cooja simulator, as 

shown in Figure 4.41. 

 
Figure 4.41 Sleep Deprivation Datasets generation by utilising the Cooja simulator. 

4.5.1 Sleep Deprivation Attack Scenario – an example 

The network topology of the simulated sleep deprivation attack scenario in the Cooja simulator 

environment consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the 

violet (malicious) UDP-client mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote 

1) which is also the target of the attack through mote 4, as, as depicted in Figure 4.41. The 

simulation duration was set to 60 mins and the motes’ outputs were printed out in the respective 

window (e.g., Mote output) while simulations run, as shown in Figure 4.42. Moreover, the 8 yellow 

(benign) UDP-client motes were configured to send text messages every 30 seconds, approximately, 

to the UDP-server mote that was configured to provide a corresponding response. On the other 

hand, the violet (malicious) UDP-client mote (i.e., mote 10) was compromised with malicious code, 

as shown in Figure 4.43 and Figure 4.44, to generate high UDP traffic (i.e., a dummy message every 

40 ms, approximately) and send it to the target mote which is mote 4. The malicious mote was 

programmed to start 25 minutes later than the others allowing the network to work properly before 

the attack. Finally, it is noteworthy to say that similar to the benign network scenario, the UDP 

protocol was used at the Transport Layer, the IPv6 at the network layer, and the type of motes was 

the Tmote Sky in the sleep deprivation attack scenario. 
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Figure 4.42 Cooja Simulator — Sleep Deprivation attack scenario — Motes’  outputs. 

 

 
Figure 4.43 Malicious code in “udp-client-sleep_depr.c” to generate high UDP traffic (i.e., a dummy message every 40 

ms, approximately)  

 

 

 
Figure 4.44 Malicious code in “udp-client-sleep_depr.c” to send out a dummy message 
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4.5.2 Sleep Deprivation Attack “powertrace” Dataset 

4.5.2.1 Sleep Deprivation Attack “powertrace” Dataset – Generation Process 

The approach followed for the “powertrace” dataset generation from the sleep deprivation attack 

scenario was similar to the approach followed for the “powertrace” dataset generation from the 

benign IoT network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly 

enabled for collecting “powertrace” related features, summarised in Table 3, from the motes of the 

attack scenario every two seconds. In Figure 4.45, the depicted mote output window displays the 

captured “powertrace” information every two seconds and also the messages sent and received by 

each mote during the simulation time (60 mins). 

 
Figure 4.45 Cooja Simulator— Sleep deprivation attack scenario — Mote output window. 

When the timeout occurred, the simulation stopped, and all the captured information and prints 

were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file, described in Section 

3.3.1, created a) a new root folder named as “2021-10-27-15-06-36”, and b) the “log” folder, inside 

the “2021-10-27-15-06-36” folder, where the “COOJA.testlog” file was copied from the 

“…/cooja/build” folder located in the Cooja Simulator. Then, the “IoT_Simul.sh” file following the 

same process, as described in Section 3.3.1, extracted the required “powertrace” information from 

the “COOJA.testlog” file and saved it in the “sleep_depr-pwrtrace.csv” file in the “dataset” folder 

that was also created by the batch file inside the “2021-10-27-15-06-36” folder, as shown below in 

the left part of Figure 4.46. In the “dataset” folder, apart from the “sleep_depr-pwrtrace.csv” file, 

the “IoT_Simul.sh” file generated two more files (i.e., “sleep_depr-recv.csv” and “sleep_depr-

send.csv”), following the same process as in Section 3.3.1. The “sleep_depr-recv.csv” file and the 

“sleep_depr-send.csv” file include the “received” and “sent” messages printed by the motes, 

respectively. 

 
Figure 4.46 Location of the generated “sleep_depr-pwrtrace.csv”, “sleep_depr-recv.csv”, and “sleep_depr-send.csv” files 

by the “IoT_Simul.sh” bash file. 

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the 

“IoT_Simul.sh” file extracted the information related to each mote from the “sleep_depr-

pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from 

the “sleep_depr-pwrtrace.csv” file. The generated ten csv files (i.e., “sleep_depr-mote1.csv”, …, 

“sleep_depr-mote10.csv”) were stored in the “motedata” folder, created also by the “IoT_Simul.sh” 

file, as shown in the left part of Figure 4.46. 
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4.5.2.2 Sleep Deprivation Attack “powertrace” Dataset – Generated Results 

The sleep deprivation attack “powertrace” dataset consists of the following csv files: “sleep_depr-

pwrtrace.csv”, “sleep_depr-mote1.csv”, “sleep_depr-mote2.csv”, “sleep_depr-mote3.csv”, 

“sleep_depr-mote4.csv”, “sleep_depr-mote5.csv”, “sleep_depr-mote6.csv”, “sleep_depr-

mote7.csv”, “sleep_depr-mote8.csv”, “sleep_depr-mote9.csv”, and “sleep_depr-mote10.csv”. In this 

Section, we present sets of records from the “sleep_depr-pwrtrace.csv”, and in Appendix 1 we 

present sets of records from “sleep_depr-mote1.csv”, “sleep_depr-mote6.csv” and “sleep_depr-

mote10.csv” files.  

4.5.2.2.1 “sleep_depr-pwrtrace.csv” 

The generated malicious “sleep_depr-pwrtrace.csv” file consists of 17,240 records and its first 30 

records (i.e., 1–30) and its last 30 records (17,211–17,240) are depicted in Figure 4.47 and Figure 

4.48, respectively. 

 
Figure 4.47 Malicious “sleep_depr-pwrtrace.csv”—1 to 30 records. 

 
Figure 4.48 Malicious “sleep_depr-pwrtrace.csv”—17,211 to 17,240 records. 
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4.5.3  Sleep Deprivation Attack Network Traffic Dataset  

4.5.3.1 Sleep Deprivation Attack Network Traffic Dataset – Generation Process 

The approach followed for the network traffic dataset generation from the sleep deprivation attack 

scenario was similar to the approach followed for the network traffic dataset generation from the 

benign IoT network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja 

simulator, was similarly used for collecting data related to the corresponding network traffic 

features (e.g., source/destination IPv6 address, packet size, and protocol) from the network of the 

attack scenario. During the simulation, the network traffic information was being shown in the top 

part of the “Radio messages” output window as depicted in the top part of Figure 4.49. 

 
Figure 4.49 Network traffic information from the sleep deprivation attack scenario in the “Radio messages” output 

window. 

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the 

“…/cooja/build” folder. Afterwards, the “IoT_Simul.sh” file, described in Section 3.4.1, created a) a 

new root folder named as “2021-10-27-15-06-36”, and b) the “nettraffic” folder, inside the “2021-

10-27-15-06-36” folder, where the “radiolog.pcap” file, copied from the “…/cooja/build” folder 

located in the Cooja Simulator, was saved as “sleep_depr-radiolog.pcap”. The “nettraffic” folder 

inside the root folder “2021-10-27-15-06-36” and the “sleep_depr-radiolog.pcap” file in the 

“nettraffic” folder are shown in Figure 4.50. 

 

Figure 4.50 The “nettraffic” folder inside the root folder “2021-10-27-15-06-36” and the “sleep_depr-radiolog.pcap” file. 

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the 

stored network traffic information from the “sleep_depr-radiolog.pcap” file to the “sleep_depr-

radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.51. 

 

Figure 4.51 The “nettraffic” folder inside the root folder “2021-10-27-15-06-36”and its included files. 
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In the “nettraffic” folder, apart from the “sleep_depr-radiolog.csv” file, we also used Wireshark, 

following the same process as in Section 3.4.1, to generate two more files (i.e., “sleep-depr-radiolog-

ICMPv6.csv” and “sleep_depr-radiolog-UDP.csv”) from the “sleep_depr-radiolog.pcap” file. 

4.5.3.2 Sleep Deprivation Attack Network Traffic Dataset – Generated Results 

The sleep deprivation attack network traffic dataset consists of the following csv files which are 

located in the “nettraffic” folder as described in Section 4.4.3.1: “sleep_depr-radiolog.csv”, “sleep-

depr-radiolog-ICMPv6.csv”, and “sleep_depr-radiolog-UDP.csv” files. In this Section, we present sets 

of records from these files. 

4.5.3.2.1 “sleep_depr-radiolog.csv” 

The generated malicious “sleep_depr-radiolog.csv” file consists of 571,079 records and its first 30 

records (i.e., 1–30) are depicted below in Figure 4.52. 

 
Figure 4.52 Malicious “sleep_depr-radiolog.csv”—1 to 30 records. 

 

4.5.3.2.2 “sleep-depr-radiolog-ICMPv6.csv” 

The generated malicious “sleep_depr-radiolog-ICMPv6.csv” file consists of 30,338 records and its 

first 30 records (i.e., 1–30) are depicted below in Figure 4.53. 
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Figure 4.53 Malicious “sleep_depr-radiolog-ICMPv6.csv”—1 to 30 records. 

4.5.3.2.3 “sleep_depr-radiolog-UDP.csv” 

The generated malicious “sleep_depr-radiolog-UDP.csv” file consists of 526,799 records and its first 

30 records (i.e., 1–30) are depicted below in Figure 4.54. 

 
Figure 4.54 Malicious “sleep_depr-radiolog-UDP.csv”—1 to 30 records. 
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4.6 Summary 

This Chapter provided a detailed description of the approach proposed to generate a set of 

malicious datasets from the following attack scenarios implemented in the Cooja simulator: i) UDP 

flooding attack, ii) blackhole attack, iii) sinkhole attack, and iv) sleep deprivation attack. Similar to 

the approach followed for the generation of the benign datasets in Section 3, the IoT-specific 

information from the simulated attack scenarios was captured from the Contiki plugin “powertrace” 

and the Cooja tool “Radio messages” in order to generate the corresponding “powertrace” and 

network traffic datasets for each of the simulated attack scenarios within csv files. The structure of 

the generated malicious IoT datasets from the above mentioned four attack scenarios is shown 

below in Figure 4.55.  

