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ABSTRACT

Over the past few years, we have witnessed the emergence of Internet of Things (loT) networks that
bring significant benefits to citizens, society, and industry. However, their heterogeneous and
resource-constrained nature makes them vulnerable to a wide range of threats and an attractive
target to attackers with a wide spectrum of motivations ranging from criminal intents, aimed at
financial gain, to industrial espionage and cyber-sabotage. Consequently, security solutions
protecting loT networks from attackers are critical for the acceptance and wide adoption of such
networks in the coming years. Nevertheless, the high resource requirements of conventional
security mechanisms cannot be afforded by (i) the resource-constrained loT nodes and/or (ii) the
constrained environment in which the loT nodes are deployed. Therefore, there is an urgent need
for developing novel security mechanisms to address the pressing security challenges of loT
networks in an effective and efficient manner, taking into consideration their resource-constrained
inherent limitations, before they gain the trust of all involved stakeholders and reach their full
potential in the loT market. Toward this direction, considerable research efforts have recently been
put into the design and development of novel Anomaly-based Intrusion Detection Systems (AIDSs),
tailored to the resource-constrained characteristics of loT networks, because of their ability to
detect not only known but also new, zero-day attacks, in loT networks. However, although the
concept of IoT AIDSs is promising, it cannot be materialised before the significant gap of the scarcity
of benchmark datasets for training and evaluating Machine Learning (ML) models for loT AIDSs is
addressed. In fact, the current scarcity of benchmark IoT datasets constitutes a significant research
gap that should be addressed in order to enable the development of more accurate and efficient loT
AIDSs whose effectiveness is evaluated based on their performance to successfully detect loT attacks
that is a process reliant on up-to-date, representative and well-structured loT-specific benchmark
datasets that until now have been missing. Therefore, contribution to filling this research gap is the
main target of this thesis. In particular, the focus of this thesis is on the generation of new labelled
loT datasets that will be publicly available to the research community and include the following
required information so as to be considered as benchmark loT datasets for training and evaluating
ML models for loT AIDSs: (a) information reflecting multiple benign and attack scenarios from
current loT network environments, (b) sensor measurement data, (c) network-related information
(e.g., packet-level information) from loT networks, and (d) information related to the behaviour of
the loT devices deployed within loT networks.
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CHAPTER 1 Introduction

1.1 Motivation

Despite the significant benefits that the Internet of Things (IoT) networks bring to citizens, society,
and industry, the fact that these networks incorporate a wide range of different communication
technologies (e.g., WLANs, Bluetooth, and Zigbee) and types of nodes/devices (e.g.,
temperature/humidity sensors), which are vulnerable to various types of security threats, raises
many security and privacy challenges in loT-based systems [1], [2], [3], [4]. For instance, attackers
may compromise |oT networks to manipulate sensing data (e.g., by injecting fake data) and cause
malfunction to the loT-based systems that rely on the compromised loT networks. It is worthwhile
mentioning that loT networks can become an attractive target to attackers with a wide spectrum of
motivations ranging from criminal intents, aimed at financial gain, to industrial espionage and cyber-
sabotage [5], [6], [7]. Consequently, security solutions protecting loT networks from attackers are
critical for the acceptance and wide adoption of such networks in the coming years. Nevertheless,
the high resource requirements of conventional security mechanisms cannot be afforded by (i) the
resource-constrained loT nodes (e.g., sensors) with limited processing power, storage capacity, and
battery life; and/or (ii) the constrained environment in which the IoT nodes are deployed and
interconnected using lightweight communication protocols [1], [8]. Therefore, there is an urgent
need for developing novel security mechanisms to address the pressing security challenges of loT
networks with reasonable cost in terms of processing and energy, taking into consideration their
resource-constrained inherent limitations, before they gain the trust of all involved stakeholders and
reach their full potential in the loT market [2], [3], [5], [9].

Towards this direction, considerable research efforts have recently been put into the design and
development of novel Anomaly-based Intrusion Detection Systems (AIDSs), tailored to the resource-
constrained characteristics of 1oT networks, because of their ability to detect not only known but
also new, zero-day attacks, in loT networks [10], [11], [12], [13]. However, although the concept of
loT AIDSs is promising, it cannot be materialised before the significant gap of the scarcity of
benchmark datasets for training and evaluating Machine Learning models for loT AIDSs is addressed
[14], [15]. In fact, the current scarcity of benchmark IoT datasets constitutes a significant research
gap that should be addressed in order to enable the development of more accurate and efficient loT
AIDSs whose effectiveness is evaluated based on their performance to successfully detect loT attacks
that is a process reliant on up-to-date, representative and well-structured loT-specific benchmark
datasets that until now have been missing.

1.2 Research Challenges

Although several datasets, such as KDDCUP99 [16], NSL-KDD [17], UNSW-NB15 [18], and CICD2017
[19], have been created over the past two decades for evaluation purposes of network-based
Intrusion Detection Systems (IDSs), they do not include any specific characteristics of loT networks
as these datasets do not contain sensors’ reading data or any loT network traffic [14], [13]. To
respond to this major issue, few efforts focused on the generation of loT-specific datasets have also
been seen in the literature recently. Yet, they are characterised by some limitations in terms of the
loT-specific information they include. For instance the datasets proposed in [20] and [21] are loT-
specific datasets but they lack of events reflecting attack scenarios. To address this limitation, the



loT-specific and network-related datasets proposed in [22] and [23] contain events reflecting attack
scenarios, however, they do not cover a diverse set of attack scenarios and do not include sensors’
reading data or information related to the behaviour of the IoT devices (e.g., sensors/actuators)
within the network. Therefore, these loT datasets can mainly be used for detecting only a limited
number of network-based attacks against loT networks as they do not contain adequate
information for detecting a wide range of network-based attacks and/or attacks that manipulate
sensor measurement data or compromise loT devices within the loT network.

Consequently, there is an urgent need for comprehensive loT-specific datasets containing not only
network-related information (e.g., packet-level information) but also information reflecting
multiple benign and attack scenarios from current IoT network environments, sensor
measurement data, and information related to the behaviour of the loT devices deployed within
the loT network for efficient and effective training and evaluation of AIDSs suitable for loT networks.
Towards this direction, the recent work [14], has proposed, for the first time, to the best of our
knowledge, a new dataset that includes events of a variety of loT-related attacks and legitimate
scenarios, 10T telemetry data collected from heterogeneous loT data sources, network traffic of loT
network, and audit traces of operating systems [14].

Therefore, it is clear that more benchmark loT datasets including the following required
information: i) information reflecting multiple benign and attack scenarios, ii) sensor
measurement data, iii) network-related information, and iv) information related to the behaviour
of the loT devices are essential to be generated and become publicly available to the research
community so as to fill the significant research gap of the scarcity of benchmark loT datasets that
will enable the development of more accurate and efficient loT AIDSs.

1.3 Scope of the Research

Contribution to filling the significant gap of the scarcity of benchmark loT datasets for training and
evaluating Machine Learning models for loT AIDSs is the main target of this PhD research work. In
particular, the scope of this PhD research work is the generation of new labelled loT datasets that
will be publicly available to the research community and include the following required information
so as to be considered as benchmark loT datasets:

a. information reflecting multiple benign and attack scenarios from current loT network
environments;

b. sensor measurement data;
c. network-related information (e.g., packet-level information) from loT networks; and

d. information related to the behaviour of the loT devices deployed within loT networks.

It is worthwhile mentioning that the new labelled IoT datasets are generated by implementing
various benign loT network scenarios and loT network attack scenarios in the Cooja simulator which
is the companion network simulator of the open source Contiki Operating System (OS) that is one of
the most popular OSs for resource constrained loT devices [24], [25]. To the best of our knowledge,
this is the first time that the Cooja simulator is used, in a systematic way, to generate benchmark loT
datasets. In addition, the implemented attack scenarios cover the following types of loT network
attacks which have not been considered in the datasets proposed in [14]: UDP flooding attack,
blackhole attack, sinkhole attack, and sleep deprivation attack.



The new labelled loT datasets generated by the Cooja simulator are not to be considered as a
replacement of datasets captured from real 10T networks or real loT testbeds, but instead to be
considered as complementary datasets that will contribute to fill the current gap of the scarcity of
benchmark datasets for training and evaluating Machine Learning models for loT AIDSs.
Furthermore, the generated datasets are analysed to select important raw features for the detection
of anomalies as well as extract new features, more informative and non-redundant, based on the
raw features. Finally, different Machine Learning (ML) algorithms for IoT AIDSs (e.g., Naive Bayes, K-
Nearest Neighbour, Random Forest, Logistic Regression, etc.) are applied to evaluate their
performance on the generated malicious datasets and validate that the generated malicious
datasets can be used for training and testing effectively ML algorithms for loT AIDSs.

1.4 Thesis Contribution

The main contributions of this PhD research work lie in the following:

e Generation of a set of benign loT datasets from a benign loT network scenario
implemented in the Cooja simulator. The generated loT-specific information from the
simulated scenario was captured from the Contiki plugin “powertrace” (i.e., features
such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic
features) to generate the “powertrace” dataset and the network traffic dataset,
respectively, within csv files. The generated datasets constitute the benign loT datasets
for the simulated benign loT network scenario. Furthermore, a detailed description of
the approach proposed to generate the set of benign loT datasets has also been
provided and published in Generating Datasets for Anomaly-based Intrusion Detection
Systems in loT and Industrial loT Networks [26]. This contribution is covered in Chapter
3. In addition, we generated a set of malicious datasets from the following attack
scenarios implemented in the Cooja simulator: i) UDP flooding attack, ii) blackhole
attack, iii) sinkhole attack, and iv) sleep deprivation attack. The generated loT-specific
information from the simulated attack scenarios was captured from the Contiki plugin
“powertrace” and the Cooja tool “Radio messages” in order to generate the
corresponding “powertrace” and network traffic datasets for each of the simulated
attack scenarios within csv files. The generated datasets constitute the malicious loT
datasets for the simulated loT attack scenarios. Moreover, a detailed description of the
approach proposed to generate the set of the malicious loT datasets has also been
given. The description of the approach proposed to generate the set of the UDP flooding
attack datasets has been published in Generating Datasets for Anomaly-based Intrusion
Detection Systems in loT and Industrial loT Networks [26]. This contribution is covered in
Chapter 4.

e Analysis of the malicious “powertrace” datasets to investigate whether their raw
features can be important in the detection of anomalies in the network-level power
profiling of low-power loT devices (i.e., motes) due to UDP flooding attacks, blackhole
attacks, sinkhole attacks, or sleep deprivation attacks. Based on the results and the
observations in Section 5.2.1, the following 5 features have been identified as the most
important for all malicious “powertrace” datasets: “transmit”, “cpu”, “lpm”, “listen”,
and “idle_listen”. Furthermore, we extracted new features, more informative and non-
redundant, based on the raw features of the generated benign and malicious
“powertrace” datasets. To this end, the total energy consumption of each mote in an loT



network was investigated in Section 5.2.2 as a valuable feature for training and
evaluating loT AIDSs. According to the observations and conclusions in Section 5.2.2, the
total energy consumption of each mote in an loT network can play a valuable role in
anomaly-based intrusion detection for the following types of attacks in loT networks:
UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack.
Besides that, we extracted new features, more informative and non-redundant, based
on the raw features of the generated benign and malicious network traffic datasets. The
generated benign and malicious network traffic datasets were also analysed in Section
5.3.1 and the new feature that was extracted was the “RPL packets overhead”. This new
feature provides information about the number of RPL packets (per mote and total)
transmitted over the total number of exchanged messages within the IoT network,
indicating a blackhole or sinkhole attack when its value is high and a UDP flooding attack
or sleep deprivation attack when its value is low. This contribution is covered in Chapter
5.

Validation of the generated malicious “powertrace” datasets by applying the following
most popular ML algorithms for IoT AIDS to evaluate their performance on the
generated malicious datasets: naive Bayes (NB), decision tree (DT), random forest (RF),
logistic regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN).
Using five-fold cross validation, these algorithms were trained and tested over the same
labelled dataset for each attack scenario. Furthermore, the traditional metrics of
accuracy, precision, recall, and Fl-score were used to evaluate the performance of the
ML algorithms on the generated datasets. The evaluations results demonstrated that the
RF, KNN, and DT algorithms presented very high values regarding accuracy (between
0.93 and 1.0) and outperform the other algorithms regarding precision, recall and F1-
score for all malicious datasets. In particular, it is worthwhile mentioning that the RF,
KNN, and DT algorithms achieved precision between 0.84 and 1.0 for the “udp-flood-
pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, and the “sleep_depr-
pwrtrace_label.csv”. In principle, the evaluations results demonstrated that the
generated malicious datasets can be used for training and testing effectively ML
algorithms for loT AIDSs. This contribution is covered in Chapter 6.
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1.5 Organisation of the Thesis

The remaining Chapters of this thesis are organized as follows.

Chapter 2 gives a comprehensive overview of the four main pillars of this PhD research
work: i) Internet of Things (loT), ii) Machine Learning (ML) algorithms for anomaly-based
intrusion detection in loT networks, iii) evaluation metrics for the performance of ML
algorithms, and iv) existing datasets for training and evaluation of anomaly-based
intrusion detection in loT networks. Therefore, the Chapter starts with an overview of
the loT concept. Afterwards, the three-layer loT architecture, which is the typical loT
architecture in the literature, is presented where the Perception Layer (i.e., loT
network), the focal point of this PhD research work, is discussed. Following this, an
overview of the main security attacks against loT networks is given along with security
and privacy protection requirements for loT and security considerations for developing
secure loT ecosystems. Next, the most popular ML algorithms used in loT Anomaly-
based Intrusion Detection Systems (AIDS) are reviewed and their main advantages and
drawbacks are discussed, followed by the metrics based on which their performance is
evaluated. Last but not least, five of the most well-known existing datasets for training
and evaluation of loT AIDSs are reviewed.

Chapter 3 provides a detailed description of the approach followed to generate a set of
benign datasets from a benign loT network scenario implemented in the Cooja
simulator. The generated loT-specific information from the simulated scenario was
captured from the Contiki plugin “powertrace” (i.e., features such as CPU consumption)
and the Cooja tool “Radio messages” (i.e., network traffic features) to generate the
“powertrace” dataset and the network traffic dataset, respectively, within csv files. The
generated datasets constitute the benign loT datasets for the simulated benign loT
network scenario.

Chapter 4 is focused on the generation of a set of malicious datasets from the following
attack scenarios implemented in the Cooja simulator: i) UDP flooding attack, ii) blackhole
attack, iii) sinkhole attack, and iv) sleep deprivation attack. The generated loT-specific
information from the simulated attack scenarios was captured from the Contiki plugin
“powertrace” (i.e., features such as CPU consumption) and the Cooja tool “Radio
messages” (i.e., network traffic features) in order to generate the corresponding
“powertrace” and network traffic datasets for each of the simulated attack scenarios
within csv files. The generated datasets constitute the malicious loT datasets for the
simulated loT attack scenarios.

Chapter 5 is focused on the analysis of the generated benign “powertrace” and network
traffic datasets, presented in Chapter 3, and the generated malicious “powertrace” and
network traffic datasets, demonstrated in Chapter 4. The Chapter starts with the
analysis of the malicious “powertrace” datasets to investigate whether their raw
features can be important in the detection of anomalies in the network-level power
profiling of low-power loT devices due to UDP flooding attacks, blackhole attacks,
sinkhole attacks, or sleep deprivation attacks. Next, the Chapter continues with
investigating the extraction of new features, more informative and non-redundant,
based on the raw features of the generated benign and malicious datasets. The new
features are intended to constitute valuable features for anomaly-based detection of
UDP flooding attacks, blackhole attacks, sinkhole attacks and sleep deprivation attacks in

6



loT networks. To this end, the total energy consumption of each mote is investigated as
a valuable feature in Section 5.2.2. Last but not least, the generated benign and
malicious network traffic datasets are also analysed in Section 5.3.1 to derive new
features more informative in terms of the behaviour of the network traffic.

Chapter 6 is focused on the validation of the generated malicious “powertrace”
datasets, presented in Chapter 4, by applying different Machine Learning (ML)
algorithms for loT AIDSs to evaluate their performance on the generated malicious
datasets. In particular, the following most popular ML algorithms for 10T AIDSs, reviewed
in Section 2.3, were applied: naive Bayes (NB), decision tree (DT), random forest (RF),
logistic regression (LR), support vector machines (SVM), and k-nearest neighbor (KNN).
Using five-fold cross validation, these algorithms were trained and tested over the same
labelled dataset for each attack scenario. Furthermore, the following four traditional
metrics, reviewed in Section 2.4, were used to evaluate the performance of the ML
algorithms on the generated datasets when these algorithms are used for anomaly
detection in IoT AIDSs: accuracy, precision, recall, and F1l-score. In all experiments, the
Python language (version 3.8.2) was used, along with the Scikit-Learn library [27] and a
Python script created, utilizing specific functions of the Scikit-Learn library, to perform
training and testing of the ML algorithms.

Chapter 7 concludes this PhD thesis and provides future research objectives.
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Chapter 2 Related Work

2.1 Introduction

This Chapter is focused on giving a comprehensive overview of the four main pillars of this PhD
research work: i) Internet of Things (loT), ii) Machine Learning (ML) algorithms for anomaly-based
intrusion detection in loT networks, iii) evaluation metrics for the performance of ML algorithms, and
iv) existing datasets for training and evaluation of anomaly-based intrusion detection in loT
networks. Therefore, the Chapter starts with an overview of the loT concept. Afterwards, the three-
layer loT architecture, which is the typical loT architecture in the literature, is presented where the
Perception Layer (i.e., loT network), the focal point of this PhD research work, is discussed. Following
this, an overview of the main security attacks against loT networks is given along with security and
privacy protection requirements for loT and security considerations for developing secure loT
ecosystems. Next, the most popular ML algorithms used in 1oT Anomaly-based Intrusion Detection
Systems (AIDS) are reviewed and their main advantages and drawbacks are discussed, followed by
the metrics based on which their performance is evaluated. Last but not least, five of the most well-
known existing datasets for training and evaluation of loT AIDSs are reviewed.

2.2 Internet of Things (loT)

In this Section, an overview of the loT concept along with its fundamental characteristics and high-
level requirements is given. Then, the three-layer loT architecture, which is the typical loT
architecture in the literature, is presented and an overview of the main security attacks against loT
networks is provided. Furthermore, the security and privacy protection requirements for loT,
according to ITU-T Recommendation Y.2066 [28], are presented. Concluding this Section, concerns
that limit the consolidation of secure loT ecosystems, according to ENISA in [29], are discussed.

2.2.1 An Overview

The Internet of Things (loT) is the latest development in the long and continuing revolution of
computing and communications [30]. Its size, ubiquity, and influence on everyday lives, business,
and government dwarf any technical advance that has gone before.

The Internet of Things (loT) is a term that refers to the expanding interconnection of smart devices,
ranging from appliances to tiny sensors [30]. A dominant theme is the embedding of short-range
mobile transceivers into a wide array of gadgets and everyday items, enabling new forms of
communication between people and things, and between things themselves. The Internet now
supports the interconnection of billions of industrial and personal objects, usually through cloud
systems. The objects deliver sensor information, act on their environment, and in some cases modify
themselves, to create overall management of a larger system, such as a factory or city [30].

The loT is primarily driven by deeply embedded devices [30]. These devices are low-bandwidth, low-
repetition data capture, and low-bandwidth data-usage appliances that communicate with each
other and provide data via user interfaces. Embedded appliances, such as high-resolution video
security cameras, video VolP phones, and a handful of others, require high bandwidth streaming
capabilities. Yet countless products simply require packets of data to be intermittently delivered.



2.2.1.1 Evolution
With reference to the end systems supported, the Internet has gone through roughly four
generations of deployment culminating in the loT [30]:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought as IT devices
by enterprise IT people, primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built by non-IT
companies, such as medical machinery, SCADA (supervisory control and data acquisition),
process control, and kiosks, bought as appliances by enterprise OT people, primarily using
wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT devices by
consumers (employees) exclusively using wireless connectivity and often multiple forms of
wireless connectivity.

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT, and OT
people exclusively using wireless connectivity, generally of a single form, as part of larger
systems. The fourth generation is usually thought of as the 10T, and which is marked by using
billions of embedded devices.

2.2.1.2 Useful Definitions

Before providing the fundamental characteristics, high-level requirements and ITU reference of the
loT, attention must be drawn to some basic loT-related definitions provided by ITU-T Y.2060
(06/2012) [31] in order to establish good understanding:

e Device: With regard to the 10T, this comprises a piece of equipment enabled with obligatory
communication capabilities and other optional capabilities such as sensing, actuation, data
capture, data storage and data processing capabilities.

e Internet of Things: A global information infrastructure that supports advanced services by
interconnecting physical and/or virtual Things based on existing and/or evolving
interoperable technologies. In particular, an loT enables services for identification, data
capture, processing, and communication to a wide variety of applications whilst ensuring
security and privacy requirements.

e Thing: An object inside the IoT system enabled with capabilities of being identified and
integrated into communication systems. The thing might be physical or virtual. Physical
Thing is an object of the physical world enabled with capabilities of being sensed, actuated,
and connected to other Things and /or systems (e.g., industrial robots, electrical equipment
etc.). On the other hand, Virtual Thing is an object in the information world enabled with
capabilities of being stored, processed and accessed (e.g., multimedia content, application
software etc.).

2.2.1.3 Concept of loT

The Internet of things (IoT) can be perceived as a far-reaching vision with technological and societal
implications [31]. loT has become a very popular topic of Research and Innovation mainly due to the
ubiquitous transformation of computing. Devices have come to be “smart” enabled with capabilities
to sense, communicate in a pervasive way and interact with their environment making possible a
wide range of useful applications and solutions to the humanity such as Health, Transportation,
Agriculture, Home and Industrial Automation, Retail and many more. The 2005 ITU Internet Report
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[32] was the first to add a 3™ dimension to the legacy “ANY PLACE” and “ANY TIME” communication:
the “ANY THING” communication, as illustrated in Figure 2.1. This addition changed the way we used
to perceive the word “telecommunication” to communication between everything rather than
communication between individuals only. This implied an expected exponential growth of “smart”
interconnected devices leading to network connections which should be facilitated by powerful
networks [33].

Any TIME
* Daytime

s Night

* On the move

Any PLACE
* Indoors

* Qutdoors

* At the computer

Any THING

* Human to Human

* Human to Things

* Things to Things

* Betweencomputers

Figure 2.1. The new Dimension of loT. (Source: [32])

To ensure connectivity and interoperability, it important to establish a common accepted reference
loT architecture upon which all loT applications would be based. Towards this direction, the
International Telecommunications Union (ITU) has started an effort to standardize the functional
architecture model for loT providing a 3-layer architecture in 2012 [31]. In the following, based on
[31], we present the fundamental characteristics of loT, its high-level requirements, the loT
reference model proposed by ITU, fundamentals on loT security, and finally some baseline security
recommendations provided by ENISA [34].

2.2.2 Fundamental Characteristics and High-Level Requirements of the loT

2.2.2.1 Fundamental Characteristics of the loT
In [31], ITU-T has also identified the fundamental characteristics of an loT system. According to their
findings, those characteristics are the following:

o Heterogeneity: refers to the various heterogeneous loT devices that comprise an loT
network. These devices although they have very different hardware and networking
characteristics, they get connected to each other and interact with other IoT devices and/or
platforms on various types of networks.

e Interconnectivity: refers to the fact that any loT device is enabled with capabilities to
interconnect/be interconnected with the global Information and Communication
Infrastructure.
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Enormous scale: refers to the number of devices required to be interconnected and
managed is significantly larger in an loT environment. This practically means that the
communication initialized by devices is much higher than the one that is initialized by
humans. Even more important is the management and the analysis of the data generated.
This relates to semantics of data, as well as efficient data handling.

Things-related services: The loT provisions services related to the connected “things” within
their constraints such as privacy protections and semantic consistency between physical
things and their associated virtual things. To provide these thing-related services within the
constraints of things requires that both the underlying technologies and the physical and
information world change.

Dynamic Changes: While roaming and interacting in an loT system, the state of devices
dynamically change (e.g., get connected or disconnected, sleeping and waking up). Besides,
the context of devices dynamically changes (e.g., location speed). Additionally, the number
of interconnected devices changes dynamically as well within loT systems.

2.2.2.2 High-level Requirements

In [31], ITU-T has provided a set of high-level 1oT System Requirements for the development of an
loT Reference Model based on the fundamental characteristics of an loT system identified above.
According to their findings, those requirements are the following:

Identification-based connectivity: refers to capabilities that enable the smart “Things” to be
connected to the IoT networks based on their identifiers. This includes a unified processing
of identifiers which might be heterogeneous.

Interoperability: needs to be ensured within loT networks to support a variety of
information and services given the fact that loT networks are highly heterogeneous and
distributed systems.

Autonomic services provisioning: refers to specific operations of the loT network
infrastructure that will enable IoT services to be provided by automatically capturing,
communicating and processing of the data of the “Things” according to the rules configured
by the operators and/or configured by the subscribers. Autonomic services may depend on
automatic data fusion and data mining techniques.

Automatic Networking: refers to specific operations of the loT network infrastructure that
will enable automatic networking including self-management, self-configuration, self-
healing, self-optimization, and self-protection for supporting and facilitating adaptation in
different application domains, different communication environments and large number and
types of devices.

Location-based capabilities: Localization is a key enabling technology in loT considering that
location-based services must be supported. Towards this direction, smart Things should be
enabled with capabilities to track their position to facilitate the provision of services which
depend on their location. Attention must be drawn to the fact that, nowadays, location-
based communication and services are highly restricted by Regulations and Laws and thus,
when addressing this requirement, we should keep in mind that we need to comply with
them.

Privacy protection: Data acquired by “Things” may contain sensitive private information of
the consequent users. It is very important that privacy concerns should comply with the
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relevant established privacy Regulations and Laws and privacy protection to be taken into
consideration during all processes related to data such as data transmission, data
aggregation, data storage, data mining and data processing while, at the same time, not
setting a barrier to data source authentication.

e Security: refers to the necessity to integrate security policy and measures related to the
things and their communication in an loT framework. This is mainly because the capabilities
of Things to connect at any time, any place and any (other) thing introduces significant
security threats against CIA (Confidentiality, Integrity and Authenticity) for both data and
services within loT networks. Therefore, security comprises an important requirement that
needs be addressed in advance in order for the emerging loT applications to gain the trust of
all involved stakeholders and reach their full potential in the 5G market.

e High quality and highly secure human body related services: refers to the requirement of
guaranteeing high data quality, data accuracy and data security for data derived
automatically or through human intervention for particular services that are based on the
capturing, communicating, and processing of data related to human static features and
dynamic behaviour with or without human intervention.

e Manageability: generally, the applications in an loT system have to work automatically and
without or insignificant human intervention or participation. Towards this direction, there is
the necessity for the whole operation process to be easily manageable by the relevant
entities in order to ensure normal network operations without significant delays.

o Plug and Play: refers to plug and play capabilities of 10T systems in order to enable or
facilitate on-the-fly generation, composition and acquisition of semantic-based
configurations to seamlessly integrate an internetwork of things with the respective
applications and efficiently respond to these applications’ requirements.

2.2.3 loT Architecture

The three-layer loT architecture, shown in Figure 2.2, is the typical IoT architecture consisting of
three main layers [1], [35]: 1) perception layer; 2) network layer; and 3) application layer, which are
further described below. In this PhD work, the simulated scenarios in the Cooja simulator are
restricted only to the perception layer of the 3-layer loT architecture.
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Figure 2.2. Three-layer loT Architecture.

Perception Layer: This layer consists of devices (i.e., sensors) that enable the perception of their
environment and thus, it can also be perceived as the Device Layer in the ITU-T reference model
[31]. The Perception Layer can be considered as an analogue to the senses or nerve endings of a
human being such as the eyes, ears, nose, skin, etc. In particular, the perception layer includes
sensing devices such as thermometers, humidity sensors, and medical sensors [36], [37], [38], [39]
that measure and gather information about different parameters or conditions in their surrounding
environment at a Gateway, and send it, through the Network Layer, to the Application Layer where
it is processed and stored. In addition to its sensing capabilities, this layer also includes devices (i.e.,
actuators) which are responsible to perform actions (e.g., control commands) based on the decisions
taken at the Application Layer.