 
Figure 4.55 Generated Malicious IoT Datasets Structure 

In principle, the proposed approach in this Chapter can be extended for generating malicious IoT 

datasets from j different scenarios of i different attack types, where each attack scenario, 

implemented in the Cooja simulator, may include n different motes. The generic structure of 

malicious IoT datasets generated according to the proposed approach is shown in Figure 4.56.     
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Figure 4.56 Malicious IoT Datasets – Generic Structure 
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Chapter 5 Datasets Analysis  

5.1 Introduction 

This Chapter is focused on the analysis of the generated benign “powertrace” and network traffic 

datasets, presented in Chapter 3, and the generated malicious “powertrace” and network traffic 

datasets, demonstrated in Chapter 4. The Chapter starts with the analysis of the malicious 

“powertrace” datasets to investigate whether their raw features can be important in the detection 

of anomalies in the network-level power profiling of low-power IoT devices due to UDP flooding 

attacks, blackhole attacks, sinkhole attacks, or sleep deprivation attacks. Next, the Chapter continues 

with investigating the extraction of new features, more informative and non-redundant, based on 

the raw features of the generated benign and malicious datasets. The new features are intended to 

constitute valuable features for anomaly-based detection of UDP flooding attacks, blackhole attacks, 

sinkhole attacks and sleep deprivation attacks in IoT networks. To this end, the total energy 

consumption of each mote is investigated as a valuable feature in Section 5.2.2. Last but not least, 

the generated benign and malicious network traffic datasets are also analysed in Section 5.3.1 to 

derive new features more informative in terms of the behaviour of the network traffic. 

5.2 “powertrace” Datasets Analysis 

5.2.1 Malicious “powertrace” Datasets Analysis – Feature Selection 
The generated malicious “powertrace” datasets, presented in Chapter 4 include information about 

raw features (e.g., “all_cpu”, “all_transmit”, “all_listen”, “cpu”, “lpm”, etc.) that can be analysed to 

investigate whether they can be important in the detection of anomalies in the network-level power 

profiling of low-power IoT devices (i.e., motes) [107] due to one of the following attacks in the IoT 

network: UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack. 

Towards this direction, the Mutual Information (MI) method is applied to measure the importance of 

the different features of each malicious “powertrace” dataset (i.e., “udp-flood-pwrtrace.csv”, 

“blackhole-pwrtrace.csv”, “sinkhole-pwrtrace.csv”, and “sleep_depr-pwrtrace.csv”) and identify the 

most significant ones. The MI method was selected as it is commonly used to measure the 

usefulness of a feature in discriminating the different classes in a dataset [108]. Before applying the 

MI method, all malicious “powertrace” datasets were pre-processed in the following way: the 

feature “Clock_time” was filtered out along with the features related to the simulation duration (i.e., 

“all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, ”all_idle_transmit”, and “all_idle_listen” features)  

and the “seq no” feature. Besides that, the “P” feature was omitted, because it only has a fixed value 

throughout all of the collected records. Finally, the “ID” and “Rime Address” were also filtered out 

because it was observed that they led to overfitting. 

5.2.1.1 UDP Flooding Attack “powertrace” Dataset Analysis 

The following features from the processed “udp-flood-pwrtrace.csv” file were the features whose 

importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious) 

by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The 

results, sorted by value in descending order, are shown below in Table 5.1, where the 

“idle_transmit” feature is the one with the least importance. 
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Feature MI (in bits) 

“transmit” 0.3571 

“idle_listen” 0.3432 

“lpm” 0.2669 

“cpu” 0.2630 

“listen” 0.1888 

“idle_transmit” 0.0039 

Table 5.1 Mutual Information – Features – “udp-flood-pwrtrace.csv”.  

In addition, the average values of the first five features included in Table 5.1 for each mote were 

calculated and the results are shown below in Figure 5.1. 

     
                                                       (a)                                                                                                       (b) 

       
                                                       (c)                                                                                                        (d) 

   
(e) 

Figure 5.1 “udp-flood-pwrtrace.csv” - Average values (in ticks) for “transmit”, “idle_listen”, “lpm”, “cpu”, and “listen”. 
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Based on the results included in Figure 5.1, the following observations have been made: 

• Mote 6 (i.e., compromised client) and mote 1 (i.e., UDP-server) have the highest average 

value for the “transmit” feature. Although this is expected for mote 1 as it the server in the 

IoT network scenario, it is not normal for a benign client. Nevertheless, it is expected for a 

compromised mote implementing a UDP flooding attack by transmitting many UDP packets 

to the target mote (i.e., mote 1 – UDP-server mote). 

• Mote 6 (i.e., compromised client) and mote 1 (i.e., UDP-server) have the lowest average 

value for the “lpm” feature. Although this is expected for mote 1 as it the server in the IoT 

network scenario, it is not expected for a benign client. Nevertheless, it is expected for a 

compromised mote implementing a UDP flooding attack by generating and transmitting 

many UDP packets. 

• Mote 6 (i.e., compromised client) and mote 1 (i.e., UDP-server) have the highest average 

value for the “cpu” feature. Although this is expected for mote 1 as it the server in the IoT 

network scenario, it is not expected for a benign client. However, it is expected for a 

compromised mote implementing a UDP flooding attack by generating and transmitting 

many UDP packets to the target mote (i.e., mote 1 – UDP-server mote). 

• Mote 6 (i.e., compromised client) has the highest average value for the “listen” feature that 

is expected for the compromised client that we implemented to simulate a UDP flooding 

attack as it receives a high number of responses (i.e., a kind of acknowledgement packets 

sent back by the target-server) due the way the compromised mote was implemented. 

Therefore, based on the information included in Table 5.1 and the above observations from Figure 

5.1, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from the 

“udp-flood-pwrtrace.csv” dataset as its MI is close to zero, meaning that the “idle_transmit” feature 

provides very little information for the “label” feature (i.e., “0” for normal and “1” for malicious); 

and b) the following features can be valuable for anomaly-based detection of UDP flooding attacks in 

IoT networks as they can characterise the behaviour of the compromised node: “transmit”,  

“idle_listen”, “listen”, “lpm”, and “cpu”.      

5.2.1.2 Blackhole Attack “powertrace” Dataset Analysis 

The following features from the processed “blackhole-pwrtrace.csv” file were the features whose 

importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious) 

by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The 

results, sorted by value in descending order, are shown below in 5.2, where the “idle_transmit” 

feature is the one with the least importance. 

Feature MI (in bits) 

“idle_listen” 0.2217 

“listen” 0.2214 

“lpm” 0.1533 

“cpu” 0.1475 

“transmit” 0.0101 

“idle_transmit” 0.0020 

Table 5.2 Mutual Information – Features – “blackhole-pwrtrace.csv”. 
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Furthermore, the average values of the first five features included in Table 5.2 for each mote were 

calculated and the results are presented below in Figure 5.2. 

     
                                                       (a)                                                                                                       (b) 

     
                                                       (c)                                                                                                       (d) 

 
(e) 

Figure 5.2 “blackhole-pwrtrace.csv” - Average values (in ticks) for “idle_listen”, “listen”, “lpm”, “cpu”, and “transmit”. 

Based on the results included in Figure 5.2, the following observations have been made: 

• Mote 10 (i.e., compromised client) has the highest average value for the “lpm” feature 

which is expected for a compromised mote implementing a blackhole attack by dropping the 

packets that it has to forward. 

• Mote 10 (i.e., compromised client) has the lowest average value for the “cpu” feature which 

is expected for a compromised mote implementing a blackhole attack by dropping the 

packets that it has to forward. 

• Mote 10 (i.e., compromised client) has the lowest average value for the “transmit” feature 

(i.e., it is 0), which is not very common for benign client, but it is expected for a 

compromised mote dropping the packets that it has to forward in order to implement a 

blackhole attack. 
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• The average value for the “listen” and “idle_listen” features are zero because of the way we 

implemented the blackhole attack. Both features should be higher because of the behaviour 

of the compromised mote that implements a blackhole attack. In particular, we 

programmed the compromised mote to switch off, after 25 minutes from the beginning, not 

only the transmission feature in order to disrupt the communication chain but also the 

receiving feature. The fix of this issue in the blackhole implementation in the Cooja simulator 

is going to be part of our future work. 

Consequently, based on the information included in Table .2 and the above observations derived 

from Figure 5.2, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted 

from the “blackhole-pwrtrace.csv” dataset as its MI is close to 0, meaning that the “idle_transmit” 

feature provides very little information for the “label” feature (i.e., “0” for normal and “1” for 

malicious); and b) the following features can be valuable for anomaly-based detection of blackhole 

attacks in IoT networks as they can characterise the behaviour of the compromised mote: “lpm”, 

“cpu”, and “transmit”. The importance of the “listen” and “idle_listen” features that achieve the 

highest MI scores will be evaluated further in the near future, when the implementation issue is 

fixed, based also on their average values.                                                                                              

5.2.1.3 Sinkhole Attack “powertrace” Dataset Analysis 

The following features from the processed “sinkhole-pwrtrace.csv” file were the features whose 

importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious) 

by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The 

results, sorted by value in descending order, are shown below in Table , where the “idle_transmit” 

feature is the one with the least importance. 

Feature MI (in bits) 

“cpu” 0.1009 

“lpm” 0.0899 

 “transmit” 0.0698 

“listen”  0.0518 

“idle_listen” 0.0174 

“idle_transmit” 0.0000 

Table 5.3. Mutual Information – Features – “sinkhole-pwrtrace.csv”. 