Network Layer: It is the transmission layer and its main function is to to receive the data, gathered
by the Perception Layer, through a Gateway, and determine the routes so as to transmit them to the
Application Layer through integrated networks. On the other hand, the Network Layer is responsible
to transmit the required actions (e.g., control commands) determined at the Application Layer to the
actuators in the Perception Layer, through a Gateway. The Network Layer might be implemented
using the current or the evolving network and mobile technologies such as IEEE802.11 standards,
4G, 5G, Bluetooth, Zigbee, and also numerous types of networking and data collection protocols
such as MQTT, TCP/IP etc [39], [40], [41], [42]. In addition to its capabilities for connectivity and
networking, this layer includes management operation for the seamless and flawless operation of
the integrated loT systems.

Application Layer: This layer is in charge of delivering loT application services to the
users/subscribers. To do this, it utilizes the gathered context from the layers below to deliver
intelligent applications such as smart-home, e-health, smart-transport etc. to the end users [43],
[44], [45], [46], [47]. This layer comprises the final goal of the loT system consolidating inputs from
the underlying technologies to offer useful and user-friendly applications to the end users. It
therefore mostly includes intelligent software development functions. It can be seen as the means to
converge between the social 10T needs and the industrial technology in such a way as to have a
broad impact on the global or local economic or social development.
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2.2.3.1 Device and Gateway Capabilities of loT networks

In general, the leading purpose of |oT is to connect objects (e.g., physical things, virtual things etc.)
into the loT network, and to measure, gather and handle the information provided by these objects
through loT devices of the loT edge network (i.e., perception layer) that transmit the gathered
information to the next layer (i.e., network layer) of the loT-based smart system via domain
interfaces [48]. To achieve that, loT networks are enabled with capabilities that logically can be
classified into two main categories [31]: i) device capabilities that mainly include the direct
interaction with the communication network, indirect interaction with the communication network,
ad-hoc networking, and sleeping and waking-up capabilities, and (ii) gateway capabilities that
include multiple interfaces support and protocol conversion as there are generally two situations
where protocol conversion is required. The first situation is when communications at the device
layer use different device layer protocols, such as Bluetooth technology protocols and ZigBee
technology protocols. While the second one is when communications involve two different layers
(i.e., perception/device layer and network layer) and different protocols are utilized at each layer
(e.g., a Bluetooth technology protocol at the perception/device layer and a 4G/5G technology
protocol at the network layer) [31].

2.2.4 Security Attacks in the loT Network — Perception Layer Environment

Security on loT network — Perception Layer is a significant challenge due to the heterogeneity and
vast number of its loT devices and connections [3], [6], [49], [50], [51]. As the main purpose of the
loT network is to gather data, attackers mainly target to forge/steal transmitted/collected IoT data,
damage perception loT devices, and make the whole loT network or specific IoT nodes unavailable,
as presented below.

2.2.4.1 Sinkhole attacks

In this type of attacks, a compromised loT node (i.e., loT gateway) in the Perception Layer proclaims
very appealing false capabilities of power, computation and communication (e.g., shortest route) [1]
so that nearby nodes (i.e., adjacent loT sensors) will choose it as the forwarding node in the routing
process due to its very attractive capabilities. As a consequence, the compromised loT node can
increase the amount of obtained loT data that in turn are dropped or modified before they are
delivered to the Application Layer system via the Network Layer. Therefore, a sinkhole attack can
not only compromise the confidentiality of the IoT data but also can constitute an initial step to
launch additional attacks such as DoS/DDoS attacks [1], [51], [52].

2.2.4.2 Node capture attacks

In this type of attack, the adversary is able to extract important information about the captured
node, such as the group communication key, radio key, etc. Additionally, the adversary can copy the
important information related to the captured node to a malicious node, and afterwards fake the
malicious node as a legitimate node to connect to the loT network (i.e., Perception Layer). This type
of attack is also known as node cloning/replication attack. This attack may lead to compromising the
security of the complete loT-based system [1], [53].

2.2.4.3 Malicious code injection attacks

An attacker can take control of an loT node or device in the Perception Layer by exploiting its
security vulnerabilities in software and hardware and injecting malicious code into its memory.
Afterwards, using the malicious code, the attacker can force the node or device to perform
unintended operations. For example, the infected loT node(s) or device(s) can be used as a bot(s) to
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launch further attacks (e.g., DoS, DDoS) against other devices or nodes within the Perception Layer
or even against the other Layers. In addition, the attacker can use the injected malicious code in the
infected device or node to get access into the loT-based system and/or get full control of the system
(1], [6], [54].

2.2.4.4 False data injection attacks

After capturing an IoT node or device in the Perception Layer, the adversary can inject false data in
place of benign data measured by the captured loT node or device and transmit the false data to the
Application Layer via the Network Layer. Thereafter, receiving the false data, the Application Layer
may provide wrong services, which further negatively impacts the effectiveness of loT-based system
relying on the Perception Layer [1], [55].

2.2.4.5 Replay attacks

In the Perception Layer, the attacker can use a malicious 10T node or device to transmit to the
destination host (i.e., loT gateway) with legitimate identification information, already received by
the destination host, so that the malicious node or device can become a trusted node/device to the
destination host. Replay attacks are commonly launched in authentication process to destroy the
validity of certification [1].

2.2.4.6 Eavesdropping

As the loT nodes and devices in Perception Layer communicate via wireless networks, an attacker
(i.e., eavesdropper) can retrieve sensitive loT data by overhearing the wireless transmission. For
instance, an adversary within the Perception Layer can eavesdrop exchanged information by tracking
wireless communications and reading the contents of the transmitted packages. The eavesdropper
can passively intercept the wireless communication between a sensor (e.g., environment industrial
sensors or sensors on the machine resources) and the loT gateway, and extract confidential data
(e.g., through traffic analysis) in order to maliciously use them [1], [56], [57].

2.2.4.7 Sleep deprivation attacks or Denial of Sleep attacks

These attacks target to drain the battery of the resource constrained loT nodes of the Perception
Layer. In principle, the 10T nodes in the Perception Layer are usually programmed to follow a sleep
routine when they are inactive in order to reduce the power consumption and extend their life cycle.
However, an adversary may break the programmed sleep routines and keep the loT nodes
continuously active until they are shut down due to a drained battery. Attackers can achieve this by
running infinite loops in these resources using malicious code or by artificially increasing their power
consumption [1], [3], [58].

2.2.4.8 Sybil attacks

In a sybil attack, a malicious or sybil node or device can illegitimately claim multiple identities,
allowing it to impersonate them within the Perception Layer. For instance, the malicious node can
achieve to connect with several other devices in order to maximize its influence and even deceive
the complete system to draw incorrect conclusions[1], [59], [60].

2.2.4.9 Blackhole attacks

In a blackhole attack, the intention of the attacker is to create an artificial packet loss in the
Perception Layer. To achieve that, a compromised loT node drops the received packets that have to
be routed to other loT nodes [61]. This attack can be very damaging when combined with a sinkhole
attack causing the loss of a large part of the traffic. If the compromised node is located at a strategic
position in the network it can isolate several nodes [62], [63].
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2.2.4.10 Denial of Service (DoS) attacks

The main target of these attacks is to deplete resources of the Perception Layer in order to make the
whole loT network or specific nodes or devices (e.g., 0T gateway) unavailable. For instance,
jamming attacks are a type of DoS attacks where an attacker transmits a high-range signal to
overload the communication channel between two communicating entities and disrupt their
communication. Within the Perception Layer, jamming attacks can disrupt the communication
between the loT sensors and the Gateway in order to prevent loT data from being transmitted to the
Gateway, leading to malfunctions in the provided services to the authorized users. Jamming attacks
can be performed by passively listening to the wireless medium so as to broadcast on the same
frequency band as the legitimate transmitting signal. Moreover, a DoS attack can be carried out
within the Perception Layer by a compromised loT node flooding the Gateway with a lot of
transmitted data/requests (e.g., UDP packets) and render it unavailable or disrupt its normal
operations [1], [35], [64], [65].

2.2.5 |oT Security and Privacy Requirements

According to ITU-T Recommendation Y.2066 [66], a list of security and privacy protection
requirements for loT is provided. The requirements refer to the functional requirements during
capturing, storing, transferring, aggregating, and processing the data of things, as well as to the
provision of services which involve things. These requirements are related to all the loT actors. The
requirements are the following:

e Communication security: Secure, trusted, and privacy protected communication capability
is required so that unauthorized access to the content of data can be prohibited, data
integrity can be guaranteed, and privacy-related content of data can be protected during
data transmission or transfer in loT.

e Data management security: Secure, trusted, and privacy protected data management
capability is required so that unauthorized access to the content of data can be forbidden,
data integrity can be guaranteed, and privacy-related content of data can be secured when
storing or processing data in loT.

e Service provision security: Secure, trusted, and privacy protected service provision
capability is required so that unauthorized access to service and illicit service provision can
be forbidden and privacy information related to loT users can be protected.

o Integration of security policies and techniques: The ability to integrate different security
policies and techniques is required in order to ensure a consistent security control over the
variety of devices and user networks in loT.

e Mutual authentication and authorization: Before a device (or an loT user) can access the
loT, mutual authentication and authorisation between the device (or the IoT user) and IoT is
essential to be performed based on predefined security policies.

e Security audit: Security audit is necessary to be supported in loT. Any data access or
attempt to access loT applications are required to be fully transparent, traceable and
reproducible based on appropriate regulation and laws. In particular, loT is required to
support security audit for data transmission, storage, processing, and application access.
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2.2.6 Security Requirements of the Gateway

A key element in achieving security in an loT deployment is the Gateway. ITU-T Recommendation
Y.2067 in [28] provides specific security requirements that the Gateway should implement, some of
which are illustrated in Figure 2.3.
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Figure 2.3. lIoT Gateway Security Functions.

In particular, according to [28], the Gateway is required to:

e support identification of each access to the connected devices.

e support authentication with devices. Based on application requirements and device
capabilities, the Gateway is required to support mutual or one-way authentication with
devices.

e support mutual authentication with applications.

e support the security of the data that are stored in devices and the Gateway, or
transferred between the Gateway and devices, or transferred between the Gateway and
applications — the Gateway is required to support the security of these data based on
security levels.

e support mechanisms to protect confidentiality for devices and the Gateway.

2.2.6 Security Considerations

As time passes, we are becoming increasingly dependent on smart, interconnected devices for a lot
of tasks in our everyday lives. Nevertheless, the same devices or “things” can be the target of attacks
and intrusions that can cause malfunction of devices and endanger our personal privacy and public
safety. Thus, it is evident that security is one of the main challenges that should be seriously
considered together with safety in loT. These two matters are always closely connected with the
physical world. Furthermore, one more issue concerns the administration of loT devices, meaning
who will be the supervisor and manage the devices. The difficulty of the administration task can be
better understood, considering the inherent complexity and diversity of the loT ecosystem and its
scalability issues [29].

There are a lot of different concerns that limit the consolidation of secure loT ecosystems. Below,
some of these concerns are presented [29]:

e Very large attack surface: loT-related risks and threats are many in number and are
constantly changing. Also, loT devices and services affect citizens’ health, safety and privacy
since devices gather, exchange and process data from various sources sometimes including
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sensitive data. Because of the aforementioned, the attack range related to loT is extremely
wide.

Limited device resources: Technical constraints in loT means that conventional security
practices cannot be applied as they are, but significant reengineering will be required. A
characteristic of a majority of IoT devices is their inherent limited capabilities as far as
processing, storage and power are concerned. Therefore, advanced security controls cannot
be effectively implemented.

Complex ecosystem: One more reason that security concerns regarding loT are enhanced is
that loT is often depicted as a collection of independent devices. In reality, it should be
considered as a large and diverse ecosystem including devices, communications, interfaces
and people.

Fragmentation of standards and regulations: IoT security concerns are additionally
complicated due to the fact that standards and regulations about loT security measures are
slowly adopted, and simultaneously new technologies are constantly emerging.

Widespread deployment: Not only commercial loT applications, but also Critical
Infrastructures (Cis) have recently started to migrate toward Smart ones. This is achieved by
implementing loT on top of legacy infrastructures.

Security integration: The potentially opposing viewpoints and requirements from all
involved stakeholders complicate matters relating to security integration. An instance of that
would be loT systems with different authentication methods, which should be able to
communicate and operate with each other seamlessly.

Safety aspects: The presence of actuators or other devices which operate on the physical
world turns security threats into safety threats in the loT context.

Low cost: As loT and its advanced functionalities are employed in several sectors, the
potential for considerable cost savings is further highlighted. The reduced costs can be
achieved by implementing features such as data flows, advanced monitoring, and
integration. However, the low cost of loT devices and systems can become an important
obstacle in implementing security solutions. Manufacturers tend to care more about
decreasing production costs. As a result, security features become more limited and product
security possibly cannot protect against specific loT attacks.

Lack of expertise: Since the IoT domain is a comparatively new one, not a lot of people
possess the suitable skillset and experience in loT cybersecurity.

Security updates: It is extremely challenging to apply security updates to loT systems. loT
User interfaces, in their majority, do not allow traditional update mechanisms. Securing of
those mechanisms, especially considering Over-The-Air updates, is in itself a really difficult
task.

Insecure programming: The “time to market” pressure for products of the loT domain is
higher compared to other domains and thus, limitations are imposed on the efforts to
develop security and privacy by design. For this reason, and sometimes also due to budget
issues, more emphasis is directed towards the functionality of the IoT products rather than
their integrated security.
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Unclear liabilities: The assignment of liabilities is unclear. Therefore, in case of security
incidents, many ambiguities and conflicts can be raised, especially considering the large and
complex supply chain involved in 1oT. On top of that, the challenge of how to manage
security if one single component was shared by several parties remains open. Last but not
least, enforcing liability is another major challenge.
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2.3 Machine Learning Algorithms for Anomaly-based Intrusion Detection in
loT Networks

In this Section, we review the most popular ML algorithms used in loT Anomaly-Based Intrusion
Detection Systems (AIDS). In particular, the most commonly used algorithms in the literature are the
following: naive Bayes (NB), decision tree (DT), random forest (RF), linear regression (LR), logistic
regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN). In [67], the authors
stated that the aforementioned ML algorithms have been commonly used in the design and
development of various efficient and effective AIDS for loT. On top of that, in [14], the authors also
highlighted that k-nearest neighbor (KNN), logistics regression (LR), support vector machines (SVM),
decision tree (DT), random forest (RF), and naive Bayes (NB) constitute suitable ML algorithms for
the design and development of efficient and effective AIDS for loT. At the end of the section, we
provide Table 2.1 with an overview of all ML algorithms presented in this section, along with their
main advantages and drawbacks when applied in the design and development of anomaly detection
systems for loT.

2.3.1 Naive Bayes (NB)

Naive Bayes (NB) is a supervised ML algorithm that operates by applying Bayes’ theorem to calculate
the probability of occurrence of an event (i.e., normal or abnormal [68]) based on previous
observations of similar events with the “naive” assumption of conditional independence between
every pair of features given the value of the class variable in order to simplify the process of
modelling [69]. Regardless this controversial assumption, it is anticipated that Naive Bayes is a fast
classifier and has a great performance in practice for many domains. The NB classifier is a commonly
employed supervised classifier with main advantages the ease of implementation and its simplicity.

Given events Y and X with P(X) # 0, Bayes’ theorem states the following:

P(Y|X) = —P(Y;Zg)(ly)

where,

P(Y|X) represents the conditional probability of Y occurring given that X is true,
P(X|Y) represents the conditional probability of X occurring given that Yis true,
P(Y) represents the probability of Y occurring without any condition, and

P(X) represents the probability of X occurring without any condition.

Nevertheless, in a real case classification problem, there can be multiple X variables depending on
the features of the training data. Hence, in the situation, Bayes Theorem is extended to Naive Bayes
considering that features are independent:

P(Y)P(Xy,+, Xp|Y 2.1
P(Y|Xy, -, X,) = (;()511.“ = )l ) 2.1

Based on the “naive” assumption of class-conditional independence, the features are conditionally
independent of one another given the class, thus:

PUL - XalV) = POGIV) PO = | | PCIY) 22
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Based on (2.1) and (2.2), we have:

P(Y) T PCX1Y 2.3
P(Y|X,, -, X,) = (P)(El = )(( )l ) (23)

Since P(Xy, -+, X,,) is constant given the input, we can use the following classification rule:

P(YIXy, =, X0 & PO | | PV
i=1

n
Y=arg m;iXP(Y) nP(XilY)
i=1

In addition, we can use Maximum A Posteriori (MAP) estimation to estimate P(Y) and P(X;|Y); the
former is then the relative frequency of class Y in the training set. This was, computing posterior
probability, the algorithm classifies new unlabeled instances as normal or abnormal. Another
advantage of NB is that in both binary and multi-label classification problems it does not require
many samples for its proper running during its training phase. However, its feature independence
assumption might negatively impact its accuracy as the NB classifier fails to perceive
interdependencies among the features of a dataset [67].

It is worthwhile to highlight that there are different types of NB classifiers mainly based on the
assumptions they make regarding the distribution of P(X;|Y). In general, these assumptions to
define the likelihood of the features are strongly depending on the type of the data (e.g., categorical
data, multinomially distributed data etc.), as well as on the application (e.g., text classification,
binary classification, large scale classification etc.). For instance, it implements Bernoulli NB for data
that are distributed based on multivariate Bernoulli distributions; i.e., there may be multiple
features on a given training dataset, however each one is assumed to be a binary-valued (i.e.,
Bernoulli, Boolean) variable.

2.3.2 Decision Tree (DT)

A decision tree (DT) is a supervised ML algorithm used for classification. The main target of DTs
classifier is to extract features of the training dataset and then organize an ordered tree based on
the value of these features [69]. In a DT, a node corresponds to a feature of the training dataset and
the branches of that node correspond to the values of that feature. The construction of the ordered
tree starts from the origin node of the tree which is known as the root node. The main challenge of
DTs algorithm is to select the feature, which will be the root node of the tree, in order to optimally
split up the training dataset into subsets, one for every value of the selected feature. Afterwards, the
process might be repeated recursively for each branch, using only those training instances that
actually reach the branch (i.e., they have the feature value of the particular branch). If at any time all
training instances at a node have the same classification, then the development of that part of the
tree is stopped, and this class is considered the terminal node (detect or not an anomaly in the
system). In order to determine which feature to split on in order to create the ordered tree, various
metrics, such as Gini Index, Entropy and Information Gain, are utilized for identification of the
feature that will be considered the root node, which will optimally divide the training dataset [67],
[69], and for identification of which feature to split on. An example of a DT classifier is illustrated in
Figure 2.4.
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Figure 2.4. Generic Structure of Decision Tree Model.

In [67], the authors discuss that DTs algorithms carry out two different processes: the induction
process and the inference process [70]. During the induction process, the algorithm combines
unoccupied nodes and branches to construct the DT. Initially, the optimal feature is selected as the
root node of the DT based on the Gini Index, Entropy and Information Gain or other measures. Then,
in each subsequent step, the induction process continues by selecting more features as tree nodes
constructing that way the ordered tree. The main idea during the selection of the features is to keep
to the minimum the overlapping among the different classes of the training dataset. In the end, the
ordered tree is constructed by identifying and classifying the leaves of each sub-DT according to
their corresponding classes.

On the other hand, the inference process involves the classification of new unknown instances and
thus, occurs in a constructed DT. During the inference process, the algorithm, through an iterative
comparison with the created DT, classifies unknown instances. This process is completed when a
matching leaf node is found, and under this node the unknown instance is classified [67]. The
authors in [71] performed experiments using the Gini index as a measure to select both the root
node of the DT and the rest of the tree nodes. In addition, they set to 10 the minimum number of
samples per leaf node in order to avoid overfitting and to end up with a pruned tree [71], [72].

2.3.3 Linear Regression (LR)

Linear Regression (LR) is a statistical supervised ML algorithm that functions by predicting the
guantitative value of a variable forming a linear relationship with one or more independent features
[69], as it is illustrated in Figure 2.5. In order to build a LR model, it is required to take into
consideration the following assumptions [69]:

e Every independent feature in the data should be Normally Distributed. This can be examined
using visualization techniques such as histogram, Q-Q plot, etc.

e The independent variables should have a linear relationship with the dependent variables.
This can be also examined using visualization techniques such as Scatter plot, pairplot,
Heatmap etc. in order to visualize each feature of the data in one particular plot.

e The variance of the residual should remain consistent throughout the data. This property is
also referred to as homoscedasticity and can be confirmed with the residual vs fitted plot.

e The mean of the residual should be zero. Residual is the difference between the observed
and predicted y-values and thus, residuals virtually zero show that the model is working well.
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e Finally, there should be little or no autocorrelation in the data. Autocorrelation appears
when the residuals are not independent with each other. This typically can be examined in
time series analysis plotting the ACF plot or performing Durbin-Watson test. Generally, when
performing Durbin-Watson test:

o ifthe output is 2, there is no autocorrelation;
o ifthe output is a value less than 2, the autocorrelation is positive; and

o if the output is a value greater than 2 and less than 4, the autocorrelation is
negative.

There are 2 different types of linear regression models. The very simplest type of linear regression is
when there is a single predictor variable x and a single response variable y, also referred to as simple
linear regression. The extension to multiple predictor variables (i.e., X1, X2,.. Xi,) is known as
multiple linear regression. In fact, multiple linear regression is a generalization of simple linear
regression when there are more than one independent variables. The basic models for simple and
multiple linear regression are following:

Yy =bo+byx; (2.4)
y= bo + b1x1 + b2x2+. . +blxl + € (25)
where:

y: dependent variable
by: constant
by, b,, ..., b;: coefficients

X1,Xy, ..., X;: independent variables

Y-Axis

X-Axis

Figure 2.5. Simple Linear Regression Model.

2.3.4 Logistic Regression (LR)

A logistic regression (LR) algorithm functions by estimating the probability of a particular instance to
belong in a specific class and is commonly used in an effective and efficient manner in classification
problems for spam filtering (e.g., in [73]) and intrusion detection (e.g., in [74]), as illustrated in Figure
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2.6. Additionally, the authors, in [75], designed and implemented a security solution based on a LR
algorithm and discussed that it is possible to secure an loT-based production line against DDoS
attacks by using ML algorithms and commonly available tools for network traffic analysis.

Normal behaviour

@  Abnormal behaviour

Y-Axis

X-Axis

Figure 2.6. Logistic Regression Model.

The LR algorithm classifies new unknown instances utilizing a predetermined probability threshold.
For example, in the case of binary classification problem (i.e., normal or abnormal activity), a
threshold of 50% would mean that an instance is normal if its estimated probability is less than 50%.
If the estimated probability is greater than 50%, then the LR classifier will output that this is an
attack instance. The LR algorithm operates estimating this probability utilizing the following
equation:

ho(x) = o(8T X x) (2.6)
where:
he is the hypothesis function, which outputs the estimated probability,
x is the feature vector of the instance,
0 is the model’s parameter,
0" is the transpose of 8, and

o(.) is a sigmoid (i.e., logistic) function that defines the threshold.

The equation of the sigmoid function o(.) is the following:

1
O'(Z) = m (27)
z = (8T X x) (2.8)

It is worthwhile mentioning that the output of the sigmoid function is a value between 0 and 1. In
particular, a number closer to 0 indicates an observation of a normal behaviour, whereas a number
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closer to 1 indicates an observation of an abnormal behaviour, or in other words an attack
observation. During the training phase, the LR model calculates the parameter 6.

2.3.5 Support Vector Machine (SVM)

The SVM classification algorithm operates by creating an optimal hyperplane in the feature space
which accurately demarks the two or more different classes. Optimal hyperplane is considered the
separating hyperplane which maximizes the distance — also referred to as ‘Margin’ - between the
nearest training instances (i.e., from both classes, meaning from both sides of the hyperplane) and
the hyperplane. In particular, a margin is considered to be good if the separation is larger for both
classes, and points belonging to one class should not cross to another class. In the initialization of
SVM algorithm, the algorithm plots x random hyperplanes along with the training data, as for
instance it is shown in Figure 2.7 (i.e., 7a) where three hyperplanes, namely ‘A’, ‘B’ and ‘C’, have
been considered. After that, SVM attempts to adjust the orientation of the hyperplanes in such a
way that it homogeneously divides the given classes. In Figure 2.7 (i.e., 7b), we can observe that all
three hyperplanes, namely ‘A’, ‘B’ and ‘C’, segregate the two classes (i.e., yellow and green circles
that represent sample of normal and abnormal observations) well. The main challenge then is to
decide which of all created hyperplanes is the most appropriate (i.e., optimal) hyperplane for the
particular application with the given training instances. The answer to this is to select the hyperplane
with the higher margin from the nearest training instances. In this way, SVM achieves higher degree
of robustness as the chance of misclassification is lower. In the example in Figure 2.7b, the
hyperplane ‘B’ is selected as the optimal hyperplane given that the margin for hyperplane ‘B’ is
comparatively higher than both hyperplanes ‘A’ and ‘C’. Therefore, the hyperplane ‘B’ is considered
as the optimal hyperplane [69].

Y-Axis
—

Y-Axis

X-Axis X-Axis

Figure 2.7. SVM model.
The best use case for SVMs is when the classification problem relates to classes with large feature
sets and fewer data instances [67]. In these cases, SVM appears to have many advantages. First of
all, a SVM classifier is considered to be highly scalable, due to its simplicity during both training and
operating phases. Furthermore, its main advantage in intrusion detections classification problems is
that SMV classifier is able to efficiently operate tasks such as anomaly-based intrusion detection in
real-time, including real-time learning. In addition, a SVM classifier does not require much storage or
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memory to implement and does not requires many initialization parameters for each proper running
[67]. As a result, due to their scalability and low requirements, SVMs appear to be suitable for use in
IDSs that are implemented in a resource-constrained loT system, and thus they require more
lightweight solutions in order to operate in an effective and efficient manner. However, it is crucial
to carefully consider and select the kernel function that the SVM algorithm will apply to optimally
split the training data in the case that the data are not linearly separable. After finding the best
kernel function to achieve a specific classification, its performance speed has always been a
challenge [67]. The authors in [71], tested several functions and parameters in their SVM model for
performing anomaly-based intrusion detection and in their experiments they selected an SVM
classifier with a Gaussian radial basis function (RBF) kernel.

2.3.6 K-Nearest Neighbor (KNN)

The k-Nearest Neighbor (k-NN) classifier serves as an illustration of a non-parametric statistical
approach and does not require any initial parameter for its proper working. The main idea of k-NN
classifier is that it predicts the label of a new unclassified instance after observing the labels of the k
closest training instances to this new instance (i.e., the k-nearest neighbors), and the majority class
of the k closest training instances is assigned to the new instance. To achieve this, it determines the
k closest training instances using a distance metric, and selects the dominant class label among them
as the relevant class [69]. Generally, the Euclidean distance is typically used, while other options
include Chebyshev, Manhattan, and Minkowski distances [69].

It is noteworthy that the choice of k - which defines the number of closest training instances (i.e.,
nearest neighbors) required to accurately classify the new instance - constitutes an important
parameter that affects the overall performance of the classifier [69], [76], [77]. Nevertheless, the k
can be determined experimentally, i.e., starting with k=1, we estimate the accuracy of the classifier,
and the process is repeated increasing the number of the k-nearest neighbors used to predict the
label of the new unclassified instance. Then, the k-value that achieves the higher accuracy may be
selected. In general, the larger the number of training instances is, the larger the value of k will be.

In Figure 2.8, we can observe that the yellow circles depict the instances of observations of normal
behavior, the green squares depict the instances of observations of abnormal behavior, or in other
words an attack observation, while the new unclassified instance is represented by a dark red
square. This new unclassified instance will be classified under a known class (i.e., normal or
abnormal behaviour) based on the majority class of the k closest training instances. As mentioned
previously, k is the number of nearest neighbors used for the classification of the new instance and it
is worthwhile to highlight that the classification might be different depending on the chosen value of
k [69].

27



Normal behaviour
®  Abnormal behaviour

B Unknown instance

]
e o
o
<>.< ) ) [ ° °
o [ ]
e o o g
® °
°
°
() °
[ ] [
o0
°
o0
L)
X-Axis

Figure 2.8. k-NN Classifier.

2.3.7 Ensemble Learning (EL)

Ensemble Learning (EL) functions by combining the classification results of several classification
algorithms and then generating a majority vote out for the final classification [67], as shown in
Figure 2.9. This way, EL builds on the strong points of the utilized classifiers and through this
combination of various homogeneous/heterogeneous classifiers’ outputs significantly improves
classification accuracy [78], [79]. In [80], the author showed that the accuracy of every ML
classification algorithm strongly depends on the application as well as the associated data (i.e.,
training and testing data). Hence, there is not a single ML algorithm that can be described as “one
size fits all solution” with high accuracy for various generalized applications. On the contrary, EL
schemes which combine a variety of classification results derived from several classification
algorithms might comprise an optimal solution for generalized applications as they appear to be best
suited for maximizing accuracy through a reduction in variance and avoiding overfitting [67].

EL classification

Figure 2.9. EL Classification.
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Nevertheless, the high accuracy of EL classifiers has a result of high cost in terms of increased time
and complexity, due to the use of multiple classifiers at the same time [81]. There are various studies
in the literature that have examined the efficiency of EL for the intrusion detection problem [82],
[83], [84]. Furthermore, there are research works on the feasibility of EL in resource-constrained
environments such as loT networks. For instance, in [85], the authors proposed a generalized
application lightweight EL framework being proposed for online anomaly detection in loT networks.
On top of that, the authors in this study demonstrated that the proposed EL framework outputted
better and more accurate results than each member classifier individually [85].

2.3.7.1 Random Forest (RF)

A random forest (RF) is a supervised ensemble ML algorithm used for classification, regression and
other tasks that functions by constructing a multitude of DTs at training time, as it can be seen in
Figure 2.10. This way, it achieves error resistant classifications, while it is proved to be more
accurate than simple DTs [67], [71], [72]. To do this, during the training phase, the algorithm
constructs random DTs from the features of the training dataset and afterwards the model is trained
to classify new unknown instances based on to majority voting of those DTs [67], [71], [72]. The DTs
that constitute an RF classifier are trained in a different way compared to the simple DTs described
in Section 2.3.2. In particular, the difference relies on the fact that the ruleset of a simple DT is
created based on the given training dataset during the training phase, while in a RF ensemble ML
model the various DTs are generated using randomly picked instances from the training dataset as
an input [86].

Treel =>Class A

Tree2 => ClassB

Tree3 =>ClassC

Figure 2.10. Generic Structure of Random Forest Model.
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According to [67], [71], [72], the inherent randomness during the training of a RF model outputs a
more robust and accurate model, and on top of that, the output RF model appears to be more
resistant to overfitting. Apart from that, it does not require proper feature selection, and thus it
needs significantly less inputs for each proper running. In [87], the authors showed that a RF
classifier performs better, more accurately and efficiently detection of DDoS attacks in loT networks
rather than other classifications algorithms including the SVM, the KNN, and an artificial neural
network (ANN) classifiers. The authors in [71] performed their experiments using the Gini index to
construct the various DT components, setting to 10 the minimum number of samples per leaf node
in order to avoid over fitting, as suggested in [72], demonstrating significant classification results.

2.3.7.2 AdaBoost

Adaptive Boosting or AdaBoost is a statistical classification meta-algorithm (i.e., it is not an ML
algorithm by itself, but rather uses other (basic) algorithms to build a stronger one) and is the most
widely used and studied for EL, with applications in numerous fields [69], [88]. AdaBoost can be
applied in conjunction with many other types of learning algorithms in order to improve
performance [89], [90]. The final output of the boosted classifier is represented by the weighted sum
of the output of the several other learning algorithms/classifiers, as shown in Figure 2.11, also
referred to as “weak learners”. AdaBoost is considered adaptive as the subsequent “weak learners”
are tweaked in favor of those instances misclassified by previous classifiers [69], [88]. AdaBoost
appears to be less susceptible to the overfitting problem than other learning algorithms, in
particular, in classification problems [91]. It is important to highlight that although the individual
learners might be weak in terms of performance, as long as their individual performance is slightly
better than random guessing, then, the final model can be proven to converge to a strong learner.
Attention must be drawn to the fact that every ML algorithm tends to suit better to particular
problem types [88], [89], [90], [91]. On top of that, each ML algorithm typically has various
parameters and configurations that need to be adjusted in order to achieve optimal performance on
a certain dataset.

by

Figure 2.11. An Example of AdaBoost Classifier.

30


https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Meta-algorithm

2.3.8 Conclusions

A summary of the main advantages and drawbacks of the reviewed ML algorithms is given below in

Table 2.1.

ML Algorithm

Advantages

Drawbacks

Naive Bayes

Can be used in both binary and
multi-class classification.

=  Simple to use.
=  Few samples required to train.

The assumption about features
independence can lead to low
classification accuracy.

“Zero frequency” problem. In the case
where a class does not appear during

training, it will be assigned a probability

of zero.

Decision Tree

=  Simple to use.
Performance is not different for
linearly and non-linearly separated
parameters.

=  Vulnerable to overfitting.
Unstable (i.e., small data variation may
result in the construction of extremely
different DTs).

Linear
Regression

= Simple to use.
=  Computationally efficient.
= Qverfitting can be reduced by
regularization.

=  Prone to underfitting.
=  Prone to noise and overfitting.
=  Sensitive to outliers.
Limited use due to several assumptions
that LR takes into consideration for its
running.

Logistic
Regression

=  Simple to use.
=  Easy toimplement.

Difficult to perform classification in case
of non-linearly separable classes.

Support
Vector
Machine

=  Better performance in datasets
with few classes and many
instances per class.
=  Scalable.
=  Reduced storage requirements.

Finding the most appropriate kernel
function is a challenge.

K-Nearest
Neighbor

=  Simple to use.
=  Easy to implement.

= Difficult to find the optimal k.

The computational speed decreases as
the number of the k variable, the
number of data points, or the number of
classes increases.

Random
Forest

=  Resistant to overfitting.
=  Feature selection is performed
inherently.
=  Fewer inputs required.

Fast only in the case of a small number
of trees.
=  May require large datasets.

AdaBoost

=  Robust to overfitting.
=  Low computational complexity
and error rates.

Sensitive to noisy data and outliers.

Table 2.1. Main advantages and drawbacks of the reviewed ML algorithms.

31



2.4 Evaluation Metrics

Various metrics are used to evaluate the performance of ML algorithms based on testing datasets. In
order to calculate the evaluation metrics, the first step is the calculation of the values of the
confusion matrix. The confusion matrix is generated when a trained ML model is used to classify the
instances of a testing dataset. The confusion matrix compares values regarding the actual labels of
the instances of the testing dataset and the corresponding labels predicted by the ML model. Table 2
shows the 2-by-2 confusion matrix regarding a classification problem with two classes (i.e., normal
and attack).

Predicted Label

Positive (Attack) Negative (Normal)

Positive (Attack) True Positive (TP) False Negative (FN)
Actual Label

Negative (Normal) False Positive (FP) True Negative (TN)

Table 2.2 Confusion Matrix for Binary Classification Problems.

The true positive (TP) and true negative (TN) relate to the correctly classified attack instances and
normal instances, respectively. The false positive (FP) and false negative (FN) refer to the incorrectly
classified normal instances and attacks instances, respectively. Based on these values, it is possible
to compute several evaluation metrics, as shown in [67], [92], [93], [94]. In our case, the metrics of
accuracy, precision, recall, and Fl-score were used, and each metric is shortly presented below,
along with its equation.

e Accuracy: shows the overall success of the model by comparing the amount of the correctly
classified attack and normal instances to the total amount of instances.

Accuracy = (TP + TN)/(TP + TN + FP + FN) )
e Precision: estimates the overall effectiveness of the model by calculating the percentage that an
observation recognized as an attack is actually an attack observation.
Precision = TP/(TP + FP) (10)
e Recall: shows the overall success of the model by computing the percentage that an actual attack
observation is correctly classified.
Recall = TP/(TP + FN) (11)
e Fl-score: is calculated by the precision and recall metrics as their harmonious mean. It is a
statistical function for estimating the accuracy of the model. As the precision and recall of a
model approach the value of 100%, the F1-score and accuracy are maximized, and every instance

is classified correctly.

F1-score = 2 x (Recall x Precision)/(Recall + Precision) (12)
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2.5 Datasets for Anomaly-based Intrusion Detection in loT Networks

In this Section, the following five of the most well-known existing datasets for training and
evaluation of loT AIDSs are reviewed: (i) the LWSNDR dataset [20], (ii) the dataset presented in [21]
for classifying loT devices using network traffic characteristics, (iii) the “Bot-loT” dataset [22], (iv) the
dataset presented in [23] for detecting DoS attacks on loT devices using network traffic traces, and
(v) the “TON_IoT Telemetry” dataset [14], which is the most recent and representative data-driven
loT/lloT-based dataset [95].

2.5.1 LWSNDR Dataset

The authors in [20] created two wireless sensor networks (WSNs) in order to serve as testbeds for
the simulation of a single-hop sensor-data collection scenario and a multi-hop sensor-data collection
scenario, respectively. In both scenarios, Crossbow TelosB motes were used as sensor nodes, and
real humidity—temperature sensor data were collected.

In the single-hop scenario, four motes are used as sensor nodes and one mote as the base station
node. The four sensor nodes were split into two sets of two nodes, and the first set of nodes
collected indoor data, whereas the other set of nodes collected outdoor data. Both sets of sensor
nodes transmitted the gathered data to the base station node. In addition, anomalies were
introduced to one sensor node in each set (i.e., indoor and outdoor) by utilizing a hot water kettle
that alters both the temperature and the humidity simultaneously.

In the multi-hop scenario, four motes are used as sensor nodes, two motes as router nodes, and one
mote as the base station node. The router nodes exist in the testbed because the sensor nodes are
placed at a distance from where they cannot directly transmit their data to the base station node.
The sensor nodes and the router nodes are split in two sets. In each set, two sensor nodes are
connected to one router node, whereas the router node connects to the base station node. The two
sensor nodes collect humidity—temperature data and send these data to the router node, which
then transmits the data to the base station node. The sensor nodes of the first set are responsible
for gathering indoor sensor readings, whereas the sensor nodes of the other set collect outdoor
sensor readings. Similar to the single-hop scenario, in the multi-hop scenario, anomalies were also
introduced to one sensor node in each set (i.e., indoor and outdoor) using a hot water kettle, which
leads to an increase in both the temperature and the humidity simultaneously.

In both the single-hop and multi-hop scenarios, real labeled data were generated and were
organized in a labelled dataset in order to be used for the purpose of evaluating anomaly detection
algorithms. However, the produced dataset (i.e., “LWSNDR” dataset) contains only pure sensor
telemetry data, and no information related to either the sensor behavior (e.g., energy consumption)
or the network traffic flowing through the WSN is included. In addition, the given dataset does not
include any specific attack scenarios, as also mentioned in [14]. Finally, the “LWSNDR” dataset was
created in 2010 and cannot be easily considered as recent and representative regarding the current
loT devices or the attacks targeting them.

2.5.2 A Dataset for Classifying loT Devices Using Network Traffic Characteristics

The authors in [21], designed and developed a robust framework that performs the classification of
loT devices separately, in addition to one class of non-loT devices, with high accuracy, utilizing
statistical attributes derived from network traffic characteristics. One of the authors’ contributions
was the creation of a smart environment infrastructure that served as a testbed in order to gather
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and synthesize traffic traces from several loT devices. The smart environment contains a wide range
of loT devices (i.e., 28 unique loT devices), non-loT devices (e.g., smart phones, laptops) and a Wi-Fi
access point (i.e., TP-Link access point). The Wi-Fi access point enables the IoT devices and non-loT
devices to communicate with the Internet servers via a gateway [21]. The authors considered the
following types of loT devices: cameras, controllers/hubs, energy management devices (e.g., lights,
plugs, motion sensors), appliances, and health-monitors.

Using the created smart environment, traffic traces were collected and synthesized for a period of
six months. The traffic traces were collected using the “tcpdump” tool and were stored as “pcap”
files on an external USB hard drive of 1 terabyte (TB) storage attached to the gateway. The captured
loT traffic traces comprise (a) traffic produced by the loT devices without any human interaction
(e.g., DNS, NTP), and (b) traffic produced because of the users’ interaction with the loT devices (e.g.,
motion sensors, lightbulb color change upon user request). Next, the traffic traces were analyzed to
gain insight on how to utilize them in order to perform classification of the loT devices. The analysis
of the authors showed that network traffic characteristics, such as activity cycles, port numbers,
signaling patterns, and cipher suites, can be exploited in order to properly classify each loT device.

A subset of these traffic traces was made publicly available as a dataset in order to be used by the
scientific community. However, these traffic traces were not generated based on a specific type of
attack scenario, and, as a result, they are not representative regarding the behavior of loT devices or
the traffic of l1oT networks when under attack.

2.5.3 Bot-loT Dataset

The authors in [22] generated a dataset, named as the “Bot-loT” dataset, by incorporating simulated
legitimate loT network traffic, as well as loT network traffic related to several different types of
attacks. In order to generate the “Bot-loT” dataset, a realistic testbed was developed, with the aim
of being representative of an loT network, and it comprises three components: (i) the network
platforms, (ii) the simulated loT services, and (iii) the extracting features and forensics analytics.
Initially, as far as the network platforms of the testbed are concerned, both normal and attacking
virtual machines (VMs) with additional network devices (i.e., firewall, tap) were included.
Furthermore, the Node-RED tool [96] was employed in order to simulate certain loT services (e.g.,
weather station, smart fridge). Finally, regarding the extracting features and forensics analytics, after
the authors gathered the normal and attack traffic of the testbed in “pcap” files, they employed the
Argus tool in order to extract the flow data and used a MySQL database in order to further process
the extracted flow data. Then, statistical models were used in order to identify the most important
features for discriminating normal and abnormal instances, and ML techniques were trained and
evaluated so as to assess the value of the dataset in comparison to other benchmark datasets [22].
The produced dataset contains both normal and attack network traffic based on benign scenarios
and botnet scenarios, respectively. The botnet scenarios include probing, DoS, DDoS, data theft, and
keylogging attacks.

The “Bot-loT” dataset contains over 72 million records of network traffic, and a scaled-down version
of the dataset with roughly 3.6 million records is also provided by the authors for evaluation
purposes. However, the “Bot-loT” dataset does not include a variety of attack types (e.g.,
ransomware and XSS cross-site scripting), as mentioned in [14]. Additionally, the “Bot-loT” dataset
was made available to the scientific community in 2018 and, thus, cannot be easily considered as the
most recent and representative dataset containing information about normal or attack traffic of a
current loT network and information about the behavior of loT devices when they function under
normal operation conditions, as well as when they function under attack.
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2.5.4 A Dataset for Detecting DoS Attacks on loT Devices Using Network Traffic
Traces

The authors in [23] created an loT-based dataset by collecting both normal traffic and traffic
generated when various types of DoS attacks (e.g., TCP SYN flooding, Ping of Death) were carried
out. A testbed was designed and comprises (i) a TPLink gateway with OpenWrt firmware, (ii) several
loT devices (e.g., WeMo motion sensor, Samsung smart-camera, Philips Hue bulb), (iii) two attackers,
and (iv) two victims. One attacker was placed locally (inside the LAN) and the other attacker existed
remotely (on the Internet). Moreover, both attackers were capable of attacking both victims. In
order to store the network packet traces of all of the network traffic, a 1 TB external hard disk was
attached to the gateway. The packet traces were stored as “pcap” files using the “tcpdump” tool.

In addition, two types of attacks were implemented: (a) direct attacks (i.e., ARP spoofing, TCP SYN
flooding, UDP flooding, and Ping of Death), and (b) reflection attacks (i.e., SNMP, SSDP, TCP SYN, and
Smurf). All of the types of DoS attacks were performed using different traffic rates (i.e., how many
packets were sent to the victim). Furthermore, the attacks originated from either one of the
attackers or both of them and targeted either one of the victims or both of them.

The authors made their dataset available to the community. The released dataset refers to a one-
month period of benign and attack traffic relating to ten loT devices, and annotations of those
attacks are included. The dataset consists of 30 “pcap” files, and each file corresponds to a trace
collected over a day [23]. Nevertheless, this dataset does not have a variety of attack types (e.g.,
ransomware and XSS cross-site scripting), as mentioned in [14]. In addition, similarly to the “Bot-loT”
dataset mentioned in Section 2.5.3, this dataset was made available to the community in 2018 and,
therefore, cannot be easily considered as the most recent and representative dataset containing
information about normal or attack traffic of a current loT network and information about the
behavior of 10T devices when they function under normal operation conditions, as well as when they
function under attack.

2.5.5 ToN_IloT Telemetry Dataset

The “TON_IoT Telemetry” dataset includes events of a variety of loT-related attacks and legitimate
scenarios, loT telemetry data collected from heterogeneous loT/IloT data sources, network traffic of
the 10T/lloT network, and audit traces of operating systems. Each of the classes of the “TON_loT
Telemetry” dataset describes either a normal record or the related type of attack in the case of an
attack record. In [14], the authors presented the testbed that they developed in order to generate
the “TON_loT Telemetry” dataset [97]. The authors developed a testbed integrating loT sensors
(e.g., weather and modbus sensors), physical network components (e.g., switches, routers), several
virtual machines (e.g., VMs of offensive Kali systems, VMs of Windows client systems), hacking
platforms, cloud platforms, and fog platforms, and the testbed components were organized into the
three layers of “Edge”, “Fog”, and “Cloud”. In addition, the testbed employed a software-defined
network (SDN) and network function virtualization (NFV) through the NSX-VMware platform [98].
The NSX-VMware platform enabled: a) the establishment of a virtualized “Fog” layer and a
virtualized “Cloud” layer that simultaneously operated to offer the loT/lloT and network services; b)
the emulation and control of multiple virtual machines (VMs) in the testbed for both hacking and
normal operations, and c) the management of the interaction between the three layers.
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2.5.5.1 Testbed “Edge” Layer

The “Edge” layer is fundamental in loT/lloT applications because its devices measure real-world
physical conditions and transmit the collected information to the “Fog” or “Cloud” for further
analysis [99]. The “Edge” layer of the testbed contains various loT/lloT devices (e.g., weather and
light bulb sensors) and physical gateways (i.e., routers and switches) to the Internet, as well as host
systems. Besides, the “Edge” layer includes the physical host systems “NSX-VMware Server” and
“vSphere System” used to deploy the “Fog” layer and the “Cloud” layer, respectively, by means of
virtualization through the NSX-VMware platform [98] and the NSX-VMware hypervisor platform,
respectively. The “Edge” layer of the testbed is linked to the “Fog” layer through the “vSwitch”.

2.5.5.2 Testbed “Fog” Layer

The purpose of the “Fog” layer is to extend the Cloud computing and services to the “Edge” layer of
the network in order to provide limited computing capacity and storage near to the data sources
[99]. The “Fog” layer of the testbed consists of the VMs and the virtualization technology that
manages the VMs and their services using the NSX-VMware platform [14]. The included VMs and
their roles are as follows:

e VMs where the Offensive Kali systems [100] are installed and include the scripts to simulate
various attack scenarios;

e VMs (i.e., Metaspoitable3, OWASP security Shepherd, and Damn Vulnerable Web App
(DVWA)) which offer vulnerabilities that can be exploited by the Offensive Kali systems [100]

e VMs of client systems (i.e., Windows 7 and 10);

e an Ubuntu 18.04 Middleware server where the Node-Red [96] and Mosquitee MQTT broker
tools were deployed to manage the IoT/lloT services and to operate seven loT/IloT sensors:
weather, smart garage door, smart fridge, smart TCP/IP Modbus, GPS tracker, motion-
enabled light, and smart thermostat;

e an Ubuntu 14.04 LTS orchestrated server that offered network services, including DNS (i.e.,
mydns.com), HTTP(s), DHCP, email server (i.e., Zimbra), Kerberos, and FTP, and generated
network traffic between VMs; and

e a VM with the Security Onion tool that is used to log the network data of all the active
systems in the testbed.

2.5.5.3 Testbed “Cloud” Layer

The general purpose of the “Cloud” layer is to host large-size data centers with a significant capacity
for both computation power and storage in order to support loT/lloT applications and satisfy the
resource requirements for big data analysis. The “Cloud” layer of the testbed includes:

e a Hive-MQTT broker [101] that is used to publish and subscribe the sensing data of the
loT/lloT services using the Node-Red tool;
e avulnerable PHP website [102] used to execute injection attacking events; and

e Cloud centers services (e.g., Microsoft Azure loT Hub [103] and Amazon Web Services
Lambda [104]) that were configured to subscribe and publish 10T/IloT topics between them
and the VMs of the “Fog” layer through the MQTT protocol.
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2.5.5.4 ToN_loT Datasets

The authors in [14] simulated several different types of attack scenarios (i.e., scanning, DoS, DDoS,
ransomware, backdoor, data injection, cross-site scripting (XSS), password cracking, and man-in-the-
middle (MITM)) on their testbed, and collected data from the different components of their testbed
in dataset files. All of the datasets are provided in files that follow the “csv” (comma separated
values) format. The datasets files are split into two main folders: (i) the “Processed” datasets folder,
and (ii) the “Train_Test” datasets folder.

The “Processed” datasets contain a processed and filtered version of the datasets with: (a) their
standard features, (b) a label feature indicating whether an observation is normal or malicious, and
(c) a type feature indicating the attacks’ sub-classes for multi-class classification problems [14]. On
the other hand, the “Train_Test” datasets contain selected records of the “Processed” datasets that
were used by the authors in [14] as training and testing datasets for training and evaluating the
accuracy and efficiency of various ML algorithms.

Both the “Processed” datasets and the “Train_Test” datasets consist of four types of dataset files
(i.e., “Network”, “loT”, “Linux”, “Windows”), with each referring to either the network traffic or a
specific type of device (e.g., sensor, server, desktop) of the testbed, as also demonstrated in Figure
2.12. In particular, the “Network” datasets contain the traffic data that passed through the entire
testbed and were captured during the simulations, whereas the “loT” datasets contain the data
related to each of the seven loT/lloT sensors that were simulated in the testbed. Finally, the “Linux”
datasets and the “Windows” datasets contain the data relating to the two Ubuntu systems and the
two Windows systems in the testbed, respectively.

- Processed loT Datasets

> Processed Linux Datasets

Processed Datasets

Processed Network Datasets

= Processed Windows Datasets

TON_loT Telemetry Dataset ——

Y

Train_Test loT Datasets

#|  Train_Test Linux Datasets

= Train_Test Datasets

Train_Test Network Datasets

—| Train_Test Windows Datasets

Figure 2.12. ToN_loT Telemetry datasets hierarchy.
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2.6 An Overview of Cooja Simulator

Open Source simulators like Cooja have only emerged within the last few years to reflect a new class
of tools for simulating/hosting and managing 1oT/IloT based on cloud or remote deployment and an
array of features to allow system level deployment. These platforms can be run as simulators in ways
that could be considered more representative of deployed systems. Accurate simulation of loT
network nodes is nowadays often coupled to the operating system running on top of the node. Most
of the specialised loT operating systems provide a rather complex simulation environment for
researchers and developers. Cooja for Contiki OS is one of the most popular representatives of this
class of embedded loT operating system simulators. COOIJA is a flexible Java-based simulator
designed for simulating networks of sensors running the Contiki operating system . COOJA is flexible
in that many parts of the simulator can be easily replaced or extended with additional functionality
[25]. Example parts that can be expanded include the simulated radio medium, simulated node
hardware, and plug-ins for simulated input/output. A simulated node in COOJA has three basic
properties: its data memory, the node type, and its hardware peripherals. The node type may be
shared between several nodes and determines features common to all these nodes. For example,
nodes of the same type run the same program code on the same simulated hardware peripherals.
And nodes of the same type are initialized with the same data memory. During execution, however,
nodes' data memories will come to differ due to for example different external inputs.

COOJA is now able to execute Contiki programs in two different ways. This can be done either by
running the program code as compiled native code directly on the host CPU, or by running compiled
program code in an instruction-level TI MSP430 emulator. COOJA is also capable of simulating non-
ontiki nodes, such as nodes implemented in Java or even nodes running another operating system.
All different approaches have advantages as well as shortcomings. Java-based nodes enable much
speedier simulations but cannot run deployable code. Hence, they are useful for the development of
distributed algorithms. Emulating nodes provides more detailed execution details compared to Java-
based nodes or nodes running native code. Finally, native code simulations are more efficient than
node emulations and is still able to simulate deployable code. Since the need of abstraction in a
heterogeneous simulated network may differ between the different simulated nodes, there are
advantages in combining several different abstraction levels in one simulation. For example, in a
large, simulated network a few nodes may be simulated at the hardware level while the rest are
implemented at the pure Java level. Using this method, it combines the advantages of the different
levels. The simulation is faster than when emulating all nodes, but at the same time enables a user
to receive fine-grained execution details from the few emulated nodes.

Java-based nodes enable much faster simulations but do not run deployable code. Finally, native
code simulations are more efficient than node emulations, and COOJA executes native code by
making Java Native Interface calls (JNI) from the Java environment to a compiled Contiki system. The
Contiki system comprises of the entire Contiki core, pre-selected user processes, and a set of special
simulation glue drivers. Another interesting consequence of using JNI is the ability to debug Contiki
code using any regular debugger, such as gdb, by attaching it to the entire Java simulator and
breaking when the JNI call is performed. Also, entire simulation states may be saved and later
restored, skipping back simulations over time. The hardware peripherals of simulated nodes are
called interfaces, and enable the Java simulator to detect and trigger events such as incoming radio
traffic or a LED being lit. Interfaces also represent properties of simulated nodes such as positions
that the actual node is not aware of. All interactions with simulations and simulated nodes are
performed via plugins.

38



2.7 Summary

In this Chapter, a comprehensive overview of the four main pillars of this PhD research work was
given: i) Internet of Things (loT), ii) Machine Learning (ML) algorithms for anomaly-based intrusion
detection in loT networks, iii) evaluation metrics for the performance of ML algorithms, and iv)
existing datasets for training and evaluation of anomaly-based intrusion detection in loT networks.
The Chapter started with an overview of the IoT concept along with its fundamental characteristics
and high-level requirements. Afterwards, the three-layer loT architecture, which is the typical loT
architecture in the literature, was presented where the Perception Layer (i.e., loT network), the focal
point of this PhD research work, was discussed. Following this, an overview of the main security
attacks against loT networks was given. Furthermore, the security and privacy protection
requirements for loT, according to ITU-T Recommendation Y.2066 [28], were presented. Concluding
the overview on loT, concerns that limit the consolidation of secure loT ecosystems, according to
ENISA in [29], were discussed. Next, the most popular ML algorithms used in 1oT Anomaly-based
Intrusion Detection Systems (AIDS) were reviewed and their main advantages and drawbacks were
discussed, followed by the metrics based on which their performance is evaluated. Moreover, five of
the most well-known existing datasets for training and evaluation of loT AIDSs were reviewed.
Finally, an overview of Cooja simulator was provided.
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Chapter 3 Generating Benign IoT Datasets

3.1 Introduction

This Chapter provides a detailed description of the approach followed to generate a set of benign
datasets by implementing a benign loT network scenario in the Cooja simulator [25], as shown in
Figure 3.1. The implemented scenario is an example scenario of a benign IoT network, and Cooja has
been configured properly to simulate it as described in sections 3.3. The generated loT-specific
information from the simulated scenario was captured from the Contiki plugin “powertrace” (i.e.,
features such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic
features) to generate the “powertrace” dataset and the network traffic dataset, respectively, which
constitute the benign datasets for the simulated benign loT network scenario.

Cooja Simulator - Benign Scenario

| > Network .y {=]1P.9)

View Zoom

feB0::212:78Q4:4:404

6) 1 T0—
fe80::212:7405:5:505

fes80::21 ?:@50?:?'?0?