Furthermore, the average values of the first five features included in Table 5.3 for each mote were 

calculated and the results are presented below in Figure 5.3. 
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                                                       (a)                                                                                                       (b) 

     
                                                       (c)                                                                                                       (d) 

 
(e)                                                                                                        

Figure 5.3 “sinkhole-pwrtrace.csv” - Average values (in ticks) for “cpu”, “lpm”, “listen”, “transmit” and “idle_listen”.  

Based on the results included in Figure 5.3, the following observations have been made: 

• Mote 10 (i.e., compromised client) has the lowest average value for the “cpu” feature which 

is expected for a compromised mote implementing a sinkhole attack by dropping the 

received packets before they are processed and forwarded.  

• Mote 10 (i.e., compromised client) has the highest average value for the “lpm” feature 

which is expected for a compromised mote implementing a sinkhole attack by dropping the 

received packets before they are processed and forwarded. 

• Mote 10 (i.e., compromised client) has the lowest average value for the “transmit” feature, 

which is expected for a compromised mote that drops the received packets that it has to 

forward in order to implement a sinkhole attack. However, the average value of the 

transmit” feature is not zero because at the beginning of the simulation the compromised 

mote spends time to proclaim appealing false capabilities so that nearby motes will choose it 

as the forwarding mote in the routing process due to its very attractive false capabilities. 

• Mote 10 (i.e., compromised client) has the highest average value for the “idle_listen” 

feature which is not very common for a benign client, but it is expected for a compromised 
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mote implementing a sinkhole attack as it should spend time listening to the medium to 

check if there is any packet in the air even though there is no packet being transmitted to it. 

It is worthwhile mentioning that the compromised mote that we programmed for the 

implementation of the sinkhole attack scenario in the Cooja simulator is a UDP-server mote 

and not a client mote in order to achieve the desired behaviour for the compromised mote 

that implements a sinkhole attack. This also explains the fact that its average value for the 

“idle_listen” feature is comparable, although higher, with the corresponding value of mote 1 

which is the benign server of the sinkhole scenario.  

Therefore, based on the information included in Table 5.3 and the above observations derived from 

Figure 5.3, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from 

the “sinkhole-pwrtrace.csv” dataset as its MI is 0, meaning that the “idle_transmit” feature provides 

zero information for the “label” feature (i.e., “0” for normal and “1” for malicious); and b) the 

following features can be valuable for anomaly-based detection of sinkhole attacks in IoT networks 

as they can characterise the behaviour of the compromised mote: “cpu”, “lpm”, “transmit”, 

“idle_listen” and “listen”.                                                                                              

5.2.1.4 Sleep Deprivation Attack “powertrace” Dataset Analysis   

The following features from the processed “sleep_depr-pwrtrace.csv” file were the features whose 

importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious) 

by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The 

results, sorted by value in descending order, are shown below in Table 5.4, where the 

“idle_transmit” feature is the one with the least importance. 

Feature MI (in bits) 

“transmit” 0.1944 

“cpu” 0.1200 

“lpm” 0.1166 

“listen” 0.0946 

“idle_listen” 0.0859 

“idle_transmit” 0.0024 

Table 5.4 Mutual Information – Features – “sleep_depr-pwrtrace.csv”. 

In addition, the average values of the first five features included in Table 5.4 for each mote were 

calculated and the results are demonstrated below in Figure 5.4. 
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                                                       (a)                                                                                                       (b) 

     
                                                       (c)                                                                                                       (d) 

 
(e) 

Figure 5.4 “sleep_depr-pwrtrace.csv” - Average values (in ticks) for “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”. 

Based on the results included in Figure 5.4, the following observations have been made: 

• Mote 10 (i.e., compromised client) has the highest average value for the “transmit” feature 

which is expected for a compromised mote implementing a sleep deprivation attack by 

transmitting a high UDP traffic volume to the target mote (i.e., mote 4) which is the closest 

mote to the compromised mote. 

• Mote 10 (i.e., compromised client) has the highest average value for the “cpu” feature which 

is expected for a compromised mote implementing a sleep deprivation attack by generating 

and transmitting many UDP packets to the target mote in order to break its programmed 

sleep routines and keep it continuously active until it is shut down due to a drained battery.   

• Mote 10 (i.e., compromised client) has the lowest average value for the “lpm” feature which 

is expected for a compromised mote implementing a sleep deprivation attack by generating 

and transmitting many UDP packets to the target mote.  

• Mote 10 (i.e., compromised client) has the highest average value for the “listen” feature that 

is expected for the compromised client that we implemented to simulate a sleep deprivation 

attack as it receives a high number of responses (i.e., a kind of acknowledgement packets 
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sent back by the server when it receives, via forwarding, the UDP packets sent by the 

compromised mote to mote4) due the way the compromised mote was implemented. 

Therefore, based on the information included in Table 5.4 and the above observations derived from 

Figure 5.4, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from 

the “sleep_depr-pwrtrace.csv” dataset as its score for MI is close to zero, meaning that the 

“idle_transmit” feature provides very little information for the “label” feature (i.e., “0” for normal 

and “1” for malicious); and b) the following features can be valuable for anomaly-based detection of 

sleep deprivation attacks in IoT networks as they can characterise the behaviour of the 

compromised node: “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”.      
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5.2.2 Benign and Malicious “powertrace” Datasets Analysis – Feature Extraction 
The generated malicious “powertrace” datasets, presented in Chapter 4 include information about 

raw features (e.g., “all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, “all_idle_transmit”, 

“all_idle_listen”, “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit”, “idle_listen” etc.) that can be 

used to derive new features more informative, in terms of the behaviour of each mote, and non-

redundant. The new features are intended to constitute valuable features for training and evaluating 

AIDS for IoT networks. Towards this direction, the total energy consumption of each mote in an IoT 

network is investigated in this Section as a valuable feature for attack detection. 

Based on [109] and [110], the total energy consumption of each mote, at the reading (i.e., record) i, 

is given by the sum of a) the energy consumption in the CPU state; b) the energy consumption in the 

LPM state; c) the energy consumption in the TX state; and d) the energy consumption in the RX 

state, at the reading (i.e., record) i, as shown in the equation below: 

𝐸𝑡𝑜𝑡𝑎𝑙𝑖
(𝑚𝐽) =  𝐸𝑐𝑝𝑢𝑡𝑜𝑡𝑎𝑙𝑖

+ 𝐸𝑙𝑝𝑚𝑡𝑜𝑡𝑎𝑙𝑖
+ 𝐸𝑡𝑥𝑡𝑜𝑡𝑎𝑙𝑖

+ 𝐸𝑟𝑥𝑡𝑜𝑡𝑎𝑙𝑖
= 

= (𝐼𝑐𝑝𝑢  × 𝑉𝑐𝑝𝑢 × 𝑇𝑐𝑝𝑢𝑖
) + (𝐼𝑙𝑝𝑚  × 𝑉𝑙𝑝𝑚  × 𝑇𝑙𝑝𝑚𝑖

) + (𝐼𝑡𝑥 × 𝑉𝑡𝑥 × 𝑇𝑡𝑥𝑖
)

+ (𝐼𝑟𝑥 × 𝑉𝑟𝑥 × 𝑇𝑟𝑥𝑖
)      

(5.1) 

where 

Icpu: the nominal current in the CPU state; 

Ilpm: the nominal current in the LPM state; 

Itx: the nominal current in the TX state; 

Irx: the nominal current in the RX state; 

Vcpu: the nominal voltage in the CPU state; 

Vlpm: the nominal voltage in the LPM state; 

Vtx: the nominal voltage in the TX state; 

Vrx: the nomnal voltage in the RX state; 

𝑇𝑐𝑝𝑢𝑖
=  

𝑐𝑝𝑢𝑖  (# 𝑡𝑖𝑐𝑘𝑠)

𝑅𝑇𝐼𝑀𝐸𝑅_𝐴𝑅𝐶𝐻_𝑆𝐸𝐶𝑂𝑁𝐷
=

𝑐𝑝𝑢𝑖  (# 𝑡𝑖𝑐𝑘𝑠)

32,768 
 

𝑇𝑙𝑝𝑚𝑖
=  

𝑙𝑝𝑚𝑖  (# 𝑡𝑖𝑐𝑘𝑠)

𝑅𝑇𝐼𝑀𝐸𝑅_𝐴𝑅𝐶𝐻_𝑆𝐸𝐶𝑂𝑁𝐷
=

𝑙𝑝𝑚𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768 
 

𝑇𝑡𝑥𝑖
=  

𝑡𝑥𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

𝑅𝑇𝐼𝑀𝐸𝑅_𝐴𝑅𝐶𝐻_𝑆𝐸𝐶𝑂𝑁𝐷
=

𝑡𝑥𝑖(# 𝑡𝑖𝑐𝑘𝑠)

32,768 
 

𝑇𝑟𝑥𝑖
=  

𝑟𝑥 𝑖(# 𝑡𝑖𝑐𝑘𝑠)

𝑅𝑇𝐼𝑀𝐸𝑅_𝐴𝑅𝐶𝐻_𝑆𝐸𝐶𝑂𝑁𝐷
=

𝑟𝑥𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768 
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Based on Equation (5.1) and Table 5.5 [105] that provides the typical operating conditions for a 

Tmote Sky mote, the total energy consumption, at the reading (i.e., record) i, is given by the 

Equation (5.2): 

 MIN 
NOM 

(Typical) 
MAX UNIT 

Supply voltage 2.1 3.0 3.6 V 

Supply voltage during flash memory programming 2.7 3.0 3.6 V 

Operating free air temperature -40  85 ºC 

Current Consumption: MCU on, Radio RX  21.8 23 mA 

Current Consumption: MCU on, Radio TX  19.5 21 mA 

Current Consumption: MCU on, Radio off  1800 2400 µA 

Current Consumption: MCU idle, Radio off  54.5 1200 µA 

Current Consumption: MCU standby  5.1 21.0 µA 

Table 5.5 Typical Operating Conditions for Tmote Sky motes [105]. 