Cooja tool
“Radio messages”

Contiki plugin
“powertrace”

Figure 3.1. Benign loT datasets generation by utilising the Cooja simulator.

3.2 Benign loT network scenario — an example

The network topology of the simulated example benign loT network scenario in the Cooja simulator
environment consists of 5 yellow UDP-client motes (i.e., motes 2, 3, 4, 5, and 6) and the green UDP-
server mote (i.e., mote 1), as depicted in Figure 3.1. The simulation duration was set to 60 mins and
the motes’ outputs were printed out in the respective window (e.g., Mote output) while simulations
run, as shown in Figure 3.2. In addition, the yellow UDP-client motes were configured to send text
messages every 10 seconds, approximately, to the green UDP-server mote that was configured to
provide a corresponding response. The UDP protocol was used at the Transport Layer and the IPv6
at the network layer. Moreover, the type of motes used in this scenario was the Tmote Sky that is an
ultra-low power wireless module for use in sensor networks, monitoring applications, and rapid
application prototyping. In addition, Tmote Sky motes leverage industry standards such as USB and
IEEE 802.15.4 to interoperate seamlessly with other devices. By using industry standards, integrating
humidity, temperature, and light sensors, and providing flexible interconnection with peripherals,
Tmote Sky motes enable several mesh network applications [105].
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Figure 3.2 Cooja Simulator — motes’ outputs

3.3 Benign “powertrace” Dataset

3.3.1 Benign “powertrace” Dataset — Generation Process

The “powertrace” dataset includes information about features such as such as total CPU energy
consumption and low power mode (LPM) energy consumption. In fact, it is the dataset of the
simulated benign loT network scenario that includes records about information related to the
energy consumption of the loT devices (i.e., motes) deployed within the simulated loT network. To
enable the “powertrace” plugin and generate the “powertrace” dataset, the motes of the benign loT
network were programmed to make use of the “powertrace” plugin for collecting “powertrace”
related features every 2 seconds. In particular, we included the “powertrace.h” library into the code
of each mote (i.e. #include “powertrace.h”), as shown in Figure 3.3, and defined to start
powertracing, once every 2 seconds, in the code of each mote as shown in Figure 3.4.

<stdio.h>
<string.h>

"powertrace.h"

Figure 3.3 “powertrace.h” library in the mote code.

| PROCESS_BEGIN():

Figure 3.4 Powertracing Begin.

More precisely, the “powertrace” plugin captured raw information, every 2 seconds, about the set of
features summarised in Table 3.1. In particular, the “powertrace” plugin tracks the duration (i.e.,
number of cpu ticks) of activities of a mote being in each power state. Particularly, the outputs
demonstrate the fraction of time in which a mote remains in a given power state. There are the
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following six power states: i) cpu; ii) [pm; iii) transmit; iv) listen; v) idle_transmit; and vi) idle_listen,
as shown in Table 3.1. These are measured with a hardware timer (i.e., clock frequency is defined in
RTIMER_SECOND or 32,768 Hz for XM1000). In addition, it is worthwhile mentioning that in our
simulated scenarios the value range for the following features was between 0 and 65535: cpu, lpm,
transmit, listen, idle_transmit, idle_listen. This is because our acquisition time was 2 seconds and the
hardware_timer is 32,768. Besides that, the value ranges for rimeaddr and seqno are dependent on
the number of motes included in each simulated scenario, and the number of acquired samples
during the monitoring time.

Index Feature Description
1 sim time simulation time
2 clock_time() clock time (i.e., by default, 128 ticks/second)
3 ID Mote ID
4 P label
5 rimeaddr rime address
6 seqno sequence number
7 all_cpu accumulated CPU energy consumption
8 all_lpm accumulated Low Power Mode energy consumption
9 all_transmit accumulated transmission energy consumption
10 all_listen accumulated listen energy consumption
11 all_idle_transmit accumulated idle transmission energy consumption
12 all_idle_listen accumulated idle listen energy consumption
13 cpu CPU energy consumption for this cycle
14 Ipm LPM energy consumption for this cycle
15 transmit transmission energy consumption for this cycle
16 listen listen energy consumption for this cycle
17 idle_transmit idle transmission energy consumption for this cycle
18 idle_listen idle listen energy consumption for this cycle

Table 3.1 Set of Captured Features by “powertrace” plugin.

In Figure 3.1, the depicted Mote output window displays the captured “powertrace” information
every 2 seconds and also the messages sent/received by each mote (printouts/printf from each

mote).
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Figure 3.5 Cooja Simulator—Mote output window.

T

Furthermore, the Simulation script editor, shown in Figure 3.6, is a Cooja tool used to display

messages and set a timer on the simulation. As shown in Figure 3.6, the upper part of the Simulation
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script editor was used to create scripts and the lower part to show the captured “powertrace”
information and the printouts (i.e., printf messages) from the motes until the timeout occurs. In our
implementation, we considered the simulation duration to be 60 mins and thus, the timeout was set
at 3,600,000 ms. When the timeout occurred, the simulation stopped, and all the captured
information and prints were stored in the log file named “COOJA.testlog”.

) Simulation script editor *active® {=Jokx)
File Edt Run

1

aWN -

s
6
8 TIMEOUT (366 );
o

10 while (true) {

11 log.log(time + *,* + msg + L H
12 viewn();

. 0.18.116.3.0.3.3.3, 84, 21536
+0.18.116.6.0.6.6.6, 84, 244888,
. P.0.18.116.4.0.4.4.4, 84, 212726,
.0.18116.1.0.1.1.1, 84, 47112
+0.18.116.5.0.5.5.5 2455
.0.18.116.2.0.2

:OIBIISGO"b./J.S')
.018.116.4.0.4.4.4, 85,
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17

7 ATA sending -
605762,10:3, DATA recv ‘Reply from server'
7843,10:6, DATA send -> ‘Hello 17'
184,10:1,0ATA recv -> ‘Hello 17", from, 6,
sending > ‘reply’ to I0:6,
TA recy 'Reply from server

= SN -

Figure 3.6 Simulation script editor.

Having collected all the captured raw information from the “powertrace” plugin in the
“COO0JA testlog” file, the challenging task was to extract this information from the “COOJA . .testlog”
file to a csv file that would be the “powertrace” dataset of the simulated benign IoT network
scenario including records about the energy consumption of the motes. To address this challenge,
the “loT_Simul.sh” bash file was developed to extract all the required “powertrace” information
from the “COOJA.testlog” file to the “pwrtrace.csv” file. An extract of the “loT_Simul.sh” bash file is
shown in Figure 3.7.

sC Jtee Sdir/SDATE/\c

grep ¥
grep "DAT
grep

for n in seq

echo

echo

Figure 3.7 Extract of the “loT_Simul.sh” file.
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Initially, the “loT_Simul.sh” file created the root folder named with the simulation date and time
(i.e., “2020-11-19-17-45-22" folder), as shown below in the left part of Figure 3.8. Afterwards, the
bash file created the “log” folder, inside the “2020-11-19-17-45-22” folder, where the
“COOJA.testlog” file was copied from the “.../cooja/build” folder located in the Cooja Simulator
environment.

Clipboard Organise New Open

« t » ThisPC » data(D:) » Projects > loT > tests > dataset > dataset > normal_op > 2020-11-19-17-45-22 » dataset
2020-11-19-17-45-22 +)
dataset Q. pwrtrace.csv
log Q) recv.csv
motedata Q. send.csv

(@ 2020-11-19-17-45-22.zip

o

Figure 3.8 Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “loT_Simul.sh” file.

In addition, in the “loT_Simul.sh” file, the Linux tool “grep” was used to extract the required
“powertrace” information by selecting the label “P” in each “powertrace” row from the
“COO0JA testlog” file and save it in the “pwrtrace.csv” file in the “dataset” folder that was also
created by the batch file inside the “2020-11-19-17-45-22" folder, as shown in the left part of Figure
3.8. In particular, it was implemented with the following command:

grep "P" log/COOJA.testlog >> dataset/pwrtrace.csv

However, in the “dataset” folder, apart from the “pwrtrace.csv” file, the “loT_Simul.sh” file
generated two more files, based on the information included in the “COOJA.testlog” file, as shown in
Figure 3.8; the “recv.csv” file and the “send.csv” file that include the “received” and “sent”messages
printed by the motes, respectively.

Finally, the “loT_Simul.sh” file extracted the information related to each mote, from the
“pwrtrace.csv” file, and generated one csv file for each mote with the corresponding information
from “pwrtrace.csv” file. It was implemented with the following command, where “n” is the mote
number (i.e., 1 to 6):

grep "ID:"Sn dataset/pwrtrace.csv >> motedata/moteSn.csv

The generated 6 csv files (i.e., motel.csv, mote2.csv, mote3.csv, mote4.csv, mote5.csv, moteb.csv)
were stored in the “motedata” folder, as shown in Figure . The “motedata” folder was also created
by the “loT_Simul.sh” file inside the “2020-11-19-17-45-22" folder.

Llpooara urganise New upen >elec
v A > ThisPC > data(D:) > Projects > loT > tests > dataset > dataset > normal_op > 2020-11-19-17-45-22 > motedata
2020-11-13-21-34-21 0" Name Date modified Type Size
2020-11-19-17-45-
2020-11-19-17-45-22 B3 motel.csv
dataset B motel.csv
log 0 mote3.csv
motedata 05 moted.csv
(@ 2020-11-19-17-45-22.zip @) moteS.csv
@3- moteb.csv

scripts

” o ” o VN VN ”

Figure 3.9 Location of the generated “motel.csv”, “mote2.csv”, “mote3.csv”, “moted.csv”, “mote5.csv”,
files” by the “loT_Simul.sh” bash file.

mote6.csv
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An overview of the described process followed to extract the required information from the
“COOJA.testlog” file to the “pwrtrace.csv’, “recv.csv”, “send.csv”’, “motel.csv”, “mote2.csv”,

2 2 u

“mote3.csv”’, “moted.csv”’, “mote5.csv”’, and “mote6.csv” files are depicted in Figure .

t

/cooja/build/COOJA.testlog

nel

[ AAEEE———.

/2020-11-19-17-45-22

/2020-11-19-17-45-22

/dataset/pwrtrace.csv
/dataset/recv.csv

/dataset/send.csv

/2020-11-19-17-45-22

/motedata/motel.csv
/motedata/mote2.csv
/motedata/mote3.csv
/motedata/moted.csv
/motedata/moteS.csv
/motedata/mote6.csv

Figure 3.10 An overview of the process followed by the “loT_Simul.sh” file to extract all the required “powertrace”
information from the “COOJA.testlog” file.

3.3.2 Benign “powertrace” Dataset — Generated Results

The “powertrace” dataset consists of the following csv files: “pwrtrace.csv”’, “motel.csv”,
“mote2.csv”’, “mote3.csv’, “moted.csv”’, “mote5.csv”’, and “mote6.csv” files. In this Section, we
present sets of records from the “pwrtrace.csv”, and in Appendix 1 we present sets of records from
“motel.csv”’, and “mote3.csv” files.

3.3.2.1 Benign “pwrtrace.csv”

The generated benign “pwrtrace.csv” file consists of 10,794 records and its first 38 records (i.e., 1-
38) and its last 38 records (10,757—-10,794) are depicted in Figure 3.11 and Figure 3.12, respectively.
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05 .18.116.5.0.5.5.5 3 4102 0 1784 9079 56426 4880 2472 o 364
02 P 01811620222 3 2017 o 1560 1491 64016 ] 416 o a6
06 0.18.116.6.0.66.6 4 3102 o 1950 4166 63537 1518 1134 o 416
10:3 18.116.3.0.3.3.3 4 4517 2239 1468 64023 o 416 o 416
101 2.18.11 111 4 5170 2817 o 815 364
1D 18.11 4 4338 222 ] a6 416
1D 18.11 4518 2200 0 416 416
102 18,11 2610 1976 6; 593 416
104 1811 3990 2543 833 593
1D .18 5306 2806 789 567
): 18 26285 | 367714 8402 7027 3142 1857 325
) ).18. 26062 | 367901 10016 6692 2780 2354 554
= ).18. 26537 | 367458 10452 5169 2590 651 3%0
):. .18, 2.0.2.2. 19600 | 374395 5726 N9 23719 719 403
1D P 0.18. 6.0, 27550 | 431978 10073 — 4458 2933 468 3%
1D- P 0.18.116.3.0. 24234 | 435261 8052 6066 209 2383 63112 110 760 403
H H " "y
Figure 3.11 Benign “pwrtrace.csv”’—1 to 38 records.
8 C o 13 ¥ G L) 1 L3 o P R s T v v w
" e
time 0 P rimeaddr seqno il all_cpu all_idle_t pu lpm transmit|  lsten | idle_transmit
(i ticks} - o . (i ticks) {in ticks) (n (in ticks ] {im ticks}
459013 It P 18.116.! 5.1 1792 § 4227046 63287
459013 il P 0.18.116.2.0.2.2.; 1792 4226306 59244
459269 Ll P 18.116.6.0.6.6.6 1793 4274768 1587 63923 0 416
459269 |l P 18.116.3.0.3.3.; 1793 4117288 1587 63923 0 416
459268 l P 8.116.1.0. 1793 8613082 2961 62549 13 758
459269 Ll 3.116.4.0.4.4.4 1793 4237391 1586 63924 0 416
459269 10! 116.5.0555 1793 4233517 64638 59033 2620 2149
459269 10:2 116.2.0.2.2.2 1793 4227941 | 1 1632 63878 416
459525 106 D.18.116.¢ 1794 4276346 1575 63933 416
459525 10:3 116.. 3. 1794 4118865 |1 1574 63933 416
459525 1D: 116.1.0.1, 179¢_ N 8615070 | 721029 1985 | 63523 416
459525 10:4 P 116.4.04.4.4 1794 4238968 826323 1574 63934 416
459525 10: P 18.116." 3 1794 4235140 959372 63387 416
450525 10: P 18.116.2.0.2.2.2 | 1794 [ 4220517 755216 M 1573 | 63935 416
459781 10:6 P 18.116.6.0.6.6.€ 1795 4277971 |1 876681 1622 63870 416
459781 03 » 0.18.1163.0333 ms__ 4120490 948863 1622 63370 416
459781 01 P 0.18.116.1.0.1.1. 1795 _“__XM_ 21445 1954 63555 416
459781 D4 P 01811640444 1795 4240593 826739 1622 63871 0 416 o
459781 1055 P 0.18.116.5.0.5.5." 1795 N 4236766 959788 1623 63870 o 416 o
459781 102 P 0.18.116.2.02.2.2 1795 B a2na 755630 63870 ) 416 ]
460037 06 P 0.18.116.6.06.6.6 1796 N 4279589 877097 1615 63876 o 416 ) 416
460037 103 P 0.18.116.3.0.3.3.3 1796 N 4122130 949456 1637 63856 o 593 ) 593
460039 01 P 0.18.116.1.01.1.1 | 1796 N 8623860 721809 6830 59263 2764 1975 ) 364
460037 04 P 01811640444 | 1796 N 4242210 827332 63877 o 593 ) 593
460037 105 P 0.18.1165.0555 | 1796 N 4238397 960458 o 710 ) 710
460037 102 P 01811620222 | 1796 N 423431 o 756020 nre 62322 514 51 o 390
460293 10:6 P 0.18.116.606.66 | 1797 N 4281196 ] 877703 1604 63287 o 606 L) 606
460293 103 P 0.18.116.3.03.3.3 1797 4123737 o 949872 1604 63887 o 416 ) 416
460293 10:1 P 0.18.116.1.01.1.1 179 8625902 o 722225 2039 62289 o 416 o 416
4650293 1D P 01811640444 179 4243816 o 827748 1603 63888 o 416 o 416
460293 10! P 0.18.116.5.0.5.5.5 179 4240004 o 960914 1604 63887 o 416 o 416
460293 10:. P 0.18.116.2.0.2.2.2 | 179 4235922 756436 1598 63910 o 416 416
460545 1D P 0.18.116.6.06.66 | 1798 N 4282793 878119 1554 63897 o 416 416
60545 10:: [ 0.18.116.3.0.3.33 | 1798 N 4128484 950262 4744 60758 1537 1538 390
460545 10:1 P 18.116.1.0.1.1.; 1798 N 5629132 722615 nn 62283 32 04 390
460545 10:4 P 18.116.4.04.4.4 1798 § 4245412 828164 1593 63897 o 416 416
460545 10:5 P 0.18.116.5.0.5.5." 1798 N 4243080 961454 3073 62419 456 135 580
260545 10:2 P 0.18.116.2.0.2.2.2 1798 § 4237491 756852 1566 63942 o 416 416

Figure 3.12 Benign “pwrtrace.csv”’—10,757 to 10,794 records.
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3.4 Benign Network Traffic Dataset

3.4.1 Benign Network Traffic Dataset — Generation Process

The generated network traffic dataset constitutes the dataset of the simulated benign loT network
scenario that includes records consisting of 10T network traffic features such as source/destination
IPv6 address, packet size, and communication protocol. The Cooja simulator provides the “Radio
messages” tool that allowed the collection of data related to the corresponding network traffic
features. In Figure 3.13, the “Radio messages” output window is depicted along with the three
configuration options that are provided by the “Radio messages” tool:

[@  Radiomessages: showingoopackets  BEE|
F
ile Edit MV.M '
No. | No Analyzer |

GLOWPAN Analyzer
& G6LOWPAN Analyzer with PCAP

Figure 3.13 “Radio messages” tool—output window.

The “6LoWPAN Analyzer with PCAP” option was selected and the “Radio messages” tool saved the
captured network traffic data from the simulated IoT network into a pcap file whose file-naming
format was as follows: “radiolog-“+ System.currentTimeMillis()+“.pcap”. During the simulation, the
network traffic information about the transmitted data was also being shown in the top part of the
“Radio messages” output window as depicted in the top part of Figure 3.14. When the simulation
stopped, the generated pcap file was saved as “radiolog-1605811324302.pcap” within the
“.../cooja/build” folder.

(=] Radio messages: showing 106/1624 packets BE8
File Edit Analyzer View

No. Time From |To

1393 00:30.145 1 2 &

141041 00:30.214 1 [ 4:01:00:01:01:01 00:12:74:02:00:02:02:02| IPHC| IPv6|UDP S678 8765| 001AC2AF S265706C 792... [

1413+1 00:30.222 1 3 4:01:00:001:01:01 00:12:74:02:00:02:02: 02| IPHC| IPv6|UDP 5678 8765|00LAOZAF S265706C 792...

142841 00:30.266 1 4 174:01:00:00:01:00 00:12:74:02:00:02:02: 02| IPHC| IPv6|UDP 5678 8765|001AC2AF S265706C 792...
00:30.275 1 74 ; H o

1432 2 1 .

1464 00:30.516 4 1 15.4 D 00:12:74:04:00:04:04:04 00:12:74:01:00:01:01:01 | IPHC|IPvS|ICHPvE RPL DAQ|1E4000F3 AAAADOOO 0O

1465 00:30.519 1 4 51 15.4 A

147441 00:31.020 4 1 97: 15.4 D 00:12:74:04:00:04:04:04 OxFFFF|IPHC|IPVS|ICMPvS RPL DIO|AAAADOOO OOOO0000 OOOOOOFF FEOOOOOL O...

1515 00:32.007 2 1 76: 15.4 D 00:12:74:02:00:02:02:02 00:12:74:01:00:01:01:01| IPHC|IPv6]| ICMPv6 RPL DAO|1E4000F3 AAAAGOOOD 00...

1516 00:32.019 1 2 5: 15.4 A

1533 00:32.268 3 1 76: 15.4 D 00:12:74:03:00:03:03:03 00:12:74:01:00:01:01: 01| IPHC| IPv6| ICMPvG RPL DAO|1E4000F3 AAAAGOOO 00...

1534 00:32.271 1 3 5: 15.4 A

1565 00:32.894 & 1 76: 15,4 D 00:12:74:06:00:06:06:06 00:12:74:01:00:01:01:01 | IPHC|IPv6| ICMPYS RPL DAO|1E4000F3 AAAAGOOD 00...

1566 00:32.897 1 [ 5: 15.4 A

1586+1 00:33.016 6 1 97: 15.4 D 00:12:74:06:00:06:06: 06 0xFFFF|IPHC|IPvE|ICMPVE RPL DIO| AAAADODO 00000000 OOODOOFF FEOGOOOL O...

1558+1 00:33.142 5 1 §7: 15.4 D 00:12:74:05:00:05:05:05 OxFFFF|IPHC|IPvS|ICMPvS RPL DIO|AAAAOOOO OOOO0000 OODOOOFF FEOOOOOL O...

IEEE 802.15.4 DATA #12

From OxABCD/00:12:74:01:00:01:01:01 to OxABCD/00:12:74:02:00:02:02:02

Sec = false, Pend = false, ACK = true, iPAN = true, DestAddr = Long, Vers. = 1, SrcAddr = Long

IPHC HC-06

TF = 3, NH = inline, HUM = 64, CID = 1, SAC = stateful, SAM = 3, MCast = false, DAC = stateful, DAM = 3
Contests: sci=0 dci=0

IPVETC = 0, FL=10

From aaaa:0000:0000:0000:0012:7401:0001:0101 to aaaa:0000:0000:0000:0012:7402:0002:0202
upp

T[S

Src Port: 5678, Dst Port: 8765

Figure 3.14 Network traffic information from the benign scenario in the “Radio messages” output window.
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Having now saved all the captured raw network traffic information, through the “Radio messages”
tool, into a pcap file, the challenging task was to extract this information from the pcap file to a csv
file that would be the network traffic dataset of the simulated benign loT network scenario. This
challenge was addressed by utilising the “loT_Simul.sh” file that was also used in the “powertrace”
dataset generation process, as described in Section 3.3.1, and the well-known network protocol
analyser Wireshark [106].

In particular, the first step was the use of the “loT_Simul.sh” file in order to copy the “radiolog-
1605811324302.pcap” file from the “../cooja/build” folder located in the Cooja Simulator
environment to the “nettraffic” folder that was created by the “loT_Simul.sh” file inside the root
folder “2020-11-19-17-45-22" that was also created by the “loT_Simul.sh” during the “powertrace”
dataset generation process. The “nettraffic” folder inside the root folder “2020-11-19-17-45-22" and
the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic” folder are shown in Figure .

2020-11-19-17-45-22 A
dataset radiolog-1605811324302.pcap
log

motedata

nettraffic

Figure 3.15 The “nettraffic” folder inside the root folder “2020-11-19-17-45-22" and the copy of the “radiolog-
1605811324302.pcap” file.

After having the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic” folder, the next
step was the extraction of the stored network traffic information from the “radiolog-
1605811324302.pcap” file to the “radiolog.csv” file. This was achieved through Wireshark as
Wireshark allows opening a pcap file and exporting data to a csv file. In Figure 3.16, the upper panel
of the Wireshark window shows the seventeen first packets included in the “radiolog-
1605811324302.pcap” file that was opened via Wireshark. The middle panel shows the protocol
details of the 10th packet selected in the upper panel and the bottom panel presents the protocol
details of the selected 10th packet in both HEX and ASCII format.
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- radiolog-1605811324302.pcap [Wireshark 1.7.2 (SVN Rev 42506 from [trunk)]
File Edit View Go Capture Amdlyze Statistics Telephony Tools Internals Help

R A ABxCcE Q¢ ¥T42 BB oD SUEX @

Filter +  Expression Filter

No. Time Source Destination Protocol Length Info
1 0.060000 1€80::212:7405:5:505 1102::1a I09ve 64 RPL Control (DODAG Information Solicitation)
2 0.000000 fe80::212:7405:5:505 ffe2::1a ple ] 64 RPL Control (DODAG Information Solicitation)
3 0.003000 1e80::212:7405:5:505 1102::1a 100v6 64 RPL Control (DODAG Information Solicitation)
4 0.003000 1e80::212:7405:5:505 1102::1a I0%Wve 64 RPL Control (DODAG Information Solicitation)
5 0.004000 1e80::212:7405:5:505 f102::1a ICHPVE 64 RPL Control (DODAG Information Solicitation)
6 6.604000 1e80::212:7405:5:505 1102::18 10%v6 64 RPL Control (DODAG Information Solicitation)
7 0.007006 1e80::212:7405:5:505 1102::1a I00v6 64 RPL Control (DODAG Information Solicitation)
8 0.0607000 1€80::212:7405:5:505 1102::1a IPve 64 RPL Control (DODAG Information Solicitation)
9 0.008000 1e80::212:7405:5:505 1102::1a ICPve 64 RPL Control (DODAG Information Solicitation)
10 0.008000 1680::212:7405:5:505 1162::1s 1CHPVE 64 RPL Control (DODAG Information Solicitation)
11 0.609000 1e80::212:7405:5:505 1102::1a I0WV6 64 RPL Control (DODAG Information Solicitation)
12 6.010000 1080::212:7405:5:505 1102::1a 10Wve 64 RPL Control (DODAG Information Solicitation)
13 0.012000 1e80::212:7405:5:505 1102::1a 109ve 64 RPL Control (DODAG Information Solicitation)
14 0.013000 1e80::212:7405:5:505 1102::1a I09ve 64 RPL Control (DODAG Information Solicitation)
15 0.013000 1680::212:7405:5:505 1102::1a 10Wve 64 RPL Control (DODAG Information Solicitation)
16 0.015000 1e80::212:7465:5:505 1102::1a ICMPve 64 RPL Control (DODAG Information Solicitation)
17 6.015000 1e80::212:7405:5:505 1162::1a ple ) 64 RPL Control (DODAG Information Solicitation)

» Frame 10: 64 bytes on wire (512 bits), 64 bytes captured (512 bits)

> IEEE 802.15.4 Data, Dst: Broadcast, Src: NitLab 05:00:05:05:05

> GLOWPAN

» Internet Protocol Version 6, Src: fe80::212:7405:5:505 (fe80::212:7405:5:505), Dst: ffo2::1a (ff02::1a)
¥ Internet Control Message Protocol v6

Code: @ (DODAG Information Solicitation)
Checksum: Oxedff [correct)
Flags: @

0000 41 d8 26 cd ab ff ff 05 05 05 00 65 74 12 00 41 A& . R )
0010 60 00 00 00 00 06 33 40 fe 80 00 00 00 00 00 00

0020 02 12 74 05 00 05 65 05 ff 02 60 00 00 00 00 00 eess
0030 00 00 00 00 00 60 00 1a FE 00 b ff 00 60 bd 22 B

©# indicates the type of the message ... Packets: 116463 Displayed: 116463 Marked: 0 Load time: 0:00.812 Profile: Default

Figure 3.16 The first seventeenth packets in the “radiolog-1605811324302.pcap” file.

The data from the “radiolog-1605811324302.pcap” file were exported and saved, through
Wireshark, into the “radiolog.csv” file in the “nettraffic” folder in the project environment, as shown
in Figure 3.17. Furthermore, it is worthwhile mentioning that we also used Wireshark to filter the
“radiolog-1605811324302.pcap” file based on the ICMPv6 protocol and the UDP protocol and then
exported and saved the filtered results, through Wireshark, in the “radiologICMPv6.csv” file and the
“radiologUDP.csv” file, respectively, in the “nettraffic” folder in the project environment, as shown
in Figure . The “radiologlCMPv6.csv” file and the “radiologUDP.csv” file facilitated the analysis of the
capture traffic as shown in Chapter 5.

2020-11-19-17-45-22 A Name Type Size
dataset | radiolog-1605811324302.pcap

log 0] radiolog.csv ¢l Comma Separated Values File
motedata

nettraffic

Figure 3.17 The “radiolog.csv” file in the “nettraffic” folder in the project environment.

2020-11-19-17-45-22 ) Name Type Size
dataset ] radiolog-1605811324302.pcap PCAP File
log 8. radiolog.csv Microsoft Excel Comma Separated Values File
motedata 8] radiologUDP.csv Mic S Values File

alues File

nettraffic 8- radiologlCMPv6.csv Mi

9 annn se an 4 ar an

Figure 3.18 The “radiologICMPv6.csv” file and the “radiologUDP.csv” file in the “nettraffic” folder in the project
environment.

Finally, an overview of the above-described process followed to extract the required information
from the “radiolog-1605811324302.pcap” file to the “radiolog.csv”, “radiologICMPv6.csv” and
“radiologUDP.csv” files is depicted in Figure 3.20.
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Cooja/build/radiolog-
1605811324302.pcap

Copy
2020-11-19-17-45-22/nettraffic/
radiolog-1605811324302.pcap

2020-11-19-17-45-22/nettraffic/radiolog.csv
2020-11-19-17-45-22/nettraffic/radicloglCMPv6E.csv
2020-11-19-17-45-22/nettraffic/radiologUDP.csv

Figure 3.20 An overview of the process followed to extract all the required network traffic information from the
“radiolog-1605811324302.pcap” file.

3.4.2 Benign Network Traffic Dataset — Generated Results

The network traffic dataset consists of the following csv files which are located in the “nettraffic”
folder in the project environment as described in Section 3.4.1: “radiolog.csv”,
“radiologlCMPv6.csv”, and “radiologUDP.csv” files. In this Section, we present sets of records from
these files.

3.4.2.1 Benign “radiolog.csv”

The generated benign “radiolog.csv” file consists of 116,463 records and its first 40 records (i.e., 1—
40) and its last 40 records (116,424-116,463) are depicted in Figure 3.21 and Figure 3.22,
respectively.
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B D E F G H
I Length
No Time (sec) Source Address (IPv6) Destination Address (IPv6) Protocol (bytes) Info
1 fe80::212:7405:5:505 f02::1a ICMPvE 64 RPL Control (DODAG Infe Solicitation)
2 fe80::212:7405:5:505 ff02::1a ICMPvE 64 RPL Control (DODA Solicitation)
3 0.003 fe80:: ff02::1a ICMPvi 64 RPL Control (DODAG Infy i lici )
4 0.003 fe80::. :1a ICMPvE 64 RPL Control (DODAG Information Solici )
5 0.004 fe80::212: :la ICMPvE 64 RPL Control (DODAG Inf: ti lici )
6 0.004 fe80::212:7405:5:505 :la ICMPvE 64 RPL Control (DODAG Information Solicitation)
7 0.007 feB0::212:7405:5:505 la ICMPvE 64 RPL Control (DODAG Information Solicitation)
8 0.007 fe80::212:7405:5:505 la ICMPvE 64 RPL Control (DODAG Inf Solicitation)
9 0.008 feB0::212:7405:5:505 la ICMPvE 64 RPL Control (DODAG Infe Solicitation)
10 0.008 fe80::. ::1a ICMPvE 64 RPL Control (DODAG Infe Solicitation)
11 0.009 fe80:: ::la ICMPvE 64 RPL Contrel (DODAG Inf: Solicitation)
12 0.01 fe80:: 1a ICMPvi 64 RPL Control (DODAG Infy i il ]
13 0.012 fe80: ICMPvi 64 RPL Control (DODAG Information Solici )
14 0.013 fe80: ICMPvE 64 RPL Control (DODAG Infi ti lici )
15 0.013 fe80: ICMPvE 64 RPL Control (DODAG Information Solici )
16 0.015 feB0:: ICMPvE 64 RPL Control (DODAG Information Sollutatlonl
17 0.015 fe80: ICMPvE 64 RPL Control (DODAG Inf: Solicitation)
18 0.019 fe80: ICMPvE 64 RPL Control (DODAG Inf: Solicitation)
19 0.02 fe80: ICMPvE 64 RPL Control (DODAG Infe Solicitation)
20 0.021 fe80: ICMPvE 64 RPL Control (DODAG Infi Solicitation)
21 0.021 fe80: ICMPvE 64 RPL Control (DODAG Infy ion Solicitation)
22 0.022 fe80: ICMPvi 64 RPL Control (DODAG Information Solici )
23 0.023 fe80: ICMPvE 64 RPL Control (DODAG Infy ti lici )
24 0.024 fe80:: ICMPvE 64 RPL Control (DODAG Information Solici )
25 0.028 fe80::. ICMPvE 64 RPL Control (DODAG Information Solicitation)
26 0.029 fe80::. ICMPvE 64 RPL Control (DODAG Inf Solicitation)
27 0.029 fe80::. ICMPvE 64 RPL Control (DODAG Infi Solicitation)
28 0.029 fe80::. ICMPvE 64 RPL Control (DODAG Inf: Solicitation)
29 0.03 feB0::212:7405:5:505 ICMPvE 64 RPL Control (DODA Solicitation)
30 0.031 fe80::212:7405:5:505 ICMPvE 64 RPL Control (DODAG Infy Solicitation)
31 0.031 fe80::212:7405:5:505 ICMPvi 64 RPL Control (DODAG Information Solici )
32 0.039 fe80::212:7405:5:505 ICMPvE 64 RPL Contral (DODAG Information Sollcltatlonl
33 0.039 feB0::212: 05 ICMPvE 64 RPL Control (DODAG Inf: ti ion)
34 0.04 fe80::212:7405:5:505 ICMPvE 64 RPL Control (DODAG Information Sollutatlon!
35 0.04 feB0::212:7405:5:505 ICMPvE 64 RPL Control (DODAG Infoermation Solicitation)
36 0.041 :212:7405:5:505 ICMPvE 64 RPL Control (DODAG Inf: Solicitation)
37 0.041 fe80::212:7405:5:505 ICMPvE 64 RPL Control (DODAS Solicitation)
38 0.042 ::212:7405:5:505 ICMPvE 64 RPL Control (DODAG Infe Solicitation)
39 0.24 -7406:6:606 ICMPvE 64 RPL Control (DODA Solicitation)
40 0.241 :212:7406:6:606 ICMPvE 64 RPL Control (DODAG Information il )
Figure 3.21 Benign “radiolog.csv”—1 to 40 records.
A B [4 D E F G H
Length
No Time (sec) Source Address (IPve) Destination Address (IPv6) Protocol (bytes) Info
116424 | 5075.162 2002:db8::212:7401:1:101 2002:db8::, uppP 61 Source port: rrac Destination port: http
116425 | 5118.019 2002:db8: : 2002:db8:: upP 61 Source port: rrac Destination port: ul k-http
116426 | 5160.069 2002:db8: 2002:db8::. upp 61 Source port: rrac_Destination port: ultraseek-http
116427 | 5228.195 2002:db8::. 2002:db8::212:7404:4:404 upp 61 Source port: rrac_Destination port: ultraseek-http
116428 | 5288.296 2002:dbE: 2002:dbE::212: upP 61 Source port: rrac ination port: ultraseek-http
116429 | 5338.452 2002:db8::. 2002:db8::212:7404:4:404 uop 61 Source port: rrac D port: k-http
116430 | 5383.335 |EEE 802.15.4 5 Ack
116431 | 5384.086 2002:db8::212:7405:5:505 2002:db&::ff-fe00:1 upp 53 Source port: ult k-http D port: rrac
116432 | 5404.824 2002:db8::212:7405:5:505 upp 53 Source port: ultraseek-http Destination port: rrac
116433 | 5472.868 :7405:5:505 upp 53 Source port: ultraseek-http Destination port: rrac
116434 | 5499.575 :7405:5:505 upp 53 Source port: ultraseek-hitp Destination port: rrac
116435 5537 :7405:5:505 uop 53 Source port: ult k-http ination port: rrac
116436 | 5577.016 :7405:5:505 UDP 53 Source port: ult k-http port: rrac
116437 | 5604.155 2002:db8::212:7405:5:505 upp 53 Source port: ult k-http D port: rrac
116438 | 5641.794 :7405:5:505 upp 53 Source port: ultraseek-http Destination port: rrac
116439 | 5673.504 :7405:5:505 upp 53 Source port: ultraseek-http Destination port: rrac
116440 | 5705.082 :7405:5:505 uoeP 53 Source port: ult k-http ination port: rrac
116441 | 5735.509 :7405:5:505 uoP 53 Source port: ult k-http port: rrac
116442 | 5771.839 2002:db8::212:7405:5:505 UDP 53 Source port: ult k-http Di port: rrac
116443 | 5850.894 2002:db8::212:7405:5:505 upp 53 Source port: ult k-http D port: rrac
116444 | 5877.398 2002:db8::212:7405:5:505 upp 53 Source port: ultraseek- hEE Destination port: rrac
116445 | 5909.601 2002:db8: :7405:5:505 upp 53 Source port: ultraseek-http Destlnatlon port: rrac
116446 | 5936.792 £ :7405:5:505 upP 53 Source port: ult k-http ion port: rrac
116447 | 5967.579 2002:db8::212:7405:5:505 UDP 53 Source port: ult k-http port: rrac
116448 | 5594.686 5 :7405:5:505 upP 53 Source port: ult k-http D port: rrac
116449 | 6027.008 2002:dbE: :7405:5:505 upp 53 Source port: ult k-http D port: rrac
116450 | 6059.489 2002:db8: :7405:5:505 upp 53 Source port: ultraseek-http Destination port: rrac
116451 | 6094.091 g :7405:5:505 upp 53 Source port: ultraseek-hitp Destination port: rrac
116452 | 6149.474 2002:db8::212:7405:5:505 upp 53 Source port: ult k-http port: rrac
116453 | 6185.05 2002:db8; UDP 53 Source port: ult: k-http port: rrac
116454 | 6245.208 2002:db8: upP 53 Source port: ult k-http Di port: rrac
116455 | 6279.464 2002:db8: upp 53 Source port: ult k-http D port: rrac
116456 | 6316.108 2002:db8: upp 53 Source port: ultraseek-http Destination port: rrac
116457 | 6362.969 2002:db8::. upP 53 Source port: ultraseek-hitp Destination port: rrac
116458 | 6393.244 2002:db8:: upP 53 Source port: ul k-http ination port: rrac
116459 | 6427.186 2002:db8::. UDP 53 Source port: ult: k-http port: rrac
116460 | 6457.901 2002:db8: upP 53 Source port: ult k-http Di port: rrac
116461 | 6522.564 2002:db8: g upp 53 Source port: ultraseek-http Destination port: rrac
116462 | 6591.672 2002:db8: '212 7405:5:505 2002:db8::ff upp 53 Source port: ultraseek-http Destination port: rrac
116463 | 6647.425 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 upP 53 Source port: ult k-http ination port: rrac

Figure 3.22 Benign “radiolog.csv” — 116,424-116,463 records.
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3.4.2.2 Benign “radiologiCMPv6.csv”

The generated benign “radiologICMPv6.csv” file consists of 7,975 records and its first 25 records
(i.e., 1-25) and its last 27 records (i.e., 7,948-7,975) are depicted in Figure 3.23 and Figure 3.24,
respectively.

| c D E ] F

B G H
Add RS Length
No Time (sec) Source (IPv6) | D (1Pv6) |  Protocol “ Info
1 0 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
2 0 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
3 0.003 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
4 0.003 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
5 0.004 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
6 0.004 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
7 0.007 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Infor ion Solicitation)
8 0.007 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
9 0.008 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
10 0.008 fe80::1212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
11 0.009 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
12 0.01 fe80::1212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Infor ion Solicitation)
13 0.012 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
14 0.013 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
15 0.013 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
16 0.015 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
17 0.015 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
18 0.019 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Infor ion Solicitation)
19 0.02 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
20 0.021 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
21 0.021 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Infor ion Solicitation)
22 0.022 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
23 0.023 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
24 0.024 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
25 0.028 fe80::212:7405:5:505 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)

Figure 3.23 Benign “radiologlICMPv6.csv”—1 to 25 records.

A B C D E F G H
aii s el Length
No Time (sec) Source (1Pv6) (1Pv6) Protocol (bytes) Info
7948 1383.446 fe80::212:7402:2:202 fe80::1212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7949 1383.446 fe80::212:7402:2:202 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7950 1383.446 fe80::212:7402:2:202 fe80::1212:7401:1:101 ICMPVE 102 RPL Control (DODAG Information Object)
7951 1383.446 fe80::212:7402:2:202 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7952 1383.446 fe80::212:7402:2:202 fe80::1212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7953 1383.446 fe80::212:7402:2:202 fe80::1212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7954 1383.446 1e80::212:7402:2:202 fe80::212:7401:1:101 ICMPv6 102 RPL Control (DODAG Information Object)
7955 1383.446 1e80::212:7402:2:202 fe80::1212:7401:1:101 ICMPVE 102 RPL Control (DODAG Information Object)
7956 1383.446 fe80::212:7402:2:202 fe80::1212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7957 1383.446 fe80::212:7402:2:202 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7958 1383.446 fe80::212:7402:2:202 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7959 1383.446 fe80::212:7402:2:202 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7960 1384.025 fe80::212:7402:2:202 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7961 1384.025 fe80::212:7402:2:202 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7962 1388.914 fe80::212:7403:3:303 fe80::1212:7401:1:101 ICMPv6 102 RPL Control (DODAG Information Object)
7963 1388.914 fe80::212:7403:3:303 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7964 1388.914 fe80::212:7403:3:303 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7965 1388914 fe80::212:7403:3:303 fe80::212:7401:1:101 ICMPVE 102 RPL Control (DODAG Information Object)
7966 1389.531 fe80::212:7403:3:303 fe80::1212:7401:1:101 ICMPv6 102 RPL Control (DODAG Information Object)
7967 1389.531 fe80::212:7403:3:303 fe80::1212:7401:1:101 ICMPv6 102 RPL Control (DODAG Information Object)
7968 1389.531 fe80::212:7403:3:303 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7969 1389.531 fe80::212:7403:3:303 fe80::1212:7401:1:101 ICMPv6 102 RPL Control (DODAG Information Object)
7970 1389.531 fe80::212:7403:3:303 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7971 1389.531 fe80::212:7403:3:303 fe80::1212:7401:1:101 ICMPVE 102 RPL Control (DODAG Information Object)
7972 1389.531 fe80::212:7403:3:303 fe80::1212:7401:1:101 ICMPv6 102 RPL Control (DODAG Information Object)
7973 1389.532 fe80::212:7403:3:303 fe80::212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7974 1389.532 fe80::212:7403:3:303 fe80::1212:7401:1:101 ICMPV6 102 RPL Control (DODAG Information Object)
7975 1389.532 fe80::1212:7403:3:303 fe80::1212:7401:1:101 ICMPv6 102 RPL Control (DODAG Information Object)

Figure 3.24 Benign “radiologICMPv6.csv”—7,948 to 7,975 records.
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3.4.2.3 Benign “radiologUDP.csv”

The generated benign “radiologUDP.csv” file consists of 104,048 records and its first 28 records (i.e.,
1-28) and its last 37 records (i.e., 104,012—104,048) are depicted in Figure 3.25 and Figure 3.26,

respectively.

8 | c 2} E F G H
No Time (sec) Source Address (IPv6) Destination Address (IPv6) Protocol Length (bytes| Info
1 | 2.924 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 uoP 52 Source port: ult k-http D port: rrac
2 2.924 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 upP 52 Source port: ult k-http D« port: rrac
3 2.925 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http D port: rrac
4 2.926 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 ubP 52 Source port: ult k-http D port: rrac
5 2.926 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 upP 52 Source port: ultraseek-http D port: rrac
6 2.927 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 upP 52 Source port: ult k-http D port: rrac
7 2.927 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 upP 52 Source port: ulf k-http D port: rrac
8 2.927 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
9 2.928 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 upP 52 Source port: ult k-http Destination port: rrac
10 2.928 2002:db8::212:7404:4:404 2002:db8: uoP 52 Source port: ultraseek-http Destination port: rrac
1 2.929 2002:db8::212:7404:4:404 2002:db8: upP 52 Source port: ults k-http Destination port: rrac
12 2.929 2002:db8::212:7404:4:404 2002:db8::ff:fe00:1 upP 52 Source port: ultraseek-http Destination port: rrac
13 2.929 2002:db8::212:7404:4:404 ubpP 52 Source port: ult k-http Destination port: rrac
14 2.93 2002:db8::212:7404:4:404 upP 52 Source port: ult k-http Destination port: rrac
15 2.93 2002:db8::212:7404:4:404 ubP 52 Source port: ult k-http Destination port: rrac
16 2.93 2002:db8::212:7404:4:404 upP 52 Source port: ultraseek-http Destination port: rrac
17 2.931 2002:db8::212:7404:4:404 uppP 52 Source port: ult k-http Destination port: rrac
18 2.931 2002:db8::212:7404:4:404 uorP 52 Source port: ult k-http Destination port: rrac
19 2.931 2002:db8::212:7404:4:404 uppP 52 Source port: ultraseek-http Destination port: rrac
20 2.932 2002:db8:: uDP 52 Source port: ult k-http Destination port: rrac
21 2,932 2002:db8:: uppP 52 Source port: ult k-http Destination port: rrac
22 2.933 2002:db8::212:7404:4:404 upP 52 Source port: ult k-http Destination port: rrac
23 2.933 2002:db8::212:7404:4:404 uppP 52 Source port: ultraseek-http Destination port: rrac
24 2.934 2002:db8::212:7401:1:101 uDP 61 Source port: rrac_ D ion port: ul k-http
25 2.934 2002:db8::212:7401:1:101 upP 61 Source port: rrac Destination port: ul k-http
26 2.935 2002:db8::212:7401:1:101 uorP 61 Source port: rrac_Destination port: ultraseek-http
27 2.935 2002:db8::212:7401:1:101 2 upP 61 Source port: rrac_Destination port: ul k-http
28 2.936 2002:db8::212:7401:1:101 2002:db8::212:7404:4:404 upP 61 Source port: rrac D« ion port: ult k-http |
Figure 3.25 Benign “radiologUDP.csv”—1 to 28 records.
B C D E F G H
No Time (sec) Source Address (IPv6) Destination Address (IPv6) Protocol Length (bytes| Info
104012 5160.069 :212:7401:1:101 2002:db8::212:7404:4:404 uppP 61 Source port: rrac D port: ultraseek-http
104013 5228.195 2002:db8::212:7404:4:404 ubP 61 Source port: rrac Desti port: ultraseek-http
104014 5288.296 5 2002:db8::212:7404:4:404 uop 61 Source port: rrac D port: ultraseek-http
104015 5338.452 ::212:7401:1:101 2002:db8::212:7404:4:404 uDP 61 Source port: rrac D port: ultraseek-http
104016 5384.086 :212:7405:5:505 2002:db8::ff:fe00:1 uoP 53 Source port: ult k-http Destination port: rrac
104017 5404.824 H :5: L i uppP 53 Source port: ull k-http Destination port: rrac
104018 5472.868 upP 53 Source port: ulf k-http D port: rrac
104019 5499.575 uDP 53 Source port: ull k-http D port: rrac
104020 5537 upP 53 Source port: ull k-http D« port: rrac
104021 5577.016 uppP 53 Source port: ultraseek-http D port: rrac
104022 5604.155 uppP 53 Source port: ulf k-http Desti port: rrac
104023 5641.794 uDP 53 Source port: ult; k-http D port: rrac
104024 5673.504 uDP 53 Source port: ull k-http D port: rrac
104025 5705.082 uppP 53 Source port: ull k-http D port: rrac
104026 5735.509 uoP 53 Source port: ultraseek-http Desti port: rrac
104027 5771.839 ubpP 53 Source port: ult k-http D port: rrac
104028 5850.894 i uop 53 Source port: ult k-http D port: rrac
104029 5877.398 2 ff UDP 53 Source port: ull k-http D ion port: rrac
104030 5909.601 :db8::ff: uppP 53 Source port: ull k-http D port: rrac
104031 5936.792 :212:7405:5:505 2002:db8::ff:fe00:1 upP 53 Source port: ult k-http D port: rrac
104032 5967.579 ::212:7405:5:505 : uop 53 Source port: ult k-http D port: rrac
104033 5994.686 UDP 53 Source port: ult k-http D port: rrac
104034 6027.008 uppP 53 Source port: ult k-http D ion port: rrac
104035 6059.489 uopP 53 Source port: ultraseek-http D port: rrac
104036 6094.091 uopP 53 Source port: ultraseek-http D port: rrac
104037 6149.474 uppP 53 Source port: ull k-http D port: rrac
104038 6185.05 uopP 53 Source port: ulf k-http Destination port: rrac
104039 6245.208 uop 53 Source port: ult k-http D port: rrac
104040 6279.464 uDP 53 Source port: ult k-http D port: rrac
104041 6316.108 ubpP 53 Source port: ulf k-http D ion port: rrac
104042 6362.969 uppP 53 Source port: ult k-http D port: rrac
104043 6393.244 2002:db8::ff:fe00:1 uppP 53 Source port: ulf k-http D port: rrac
104044 6427.186 2002:db8::ff:fe00:1 uoP 53 Source port: ultraseek-http D port: rrac
104045 6457.901 2002:db8::ff:fe00:1 uopP 53 Source port: ull k-http D port: rrac
104046 6522.564 2002:db8::ff:fe00:1 uppP 53 Source port: ull k-http Destination port: rrac
104047 6591.672 2002:db8::ff:fe00:1 uopP 53 Source port: ultraseek-http D ion port: rrac
104048 6647.425 2002:db8::ff:fe00:1 uppP 53 Source port: ulf k-http Desti port: rrac

Figure 3.26 Benign “radiologUDP.csv”—104,012 to 104,048 records.
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3.5 Summary

In this Chapter, a detailed description of the approach proposed to generate a set of benign loT
datasets from a benign loT network scenario implemented in the Cooja simulator was provided. The
loT-specific information from the simulated scenario was captured from the Contiki plugin
“powertrace” and the Cooja tool “Radio messages” in order to generate the “powertrace” dataset
and the network traffic dataset within csv files, respectively, which constitute the benign loT
datasets for the simulated benign IoT network scenario. In particular, the “powertrace” dataset
consists of the following csv files: the “pwrtrace.csv” file and one csv file for each mote
(i.e.,“motel.csv”, “mote2.csv”, “mote3.csv”, “moted.csv”, “mote5.csv”, and “mote6.csv”’) with its
corresponding information from the “pwrtrace.csv” file , while the network traffic dataset consists of
the following csv files: “radiolog.csv”, “radiologICMPv6.csv”, and “radiologUDP.csv”. The structure of
the generated benign loT datasets from the benign IoT network scenario implemented in the Cooja

simulator, as described in this Chapter, is shown in Figure 3.27.

motel.csv

mote2.csv

Benign “powertrace”
Dataset pwrtrace.csv

mote3.csv

moted.csv

mote5.csv

moteb.csv

Benign loT Datasets

radiolog.csv

Benign Network Traffic
Dataset radiologlCMPV6.csv

radiologUDP.csv

Figure 3.27 Generated Benign loT Datasets Structure

In principle, the proposed approach in this Chapter can be extended for generating benign loT
datasets from j different benign scenarios, where each scenario, implemented in the Cooja
simulator, may include n different motes. The generic structure of benign loT datasets generated
according to the proposed approach is shown in Figure 3.28.
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Benign loT Datasets

Benign Scenario 1

Benign Scenario 1

“powertrace” Dataset benign_scenario_1-pwrtrace.csv \

benign_scenario_1-mote_1.csv

Benign Scenario §

Benign Scenario 1
Network Traffic Dataset

\

benign_scenario_1-mote_n.csv

benign_scenario_1-radiolog.csv

\ benign_scenario_1-radiologlCMPv6.csv

Benign Scenario j

“powertrace” Dataset benign_scenario_j-pwrtrace.csv \

/ benign_scenario_1-radiologUDP.csv

benign_scenario_j-mote_1.csv

Benign Scenario j
Network Traffic Dataset

\

benign_scenario_j-mote_n.csv

benign_scenario_j-radiolog.csv

benign_scenario_j-radiologICMPv6.csv

/ benign_scenario_j-radiologUDP.csv

Figure 3.28 Benign loT Datasets — Generic Structure
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Chapter 4 Generating Malicious IoT Datasets

4.1 Introduction

This Chapter is focused on the generation of a set of malicious datasets by implementing four
scenarios of the following loT attacks: i) UDP flooding attack, ii) blackhole attack, iii) sinkhole
attack, and iv) sleep deprivation attack. The implemented scenarios are example scenarios and
Cooja has been configured properly to simulate them, as described in Sections 4.2.1, 4.3.1, 4.4.1,
and 4.5.1. Similar to the approach followed for the generation of the benign datasets in Chapter 3,
the generated loT-specific information from the simulated attack scenarios was captured from the
Contiki plugin “powertrace” (i.e., features such as CPU consumption) and the Cooja tool “Radio
messages” (i.e., network traffic features) in order to generate the corresponding “powertrace” and
network traffic datasets for the simulated attack scenarios.

4.2 UDP Flooding Attack Datasets

In this Section, we provide a detailed description of the approach followed to generate a set of
malicious datasets by implementing a UDP flooding attack scenario in the Cooja simulator, as shown
in Figure 4.1.

Cooja Simulator —
UDP Flooding Attack Scenario

(J Network E}@Lﬁj

View Zoom

@ 1:919: .G,
fe80:212:7402: 2: 27301121 2:7405:5:505

Cooja tool
“Radio messages”

Contiki plugin
“powertrace”

=

UDP Flooding Attack UDP Flooding Attack

“powertrace” Network Traffic
Dataset Dataset

Figure 4.1. UDP Flooding Attack Datasets generation by utilising the Cooja simulator.
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4.2.1 UDP Flooding Attack Scenario —an example

The network topology of the simulated UDP flooding attack scenario in the Cooja simulator
environment consists of 4 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, and 5), the violet
(malicious) UDP-client mote (i.e., mote 6) and the green (benign) UDP-server mote (i.e., mote 1)
which is also the target of the attack, as depicted in Figure 4.1. The simulation duration was set to 60
mins and the motes’ outputs were printed out in the respective window (e.g., Mote output) while
simulations run, as shown in Figure 4.2. Moreover, the 4 yellow (benign) UDP-client motes were
configured to send text messages every 10 seconds, approximately, to the UDP-server mote that was
configured to provide a corresponding response. On the other hand, the violet (malicious) UDP-
client mote (i.e., mote 6) was compromised with malicious code, as shown in Figure 4.3, to send UDP
packets within a very short period of time (i.e., every 200ms). Finally, it is noteworthy to say that
similar to the benign network scenario, the UDP protocol was used at the Transport Layer, the IPv6
at the network layer, and the type of motes was the Tmote Sky in the UDP flooding attack scenario.
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Figure 4.2. Cooja Simulator — UDP flooding attack scenario — Motes’ outputs

static struct uip_udp_conn *client_conn;
static uip_ipaddr_t server_ipaddr;

Figure 4.3. Malicious code in “udp-client_udp-flood.c” to significantly increase the traffic by 50 times; generating 5
packets per second (i.e., one packet every 200ms) instead of 0.1 packets per second (i.e., one packet every 10 seconds
for benign motes).
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4.2.2 UDP Flooding Attack “powertrace” Dataset
4.2.2.1 UDP Flooding Attack “powertrace” Dataset — Generation Process

The approach followed for the “powertrace” dataset generation from the UDP flooding attack
scenario was similar to the approach followed for the “powertrace” dataset generation from the
benign loT network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly
enabled for collecting “powertrace” related features, summarised in Table 3, from the motes of the
attack scenario every two seconds. In Figure 4.4, the depicted mote output window displays the
captured “powertrace” information every two seconds and also the messages sent and received by
each mote during the simulation time (60 mins).

[+ Mote output PEa
File Edit View

Time Mote | Message

e S ||
00:28.442 ID:6 ID:6, DATA send A
00:28.559 1ID:2 3589, ID:2, P, 0.18.116.2.0.2.2.2, 13, 66166, 851855, 26911, 19241, 0, 10714, 15532, 49976, 9118, 46765, 0, 893

00:28.575 ID:6 3589, ID:6, P, 0.18.116.6.0.6.6.6, 13, 359509, 548346, 200169, 87513, 0, 4226, 26088, 38972, 14483, 6438, 0, 216

00:28.577 ID:6 1ID:6, DATA send

00:28.671 ID:4 3589, ID:4, P, 0.18.116.4.0.4.4.4, 13, 77453, 840576, 34802, 23753, 0, 10529, 6336, 59173, 3040, 2197, 0, 947

00:28.706 ID:1 3589, ID:1, P, 0.18,116.1,0.1,1.1, 13, 175491, 742504, 59560, 66656, 0, 12931, 14597, 50506, 6062, S242, 0, 1492
00:28.777 ID:6 ID:6, DATA send

00:28,996 ID:6 ID:6, DATA send

00:29.038 ID:S 3589, ID:S, P, 0.18.116.5.0.5.5.5, 13, B2239, 835811, 37031, 23511, O, 10233, 5129, 60378, 2163, 1521, O, S8l

00:29.105 ID:6 ID:6, DATA send %

Filter:

Figure 4.4 Cooja Simulator — UDP flooding attack scenario — Mote output window.