𝐸𝑡𝑜𝑡𝑎𝑙𝑖
(𝑚𝐽) =  1.8 × 3 ×  (

𝑐𝑝𝑢𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768 
) +  0.0545 × 3 × (

𝑙𝑝𝑚𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768 
) 

+ 19.5 × 3 × (
𝑡𝑥𝑖(# 𝑡𝑖𝑐𝑘𝑠)

32,768 
)  +  21.8 × 3 × (

𝑟𝑥𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768 
)      

(5.2) 

5.2.2.1 Benign “powertrace” Dataset – Average Total Energy Consumption per Mote   

Based on Equation (5.2) and the following features, from the generated benign “pwrtrace.csv” 

dataset in Section 3.3, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”; and d) “all_listen”, 

the average total energy consumption by each mote, during the simulation time (i.e., 60 min = 3600 

sec) is shown below in Figure 5.5. The confidence interval has been considered to be the acquisition 

time which is 2 seconds.  
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Figure  5.5 Average Total Energy Consumption per Mote – Benign “powertrace” Dataset. 

5.2.2.2 UDP Flooding Attack “powertrace” Dataset – Average Total Energy Consumption per Mote 

  

Based on Equation (5.2) and the following features, from the generated malicious “udp-flood- 

pwrtrace.csv” dataset in Section 4.2.2, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”; 

and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e., 

60 min = 3600 sec) is shown below in Figure 5.6. The confidence interval has been considered to be 

the acquisition time which is 2 seconds.  

 

 
Figure 5.6 Average Total Energy Consumption per Mote – UDP Flooding Attack “powertrace” Dataset. 
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According to the results demonstrated in Figure 5.6, it is clear that the compromised mote (i.e., 

mote6) that carried out the UDP flooding attack consumed much more energy than any other 

benign motes (i.e., client or server) in the UDP flooding attack scenario as it generated and 

transmitted many UDP packets to the target server-mote (i.e., mote1). In addition, it is observed 

that the server-mote consumed a high level of energy as it received a high number of UDP packets 

from the compromised mote. In particular, the server-mote in the UDP flooding attack consumed 

much more energy than the energy it consumed in the benign scenario as demonstrated in Figure 

5.6. These observations are also reflected in Figure 5.7 and Figure 5.8 demonstrating the average 

CPU energy consumption and the average Radio (i.e., TX+RX) energy consumption per mote, 

respectively. 

 

 
Figure 5.7 Average CPU Energy Consumption per Mote – UDP Flooding Attack “powertrace” Dataset. 
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Figure 5.8 Average Radio (TX+RX) Energy Consumption per Mote – UDP Flooding Attack “powertrace” Dataset. 

5.2.2.3 Blackhole Attack “powertrace” Dataset – Average Total Energy Consumption per Mote 

Based on Equation (5.2) and the following features, from the generated malicious “blackhole- 

pwrtrace.csv” dataset in Section 4.3.2, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”; 

and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e., 

60 min = 3600 sec) is shown below in Figure 5.9. The confidence interval has been considered to be 

the acquisition time which is 2 seconds.  
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Figure 5.9 Average Total Energy Consumption per Mote – Blackhole Attack “powertrace” Dataset. 

According to the results demonstrated in Figure 5.9, it is clear that the compromised mote (i.e., 

mote10) decreased its total energy consumption significantly (please see red arrow) as it was 

programmed to switch off, after 25 minutes (1,500 sec) from the beginning of the simulation, not 

only the transmission feature (TX) in order to disrupt the communication chain but also the receiving 

feature (RX). This observation is also clear in Figure 5.10 demonstrating the average Radio (i.e., 

TX+RX) energy consumption per mote. Furthermore, in Figure 5.9, it is shown that mote3, mote4, 

and mote5 increased their total energy consumption (see black dotted ellipse) because they 

increased their average radio energy consumption, as particularly depicted in Figure 5.10, as they 

were trying to re-establish connection with the mote-server due to the impact of the blackhole 

attack on the network. 
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Figure 5.10 Average Radio (TX+RX) Energy Consumption per Mote – Blackhole Attack “powertrace” Dataset. 

5.2.2.4 Sinkhole Attack “powertrace” Dataset – Average Total Energy Consumption per Mote 

Based on Equation (5.2) and the following features, from the generated malicious “sinkhole- 

pwrtrace.csv” dataset in Section 4.4.2, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”; 

and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e., 

60 min = 3600 sec) is shown below in Figure 5.11. The confidence interval has been considered to be 

the acquisition time which is 2 seconds.  
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Figure 5.11 Average Total Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset. 

Figure 5.11 shows that the compromised mote (i.e., mote10) that carried out the sinkhole attack 

consumed little total energy compared to the other benign motes (i.e., client or server) in the 

sinkhole scenario as it dropped the received packets before them being processed and forwarded. It 

is worthwhile noting that the spike of the energy consumption of the compromised mote at 1200th 

second was due to the fact that at that moment, the compromised mote was programmed to turn 

on as mentioned in section 4.4.1 (Sinkhole Attack Scenario – an example).  This is also shown in 

detail in Figure 5.12. On the other hand, as also seen in Figure 5.13, all the other motes increased 

their energy consumption due to their efforts to respond to the impact of the sinkhole attack on the 

network. 
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Figure 5.12Average CPU Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset. 

 

 
Figure 5.13 Average Radio Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset. 



 

107 
 

5.2.2.5 Sleep Deprivation Attack “powertrace” Dataset – Average Total Energy Consumption per Mote 

Based on Equation (5.2) and the following features, from the generated malicious “sleep_depr- 

pwrtrace.csv” dataset in Section 4.5.2, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”; 

and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e., 

60 min = 3600 sec) is shown below in Figure 5.14. The confidence interval has been considered to be 

the acquisition time which is 2 seconds.  

 

 

 
Figure 5.14 Average Total Energy Consumption per Mote – Sleep Deprivation Attack “powertrace” Dataset. 

Figure 5.14 shows that the compromised mote (i.e., mote10) that carried out the sleep deprivation 

attack consumed more energy compared to the other benign motes (i.e., client or server) in the 

sleep deprivation scenario as it generated and transmitted many UDP packets to the target client-

mote (i.e., mote4). Besides that, mote10 received a high number of responses (i.e., a kind of 

acknowledgement packets sent back by the server when it receives, via forwarding, the UDP packets 

sent by the compromised mote to mote4) due the way the compromised mote was implemented. It 

is worthwhile mentioning that the spike of the energy consumption of the compromised mote at 

1500th second was due to the fact that at that moment, the compromised mote was programmed 

to turn on as mentioned in section 4.5.1 (Sleep Deprivation Attack Scenario – an example).  This 

observation is also presented in detail in Figure . In addition, it is observed in Figure 5.16  that the 

server-mote (i.e., mote1) and the target client mote (i.e., mote4) consumed a high level of radio 

energy as they both received a high number of UDP packets from the compromised mote. 
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Figure 5.15 Average CPU Energy Consumption per Mote – Sleep Deprivation Attack “powertrace” Dataset. 

 

 
Figure 5.16 Average Radio Energy Consumption per Mote – Sleep Deprivation Attack “powertrace” Dataset. 
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5.3 Network Traffic Datasets Analysis 

5.3.1 Benign and Malicious Network Traffic Datasets Analysis-Feature Extraction 
The generated benign network traffic dataset (i.e., “radiolog.csv”), presented in Section 3.4, and the 

generated malicious network traffic datasets (i.e., “udp-flood-radiolog.csv”, “blackhole-radiolog.csv”, 

“sinkhole-radiolog.csv”, and “sleep_depr-radiolog.csv”), presented in Sections 4.2.3, 4.3.3, 4.4.3, and 

4.5.3, include information about raw features, such as “source” address, “destination” address, 

“protocol”, and packet “length”, which can be used to derive new features more informative, in 

terms of the behaviour of the network traffic, and non-redundant. The new features are intended to 

constitute valuable features for training and evaluating AIDS for IoT networks. Towards this 

direction, the generated benign and malicious network traffic datasets are analysed in this Section in 

order to extract valuable features for anomaly-based detection of UDP flooding attacks, blackhole 

attacks, sinkhole attacks and sleep deprivation attacks in IoT networks.  

5.3.1.1 Benign Network Traffic Dataset Analysis 

From the generated benign “radiolog.csv” dataset in Section 3.4, Table 5.6 was extracted, 

demonstrating, in the last column, the percentage of the RPL packets overhead per mote1 which is 

calculated as follows: the number of RPL packets per mote over the total number of exchanged 

packets within the network during the simulation time (i.e., 116,463 packets). The last row of Table 

5.6 contains the total number of RPL packets (7,975), UDP packets (104,048) and other protocol 

packets (4,440) exchanged within the network, and the total RPL packets overhead which is equal to 

6.85 %. The number of other packets for each mote is not shown because Wireshark cannot decode 

properly the information from the pcap file generated by Cooja. 

Network Traffic and RPL Packets Overhead - Benign Network Traffic Dataset 

 Number of 
RPL Packets 

Number of 
UDP Packets 

Number of 
Other Packets2 

RPL Packets 
Overhead [%] 

Mote1 290 43,804 - 0.25 

Mote2 1,982 11,621 - 1.70 

Mote3 1,621 11,883 - 1.39 

Mote4 1,604 11,827 - 1.38 

Mote5 1,308 12,556 - 1.12 

Mote6 1,170 12,357 - 1.00 

Total 7,975 104,048 4,440 6.85 
Table 5.6 Network Traffic and RPL Packets Overhead – Benign Network Traffic Dataset. 

Based on the information included in Table 5.6, the calculated RPL packets overhead per mote and 

the total RPL packets overhead are depicted in Figure 5.17. 

 

 

 
1 For example, the calculated RPL packets overhead for mote1 is calculated as: 

290

116,463
× 100% = 0.25 % 

2 The number of other packets for each mote is not shown because Wireshark cannot decode properly the 
information from the pcap file generated by Cooja. 
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Figure 5.17 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Benign Network Traffic Dataset. 

5.3.1.2 UDP Flooding Attack Network Traffic Dataset Analysis 

From the generated malicious “udp-flood-radiolog.csv” dataset in Section 4.2.3, Table 5.7  was 

extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote 

which is calculated as follows: the number of RPL packets per mote over the total number of 

exchanged packets within the network during the simulation time (702,332 packets). The last row of 

Table 5.7  contains the total number of RPL packets (9,908), UDP packets (670,671), and other 

protocol packets (21,753) exchanged within the network, and the total RPL packets overhead which 

is equal to 1.41 %. 

Network Traffic and RPL Packets Overhead – UDP Flooding Attack Network Traffic 
Dataset 

 Number of RPL 
Packets 

Number of UDP 
Packets 

Number of 
Other Packets3 

RPL Packets 
Overhead [%] 

Mote1 203 254,796 - 0.03 

Mote2 2,228 28,953 - 0.32 

Mote3 2,768 30,238 - 0.39 

Mote4 1,976 27,260 - 0.28 

Mote5 2,084 31,247 - 0.30 

Mote6 6,490 298,177 - 0.09 

Total 9,908 670,671 21,753 1.41 

Table 5.7  Network Traffic and RPL Packets Overhead – UDP Flooding Attack Network Traffic Dataset. 

Based on the information included in Table 5.7 , the calculated RPL packets overhead per mote and 

the total RPL packets overhead are depicted in Figure 5.18. 

 
3 The number of other packets for each mote is not shown because Wireshark cannot decode properly the 
information from the pcap file generated by Cooja. 
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Figure 5.18 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – UDP Flooding Attack Network 
Traffic Dataset. 

According to Figure , it is clear that the total RPL packets overhead in the UDP flooding attack 

scenario (1.41%) is much lower than the total RPL packets overhead in the benign scenario (6.85%) 

because of the huge amount of UDP packets transmitted by the compromised mote (i.e., mote6) to 

the target server-mote (i.e., mote1) in the attack scenario. For the same reason, the RPL packets 

overhead of mote6 in the UDP flooding attack scenario (0.09%) is much less than the corresponding 

overhead in the benign scenario (1%). 

5.3.1.3 Blackhole Attack Network Traffic Dataset Analysis 

From the generated malicious “blackhole-radiolog.csv” dataset in Section 4.3.3, Table 5.8  was 

extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote 

which is calculated as follows: the number of RPL packets per mote over the total number of 

exchanged packets within the network during the simulation time (99,622 packets). The last row of 

Table 5.8  contains the total number of RPL packets (24,011), UDP packets (73,551), and other 

protocol packets (2,060) exchanged within the network, and the total RPL packets overhead which is 

equal to 24.10 %. 
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Network Traffic and RPL Packets Overhead – Blackhole Attack Network Traffic Dataset 

 Number of RPL 
Packets 

Number of UDP 
Packets 

Number of Other 
Packets4 

RPL Packets 
Overhead [%] 

Mote1 290 19,196 - 0,29 

Mote2 4,292 3,821 - 4,31 

Mote3 5,341 9,595 - 5,36 

Mote4 3,849 10,910 - 3,86 

Mote5 2,604 11,756 - 2,61 

Mote6 1,433 1,948 - 1,44 

Mote7 1,660 3,612 - 1,67 

Mote8 1,264 3,779 - 1,27 

Mote9 1,580 6,045 - 1,59 

Mote10 1,698 2,889 - 1,70 

Total 24,011 73,551 2,060 24,10 

Table 5.8  Network Traffic and RPL Packets Overhead – Blackhole Attack Network Traffic Dataset. 

Based on the information included in Table 5.8 , the calculated RPL packets overhead per mote and 

the total RPL packets overhead are depicted in Figure 5.19. 

 
Figure 5.19 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Blackhole Attack Network Traffic 

Dataset. 

According to Figure 5.19, it is clear that the total RPL packets overhead in the blackhole attack 

scenario (24.10%) is much higher than the total RPL packets overhead in the benign scenario (6.85%) 

because of the large number of RPL packets transmitted by the motes in the attack scenario as they 

were trying to re-establish connection with the mote-server due to the impact of the blackhole 

attack on the network. On top of that, many UDP packets were dropped by the compromised mote 

(i.e. mote10) instead of being forwarded. It is worthwhile mentioning that we intend, as future work, 

to generate a network traffic dataset from a benign scenario with 10 motes (i.e., the current one 

includes 6) as the blackhole attack scenario so that we can get a more accurate value for the total 

 
4 The number of other packets for each mote is not shown because Wireshark cannot decode properly the 
information from the pcap file generated by Cooja. 
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RPL packets overhead in the benign scenario. However, it is expected that value of the total RPL 

packets overhead in a benign scenario with 10 motes and the same conditions as the benign 

scenario with 6 motes will be close to the value of the overhead in the scenario with the 6 motes 

because as the number of UDP packets will be increased due to the 4 more motes, the RPL packets 

transmitted in the network will be increased analogously.  

5.3.1.4 Sinkhole Attack Network Traffic Dataset Analysis 

From the generated malicious “sinkhole-radiolog.csv” dataset in Section 4.4.3, Table 5.9  was 

extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote 

which is calculated as follows: the number of RPL packets per mote over the total number of 

exchanged packets within the network during the simulation time (463,581 packets). The last row of 

Table 5.9  contains the total number of RPL packets (404,290), UDP packets (52,750), and other 

protocol packets (6,541) exchanged within the network, and the total RPL packets overhead which is 

equal to 87.21 %.  

 

 

 

Network Traffic and RPL Packets Overhead – Sinkhole Attack Network Traffic Dataset 

 Number of RPL 
Packets 

Number of UDP 
Packets 

Number of Other 
Packets5 

RPL Packets 
Overhead [%] 

Mote1 10,344 14,878 - 2.23 

Mote2 56,427 4,130 - 12.17 

Mote3 46,048 3,864 - 9.93 

Mote4 52,087 5,279 - 11.24 

Mote5 46,576 3,916 - 10.05 

Mote6 43,657 4,643 - 9.42 

Mote7 44,872 5,642 - 9.68 

Mote8 46,974 4,282 - 10.13 

Mote9 46,788 6,116 - 10.09 

Mote10 10,517 0 - 2.27 

Total 404,290 52,750 6,541 87.21 

Table 5.9  Network Traffic and RPL Packets Overhead – Sinkhole Attack Network Traffic Dataset. 

Based on the information included in Table 5.9 , the calculated RPL packets overhead per mote and 

the total RPL packets overhead are depicted in Figure 5.20. 

 
5 The number of other packets for each mote is not shown because Wireshark cannot decode properly the 
information from the pcap file generated by Cooja. 
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Figure 5.20 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Sinkhole Attack Network Traffic 

Dataset. 

According to Figure 5.20, it is clear that the total RPL packets overhead in the sinkhole attack 

scenario (87.21%) is significantly higher than the total RPL packets overhead in the benign scenario 

(6.85%) because of the huge number of RPL packets transmitted by the motes in the attack scenario 

as they were trying to respond to the impact of the sinkhole attack on the network. In addition, 

many UDP packets were dropped by the compromised mote (i.e. mote10) instead of being 

forwarded. It is worthwhile mentioning that we intend, as future work, to generate a network traffic 

dataset from a benign scenario with 10 motes (i.e., the current one includes 6) as the sinkhole attack 

scenario so that we can get a more accurate value for the total RPL packets overhead in the benign 

scenario. However, it is expected that value of the total RPL packets overhead in a benign scenario 

with 10 motes and the same conditions as the benign scenario with 6 motes will be close to the 

value of the overhead in the scenario with the 6 motes because as the number of UDP packets will 

be increased due to the 4 more motes, the RPL packets transmitted in the network will be increased 

analogously.  

5.3.1.5 Sleep Deprivation Attack Network Traffic Dataset Analysis 

From the generated malicious “sleep_depr-radiolog.csv” dataset in Section 4.5.3, was extracted, 

demonstrating, in the last column, the percentage of the RPL packets overhead per mote which is 

calculated as follows: the number of RPL packets per mote over the total number of exchanged 

packets within the network during the simulation time (571,079 packets). The last row of Table 5.10  

contains the total number of RPL packets (30,338), UDP packets (526,799), and other protocol 

packets (13,942) exchanged within the network, and the total RPL packets overhead which is equal 

to 5.31 %. 
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Network Traffic and RPL Packets Overhead – Sleep Deprivation Attack Network Traffic 
Dataset 

 Number of RPL 
Packets 

Number of UDP 
Packets 

Number of Other 
Packets6 

RPL Packets 
Overhead [%] 

Mote1 261 237,640 - 0.05 

Mote2 3,288 2,782 - 0.58 

Mote3 2,709 3,075 - 0.47 

Mote4 2,063 4,531 - 0.36 

Mote5 5,550 4,256 - 0.97 

Mote6 2,936 8,322 - 0.51 

Mote7 2,617 9,595 - 0.46 

Mote8 3,936 13,000 - 0.69 

Mote9 6,248 10,708 - 1.09 

Mote10 730 232,890 - 0.13 

Total 30,338 526,799 13,942 5.31 

Table 5.10  Network Traffic and RPL Packets Overhead – Sleep Deprivation Attack Network Traffic Dataset. 