When the timeout occurred, the simulation stopped, and all the captured information and prints
were stored in the “COOJA.testlog” file. Afterwards, the “loT_Simul.sh” file, described in Section
3.3.1, created a) a new root folder named as “2020-12-09-14-59-59”, and b) the “log” folder, inside
the “2020-12-09-14-59-59” folder, where the “COOlJA.testlog” file was copied from the
“.../cooja/build” folder located in the Cooja Simulator. Then, the “loT_Simul.sh” file following the
same process, as described in Section 3.3.1, extracted the required “powertrace” information from
the “COOJA.testlog” file and saved it in the “udp-flood-pwrtrace.csv” file in the “dataset” folder that
was also created by the batch file inside the “2020-12-09-14-59-59” folder, as shown below in the
left part of Figure 4.5. In the “dataset” folder, apart from the “udp-flood-pwrtrace.csv” file, the
“loT_Simul.sh” file generated two more files (i.e., “udp-flood-recv.csv” and “udp-flood-send.csv”),
following the same process as in Section 3.1.1. The “udp-flood-recv.csv” file and the “udp-flood-
send.csv” file include the “received” and “sent” messages printed by the motes, respectively.

2020-12-09-14-59-59 a Name Date modified Type
dataset @ udp-flood-pwrtrace
log @ udp-flood-recy
motedata 8. udp-flood-send 2/202 3 Microsoft Excel Comma Separated Values File

» o

Figure 4.5 Location of the generated “udp-flood-pwrtrace.csv”, “udp-flood-recv.csv”, and “udp-flood-send.csv” files by
the “loT_Simul.sh” file.

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the
“loT_Simul.sh” file extracted the information related to each mote from the “udp-flood-
pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from
the “udp-flood-pwrtrace.csv” file. The generated six csv files (i.e., “udp-flood-motel.csv”,..., “udp-
flood-mote6.csv”) were stored in the “motedata” folder, created also by the “loT_Simul.sh” file, as
shown in the left part of Figure 4.5.
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4.2.2.2 UDP Flooding Attack “powertrace” Dataset — Generated Results

The UDP flooding attack “powertrace” dataset consists of the following csv files: “udp-flood-
pwrtrace.csv”, “udp-flood-motel.csv’, “udp-flood-mote2.csv” “udp-flood-mote3.csv” “udp-flood-
moted.csv” “udp-flood-mote5.csv”, and “udp-flood-mote6.csv”. In this Section, we present sets of
records from the “udp-flood-pwrtrace.csv”, and in Appendix 1 we present sets of records from “udp-
flood-motel.csv”, “udp-flood-mote2.csv” and “udp-flood-mote6.csv” files.

4.2.2.2.1 “udp-flood-pwrtrace.csv”

The generated malicious “udp-flood-pwrtrace.csv” file consists of 10,794 records and its first 38
records (i.e., 1-38) and its last 38 records (i.e., 10,757-10,794) are depicted in Figure 4.6 and Figure
4.7, respectively.

8 ¢ O | E | F |G| H L K | L | M | N | o | P & R | 0§ | T | uw | ¥ | w
Total measurements from the begining of the dmulation Measurements for each of the 2-tex monitoring period
No Real time | Clock ti o Rime Address | seqno || all_cpu | sl lpen (2 transmit| all_lsten | all_idle_transmit | all_idle_listen transmit idle_transemit | idle_listen
[us] {im ticks) linticks) [ (inticks) | (inticksh [ (in ticks) {in ticks) {in ticks) (i tighs) | {in ticks) {im ticks) {in ticks)
1 2555692 | 261 102 P _|o1sue20222| © 6742 55714 2589 242 364 55718 | 2589 264
2 2570487 | 261 106 1811660665 7709 58725 2530 442 364 58725 | 2590 264
3 2665753 | 261 104 18.116.40.4.4.4 2189 64265 [ 350 350 2189 | 64265 o 350
4 2659498 | 261 101 1811610111 2817 63639 [ 455 744 2817 | 63638 o 744
5 3034683 | 261 [ 1811650555 6742 55714 2589 442 364 6742 | S5714 | 2588 364
[ 3216735 | 261 D3 P | 01811630333] o0 2189 64265 [ 390 o 390 2189 | 64265 o o 390
7 4554878 | 517 [ P |o1s11620222] 1 7904 | 124063 | 2589 858 o 780 1159 | 64348 o o 416
[ 4575548 | 517 106 P | 01811660666] 1 10228 | 121854 | 2590 1159 o 767 516 | 63129 o [ 405
] 4671767 | 517 104 P |ois1i640sas] 1 3574 | 128552 [ 1104 o 1056 1382 | 64287 o [ 566
10 4702609 | 517 [ P [oisusionia] 1 8551 | 123417 | 2980 1467 o 1134 5731 | 59778 | 2980 [ 390
1 5034813 | 517 oS P | 01811650555 1 8255 | 123715 | 2589 1136 o 1010 1510 | s4001 o [ 546
12 5217991 517 103 1811630333 3658 128314 o 1090 1043 1466 54045 0 653
1 6555863 | 773 102 1811620222 9577 | 187908 | 2589 1471 1170 1670 | 63845 o 230
1 6878145 | 778 106 1811660666 40545 | 156877 | 20450 8529 ErT 30315 | 35023 | 17860 221
1 6666580 | 778 04 1811640444 4560 | 182821 [ 1520 1472 1388 | 63965 [ 416
1 6704432 | 773 D1 P 18.11610.1.11 12683 | 184m42 | 2680 3685 2194 4140 | 61425 o 1060
17 7036198 | 773 DS P | 01811650555| 2 14278 | 183202 | 5575 1605 o 1400 6020 | 59487 | 2986 [ 350
18 7217945 773 03 P 0.18.116.30333 2 5047 192434 [ 1506 L] 1459 1386 64120 [+] 0 416
19 8557499 | 1029 102 P |oisu620222] 3 15580 | 247416 | 5574 1940 o 1560 6000 | 59508 | 2985 [ 390
20 8574202 | 1029 [ P |01811660666] 3 72195 | 190733 | 39240 14939 o 1222 31648 | 33856 | 18790 [ 234
21 8670462 | 1029 o P_|018116408484] 3 21137 | 241852 | 9460 4759 0 1610 16174 | 29331 | 9460 [ 338
22 8702861 | 1029 [ P_| 0181161011 3 15882 | 247108 | 2580 6503 o 3838 3186 | 62266 o [ 1644
3 9037531 1029 105 18.11 0.5 25136 237851 11495 4573 1738 10855 53649 £920 338
4 9221415 | 1028 103 18116303 19298 | 243688 | 8348 4245 1823 14248 | 51254 | 8345 364
5 10858220 | 1288 102 18116202 25340 | 308155 | 10934 4604 1524 4757 | 85748 | s360 364
6 10574503 | 1285 D6 18116606 102620 | 225896 | 56283 22088 1456 30322 | 35168 | 17058 284
27 10668636 | 1285 Do P |01811640444] & 22607 | 305875 | 8460 5175 o 2226 1468 | 64023 o [ 416
28 10707377 | 1285 [ P |o1811610111] & 21475 | 307168 | 20980 10148 o 4695 5560 | 60060 o [ 857
9 11035707 1285 105 P 0.18.11650555 4 26575 301905 11495 4989 L] 2154 1437 64054 ] Q 416
30 11219597 | 1285 103 P |o1811630333] 4 20726 | 307753 | 8345 4661 o 2239 1426 | 64065 o [ 416
31 12557488 | 1541 102 P |oisus20222] 5 27170 | 366840 | 10934 5773 0 3048 1828 | 63685 o 1169 [ 1124
32 12669462 | 1541 D P | 01811640244] s 24354 | 369643 | 9460 6363 o 3383 1745 | 63768 o 1188 [ 1157
2 12700632 | 1557 106 11811660666 134474 | 263557 | 73964 30327 1540 31951 | 37esy | 17671 | s2ss 484
12821697 | 1556 101 18116101 45513 | 351515 | 15135 17366 5621 24436 | 44747 | 12155 | 7218 526
13036484 | 1841 105 18,116,505 28370 | 365626 | 11435 6481 3381 1752 | 63721 o 1452 1177
18219784 | 1841 5] 18116303 22485 | 371498 | 8348 5528 2806 1766 | 63745 o 867 567
14557450 | 1787 [ 18116202 28686 | 430834 | 10834 6773 4048 1518 | 63894 o 1000 1000
38 14580601 | 1799 D6 P | 01811660666 & 167796 | 262124 | 92841 37747 o 2083 33323 | 28567 | 18877 | 7420 [ 143
Figure 4.6 Malicious “udp-flood-pwrtrace.csv”—1 to 38 records.
€ | F 6| H | Y | O O S (NI T | | o L 3 R e R e ] M v W
Total measurements from the begining of the simulation Meassurements for each of the 2-sec monitoring period
Clock time n Rime Address | seqno oll_cpu all_listen | alf_idle_transmit | all_idle_listen @y lpm | transmit | fisten | idle_transmit | idle_listen
(in ticks) I (in ticks) | (inticks) | (inticks) | (in ticks) (in ticks) in ticks) (in ticks) | (in ticks) | (in ticks) | (in ticks) | (inticks) | (in ticks)
459018 105 L4 01811650555| 1792 6484924 [110972410] 1976106 | 3249351 o 2067142 13864 | 52920 7065 5266 [ 1092
459013 03 P | 01811630333] 1792 6407343 [111044806] 1988080 | 2342008 o 1181632 1615 63875 o 416 o 416
459269 | 102 P |o1811620222] 1793 W 6288419 [111233629] 1859570 | 3180790 0 2071651 10964 | 54533 | 5355 | 4048 o 908
459269 | 106 P | 01811660666] 1793 W 49272148] 68222749 | 26428032 | 12698225 o 487982 21797 | 41017 | 11343 | ss25 ) 234
459269 | 104 P_|o01811620444] 1793 W 6077237 |11144510¢] 1735004 | 3122961 o 2078867 1654 | 63857 0 960 ) 960
459265 | 101 P |01811610111] 1793 W 57354505 | 80163010 | 16447901 | 12709259 0 1274462 15538 | 49969 | 6420 | sase ) 976
459269 | 105 P |o01811650555] 1793 W 6486773 |111034789| 1976106 | 3250322 0 2067906 1846 | 62379 0 971 [ 764
459269 | 103 P | 01811630333] 1793 W 6408083 2342621 [ 1182245 1637 | 63855 o 613 ) 613
459525 | 102 P | 01811620222] 1794 W 6293423 [111294132] 1851337 | 3182661 [} 2072205 5002 | 60503 | 1767 | 1871 ) 554
459528 | 106 P | 01811660666] 1794 W 49303975 68257291 | 26445531 | 12706237 [ 488374 31824 | 34542 | 17499 | so12 ) 392
459525 D4 P | 01811640444] 1794 6078847 3123744 o 2079650 1607 63901 o 783 0 783
459540 01 P | 01811610111 1794 W 37376330 80210698 | 16456056 | 12717221 o 1274968 21822 | 47688 8155 7962 o 506
459525 | 105 P | 01811650555] 179+ [ 6488393 [111098680] 1976106 | 3251466 0 2069050 1617 | 63891 0 1144 ) 1144
459525 | 103 P | 01811630333] 1794 W 6413239 [111169907| 1989162 | 2344529 0 1183238 4253 | 61246 | 1082 | 1908 ° 993
459781 | 102 P_|01811620222] 1795 W 6295156 [111357895] 1861337 | 3183818 0 2073362 1730 | 63767 o 1157 o 1157
459782 | 106 P_|01811660666] 1795 W 49329509 | 68296718 | 26458484 | 12713264 [ 488746 25832 | 39427 | 12983 | 7027 o 372
459781 | D4 P |01811640444] 1795 W 6080517 |111572831] 1735004 | 3125078 0 2080984 1667 | 62826 0 1334 ) 1334
459781 | 101 P _|o1811610111] 1795 W 37397949 80250568 | 16465241 | 12724209 [ 1275226 21616 | 30870 | 9185 | 7188 o 261
459781 | 105 P | 01811650555] 1795 W 6490075 |111162496] 1976106 | 3252623 [ 2070207 1679 | 63816 0 1157 ) 1157
450781 | 103 P |01811630333] 1795 I 6414046 |111233697| 1989162 | 2345345 [ 1184054 1704 | 63790 0 816 [ 816
460037 | D2 P |01811620222] 1796 W 6296887 |111421667| 1861337 | 3185493 0 2075037 1728 | 63768 ) 1675 ) 1675
460037 06 P | 01811660666| 1796 W 49355789 | 68335752 | 26472262 | 12720153 e 488850 26277 | 39034 | 13778 6889 o 104
460037 04 P | 01811640444 1796 6082233 [111636611] 1735004 | 3126792 o 2082698 1713 63780 o 1714 o 1714
460037 | D1 P |o1813610111] 1796 W 37428570 80285455 | 16481427 | 12733982 0 1275681 30619 | 34887 | 16186 | 9573 ) 452
460037 | 105 P |o01811650555] 1796 W 6491782 [111226285] 1976106 | 3254357 0 2071921 1704 | 63789 o 1718 o 1714
460037 | 103 P _|o01811630333] 1796 W 6216585 |111297551] 1989162 | 2346148 0 1184857 1636 | 63854 [ 803 o 803
460293 | 102 P_|01811620222] 1797 | 6303068 |111480593] 1863731 | 3188667 o 2076549 6178 | 9326 | 2394 | 3174 o 1512
460296 | 106 P | 01811660666] 1797 W 49386703 | 68371029 | 26489236 | 12727987 0 489439 30911 | 35277 | 16974 | 7834 0 589
460293 | 104 P _|01811640444] 1797 I 6088623 |111695721] 1737682 | 3129879 [ 2084216 6387 | 9110 | 2678 | 3087 ) 1518
460293 | 101 P_|01811610111] 1797 W 37456122 80323411 | 16495172 | 12743176 0 1276539 27549 | 37956 | 13745 | o194 0 858
460293 | 1DS P | 01811650555] 1797 W 6493481 |111290084| 1976106 | 3255887 [ 2073471 1696 | 63799 0 1550 0 1550
460293 | 103 P |01811630333] 1797 W 6427436 [111352202] 1994524 | 2350173 0 1185746 10848 | s4651 | s362 | 4025 [ 889
460549 | 102 P | 01811620222] 1798 | 6304739 [111544834] 1863731 | 318963 ) 2077516 1668 | 63841 ) 967 ) 967
460549 10:6 P | 01811660666 1798 W 49415032 | 63407317 | 26505403 | 12735002 o 489824 28326 | 36288 | 16167 7015 o 385
460549 | 104 P | 01811640424] 1798 W 6103717 [111746125] 1745707 | 3135503 0 2085151 315092 | sos0s | 8025 | s624 o 935
460563 | 101 P_|o01811610111] 1798 W 57476871] 80371940 | 16505059 | 12750749 0 1277638 20746 | 48529 | 9887 | 7573 ) 1099
460549 | 105 P_|o181165055s| 1798 W 6499100 |111349971 1978161 | 3258443 ) 2074569 5616 | s3887 | 2085 | 2536 ) 1098
460545 | 103 P | 01811630333] 1798 W 6433759 [111411377] 1997201 | 2352157 0 1186162 6321 | 0175 | 2677 | 1984 o 416

Figure 4.7 Malicious “udp-flood-pwrtrace.csv”’—10,757 to 10,794 records.
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4.2.3 UDP Flooding Attack Network Traffic Dataset
4.2.3.1 UDP Flooding Attack Network Traffic Dataset — Generation Process

The approach followed for the network traffic dataset generation from the UDP flooding attack
scenario was similar to the approach followed for the network traffic dataset generation from the
benign loT network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja
simulator, was similarly used for collecting data related to the corresponding network traffic
features (e.g., source/destination IPv6 address, packet size, and protocol) from the network of the
attack scenario. During the simulation, the network traffic information was being shown in the top
part of the “Radio messages” output window as depicted in the top part of Figure 4.8.

(= Radio messages: showing 137/2054 packets [=[B]X]

File Edit Analyzer View

Mo. Time From | To |Data
1826 00:14.050 & 1 85: 15.4 D 00:12:74:06:00:06:06:06 00:12:74:01:00:01:01:01|IPv6| 11006304 O01EO21C 2230162E ... A4
1827 00:14.053 1 S: 15.4 A
1857 00:14.294 6 1 85: 15.4 D 00:12:74:06:00:06:06:06 00:12:74:01:00:01:01:01|IPv6| 11006304 001E021C 2230162€ ..
1858 00:14.297 1 6 5: 15.4 A
1890+1 00:14.542 6 1 85: 15.4 D 00:12:74:06:00:06:06:06 00:12:74:01:00:01:01:01|IPv6| 11006304 001E021C 2230162€
1892 :14. 1 ] S5: 15.4 A

:14.649 1 2 : 15.4 D 00 2:74: IPHC| IPv6| UDP 5678 8765|001AFEAZ. ..
1900 00:14. 1 6 6l: 15.4 D 00:12:74:01:00:001:01:01 00:12:74:06:00:06:06:06| IPHC| IPv6| UDP 5678 8765| 00LAFEAZ. ..
1901 00:14.666 6 1 5: 15.4 A
1902 00:14.670 1 6 6l: 15.4 D 00:12:74:01:00:01:01:01 00:12:74:06:00:06:06: 06| IPHC| IPv6|UDP 5678 8765|001AFEAZ. ..
1903 00:14.672 6 1 5: 15.4 A v

IEEE 802.15.4 DATA =5

From OxABCD/00:12:74:01:00:01:01:01 to OxABCD/00:1 2:74:06:00:06:06:06

Sec = false, Pend = true, ACK = true, IPAN = true, DestAddr = Long. Vers. = 1, SrcAddr = Long

IPHC HC-06

TF = 3, NH = inline, HUM = 64, CID = 1, SAC = stateful, SAM = 3, MCast = false, DAC = stateful, DAM = 3
Contexts: scim0 dcim0

IPv6TC =0, FL=10

From aaaa:0000:0000:0000:0012:7401:0001:0101 to aaaa:0000:0000:0000:0012:7406:0006:0606
upp

Src Port: 5678, Dst Port: 8765

Payload (22 bytes)
OQOLAFEA2 S265706C 79206672 GFED2073 65727665 ...

Reply from serve !

Figure 4.8 Network traffic information from the UDP flooding attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog-1607519517066.pcap”
within the “.../cooja/build” folder. Afterwards, the “loT_Simul.sh” file, described in Section 3.4.1,
created a) a new root folder named as “2020-12-09-14-59-59”, and b) the “nettraffic” folder, inside
the “2020-12-09-14-59-59” folder, where the “radiolog-1607519517066.pcap” file, copied from the
“../cooja/build” folder located in the Cooja Simulator, was saved as “udp-flood-radiolog-
1607519517066.pcap”. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the
“udp-flood-radiolog-1607519517066.pcap” file in the “nettraffic” folder are shown in Figure 4.9.

v 2020-12-09-14-59-59 o Name Date modified Type Size

dataset | udp-flood-radiclog-1607519517066.peap
log
motedata

nettraffic
Figure 4.9 The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the “udp-flood-radiolog-
1607519517066.pcap” file.

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the
stored network traffic information from the “udp-flood-radiolog-1607519517066.pcap” file to the
“udp-flood-radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.10.
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2020-12-09-14-59-59
dataset
log
motedata

nettraffic

~

Name

_| udp-flood-radiolog-1607519517066.pcap

8:) udp-flood-radiologUDP

8:) udp-flood-radiclog

@) udp-flood-radicloglCMPv6

09/12/20

09/12/202

Date modified

Type Size

PCAP File
Microsoft Excel Comma Se...

Microsoft Excel Comma Se..

Microsoft Excel Comma Se..

Figure 4.10 The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and its included files.

In the “nettraffic” folder, apart from the “udp-flood-radiolog.csv” file, we also used Wireshark,
following the same process as in Section 3.4.1, to generate two more files (i.e., the “udp-flood-
radiologlCMPv6.csv” file and the “udp-flood-radiologUDP.csv” file) from the “udp-flood-radiolog-

1607519517066.pcap” file.

4.2.3.2 UDP Flooding Attack Network Traffic Dataset — Generated Results

The UDP flooding attack network traffic dataset consists of the following csv files which are located
in the “nettraffic” folder as described in Section 4.2.3.1: “udp-flood-radiolog.csv”, “udp-flood-
radiologlCMPv6.csv”, and “udp-flood-radiologUDP.csv” files. In this Section, we present sets of

records from these files.

4.2.3.2.1 “udp-flood-radiolog.csv”

The generated malicious “udp-flood-radiolog.csv” file consists of 702,332 records and its first 25

records (i.e., 1-25) are depicted below in Figure 4.11.

B C D E F G H
No. Time Source Destination Protocol Length Info
1 0 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
2 0.032 fe80::212:7402:2:202 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
3 0.033 fe80::212:7402:2:202 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
4 0.067 1080::212:7402:2:202 ff02::1a ICMPVG 64 RPL Control (DODAG Information Solicitation)
5 0.1 1e80::1212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
6 0.175 e80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
7 0.176 fe80::212:7402:2:202 102::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
8 0.197 fe80::212:7406:6:606 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
9 0.199 fe80::212:7402:2:202 ff02::1a ICMPvV6 64 RPL Control (DODAG Information Solicitation)
10 0.201 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
11 0.203 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
12 0.26 e80::212:7406:6:606 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
13 0.262 fe80::212:7402:2:202 ff02::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
14 0.329 fe80::212:7406:6:606 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
15 0.33 fe80::212:7402:2:202 £02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
16 0.332 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
17 0.333 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
18 0.391 e80::212:7406:6:606 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
19 0.397 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
20 0.441 fe80::212:7406:6:606 £02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
21 0.459 fe80::1212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
22 0.497 fe80::212:7406:6:606 £02::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
23 0.498 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
24 0.493 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
25 0.5 f080::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)

Figure 4.11 Malicious “udp-flood-radiolog.csv”—1 to 25 records.

4.2.3.2.2 “udp-flood-radiologlCMPv6.csv”

The generated malicious “udp-flood-radiologlCMPv6.csv” file consists of 9,908 records and its first
25 records (i.e., 1-25) are depicted below in Figure 4.12.
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B C D E F G H
No. Time Source Destination Protocol | Length Info
1 0 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
2 0.032 fe80::212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
3 0.033 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
4 0.067 fe80::212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
5 0.1 fe80::212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
6 0.175 fe80::212: f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
7 0.176 fe80::212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
8 0.197 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
9 0.199 fe80::212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
10 0.201 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
11 0.203 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
12 0.26 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
13 0.262 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
14 0.329 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
15 0.33 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
16 0.332 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
17 0.333 fe80::212:7402:2:202 ff02::1a ICMPvV6 64 RPL Control (DODAG Information Solicitation)
18 0.391 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
19 0.397 fe80::212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
20 0.441 fe80::212:7406:6:606 ff02::1a ICMPvV6 64 RPL Control (DODAG Information Solicitation)
21 0.459 fe80::212:7402:2:202 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
22 0.497 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
23 0.498 fe80::212:7402:2:202 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
24 0.499 fe80::212:7406:6:606 ff02::1a ICMPvV6 64 RPL Control (DODAG Information Solicitation)
25 0.5 fe80::212:7402:2:202 f02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)

Figure 4.12 Malicious “udp-flood-radiologICMPv6.csv”—1 to 25 records.

4.2.3.2.3 “udp-flood-radiologUDP.csv”

The generated malicious “udp-flood-radiologUDP.csv” file consists of 670,671 records and its first 25
records (i.e., 1-25) are depicted below in Figure 4.13.

B C D E F G H
No. Time Source Destination Protocol | Length Info
1 1.234 233a::212:7406:6:606 aaaauff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
2 1.235 aaaa::212:7406:6:606 aaaa:ff:fe00:1 UDpP 85 Source port: ultraseek-http Destination port: rrac
3 1.236 aaaa:212:7406:6:606 aaaa::ff:fe00:1 ubP 85 Source port: ultraseek-http Destination port: rrac
4 1.236 33aa::212:7406:6:606 aaaanff:fe00:1 upp 85 Source port: ultraseek-http Destination port: rrac
5 1.237 aaaa::212:7406:6:606 aaaa::ff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
6 1.238 233a::212:7406:6:606 aaaauff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
7 1.239 333a::212:7406:6:606 aaaa:ff:fe00:1 UDpP 85 Source port: ultraseek-http Destination port: rrac
] 1.24 aaaa::212:7406:6:606 aaaa:ff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
9 1.24 333a::212:7406:6:606 aaaauff:fe00:1 uDpP 85 Source port: ultraseek-http Destination port: rrac
10 1.241 3aaa::212:7406:6:606 aaaa:ff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
11 1.242 aaaa:212:7406:6:606 aaaa::ff:fe00:1 ubP 85 Source port: ultraseek-http Destination port: rrac
12 1.242 333a::212:7406:6:606 aaaanff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
13 1.243 aaaa::212:7406:6:606 aaaa:ff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
14 1.243 2333::212:7406:6:606 aaaa::ff:fe0:1 UDP 85 Source port: ultraseek-http Destination port: rrac
15 1.244 aaaa::212:7406:6:606 aaaa:ff:fe00:1 UDp 85 Source port: ultraseek-http Destination port: rrac
16 1.245 aaaa::212:7406:6:606 aaaa:ff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
17 1.245 33aa::212:7406:6:606 aaaanff:fe00:1 uppP 85 Source port: ultraseek-http Destination port: rrac
18 1.246 aaaa::212:7406:6:606 aaaa:ff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
19 1.246 aaaa::212:7406:6:606 aaaa:uff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
20 1.247 3333::212:7406:6:606 aaaanff:fe00:1 UDp 85 Source port: ultraseek-http Destination port: rrac
21 1.248 aaaa::212:7406:6:606 aaaa:ff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
22 1.248 333a::212:7406:6:606 aaaauff:fe00:1 UDP 85 Source port: ultraseek-http Destination port: rrac
23 1.245 aaaa::212:7406:6:606 aaaa:ff:fe00:1 UDpP 85 Source port: ultraseek-http Destination port: rrac
24 1.25 aaaa:212:7406:6:606 aaaa::ff:fe00:1 uDP 85 Source port: ultraseek-http Destination port: rrac
25 1.25 33aa::212:7406:6:606 aaaanff:fe00:1 uppP 85 Source port: ultraseek-http Destination port: rrac

Figure 4.13 Malicious “udp-flood-radiologUDP.csv”—1 to 25 records.
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4.3 Blackhole Attack Datasets

In this Section, we provide a detailed description of the approach followed to generate a set of
malicious datasets by implementing a blackhole attack scenario in the Cooja simulator, as shown in
Figure 4.14.

Cooja Simulator —
Blackhole Attack Scenario

J Network k:J\QJéJ
View Zoom

/@q 12,..03 3,303
tewa{ 14:404

fe80::212:7409:5:505

Cooja tool
“Radio messages”

Contiki plugin
“powertrace”

Blackhole Attack Blackhole Attack
“powertrace” Network Traffic
Dataset Dataset

Figure 4.14 Blackhole Attack Datasets generation by utilising the Cooja simulator.