Based on the information included in Table 5.10 , the calculated RPL packets overhead per mote and 

the total RPL packets overhead are depicted in Figure 5.24. 

 
Figure 5.21 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Sleep Deprivation Attack Network 

Traffic Dataset. 

 

According to Figure 5.21, the total RPL packets overhead in the sleep deprivation attack scenario 

(5.31%) is lower than the total RPL packets overhead in the benign scenario (6.85%) because of the 

large number of UDP packets transmitted by the compromised mote (i.e., mote10) to the target 

client-mote (i.e., mote4). It is worthwhile mentioning that we intend, as future work, to generate a 

network traffic dataset from a benign scenario with 10 motes (i.e., the current one includes 6) as the 

sleep deprivation attack scenario so that we can get a more accurate value for the total RPL packets 

overhead in the benign scenario. However, it is expected that value of the total RPL packets 

 
6 The number of other packets for each mote is not shown because Wireshark cannot decode properly the 
information from the pcap file generated by Cooja. 
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overhead in a benign scenario with 10 motes and the same conditions as the benign scenario with 6 

motes will be close to the value of the overhead in the scenario with the 6 motes because as the 

number of UDP packets will be increased due to the 4 more motes, the RPL packets transmitted in 

the network will be increased analogously. 

5.4 Summary 
This Chapter was focused on the analysis of the generated benign “powertrace” and network traffic 

datasets, presented in Chapter 3, and the generated malicious “powertrace” and network traffic 

datasets, demonstrated in Chapter 4. The Chapter started with the analysis of the malicious 

“powertrace” datasets to investigate whether their raw features can be important in the detection 

of anomalies in the network-level power profiling of low-power IoT devices (i.e., motes) due to UDP 

flooding attacks, blackhole attacks, sinkhole attacks, or sleep deprivation attacks. Towards this 

direction, all malicious “powertrace” datasets were pre-processed before applying the MI method to 

measure the importance of the different features of each malicious “powertrace” dataset (i.e., “udp-

flood-pwrtrace.csv”, “blackhole-pwrtrace.csv”, “sinkhole-pwrtrace.csv”, and “sleep_depr-

pwrtrace.csv”) and identify the most significant features. In addition, the average values of the most 

significant features, based on MI, were calculated. Based on the results and the observations in 

Section 5.2.1, the following 5 features have been identified as the most important for all malicious 

“powertrace” datasets:  “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”.  

Next, the Chapter continued with investigating the extraction of new features, more informative and 

non-redundant, based on the raw features of the generated benign and malicious “powertrace” 

datasets and the generated benign and malicious network traffic datasets. To this end, the total 

energy consumption of each mote in an IoT network was investigated in Section 5.2.2 as a valuable 

feature for training and evaluating IoT AIDSs. According to the observations and conclusions in 

Section 5.2.2, the total energy consumption of each mote in an IoT network can play a valuable role 

in anomaly-based intrusion detection for the following types of attacks in IoT networks: UDP 

flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack. This is because any 

observation considerably deviating from the normal total energy consumption, and particularly the 

total CPU energy consumption and the total Radio (i.e., TX+RX) energy consumption per mote, can 

be considered as an anomalous behaviour, triggering alerts so that proper countermeasures can be 

taken to minimise the risk. On the other hand, the generated benign and malicious network traffic 

datasets were also analysed in Section 5.3.1 and the new feature that was extracted was the “RLP 

packets overhead”. This new feature provides information about the number of RPL packets (per 

mote and total) transmitted over the total number of exchanged messages within the IoT network, 

indicating a blackhole or sinkhole attack when its value is high and a UDP flooding attack or sleep 

deprivation attack when its value is low.  
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Chapter 6 Datasets Validation 

6.1 Introduction 

This Chapter is focused on the validation of the generated malicious “powertrace” datasets, 

presented in Chapter 4, by applying different Machine Learning (ML) algorithms for IoT AIDSs to 

evaluate their performance on the generated malicious datasets. In particular, the following most 

popular ML algorithms for IoT AIDSs, reviewed in Section 2.3, were applied: naïve Bayes (NB), 

decision tree (DT), random forest (RF), logistic regression (LR), support vector machines (SVM), and 

k-nearest neighbor (KNN). Using five-fold cross validation, these algorithms were trained and tested 

over the same labelled dataset for each attack scenario. Furthermore, the following four traditional 

metrics, reviewed in Section 2.4, were used to evaluate the performance of the ML algorithms on 

the generated datasets when these algorithms are used for anomaly detection in IoT AIDSs: 

accuracy, precision, recall, and F1-score. In all experiments, the Python language (version 3.8.2) was 

used, along with the Scikit-Learn library [27] and a Python script created, utilizing specific functions 

of the Scikit-Learn library, to perform training and testing of the ML algorithms.  

6.2 Dataset Pre-Processing 

The pre-processing phase involved the removal of unnecessary features from the four malicious 

“powertrace” datasets (i.e., “udp-flood-pwrtrace.csv”, “blackhole-pwrtrace.csv”, “sinkhole-

pwrtrace.csv”, and “sleep_depr-pwrtrace.csv”) and the addition of the “label” feature (i.e., “0” for 

normal and “1” for malicious) to all of them. In particular, the feature “Clock_time” was filtered out 

along with the features related to the simulation time (i.e., “sim time”) and the simulation duration 

(i.e., “all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, ”all_idle_transmit”, “all_idle_listen”) and the 

“seq no” feature. Besides that, the “P” feature was omitted, because it only has a fixed value 

throughout all of the collected records of the malicious “powertrace” datasets. Moreover the “ID” 

and “Rime Address” were also filtered out because it was observed that they led to overfitting. Last 

but not least, the “idle_transmit” feature was filtered out as well, because it had the lowest 

calculated importance, based on the “label” feature, by applying the MI method for all malicious 

“powertrace” datasets. After the pre-processing phase, the new labelled malicious “powertrace” 

datasets were named as “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, “sinkhole-

pwrtrace_label.csv”, and “sleep_depr-pwrtrace_label.csv”, and contained the following features: 

“cpu”, “lpm”, “transmit”, “listen”, and “idle_listen”.   

6.3 Normalisation 

The data normalization step was performed to the numeric values of each feature. If the values of a 

feature are significantly larger compared to the values of other features, this may lead to inaccurate 

results. Thus, data normalisation helps to ensure that features with significantly large values do not 

outweigh features with smaller values. To achieve this, all of the features’ values are scaled within 

the range of [0.0, 1.0] by performing a min–max normalization process on each feature. This 

normalization process is described by the following equation: 

z = (x − xmin)/(xmax − xmin) (6.1) 

where z is the normalized value (i.e., after scaling), x is the value before scaling, and xmax and xmin are 

the maximum and minimum values of the feature, respectively. 
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6.4 Training and Testing of ML Algorithms on the Malicious “Powertrace” 

Datasets 

The selected ML algorithms were trained and tested separately over the four labelled malicious 

“powertrace” datasets:  “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, “sinkhole-

pwrtrace_label.csv”, and “sleep_depr-pwrtrace_label.csv”. Initially, each of the four datasets was 

split into two parts: the train part and the test part. The train part consisted of 80% of the dataset 

and the ML algorithms were trained and evaluated with this part. On the other hand, the test part 

consisted of 20% of the dataset and was held back for further evaluation of the models with unseen 

data. The percentage split of 80% train–20% test was determined according to [72] as the best ratio 

to avoid the overfitting problem. After that, the training process of each ML algorithm over each 

dataset was performed using the five-fold cross validation method. According to this method, the 

training dataset was divided into five subsets of equal size and the records of each subset were 

randomly selected. The training process was repeated five times. Each time, four out of the five 

subsets were utilized for the training of the ML algorithm and the remaining subset was used for 

validation. The final performance results were produced by averaging the results of the five folds 

[72]. Table 6.1 presents a summary of the set hyperparameters of each of the six ML algorithms. 

ML Algorithm Hyperparameters 

Decision Tree (DT) 
• The Gini index was used to select tree nodes. 

• Minimum samples per leaf node set to 10 

Naïve Bayes (NB) • The Gaussian variant of the NB algorithm was used. 

Logistic Regression (LR) - 

Random Forest (RF) 

• The Gini index was used to select tree nodes. 

• The minimum number of samples per leaf node 
was set to 10. 

• The random forest consisted of 10 decision trees. 

K-Nearest Neighbour (KNN) 

• The value of K was set to 5. 

• The Euclidean distance was set as the distance 
metric. 

Support Vector Machine (SVM) 
• The Gaussian radial basis function (RBF) was set as 

the kernel function. 

Table 6.1 Summary of the hyperparameters of each selected ML algorithm. 
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6.5 Performance Evaluation Results 

6.5.1 “udp-flood-pwrtrace_label.csv” Dataset 
The selected ML algorithms were trained and tested on the “udp-flood-pwrtrace_label.csv” dataset 

for binary classification, using the five-fold cross validation method. The performance of the selected 

ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score. 

The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the 

“udp-flood-pwrtrace_label.csv”, are shown in Table 6.2 and Figure 6.1. 