4.3.1 Blackhole Attack Scenario —an example

The network topology of the simulated blackhole attack scenario in the Cooja simulator environment
consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the violet
(malicious) UDP-client mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote 1), as
depicted in Figure 4.14. The simulation duration was set to 60 mins and the motes’ outputs were
printed out in the respective window (e.g., Mote output) while simulations run, as shown in Figure
4.15. Moreover, the 8 yellow (benign) UDP-client motes were configured to send text messages
every 30 seconds, approximately, to the UDP-server mote that was configured to provide a
corresponding response. On the other hand, the violet (malicious) UDP-client mote (i.e., mote 10)
was compromised with malicious code, as shown in Figure , to switch off transmission and disrupt
the communication chain. The (malicious) mote was programmed to start as a normal mote and
after 25 minutes later to switch off the radio, leading to a blackhole attack. Finally, it is noteworthy
to say that similar to the benign network scenario, the UDP protocol was used at the Transport
Layer, the IPv6 at the network layer, and the type of motes was the Tmote Sky in the blackhole
attack scenario.
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PRINTGA (&UIP_IP_BUF->destipaddr);
PRINTF(" iE

PRINTF(" ing p: 1\n");
UIP_STAT(++uip_stat.ip.drop);
goto drop;

} eLse {
if((uip_i dr_link_local(&UIP_IP_BUF-=srcipaddr))
is_addr_unspecif (&UIP_IP_BUF->srcipaddr)) !

Figure 4.16 Malicious code in “contiki/core/net/ipv6/uip6.c” to cause a blackhole attack by dropping all packets that are

to be forwarded.
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4.3.2 Blackhole Attack “powertrace” Dataset
4.3.2.1 Blackhole Attack “powetrace” Dataset — Generation Process

The approach followed for the “powertrace” dataset generation from the blackhole attack scenario
was similar to the approach followed for the “powertrace” dataset generation from the benign loT
network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly enabled for
collecting “powertrace” related features, summarised in Table 3, from the motes of the attack
scenario every two seconds. In Figure 4.17, the depicted mote output window displays the captured
“powertrace” information every two seconds and also the messages sent and received by each mote
during the simulation time (60 mins).

- A put (=Jo)ix

File Edit View

Time Mote | Message

UZIAS, 183 107 U997, AUT7, P, ULIE. NG, 7.U. 7. 7.7, BL, 25173, SIZU99Z, A737R, USSR, U, 32008, i<, BHRYS, U, AU, U, AW
02:45,679 10:2 ID:2, DATA send -> "Hello 2'

02:45,710 ID:5 ID:S, DATA send -> 'Hello 3°

02:45.813 ID:1  ID:1,DATA recv -> 'Hello 2', from, 2, to 1

02:45.816 I0:1  ID:1,DATA sending -> ‘reply' to ,I0:2,

02:45.916 10:2 1D:2, DATA recv "Reply from server'

02:46.033 ID:4 ID:4, DATA send -> “Hello 2'

02:46,169 1D:7 ID:7. DATA send -> 'Hello 2'

02:46.281 1ID:9 1D:9, DATA send -> 'Hello 2'

02:46,565 10:1  ID:1,DATA recy -> 'Hello 2', from, 7, to 1

02:46,568 10:1  ID:1,DATA sending -> ‘reply’ to ,ID:7,

02:46,695 10:2 21253, 10:2, P, 0,18,116.2.0,2.2,2, 82, 358302, SO80001, 116479, 94720, 0, 36663, 10386, SS5124, 4735, 3557, 0, S22
02:46.718 10:5 21253, 10:S, P . 0.18.116.5.0.5.5.5, 82, 226693, S211562, 46661. S1023, 0. 36925, 10128, SS5375, 4353, 3585, 0. 937
02:46.738 10:1 21255, 10:1, P, 0.18.116.1.0.1.1.1, B2, 279483, 5150538, 74349, £0589, 0, 38774, 10141, 56021, 4744, 3137, 0, 312
02:46.779 10:8 21253, 10:8, P, 0.18,116.8.0.8.8.8, 82, 243545, 5194717, 40167, 61210, 0, 42472, 4395, 61113, 1168, 1447, 0, 597
02:46.910 10:3 21253, 1ID:3, P, 0.18.116,3.0.3.3.3, 82, 267596, S170602, S9299, 62420, 0, 43687, 6899, S8606, 2985, 1192, 0, 1119

Filter:

|

<\

Figure 4.17 Cooja Simulator — Blackhole attack scenario — Mote output window

When the timeout occurred, the simulation stopped, and all the captured information and prints
were stored in the “COOQJA.testlog” file. Afterwards, the “loT_Simul.sh” file, described in Section
3.3.1, created a) a new root folder named as “2021-10-28-22-36-22", and b) the “log” folder, inside
the “2021-10-28-22-36-22” folder, where the “COOJA.testlog” file was copied from the
“.../cooja/build” folder located in the Cooja Simulator. Then, the “loT_Simul.sh” file following the
same process, as described in Section 3.3.1, extracted the required “powertrace” information from
the “COO0JA testlog” file and saved it in the “blackhole-pwrtrace.csv” file in the “dataset” folder that
was also created by the batch file inside the “2021-10-28-22-36-22" folder, as shown below in the
left part of Figure 4.18. In the “dataset” folder, apart from the “blackhole-pwrtrace.csv” file, the
“loT_Simul.sh” file generated two more files (i.e., “blackhole-recv.csv” and “blackhole-send.csv”),
following the same process as in Section 3.3.1. The “blackhole-recv.csv” file and the “blackhole-
send.csv” file include the “received” and “sent” messages printed by the motes, respectively.

v || 2021-10-28-22-36-22 A Name : Date inodificd ik
dataset Q- blackhole-pwrtrace
log @) blackhole-recv 28/10/2021 22:44 Microsoft Excel C
motedata @) blackhole-send

Figure 4.18 Location of the generated “blackhole-pwrtrace.csv”, “blackhole-recv.csv”, and “blackhole-send.csv” files by
the “loT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the
“loT_Simul.sh” file extracted the information related to each mote from the “blackhole-
pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from
the “blackhole-pwrtrace.csv” file. The generated ten csv files (i.e., “blackhole-motel.csv”,...,
“blackhole-mote10.csv”) were stored in the “motedata” folder, created also by the “loT_Simul.sh”
file, as shown in the left part of Figure 4.18.
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4.3.2.2 Blackhole Attack “powetrace” Dataset — Generated Results

The blackhole attack “powertrace” dataset consists of the following csv files:
“blackhole-mote3.csv”

pwrtrace.csv”,
mote4.csv”

“blackhole-motel.csv”
“blackhole-mote5.csv”

4.3.2.2.1 “blackhole-pwrtrace.csv’

“blackhole-mote2.csv”

“blackhole-mote6.csv”
mote8.csv” “blackhole-mote9.csv” and “blackhole-motel0.csv”. In this Section, we present sets of
records from the “blackhole-pwrtrace.csv”, and in Appendix 1 we present sets of records from
“blackhole-motel.csv”, “blackhole-mote4.csv” and “blackhole-mote10.csv” files.

“blackhole-mote7.csv”

“blackhole-
“blackhole-
“blackhole-

The generated malicious “blackhole-pwrtrace.csv” file consists of 17,990 records and its first 30
records (i.e., 1-30) and its last 30 records (17,961-17,990) are depicted in Figure 4.19 and Figure
4.20, respectively.

B__ (g D E F G H | K L M N o P R s [T | v v w
o ~ _ Total measurements from the begining of the si n_ _ Measurements for each of the 2-sec monitoring period
No Real time | Clocktime| D Rime Address | seqno || all cou | all_lpm [all_transmit| all_listen [all_idle_transmit| all_idle_listen || cpu Ipm [ transmit | listen | idle_transmit | idle_listen
B Cfus] | linticks) | | f - (inticks) | (inticks) | (inticks) | (inticks) (in ticks) (in ticks) (in ticks) [ (in ticks) | (in ticks) | {in ticks) [ (in ticks) (in ticks)
1 2414969 261 D6 P |01811660666| 0 6763 59680 2591 422 ) 350 6763 | 59680 | 2591 422 0 350
2 2435603 261 1D:8 P [01811680888] 0 2472 63969 ) 675 0 325 2472 | 63969 ) 675 0 325
3 2517728 261 1D:5 P [01811650555] 0 6763 59680 2591 422 ) 350 6763 | 59680 | 2591 422 0 350
4 2569838 261 1D:1 P |01811610111] o0 2685 63768 ) 756 0 540 2685 | 63768 0 756 0 540
5 2807391 261 1D:3 P |0181163.0333] 0 2234 64207 ) 375 ) 375 2234 | 64207 0 375 0 375
6 2864923 261 1D:2 P | 01811620222] 0 6763 59680 2591 422 ) 350 6763 | 59680 | 2591 422 0 350
7 2894225 261 1D:7 P | 0181167.0777| 0 2489 63953 ) 794 0 349 2489 | 63953 0 794 0 349
8 2995757 261 D9 P [01811690993[ o 6763 59680 2591 422 0 350 6763 | 59680 | 2591 422 ) 350
9 3072282 261 1D:4 P [01811640444] 0 2366 64075 ) 588 ) 552 2366 | 64075 ) 588 ) 552
10 3144754 261 I0:10 | P [18116100.1010] 0 2393 64047 ) 595 ) 565 2393 | 64047 0 595 ) 565
1 4414252 517 1D:6 P [ 01811660666] 1 7926 | 124011 2591 822 ) 750 1160 | 64331 ) 400 0 400
12 4436317 517 1D:8 P |01811680888] 1 3564 | 128370 ) 1075 0 725 1089 | 64401 0 400 0 400
13 4517011 517 1D:5 P |01811650555] 1 7926 | 124011 2591 822 ) 750 1160 | 64331 0 400 0 400
14 4572517 517 1D:1 P |01811610111] 1 8416 | 123549 2987 1201 0 915 5728 | 59781 | 2987 445 ) 375
15 4807786 517 1D:3 P |0181163.0333] 1 3326 | 128609 ) 775 ) 775 1089 | 64402 ) 400 0 400
16 4865084 517 1D:2 P | 01811620222 1 8316 | 123629 2591 1117 ) 1000 1550 | 63949 0 695 0 650
17 4894935 517 1D:7 P | 0181167.0777| 1 3582 128354 ) 1194 0 749 1090 | 64401 ) 400 ) 400
18 4995040 517 D3 P [01811690998[ 1 7926 | 124011 2591 822 [ 750 1160 | 64331 ) 400 ) 400
19 5072672 517 1D:4 P |01811640444] 1 3458 | 128477 ) 988 ) 952 1089 | 64402 ) 400 ) 400
20 5279647 534 D:10 | P |18116100.1010] 1 8068 | 128196 2591 1071 0 965 5672 | 64149 | 2591 476 ) 400
21 6415127 773 1D:6 P | 01811660666 2 9708 | 187745 2591 1495 ) 1125 1779 | 63734 ) 673 0 375
22 6436680 773 iD:8 P |01811680888| 2 4702 192727 ) 1475 0 1125 1135 | 64357 0 400 0 400
23 6517711 773 1D:5 P |01811650555] 2 9087 188345 2591 1222 ) 1150 1158 | 64334 0 400 0 400
24 6571873 773 1D:1 P | 01811610111 2 9708 | 187766 2987 1601 ) 1315 1290 | 64217 ) 400 0 400
25 6808495 773 1D:3 P |0181163.0333] 2 4579 | 192851 0 1328 ) 1150 1250 | 64242 0 553 0 375
26 6866434 773 D2 P [01811620222] 2 14567 | 182886 5579 1768 [ 1565 6248 | 59257 | 2988 651 ) 565
27 6895299 773 D7 P [01811670777] 2 4720 | 192711 ) 1504 o 1149 1135 | 64357 ) 400 ) 400
28 6995740 773 1D:9 P |01811690999| 2 9087 188345 2591 1222 ) 1150 1158 | 64334 ) 400 ) 400
29 7073395 773 1D:4 P [01811640444] 2 4716 | 192715 ) 1580 ) 1339 1255 | 64238 0 592 ) 387
30 7146973 773 D10 | P |181161001010] 2 9627 187815 2591 1681 ) 1315 1557 | 59619 ) 610 ) 350
Figure 4.19 Malicious “blackhole-pwrtrace.csv” — 1 to 30 records.
B D E F G H L K | L | M | N | o P ROV S | e v 0w
Total ents from the begining of the si Measurements for each of the 2-sec monitoring period
No Realtime |Clocktime| 1D Rime Address | seqno || all_cpu [ all_lpm [all_transmit| all_listen [all_idle_transmit| all_idle_listen |{ cpu Ipm [ transmit | listen | idle_transmit | idle_listen
[us] (in ticks) (in ticks) | (inticks) | (inticks) | (in ticks) (in ticks) (inticks) || (in ticks) | (in ticks) | (in ticks) [ (in ticks) | (inticks) | (in ticks)
17961 [||3504421856| 460037 | D56 P | 0181166.066.6| 1796 || 5142565 |112556628| 726639 | 1186464 [ 756212 2123 | 63368 0 400 ) 400
17962 [|[3594444594] 460037 | D8 P | 018116.8.088.8| 1796 || 4424874 |113274488| 361743 | 1034364 ) 823552 2118 | 63373 0 400 ) 400
17963 [)[3594524577| 460037 | 1D P | 01811650555] 1796 ||| 4113571 [113610883] 410644 | 1035557 0 863729 1923 | 63586 0 400 ) 400
17964 [N[3594578724| 460037 | ID:1 P | 018116.1.0.1.1.1] 1796 || 4797690 [112927197| 831886 | 1257560 ) 764255 1839 | 63670 0 400 0 400
17965 [|[3594816805| 460037 | D3 P | 0181163.0333] 1796 || 5967822 [111733276] 1327899 | 1466221 0 806287 2132 | 63359 0 400 ) 400
17966 [)3594871807| 460037 | D2 P |01811620222] 1796 || 5057010 [112667540] 952430 | 1263599 ) 775282 1930 | 63579 ) 400 ) 400
17967 [N3594903157| 460037 | ID7 P | 018116.7.07.7.7] 1796 || 4646526 (113053124 494627 | 1047912 0 776748 2120 | 63372 0 400 0 400
17968 [)[3595002282| 460037 | 1D P | 0181169.099.9] 1796 || 3978127 [113746310[ 328588 | 921667 ) 766266 1913 | 63595 0 400 ) 400
17969 [)[3595081306| 460037 | ID:4 P | 018.116.4.04.4.4] 1796 || 5383860 [112316838| 952794 | 1319773 ) 826945 2121 | 63371 0 400 0 400
17970 |||3595152007| 460037 | 1D:10 | P |18.116.100.10.10 1796 || 4390566 |113327568| 459905 | 616191 ) 355809 1960 | 63549 ) ) ) )
17971 |[3596421856] 460293 | D6 P | 0181166.066.6] 1797 || 5144659 [112620028] 726639 | 1186864 0 756612 2091 | 63400 ) 400 ) 400
17972 |)[3596444593| 460293 | 1D8 P | 0181168088.8] 1797 || 4426963 [113337894] 361743 | 1034764 [) 823952 2086 | 63406 0 400 ) 400
17973 |)[3596524517| 460293 | 1D P | 01811650555] 1797 || 4115472 [113674494] 410644 | 1035957 0 864129 1898 | 63611 0 400 0 400
17974 [|[3596578723| 460293 | D1 P 01811610111 1797 || 4799509 [112990888| 831886 | 1257960 0 764655 1816 | 63691 ) 400 ) 400
17975 |)[3596816776] 460293 | D3 P | 0181163.033.3] 1797 || 5969925 [111796667| 1327899 | 1466621 0 806687 2100 | 63391 0 400 ) 400
17976 |3596871815| 460293 | D2 P | 018116.2022.2] 1797 | 5058917 [112731144] 952430 | 1263999 ) 775682 1904 | 63604 0 400 0 400
17977 4| 460203 [ D7 P | 018116.7.07.7.7] 1797 ||| 4648614 [113116529] 494627 | 1048312 ) 777148 2085 | 63405 0 400 0 400
17978 [|[3597002276] 460293 | 1D P | 0181169.0999| 1797 || 3980018 |113809929] 328588 | 922067 ) 766666 1888 | 63619 ) 400 ) 400
17979 [|[3597081309] 460293 | D4 P | 018116.4.044.4| 1797 || 5385950 [112380241| 952794 | 1320173 ) 827345 2087 | 63403 ) 400 ) 400
17980 [W3597152017| 460293 | D10 | P |18.116.100.10.10] 1797 |}| 4392497 [113391149 459905 | 616191 ) 355809 1928 | 63581 ) [ ) [
17981 |[3598421856| 460549 | 1D P | 0181166.066.6] 1798 || 5146743 [112683439] 726639 | 1187264 0 757012 2081 | 63411 0 400 0 400
17982 |)[3598444605| 460549 | 1D8 P | 018116.80.888| 1798 || 4429042 [113401310] 361743 | 1035164 ) 824352 2076 | 63416 ) 400 ) 400
17983 [)3598524587| 460549 | DS P 01811650555 1798 ||| 4117361 [113738117| 410644 | 1036357 ) 864529 1886 | 63623 ) 400 ) 400
17984 |3598578660| 460549 | ID:1 P |018116.1011.1] 1798 | 4801320 [113054588] 831886 | 1258360 ) 765055 1808 | 63700 0 400 ) 400
17985 ||[3598816791| 460549 | ID3 P | 018116.3.033.3] 1798 || 5972017 [111860069| 1327899 | 1467021 ) 807087 2089 | 63402 0 400 0 400
17986 ||3598871816| 460549 | ID2 P | 018116.20.22.2] 1798 | 5060815 [112794757| 952430 | 1264399 ) 776082 1895 | 63613 0 400 0 400
17987 ||[3598903245| 460549 | D7 P | 0181167.07.7.7| 1798 || 4650694 [113179942| 494627 | 1048712 ) 777548 2077 | 63413 ) 400 ) 400
17988 6| 460549 | D9 P | 0181169.0999] 1798 || 3981947 [113873512] 328588 | 922467 ) 767066 1926 | 63583 0 400 ) 400
17989 |[3599081324| 460549 | 1D:4 P | 0181164044.4] 1798 || 5388031 [112443654] 952794 | 1320573 0 827745 2078 | 63413 0 400 ) 400
17990 [N3599152033| 460549 | 1D:10 | P [18.116.10.0.10.10. 1798 ||| 4394419 [113454739| 459905 | 616191 ) 355809 1919 | 63590 0 ) 0 )

Figure 4.20 Malicious “blackhole-pwrtrace.csv”’—17,961 to 17,990 records.
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4.3.3 Blackhole Attack Network Traffic Dataset
4.3.3.1 Blackhole Attack Network Traffic Dataset — Generation Process

The approach followed for the network traffic dataset generation from the blackhole attack scenario
was similar to the approach followed for the network traffic dataset generation from the benign loT
network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja simulator, was
similarly used for collecting data related to the corresponding network traffic features (e.g.,
source/destination IPv6 address, packet size, and communication protocol) from the network of the
attack scenario. During the simulation, the network traffic information was being shown in the top
part of the “Radio messages” output window as depicted in the top part of Figure 4.21.

218 02:46.918 10 = 61:

219+3 02:46.918 1 - 69:

IEEE 802.15.4 DATA #127

From OxABCD/00:12:74:0A:00:0A: 0A:0A to OxABCD/00:12:74:02:00:02:02:02
Sec = false, Pend = false, ACK = true, iPAN = true, DestAddr = Long, Vers. = 1, SrcAddr = Long

IPHC HC-06

TF = 3, NH = inline, HLIM = inline, CID = 1, SAC = stateful, SAM = 1, MCast = false, DAC = stateful, DAM = 2
Contexts: sci=0 dci=0

IPv6 TC =0, FL=0

From aaaa:0000:0000:0000:0212:7404:0004:0404 to aaaa:0000:0000:0000:0000:0000:0000:0001

ubp

Src Port: 8765, Dst Port: 5678

2 Radio messages: showing 103/222 packets (=[5]X]
File Edit Analyzer View
VNo. | Time | From | To | Data |
211 02:46.909 10 - 61: 15.4 D 00:12:74:0A:00:04:0A: 04 00:12:74:02:00:02:02: 02| IPHC|IPv6|UDP 8765 5678| 000FA2FE 48656C6C 6F2032 A
212 02:46.912 6 = 61: 15.4 D 00:12:74:06:00:06:06:06 00:12:74:01:00:01:01:01|IPHC|IPv6|UDP 8765 5678| 00OFODEF 48656C6C 6F2032
02:46,912 15.4 D 00:12:74:0A:00:0A:0A:0A 00:12:74:02:00:0
214 02:46,912 1 - 69: 15.4 D 00:12:74:01:00:01:01:01 00:12:74:06:00:06:06: 06| IPHC|IPv6|UDP 5678 8765|001AFDIF S5265706C 79206672 6F6D2073 65727665 7200
215 02:46.915 6 - 61: 15.4 D 00:12:74:06:00:06:06:06 00:12:74:01:00:01:01:01|IPHC|IPv6|UDP 8765 5678| 000FIDEF 48656C6C 6F2032
216 02:46,915 10 - 61: 15.4 D 00:12:74:0A:00:0A:0A: 04 00:12:74:02:00:02:02: 02| IPHC|IPv6|UDP 8765 5678| 000FA2FE 48656C6C 6F2032
217 02:46.915 1 & 69: 15.4 D 00:12:74:01:00:01:01:01 00:12:74:06:00:06:06: 06| IPHC|IPv6|UDP S678 8765|001AFDIF 5265706C 79206672 6FED2073 65727665 7200
15.4 D 00:12:74:0A:00:0A: 0A:0A 00:12:74:02:00:0.
15.4 D 00:12:74:01:00:01:01:01 00:12:74:06:00: Of

Payload (11 bytes)
O00FA2FE 48656C6C 6F2032 ....Hello 2

Figure 4.21 Network traffic information from the blackhole attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the
“.../cooja/build” folder. Afterwards, the “loT_Simul.sh” file, described in Section 3.4.1, created a) a
new root folder named as “2021-10-28-22-36-22", and b) the “nettraffic” folder, inside the “2021-
10-28-22-36-22" folder, where the “radiolog.pcap”, copied from the “.../cooja/build” folder located
in the Cooja Simulator, was saved as “blackhole-radiolog.pcap”. The “nettraffic” folder inside the
root folder “2021-10-28-22-36-22” and the “blackhole-radiolog.pcap” file in the “nettraffic” folder
are shown in Figure 4.22.

v 2021-10-28-22-36-22 o Mame Date modified Type Size
dataset | ] blackhole-radiclog.pcap 28/10/2021 22:44 PCAP File 7867 KB
log
motedata
nettraffic

Figure 4.22 The “nettraffic” folder inside the root folder “2021-10-28-22-36-22" and the “blackhole-radiolog.pcap” file.

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the
stored network traffic information from the “blackhole-radiolog.pcap” file to the “blackhole-
radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.23.

69



2021-10-28-22-36-22 & Mame Date modified Type Size

dataset -] blackhole-radiolog 28/ Microsoft Excel C...
log | | blackhole-radiolog.pcap 2 PCAP File

motedata :] blackhole-radiolog-ICMPvE 2 Microsoft Excel C...
nettraffic - blackhole-radiolog-UDP 28/ Microsoft Excel C...

Figure 4.23 The “nettraffic” folder inside the root folder “2021-10-28-22-36-22" and its included files.

In the “nettraffic” folder, apart from the “blackhole-radiolog.csv” file, we also used Wireshark,
following the same process as in Section 3.4.1, to generate two more files (i.e., “blackhole-radiolog-
ICMPv6.csv” and “blackhole-radiolog-UDP.csv”) from the “blackhole-radiolog.pcap” file.

4.3.3.2 Blackhole Attack Network Traffic Dataset — Generated Results

The blackhole attack network traffic dataset consists of the following csv files which are located in
the “nettraffic” folder as described in Section 4.3.3.1: “blackhole-radiolog.csv”, “blackhole-radiolog-
ICMPv6.csv”, and “blackhole-radiolog-UDP.csv” files. In this Section, we present sets of records from
these files.

4.3.3.2.1 “blackhole-radiolog.csv”

The generated malicious “blackhole-radiolog.csv” file consists of 99,622 records and its first 30
records (i.e., 1-30) are depicted below in Figure 4.24.

B C D E F G H
No. Time Source Destination Protocol  Length Info
1 0.000000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
2 0.032000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
3 0.069000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
4 0.101000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
5 0.115000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
6 0.152000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
7 0.177000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
8 0.204000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
9 0.210000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
10 0.213000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
11 0.216000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
12 0.219000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
13 0.222000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
14 0.231000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
15 0.232000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
16 0.234000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
17 0.235000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
18 0.236000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
19 0.245000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
20 0.251000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
21 0.253000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
22 0.254000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
23 0.255000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
24 0.256000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
25 0.257000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
26 0.264000 fe80::212:7406:6:606 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
27 0.265000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
28 0.267000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
29 0.270000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
30 0.274000 fe80::212:7406:6:606 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)

Figure 4.24 Malicious “blackhole-radiolog.csv”’—1 to 30 records.

4.3.3.2.2 “blackhole-radiolog-ICMPv6.csv”

The generated malicious “blackhole-radiolog-ICMPv6.csv” file consists of 24,011 records and its first
30 records (i.e., 1-30) are depicted below in Figure .4.25
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B C D E F G H
No. Time Source Destination Protocol Length Info )
1 0.000000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
2 0.032000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
3 0.0695000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
4 0.101000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
5 0.119000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
6 0.152000 fe80::212:7406:6:606 ff02::1a ICMPv6 64|RPL Control (DODAG Information Solicitation)
7 0.177000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
8 0.204000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
9 0.210000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
10 0.213000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
11 0.216000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
12 0.215000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
13 0.222000 fe80::212:7406:6:606 ffo2::1a ICMPv6 64|RPL Control (DODAG Information Solicitation)
14 0.231000 fe80::212:7406:6:606 ff02::1a ICMPv6 64|RPL Control (DODAG Information Solicitation)
15 0.232000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
16 0.234000 fe80::212:7406:6:606 ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
17 0.235000 fe80::212:7406:6:606 ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
18 0.236000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
19 0.2495000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
20 0.251000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
21 [0.253000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
22 0.254000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
23 0.255000 fe80::212:7406:6:606 ff02::1a ICMPv6 64|RPL Control (DODAG Information Solicitation)
24 0.256000 fe80::212:7406:6:606 ff02::1a ICMPv6 64|RPL Control (DODAG Information Solicitation)
25 0.257000 fe80::212:7406:6:606 ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
26 0.264000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
27 0.265000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
28 0.267000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
29 0.270000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)
30  [0.274000 fe80::212:7406:6:606  |ff02::1a ICMPV6 64|RPL Control (DODAG Information Solicitation)

Figure 4.25 Malicious “blackhole-radiolog-ICMPv6.csv” —1 to 30 records.
4.3.3.2.3 “blackhole-radiolog-UDP.csv”
g

The generated malicious “blackhole-radiolog-UDP.csv” file consists of 73,551 records and its first 30
records (i.e., 1-30) are depicted below in Figure 4.26.
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B c D E F G H
No. Time Source Destination Protocol | Length Info
1 5.595000 2002:db8::212:740a:3:a0a UDP 52 Source port: ultraseek-http Destination port: rrac
2 5.596000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
3 5.597000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
4 5.598000 2002:db8::212:740a:3:a0a 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
5 5.598000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
6 5.600000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uppP 52 Source port: ultraseek-http Destination port: rrac
7 5.601000 2002:db8:: 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
8 5.602000 2002:db8:: 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
9 5.604000 2002:db8: 2002:db8::ff:fe00:1 uDpP 52 Source port: ultraseek-http Destination port: rrac
10 5.605000 2002:db8::212:740a:3:a0a 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
11 5.606000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
12 5.608000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
13 5.609000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 ubp 52 Source port: ultraseek-http Destination port: rrac
14 5.610000 2002:db8::212:740a:3:a0a 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
15 5.611000 2002:db8:: 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
16 5.612000 2002:db8:: 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
17 5.613000 2002:db8: 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
18 5.614000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
19 5.615000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uppP 52 Source port: ultraseek-http Destination port: rrac
20 5.618000 2002:db8::212:740a:3:a0a 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
21 5.618000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
22 5.619000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
23 5.629000 2002:db8:: 2002:db8::ff:fe00:1 uUDP 52 Source port: ultraseek-http Destination port: rrac
24 5.629000 2002:db8:: 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
25 5.629000 2002:db8: 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
26 5.629000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uppP 52 Source port: ultraseek-http Destination port: rrac
27 5.630000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
28 5.630000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
29 5.630000 2002:db8::212:740a:a:a0a 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
30 5.630000 2002:db8::212:740a:3:a0a 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac

Figure 4.26 Malicious “blackhole-radiolog-UDP.csv”—1 to 30 records.