ML Algorithm Accuracy Precision Recall F1-score 

Decision Tree (DT) 0.9818 0.9509 0.9396 0.9451 

Naïve Bayes (NB) 0.9148 0.6774 0.9354 0.7855 

Logistic Regression (LR) 0.9742 0.9333 0.9104 0.9216 

Random Forest (RF) 0.9885 0.9739 0.9569 0.9653 

K-Nearest Neighbor (KNN) 0.9931 0.9853 0.9729 0.9790 

Support Vector Machine (SVM) 0.9890 0.9773 0.9562 0.9666 

Table 6.2 Evaluation metrics for binary classification for the “udp-flood-pwrtrace_label.csv” dataset. 

 

 
Figure 6.1 Evaluation metrics for binary classification for the “udp-flood-pwrtrace_label.csv” dataset. 

 

It is observed that the KNN, SVM and RF algorithms demonstrate an almost perfect accuracy score 

(i.e., around 0.99), followed by the DT and LR (i.e., close to 0.98). The same trend can be seen in the 

precision, recall, and F1-score, as the KNN, SVM and RF algorithms show high values between 0.95 – 

0-99, while the DT and LR classifiers demonstrate values between 0.91-0.96.  On the other hand, 

although the NB achieves accuracy and recall higher than 0.91, it shows the lowest precision of 

0.6774 and the lowest F1-score of 0.7855. 
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6.5.2 “blackhole-pwrtrace_label.csv” Dataset 
The selected ML algorithms were trained and tested on the “blackhole-pwrtrace_label.csv” dataset 

for binary classification, using the five-fold cross validation method. The performance of the selected 

ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score. 

The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the 

“blackhole-pwrtrace_label.csv”, are shown in Table 6.3 and Figure 6.2. 

ML Algorithm Accuracy Precision Recall F1-score 

Decision Tree (DT) 1.0000 1.0000 1.0000 1.0000 

Naïve Bayes (NB) 0.9999 1.0000 0.9976 0.9988 

Logistic Regression (LR) 1.0000 1.0000 1.0000 1.0000 

Random Forest (RF) 1.0000 1.0000 1.0000 1.0000 

K-Nearest Neighbor (KNN) 1.0000 1.0000 1.0000 1.0000 

Support Vector Machine (SVM) 1.0000 1.0000 1.0000 1.0000 

Table 6.3 Evaluation metrics for binary classification for the “blackhole-pwrtrace_label.csv” dataset. 

 

 
Figure 6.2 Evaluation metrics for binary classification for the “blackhole-pwrtrace_label.csv” dataset. 

 

It can be easily observed that the KNN, RF, SVM, DT and LR algorithms achieve perfect accuracy, 

precision, recall, and F1-score, while the NB algorithm achieves an almost perfect performance.    
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6.5.3 “sinkhole-pwrtrace_label.csv” Dataset 
The selected ML algorithms were trained and tested on the “sinkhole-pwrtrace_label.csv” dataset 

for binary classification, using the five-fold cross validation method. The performance of the selected 

ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score. 

The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the 

“sinkhole-pwrtrace_label.csv”, are shown in Table 6.4  and Figure 6.3. 

ML Algorithm Accuracy Precision Recall F1-score 

Decision Tree (DT) 0.9517 0.6836 0.5578 0.6138 

Naïve Bayes (NB) 0.9062 0.0414 0.1277 0.0625 

Logistic Regression (LR) 0.9304 0.0667 0.0010 0.0021 

Random Forest (RF) 0.9545 0.7560 0.5005 0.6017 

K-Nearest Neighbor (KNN) 0.9367 0.5630 0.4035 0.4685 

Support Vector Machine (SVM) 0.9311 0.0000 0.0000 0.0000 

Table 6.4  Evaluation metrics for binary classification for the “sinkhole-pwrtrace_label.csv” dataset. 

 

 
Figure 6.3 Evaluation metrics for binary classification for the “sinkhole-pwrtrace_label.csv” dataset. 

 

It is observed that all algorithms demonstrate high accuracy, with the lowest accuracy (0.9062) being 

achieved by NB and the highest (0.9545) being achieved by the RF classifier, followed by the DT and 

KNN. On the other hand, in principle, the performance of all algorithms in terms of precision, recall, 

and F1-score is very low. The highest precision of 0.7560 was achieved by the RF and the highest 

recall and F1-score by the DT, 0.5578 and 0.6138, respectively. Moreover, it is worthwhile 

mentioning that the SVM shows the lowest precision, recall, and F1-score of 0. This is because the 

precision was ill-defined (i.e., division by zero). 



 

122 
 

6.5.4 “sleep_depr-pwrtrace_label.csv” Dataset 
The selected ML algorithms were trained and tested on the “sleep_depr-pwrtrace_label.csv” dataset 

for binary classification, using the five-fold cross validation method. The performance of the selected 

ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score. 

The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the 

“sleep_depr-pwrtrace_label.csv”, are shown in Table 6.5 and Figure 6.4. 

ML Algorithm Accuracy Precision Recall F1-score 

Decision Tree (DT) 0.9739 0.8143 0.7402 0.7749 

Naïve Bayes (NB) 0.9034 0.3506 0.6403 0.4476 

Logistic Regression (LR) 0.9478 0.6552 0.3075 0.4173 

Random Forest (RF) 0.9766 0.8559 0.7402 0.7937 

K-Nearest Neighbor (KNN) 0.9759 0.8439 0.7401 0.7885 

Support Vector Machine (SVM) 0.9393 0.5000 0.0036 0.0071 

Table 6.5 Evaluation metrics for binary classification for the “sleep_depr-pwrtrace_label.csv” dataset. 

 

 
Figure 6.4 Evaluation metrics for binary classification for the “sleep_depr-pwrtrace_label.csv” dataset. 

 

It is observed that all algorithms demonstrate high accuracy, with the lowest accuracy (0.9034) being 

achieved by NB and the highest (0.9766) being achieved by the RF classifier, followed by the KNN 

(0.9759) and DT (0.9739). In terms of precision, the top three values were achieved by the RF, KNN 

and DT, and the lowest by the SVM. Furthermore, the RF, KNN, and DT outperform the other 

algorithms in terms of recall and F1-score.   
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6.5 Summary 

This Chapter was focused on the validation of the generated malicious “powertrace” datasets, 

presented in Chapter 4, by applying the following most popular ML algorithms for IoT AIDS to 

evaluate their performance on the generated malicious datasets: naïve Bayes (NB), decision tree 

(DT), random forest (RF), logistic regression (LR), support vector machines (SVM), and k-nearest 

neighbour (KNN). Using five-fold cross validation, these algorithms were trained and tested over the 

same labelled dataset for each attack scenario. Furthermore, the traditional metrics of accuracy, 

precision, recall, and F1-score were used to evaluate the performance of the ML algorithms on the 

generated datasets. The evaluations results demonstrated that the RF, KNN, and DT algorithms 

presented very high values regarding accuracy (between 0.93 and 1.0) and outperform the other 

algorithms regarding precision, recall and F1-score for all malicious datasets. In particular, it is 

worthwhile mentioning that the RF, KNN, and DT algorithms achieved precision between 0.84 and 

1.0 for the “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, and the “sleep_depr-

pwrtrace_label.csv”. In principle, the evaluation results demonstrated that the generated malicious 

datasets can be used for training and testing effectively ML algorithms for IoT AIDSs.      
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Chapter 7 Conclusion and Future Work 

7.1 Conclusions 
The focus of this PhD research work was on the generation of new labelled IoT datasets that will be 

publicly available to the research community and include the following required information so as to 

be considered as benchmark IoT datasets for training and evaluating Machine Learning models for 

IoT AIDSs: (a) information reflecting multiple benign and attack scenarios from current IoT network 

environments, (b) sensor measurement data, (c) network-related information (e.g., packet-level 

information) from IoT networks, and (d) information related to the behaviour of the IoT devices 

deployed within IoT networks. It is worthwhile mentionioning that the new labelled IoT datasets 

were generated by implementing various benign IoT network scenarios and IoT network attack 

scenarios in the Cooja simulator which is the companion network simulator of the open source 

Contiki Operating System (OS) which is one of the most popular OSs for resource constrained IoT 

devices. To the best of our knowledge, this is the first time that the Cooja simulator is used, in a 

systematic way, to generate benchmark IoT datasets. The new labelled IoT datasets generated by 

the Cooja simulator are not to be considered as a replacement of datasets captured from real IoT 

networks or real IoT testbeds, but instead to be considered as complementary datasets that will 

contribute to fill the current gap of the scarcity of benchmark datasets for training and evaluating 

Machine Learning models for IoT AIDSs. Furthermore, the generated datasets were analysed to 

select important raw features for the detection of anomalies as well as extract new features, more 

informative and non-redundant, based on the raw features. Finally, different Machine Learning (ML) 

algorithms for IoT AIDSs were applied to evaluate their performance on the generated malicious 

datasets and validate that the generated malicious datasets can be used for training and testing 

effectively ML algorithms for IoT AIDSs.  

The main contribution of this PhD research work is summarised as follows. 

• Generation of a set of benign IoT datasets from a benign IoT network scenario implemented 

in the Cooja simulator. The generated datasets constitute the benign IoT datasets for the 

simulated benign IoT network scenario. Furthermore, a detailed description of the approach 

proposed to generate the set of benign IoT datasets has also been provided. In addition, it is 

worthwhile mentioning that the proposed approach can be extended for generating benign 

IoT datasets from j different benign scenarios, where each scenario, implemented in the 

Cooja simulator, may include n different motes. The generic structure of the benign IoT 

datasets generated according to the proposed approach has been provided and constitutes 

a roadmap for generating more and richer benign IoT datasets. 

• Generation of a set of malicious datasets from the following attack scenarios implemented 

in the Cooja simulator: i) UDP flooding attack, ii) blackhole attack, iii) sinkhole attack, and iv) 

sleep deprivation attack. The generated datasets constitute the malicious IoT datasets for 

the simulated IoT attack scenarios. Moreover, a detailed description of the approach 

proposed to generate the set of the malicious IoT datasets has also been given. On top of 

that, it is important to highlight that the proposed approach can be extended for generating 

malicious IoT datasets from j different attack scenarios of i different attack types, where 

each attack scenario, implemented in the Cooja simulator, may include n different motes. 

The generic structure of the malicious IoT datasets generated according to the proposed 

approach has been provided and constitutes a roadmap for generating more and richer 

malicious IoT datasets. 
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• Analysis of the malicious “powertrace” datasets to investigate whether their raw features 

can be important in the detection of anomalies in the network-level power profiling of low-

power IoT devices (i.e., motes) due to UDP flooding attacks, blackhole attacks, sinkhole 

attacks, or sleep deprivation attacks. According to the analysis, the following 5 features have 

been identified as the most important for all malicious “powertrace” datasets:  “transmit”, 

“cpu”, “lpm”, “listen”, and “idle_listen”. 

• Extraction of new features, more informative and non-redundant, based on the raw features 

of the generated benign and malicious “powertrace” datasets. To this end, the total energy 

consumption of each mote in an IoT network was investigated as a valuable feature for 

training and evaluating IoT AIDSs. According to the observations and conclusions, the total 

energy consumption of each mote in an IoT network can play a valuable role in anomaly-

based intrusion detection for the following types of attacks in IoT networks: UDP flooding 

attack, blackhole attack, sinkhole attack, and sleep deprivation attack. This is because any 

observation considerably deviating from the normal total energy consumption, and 

particularly the total CPU energy consumption and the total Radio energy consumption per 

mote, can be considered as an anomalous behaviour, triggering alerts so that proper 

countermeasures can be taken to minimise the risk. 

• Extraction of new features, more informative and non-redundant, based on the raw features 

of the generated benign and malicious network traffic datasets. The generated benign and 

malicious network traffic datasets were analysed and the new feature that was extracted 

was the “RPL packets overhead”. This new feature provides information about the number 

of RPL packets (per mote and total) transmitted over the total number of exchanged 

messages within the IoT network, indicating a blackhole or sinkhole attack when its value is 

high and a UDP flooding attack or sleep deprivation attack when its value is low. 

• Validation of the generated malicious “powertrace” datasets by applying the following most 

popular ML algorithms for IoT AIDS to evaluate their performance on the generated 

malicious datasets: naïve Bayes (NB), decision tree (DT), random forest (RF), logistic 

regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN). Using five-

fold cross validation, these algorithms were trained and tested over the same labelled 

dataset for each attack scenario. Furthermore, the traditional metrics of accuracy, precision, 

recall, and F1-score were used to evaluate the performance of the ML algorithms on the 

generated datasets. The evaluations results demonstrated that the generated malicious 

datasets can be used for training and testing effectively ML algorithms for IoT AIDSs. 
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7.2 Future Work 
This thesis laid the foundation for future research efforts towards the generation of rich benchmark 

IoT datasets for effective training and evaluation of different ML models for IoT AIDSs by 

implementing various benign IoT network scenarios and IoT network attack scenarios in the Cooja 

simulator. In this context, considering the generic structure of the benign IoT datasets, proposed in 

Chapter 3, as a roadmap for generating more and richer benign IoT datasets, we plan to continue 

generating more benign IoT datasets from a wide spectrum of different benign IoT scenarios, where 

each scenario, implemented in the Cooja simulator, will include a different number of motes. 

Furthermore, considering the generic structure of the malicious IoT datasets, proposed in Chapter 4, 

as a roadmap for generating more and richer malicious IoT datasets, we will continue generating 

more malicious IoT datasets from several different IoT attack scenarios of different attack types, 

where each attack scenario, implemented in the Cooja simulator, will include a different number of 

motes. In particular, additional attack scenarios for each of the four attack types considered in this 

PhD work (i.e., UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack) 

can be implemented in the Cooja simulator, examining with different number of motes and 

configuring different topologies. Following the research methodology defined in this PhD work, the 

newly implemented scenarios will contribute to more and richer IoT datasets. 

Besides that, different feature selection techniques will be applied on the generated IoT datasets to 

identify those raw features that are important in the detection of anomalies in IoT networks and 

devices deployed in these networks due to IoT attacks. On top of that, we will continue with the 

extraction of new features, more informative and non-redundant, based on the raw features of the 

generated benign and malicious “powertrace” datasets, and the generated benign and malicious 

network traffic datasets. The target is to identify and/or extract a rich set of very informative and 

non-redundant features that will allow not only the detection of anomalies due to IoT attacks but 

also the identification of the type of the attack causing the detected anomalies. Last but not least, 

the validation of the generated datasets by applying different ML algorithms to evaluate their 

performance on the generated datasets, based on the original (i.e., raw) set of features, the subset 

of the selected features, and/or the new extracted features, is of utmost importance. In fact, it 

constitutes the essential final step where the performance evaluation results will indicate whether 

or not the generated datasets meet the requirements of benchmark IoT datasets for training and 

evaluation of various ML models for IoT AIDSs.  
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Appendix 1  
A1.1 Datasets for Benign Motes 
 

A1.1.1- Benign “mote1.csv” 
The generated benign “mote1.csv” file, related to the UDP-server mote1, consists of 1,799 

records and its first 25 records (i.e., 1–25) are depicted in Figure A1. 

 
Figure A1 Benign “mote1.csv”—1 to 25 records. 

A1.1.2  Benign “mote3.csv” 
The generated benign “mote3.csv” file, related to the UDP-client mote3, consists of 1,799 

records and its first 25 records (i.e., 1–25) are depicted in Figure . 

 
Figure A2 Benign “mote3.csv”—1 to 25 records. 
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A1.2 - Datasets for UDP Flood Attacks 
 

A1.2.1 - “udp-flood-mote1.csv” 
The generated “udp-flood-mote1.csv” file, related to the benign UDP-server mote1, consists of 1,799 

records and its first 25 records (i.e., 1–25) are depicted below in Error! Reference source not found.. 

 
Figure A3 Malicious “udp-flood-mote1.csv” — 1 to 25 records. 

 

A1.2.2 -  “udp-flood-mote2.csv” 
The generated “udp-flood-mote2.csv” file, related to the benign UDP-client mote2, consists of 1,799 

records and its first 25 records (i.e., 1–25) are depicted below in Figure . 

 
Figure A4 Malicious “udp-flood-mote2.csv” — 1 to 25 records. 

 

 

 

 

 

 



 

140 
 

A1.2.3 -  “udp-flood-mote6.csv” 
The generated “udp-flood-mote6.csv” file, related to the malicious UDP-client mote6, consists of 

1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure . 

 

 
Figure A5 Malicious “udp-flood-mote6.csv” — 1 to 25 records. 

 

A1.3 - Datasets for Blackhole Attacks 
 

A1.3.1 -  “blackhole-mote1.csv” 
The generated malicious “blackhole-mote1.csv” file, related to the benign UDP-server mote1, 

consists of 1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure . 

 
Figure A6 Malicious “blackhole-mote1.csv”—1 to 25 records. 
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A1.3.2 - “blackhole-mote4.csv” 
The generated malicious “blackhole-mote4.csv” file, related to the benign UDP-client mote4, 

consists of 1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure . 

 
Figure A7 Malicious “blackhole-mote4.csv”—1 to 25 records. 

A1.3.3 - “blackhole-mote10.csv” 
The generated “blackhole-mote10.csv” file, related to the malicious UDP-client mote10, consists of 

1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure . 

 

 
Figure A8 Malicious “blackhole-mote10.csv”—1 to 25 records. 
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A1.4 - Datasets for Sinkhole Attacks 
 

 A1.4.1 - “sinkhole-mote1.csv” 
The generated “sinkhole-mote1.csv” file, related to the benign UDP-server mote1, consists of 1,799 

records and its first 25 records (i.e., 1–25) are depicted in Figure . 

 
Figure A9 Malicious “sinkhole-mote1.csv”—1 to 25 records. 

 

 A1.4.2 -  “sinkhole-mote5.csv” 
The generated “sinkhole-mote5.csv” file, related to the benign UDP-client mote5, consists of 1,799 

records and its first 25 records (i.e., 1–25) are depicted in Figure . 

 
Figure A10 Malicious “sinkhole-mote5.csv”—1 to 25 records.  
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 A1.4.3 - “sinkhole-mote10.csv” 
The generated “sinkkhole-mote10.csv” file, related to the malicious UDP-server mote10, consists of 

1,199 records and its first 25 records (i.e., 1–25) are depicted in Figure . 

 
Figure A11 Malicious “sinkhole-mote10.csv”—1 to 25 records. 

A1.5 - Datasets for Sleep Deprivation Attacks 
 

 A1.5.1 -  “sleep_depr-mote1.csv” 
The generated “sleep_depr-mote1.csv” file, related to the benign UDP-server mote1, consists of 

1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure . 

 
Figure A12 Malicious “sleep_depr-mote1.csv”—1 to 25 records. 
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A1.5.2 -  “sleep_depr-mote6.csv” 
The generated “sleep_depr-mote6.csv” file, related to the benign UDP-client mote6, consists of 

1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure .   

 
Figure A13 Malicious “sleep_depr-mote6.csv”—1 to 25 records. 

 

 A1.5.3 - “sleep_depr-mote10.csv” 
The generated “sleep_depr-mote10.csv” file, related to the malicious UDP-client mote10, consists of 

1,049 records and its first 25 records (i.e., 1–25) are depicted below in Figure . 

 
Figure A14 Malicious “sleep_depr-mote10.csv”—1 to 25 records. 

 