4.4 Sinkhole Attack Datasets

In this Section, we provide a detailed description of the approach followed to generate a set of
malicious datasets by implementing a sinkhole attack scenario in the Cooja simulator, as shown in
Figure 4.27.
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Cooja Simulator —
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Figure 4.27 Sinkhole Attack Datasets generation by utilising the Cooja simulator.

4.4.1 Sinkhole Attack Scenario — an example

The network topology of the simulated sinkhole attack scenario in the Cooja simulator environment
consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the violet
(malicious) UDP-server mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote 1),
as depicted in Figure 4.27. The simulation duration was set to 60 mins and the motes’ outputs were
printed out in the respective window (e.g., Mote output) while simulations run, as shown in Figure
4.28. Moreover, the 8 yellow (benign) UDP-client motes were configured to send text messages
every 30 seconds, approximately, to the UDP-server mote that was configured to provide a
corresponding response. On the other hand, the violet (malicious) UDP-server mote (i.e., mote 10)
was compromised with malicious code, as shown in Figure 4.29 and Figure 4.30, to decrease the
malicious mote’s Rank number and make it the preferable parent node. With most of the
neighbours to be connected to it, it starts dropping all the traffic that it should forward. The
malicious mote was programmed to start 20 minutes later than the others allowing the network to
work properly before the attack. Finally, it is noteworthy to say that similar to the benign network
scenario, the UDP protocol was used at the Transport Layer, the IPv6 at the network layer, and the
type of motes was the Tmote Sky in the sinkhole attack scenario.
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G477, 1018, P | 0.18.116.8,0.8.8,8, 35, 115614, 2300160, 24542, 105, 0. 1
10:8, DATA jen > ‘Hello 2
T0:1,DATA recy -> ‘Hella 2°, from, 6, to 1 1
10.1.04TA sanding -» "reply’ th \10:6, v ¥
= TRRRIE SHGWIRG AT o=
Fle_Edh View Zoom Events. botes
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Figure 4.28 Cooja Simulator — Sinkhole attack scenario — Motes’ outputs.

Figure 4.29 Malicious code in “contiki_modified/core/net/rpl/rpl-private.c” to cause a sinkhole attack.

udp-server.c X | | Makefile x rpl-private.h % rpktimers.c x

static void
handle_periodic_timer(wvoid

ut

Figure 4.30 Malicious code in “contiki_modified/core/net/rpl/rpl-timers.c” to cause a sinkhole attack.
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4.4.2 Sinkhole Attack “powertrace” Dataset
4.4.2.1 Sinkhole Attack “powertrace” Dataset — Generation Process

The approach followed for the “powertrace” dataset generation from the sinkhole attack scenario
was similar to the approach followed for the “powertrace” dataset generation from the benign loT
network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly enabled for
collecting “powertrace” related features, summarised in Table 3, from the motes of the attack
scenario every two seconds. In Figure 4.31, the depicted mote output window displays the captured
“powertrace” information every two seconds and also the messages sent and received by each mote
during the simulation time (60 mins).

(#] Mote output 2E8
File Edit View

Time Mote | Message

01:13.244 1D:S 9221, ID:S, P, 0.18.116.5.0.5.5.5, 35, 110160, 2249093, 20997, 22109, 0, 16016, 2034, 63474, 0, 400, 0, 400 2
01:13.281 1ID:8 9221, 1D:8, P, 0.18.116.8.0.8.8.8, 35, 113612, 2245653, 24542, 24705, 0, 16427, 2034, 63473, 0, 400, 0, 400

01:14.528 1ID:6 9477, 1D:6, P, 0.18.116.6.0.6.6.6, 36, 107028, 2317689, 25722, 22631, 0, 15263, 9880, 55625, 4836, 1527, 0, 325

01:14.809 1ID:3 9477, 1D:3, P, 0.18.116.3.0.3.3.3, 36, 114746, 2310028, 25104, 27191, 0, 18450, 2030, 63476, 0, 590, 0, 590

01:14.868 1ID:2 9477, 1D:2, P, 0.18.116.2.0.2.2.2, 36, 141399, 2283378, 37155, 31433, 0, 16888, 4476, 61032, 1211, 1158, 0, 375

01:14.922 1D:4 9477, 1D:4, P, 0.18.116.4.0.4.4.4, 36, 107216, 2317510, 24514, 27047, 0, 18154, 4594, 60913, 1210, 1645, 0, 1004

01:14.936 1ID:9 9477, 1D:9, P, 0.18.116.9.0.9.9.9, 36, 107886, 2316880, 24892, 22748, 0, 16479, 1793, 63715, 0, 400, 0, 400

01:15.116 1ID:7 9477, 1D:7, P, 0.18.116.7.0.7.7.7, 36, 84805, 2339903, 17758, 18256, 0, 15696, 6467, 59039, 2983, 920, 0, 802

01:15.187 1ID:1 9477, 1D:1, P, 0.18.116.1.0.1.1.1, 36, 117755, 2307064, 14938, 27247, 0, 17209, 2656, 62851, 0, 585, 0, 577

01:15.244 1D:S5 9477, 1D:5, P, 0.18.116.5.0.5.5.5, 36, 112162, 2312601, 20997, 22509, 0, 16416, 1999, 63508, 0, 400, 0, 400

01:15.281 1ID:8 9477, 1D:8, P, 0.18.116.8.0.8.8.8, 36, 115614, 2309160, 24542, 25105, 0, 16827, 1999, 63507, 0, 400, 0, 400

01:15.521 1ID:6 ID:6, DATA send -> 'Hello 2'

01:15.786 ID:1 ID:1,DATA recv -> 'Hello 2', from, 6, to 1

01:15.789 1ID:1  ID:1,DATA sending -> 'reply' to ,ID:6, y
Filter: ||

Figure 4.31 Cooja Simulator — Sinkhole attack scenario — Mote output window

When the timeout occurred, the simulation stopped, and all the captured information and prints
were stored in the “COOJA.testlog” file. Afterwards, the “loT_Simul.sh” file, described in Section
3.3.1, created a) a new root folder named as “2021-10-29-23-23-49”, and b) the “log” folder, inside
the “2021-10-29-23-23-49” folder, where the “COOQOJA.testlog” file was copied from the
“.../cooja/build” folder located in the Cooja Simulator. Then, the “loT_Simul.sh” file following the
same process, as described in Section 3.3.1, extracted the required “powertrace” information from
the “COOQIJA.testlog” file and saved it in the “sinkhole-pwrtrace.csv” file in the “dataset” folder that
was also created by the batch file inside the “2021-10-29-23-23-49” folder, as shown below in the
left part of Figure 4.32. In the “dataset” folder, apart from the “sinkhole-pwrtrace.csv” file, the
“loT_Simul.sh” file generated two more files (i.e., “sinkhole-recv.csv” and “sinkhole-send.csv”),
following the same process as in Section 3.3.1. The “sinkhole-recv.csv” file and the “sinkhole-
send.csv” file include the “received” and “sent” messages printed by the motes, respectively.

v 2021-10-29-23-23-49 ) Name Date modified Type Size
st :] sinkhole-pwrtrace 2239KB
log B:] sinkhole-recvy B
motedata £:] sinkhole-send 0/202 B

»

Figure 4.32 Location of the generated “sinkhole-pwrtrace.csv”, “sinkhole-recv.csv”, and “sinkhole-send.csv” files by the
“loT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the
“loT_Simul.sh” file extracted the information related to each mote from the “sinkhole-pwrtrace.csv”
file and generated one csv file for each mote with the corresponding information from the “sinkhole-
pwrtrace.csv” file. The generated ten csv files (i.e., sinkhole-motel.csv, ..., sinkhole-mote10.csv)
were stored in the “motedata” folder, created also by the “loT_Simul.sh” file, as shown in the left
part of Figure 4.32.
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4.4.2.2 Sinkhole Attack “powertrace” Dataset — Generated Results

The sinkhole attack “powertrace” dataset consists of the following csv files: “sinkhole-pwrtrace.csv”,
“sinkhole-motel.csv”, “sinkhole-mote2.csv”, “sinkhole-mote3.csv”, “sinkhole-mote4.csv”, “sinkhole-
mote5.csv”’,  “sinkhole-mote6.csv”,  “sinkhole-mote7.csv”,  “sinkhole-mote8.csv”, “sinkhole-
mote9.csv”, and “sinkhole-motel10.csv” files. In this Section, we present sets of records from the
“sinkhole-pwrtrace.csv”, and in Appendix 1 we present sets of records from “sinkhole-motel.csv”,
“sinkhole-mote5.csv” and “sinkhole-motel10.csv” files.

4.4.2.2.1 “sinkhole-pwrtrace.csv”

The generated malicious “sinkhole-pwrtrace.csv” file consists of 17,390 records and its first 30
records (i.e., 1-30) and its last 30 records (17,361-17,390) are depicted in Figure 4.33 and Figure
4.34, respectively.

B < o} E F G H | J K L M N o] P C R S T u v w
Total ents from the begining of the simulation surements for each of the 2-sec itoring period
No Real time | Clock time D Rime Address seq no all_cpu all_lpm |all_transmit| all_listen | all_idle_transmit | all_idle_listen U lpm transmit [ listen | idle_transmit | idle_listen
[us] ‘ {in ticks) ‘ ‘ (inticks) | (inticks) | (inticks) | (inticks) (in ticks) (in ticks) (in ticks) | (in ticks) | (in ticks) | (inticks) |  (in ticks) (in ticks)
1 2415141 261 1D:8 P 0.18.11680888 o 2403 54040 o 680 o 554 2403 64040 o 680 o 554
2 2439506 261 ID:1 P 01811610111 o 2744 63709 o 917 o 514 2744 63709 o 917 o 514
3 2439634 261 =) P 0.18.116.5.05.5.5 o 6763 59680 2591 422 o 350 8763 59680 2591 422 o 350
4 2448968 261 1D:3 P 0.18.1163.0333 o 2499 63942 o 777 o 540 2499 63942 o 7T o 540
5 2563620 261 D7 P 01811670777 o 2279 64162 o 547 o 547 2279 64162 o 547 o 547
e 3042024 261 D:2 P 0.18.116.2.02.2.2 o 6763 59680 2591 422 o 350 8763 59680 2591 422 o 350
7 3142525 261 D4 P 01811640444 o 2492 63950 o 698 o 337 2492 63950 o 698 o 337
8 3235215 261 1D:9 P 0.18.1169.0899 o 6763 59680 2591 422 o 350 6763 59680 2591 422 o 350
el 3280236 261 1D:6 P 01811660666 o 6763 59680 2591 422 o 350 6763 59680 2591 422 o 350
10 4420751 517 D8 P 0.18.116.8.08.8.8 1 3805 128288 o 1366 o 941 1399 04248 o 686 o 387
11 4439452 517 1D:5 P 0.18.1165.0555 1 8268 123673 2591 1017 o 725 1502 63993 o 595 o 375
12 4442182 517 D1 P 01811610111 1 8475 123490 2987 1362 o 889 5728 59781 2987 445 o 375
13 4449863 517 >3 P 0.18.116.3.03.3.3 1 3940 127994 o 1431 o 915 1438 84052 o 654 o 375
14 4564010 517 1D:7 P 01811670777 1 3371 128564 o 947 o 947 1089 64402 o 400 o 400
15 5042187 517 1D:2 P 01811620222 1 8356 123593 2591 1119 o 1000 1590 63913 o 697 o 650
16 5143240 517 D4 P 01811640444 1 3585 128351 o 1098 o 737 1030 64401 o 400 o 400
17 5235020 517 D9 P 0.18.116.9.099.9 1 8386 123564 2591 1097 o 980 1620 ©3884 o 673 o 830
18 52795139 517 1D:6 P 0.18.116.6.06.6.6 1 7926 124011 2591 822 o 750 1160 64331 o 400 o 400
19 6424214 774 D8 P 0181168083838 2 5729 191981 o 2009 o 1316 1922 63693 o 643 o 375
20 0442230 773 D1 P 01811610111 2 9968 187531 2987 2040 o 1519 1491 84041 o 678 o 830
21 6455859 773 1D:3 P 0.18.1163.0333 2 5798 191834 o 2108 o 1290 1855 63840 o 677 o 375
22 6520563 783 1D:5 P 0.18.1165.0555 2 14364 185686 5580 1464 o 1100 6093 62013 2989 447 o 375
23 6564709 773 107 P 01811670777 2 44398 192932 o 1347 o 1347 1124 64368 o 400 o 400
24 7043546 773 D:2 P 0.18.116.2.02.2.2 2 14487 182991 5579 1566 o 1375 0108 59398 2988 aa7 o 375
25 7143787 773 D4 P 01811640444 2 5106 192333 o 1745 o 1334 1518 63982 o 647 o 587
26 7236734 773 lox: ] P 01811690999 2 14486 182974 5577 1544 o 1355 6037 59410 2986 447 o 375
27 7280219 773 D:6 P 0.18.116.6.06.6.6 2 92087 188345 2591 1222 o 1150 1158 84334 o 400 o 400
28 8419917 1029 1D:8 P 0.18.1168.0888 3 22031 240935 5118 5328 o 1806 16300 48954 9118 3318 o 450
29 8444579 1029 1D:1 P 01811610111 3 12911 250124 2987 3967 o 2650 2940 62533 o 1927 o 1131
30 8445749 1029 D5 P 01811650555 3 21681 241405 8324 4412 o 2061 7315 55719 2744 2948 o 961
Figure 4.33 Mal “sinkhole-pwrtrace.csv” — 1 to 30 records
B < o} E F G H | J K L M N [*] P C R 5 T u v w
Total ents from the begining of the simulation urements for each of the 2-sec itoring period
No Real time | Clock time D Rime Address seq no all_cpu all_lpm |all_transmit| all_listen | all_idle_transmit | all_idle_listen U Ipm transmit | listen [ idle_transmit | idle_listen
[us] (in ticks) (inticks) | (inticks) | (inticks) | (inticks) (in ticks) (in ticks) (in ticks) | (in ticks) | (in ticks) | (in ticks)| (in ticks) (in ticks)
17361 3594425263 | 460037 1D:8 P 0.18.116.8.0888| 1796 10970739 |106738486| 4268148 2802997 ) 1162575 2237 63255 o 577 ) 577
17362 3504448247 | 460037 D5 P 0.18.116.5.055.5| 1796 11145023 |106568160| 4253783 2812709 o 1176278 3922 61584 321 810 o 350
17363 3594449333 | 460037 D1 P 0.18.116.1.01.1.1| 1796 9048104 |108667579| 1758168 2704699 o 1477605 4264 81074 o 1380 o 477
17364 35594460044 | 4650037 1D:3 P 0.18.116.3.0333| 1796 10912945 |106756266| 4205523 2648393 0o 1024082 6849 58659 2986 448 0o 375
17365 3594528526 | 460038 1D:10 P 18.116.10.0.10.10.] 1196 5089016 [112623980| 1079583 1434410 ] 1026428 2648 62859 o 945 ] 362
17366 3584581272 | 460037 0:7 P 0.18.116.7.0.7.7.7 | 1796 10129489 |107581511| 4058550 2363851 o 906902 7430 58242 2985 730 o 350
17367 3595049521 | 460037 1D:2 P 0.18.116.2.0222| 1796 12852163 |104861480| 5235852 3237643 ) 1128813 2864 62643 o 662 ) 375
17368 3595242768 | 460037 1D:9 P 0.18.116.9.0899| 1796 10549369 |107173098| 4361062 2557825 o 956243 2030 63478 o 577 o 577
17369 3595265569 | 460051 1D:4 P 0.18.116.4.04.4.4| 1796 11901371 |105819166| 4886594 2973740 o 1047326 7330 61781 3073 1926 o 362
17370 3595289567 | 460037 1D:6 P 0.18.116.6.0.6.6.6| 1796 10798930 |106919971| 4066723 2600098 o 1036496 7755 57754 2987 1012 o 906
17371 3596425242 | 460293 1D:8 P 0.18.116.8.0888| 1797 10972867 |106801853| 4268148 2803397 0o 1162975 2125 63367 o 400 0o 400
17372 3596447577 | 460293 D5 P 0.1811650555| 1797 11147394 |106631300| 4253783 2813286 ] 1176855 2368 63140 o 577 ] 577
17373 3596450057 | 460293 D1 P 0.18.116.1.01.1.1| 1797 9055948 [108725244| 1761152 2705323 o 1478157 7841 57665 2984 824 o 552
17374 3596459015 | 460233 1D:3 P 0.18.116.3.0333| 1797 10915225 |106859493| 4205523 2648983 ) 1024672 2277 63227 o 590 ) 5580
17375 3596529187 | 460294 1D:10 P 18.116.10.0.10.10.] 1187 5091947 [112686561| 1079583 1485850 o 1027486 2928 62581 o 1480 o 1058
17376 3506575467 | 460293 1D:7 P 0.18.116.7.07.7.7 | 1797 10147915 |107628375| 4069314 2368818 o 907404 18423 46864 10764 4967 o 502
17377 3597050635 | 460293 1D:2 P 0.18.116.2.02.2.2 | 1797 12854581 |104924572| 5235952 3238890 o 1130014 2415 83092 o 1247 o 1201
17378 3597154341 | 460293 1D:4 P 0.18.11640444| 1797 11916701 |105865742| 4855074 2576469 0o 1047688 15328 46576 8480 2729 0o 362
17379 3597243871| 460293 1D:9 P 01811690999 | 1797 10555880 |107232100| 4364050 2558272 ] 956618 6508 55002 2988 447 ] 375
17380 3597289901 | 460293 1D:6 P 0.18.116.6.0.6.6.6| 1797 10805613 |106978794| 4069066 2602149 o 1037545 8680 58823 2343 2051 o 1049
17381 3598425275 460549 1D:8 P 0.18.116.8.0888| 1798 10975014 |106865201| 4268148 2804164 ) 1163742 2144 63348 o 767 ) 767
17382 3598449354 | 460549 1D:5 P 0.18.11650555| 1798 11158551 | 1 4259269 2815018 o 1177192 11154 54358 5486 1732 o 337
17383 3508440412 | 460549 D1 P 0.18.116.1.01.1.1| 1798 9059743 |108786957| 1761152 2706759 o 1478792 3793 61713 ] 1436 o 635
17384 3588460375 | 460548 1D:3 P 0.18.116.3.0333| 1798 10921633 |106918586| 4208113 2650661 o 1025249 6405 58093 2580 1678 o 577
17385 3598529577 | 460550 1D:10 P 18.116.10.0.10.10.] 1198 5098884 [112745134| 1082565 1486586 0o 1027836 6934 58573 2882 696 0o 350
17386 3598573390| 460549 1D:7 P 0.181167077.7| 1798 10150483 |107691298| 4069314 2369467 ] 907779 2571 62923 o 649 ] 375
17387 3599051020| 460549 1D:2 P 0.18.116.2.02.2.2| 1798 12861515 |104983151| 5238937 3239514 o 1130612 8931 58579 2985 824 o 598
17388 3599152615 460549 1D:4 P 0.18.11640444| 1798 11919512 |105928432| 4855074 2877381 ) 1048050 2808 62690 o 812 ) 362
17389 3599245482 | 460549 1D:9 P 0.18.116.9.0899| 1798 10558108 [107295466| 4364050 2558957 o 956993 2225 63366 o 685 o 375
17390 3500288185 | 460549 1D:6 P 0.18.116.6.0.6.6.6| 1798 10808702 |107041211| 4062066 2602994 o 1038110 3086 62417 ] 845 o 565

Figure 4.34 Malicious “sinkhole-pwrtrace.csv”— 17,361 to 17,390 records.
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4.4.3 Sinkhole Attack Network Traffic Dataset
4.4.3.1 Sinkhole Attack Network Traffic Dataset — Generation Process

The approach followed for the network traffic dataset generation from the sinkhole attack scenario
was similar to the approach followed for the network traffic dataset generation from the benign loT
network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja simulator, was
similarly used for collecting data related to the corresponding network traffic features (e.g.,
source/destination IPv6 address, packet size, and communication protocol) from the network of the
attack scenario. During the simulation, the network traffic information was being shown in the top
part of the “Radio messages” output window as depicted in the top part of Figure 4.35.

2 Radio messages: showing 137/594 packets 52E=8
File Edit Analyzer View

No. | Time |From |To | Data

UITIS, 708 4 ST IS4 A T
554+12 01:15.722 2 = 61: 15.4 D 00:12:74:02:00:02:02:02 00:12:74:01:00:01:01:01|IPHC|IPv6|UDP 8765 5678| 000FAOF8 48656C6C 6F2032 s
567+1 01:15.760 2 4 61: 15.4 D 00:12:74:02:00:02:02:02 00:12:74:01:00: O1|IPHC|IPv6|UDP 8765 5678| 000FAOFE 48656C6C 6F2032
569+2 01:15.766 2 = 61: 15.4 D 00:12:74:02:00:02:02:02 00:12:74:01:00: 01| IPHC|IPv6|UDP 8765 5678| 000FAOF8 48656C6C 6F2032

01:15.775 2 : 01| IPHC| IPv6| UDP 8765 5678| 00DFAOF8 48656C6C 6F2032
574 01:15.780 1 2 5: 15.4 A
575+7 01:15.804 1 69: 15.4 D 00:12:74:01:00:01:01:01 00:12:74:02:00: 02| IPHC|IPv6|UDP 5678 8765| 001AFEA2 5265706C 79206672 6F6D2073 6. ..
583 01:15.829 1 2 69: 15.4 D 00:12:74:01:00:01:01:01 00:12:74:02:00: 02| IPHC|IPv6|UDP 5678 8765| 001AFEA2 5265706C 79206672 6FGD2073 6...
584 01:15.832 1 2 69: 15.4 D 00:12:74:01:00:01:01:01 00:12:74:02:00:02:02: 02| IPHC|IPv6|UDP 5678 8765| 001AFEA2 5265706C 79206672 6FG6D2073 6. ..
585 01:15.835 2 1,5 5: 15.4 A
1|l 586+8 01:15.856 2 78: 15.4 D 00:12:74:02:00:02:02:02 00:12:74:04:00:04:04:04|IPHC|IPv6|UDP 5678 8765| 001AFEA2 5265706C 79206672 6F6D2073 6... |V

IEEE 802.15.4 DATA #130

From OxABCD/00:12:74:02:00:02:02:02 to OxABCD/00:12:74:01:00:01:01:01

Sec = false, Pend = false, ACK = true, iPAN = true, DestAddr = Long, Vers. = 1, SrcAddr = Long

IPHC HC-06

TF = 3, NH = inline, HLIM = inline, CID = 1, SAC = stateful, SAM = 1, MCast = false, DAC = stateful, DAM = 2
Contexts: sci=0 dci=0

IPv6TC=0,FL=0

From aaaa:0000:0000:0000:0212:7406:0006:0606 to aaaa:0000:0000:0000:0000:0000:0000:0001

ubp
Src Port: 8765, Dst Port: 5678

Payload (11 bytes)
000FAGF8 48656C6C 6F2032 ....Hello 2

Figure 4.35 Network traffic information from the sinkhole attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the
“.../cooja/build” folder. Afterwards, the “loT_Simul.sh” file, described in Section 3.4.1, created a) a
new root folder named as “2021-10-29-23-23-49”, and b) the “nettraffic” folder, inside the “2021-
10-29-23-23-49” folder, where the “radiolog.pcap” file, copied from the “.../cooja/build” folder
located in the Cooja Simulator, was saved as “sinkhole-radiolog.pcap”. The “nettraffic” folder inside
the root folder “2021-10-29-23-23-49” and the “sinkhole-radiolog.pcap” file in the “nettraffic” folder
are shown in Figure 4.36.

v [ 2021-10-29-23-23-49 A Name Date modified Type Size
dataset ] sinkhole-radiolog.pcap 29/10/2021 23:39 PCAP File 42221KB
log
motedata
nettraffic

Figure 4.36 The “nettraffic” folder inside the root folder “2021-10-29-23-23-49” and the “sinkhole-radiolog.pcap” file.

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the
stored network traffic information from the “sinkhole-radiolog.pcap” file to the “sinkhole-
radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.37.

v 2021-10-29-23-23-49 L) Name Date modified Type Size
dataset -] sinkhole-radiolog 02/11
leg | sinkhole-radiolog.pcap 29
motedata E:] sinkhole-radiolog-ICMPv6 02 ft Excel C...
nettraffic -] sinkhole-radiolog-UDP 02 Microsoft Excel C...

Figure 4.37 The “nettraffic” folder inside the root folder “2021-10-29-23-23-49” and its included files.
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In the “nettraffic” folder, apart from the “sinkhole-radiolog.csv” file, we also used Wireshark,
following the same process as in Section 3.4.1, to generate two more files (i.e., “sinkhole-radiolog-
ICMPv6.csv” and “sinkhole-radiolog-UDP.csv”) from the “sinkhole-radiolog.pcap” file.

4.4.3.2 Sinkhole Attack Network Traffic Dataset — Generated Results

The sinkhole attack network traffic dataset consists of the following csv files which are located in the
“nettraffic” folder as described in Section 4.4.3.1: “sinkhole-radiolog.csv”’, “sinkhole-radiolog-
ICMPv6.csv”, and “sinkhole-radiolog-UDP.csv” files. In this Section, we present sets of records from
these files.

4.4.3.2.1 “sinkhole-radiolog.csv”

The generated malicious “sinkhole-radiolog.csv” file consists of 463,581 records and its first 30
records (i.e., 1-30) are depicted below in Figure 4.38.

B C D E F G H
No. Time Source Destination Protocol  Length Info
1 0.000000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
2 0.009000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
3 0.026000 feB80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
a 0.044000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
5 0.059000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
6 0.084000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
7 0.109000 fe80::212:7405:5:505 ffo2::1a ICMPv6E 64 RPL Control (DODAG Information Solicitation)
8 0.122000 fe80::212:7405:5:505 ffoz::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
9 0.135000 fe80::212:7405:5:505 ff02::1a ICMPV6E 64 RPL Control (DODAG Information Solicitation)
10 0.143000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
11 0.144000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
12 0.146000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
13 0.148000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
14 0.143000 feB80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
15 0.158000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
16 0.160000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
17 0.167000 fe80::212:7405:5:505 ffo2::1a ICMPv6E 64 RPL Control (DODAG Information Solicitation)
18 0.168000 fe80::212:7405:5:505 ffoz::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
19 0.163000 fe80::212:7405:5:505 ff02::1a ICMPV6E 64 RPL Control (DODAG Information Solicitation)
20 0.171000 fe80::212:7405:5:505 ff02::1a ICMPV6E 64 RPL Control (DODAG Information Solicitation)
21 0.173000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
22 0.179000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
23 0.180000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
24 0.194000 feB80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
25 0.195000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
26 0.196000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
27 0.198000 fe80::212:7405:5:505 ffo2::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
28 0.218000 fe80::212:7405:5:505 ffo2::1a ICMPv6E 64 RPL Control (DODAG Information Solicitation)
29 0.240000 fe80::212:7405:5:505 ffoz::1a ICMPVE 64 RPL Control (DODAG Information Solicitation)
30 0.252000 fe80::212:7405:5:505 ff02::1a ICMPV6E 64 RPL Control (DODAG Information Solicitation)

Figure 4.38 Malicious “sinkhole-radiolog.csv”—1 to 30 records.

4.4.3.2.2 “sinkhole-radiolog-ICMPv6.csv”

The generated malicious “sinkhole-radiolog-ICMPv6.csv” file consists of 404,290 records and its first
30 records (i.e., 1-30) are depicted below in Figure 4.39.
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B C D E F G H

No. Time Source Destination Protocol Length Info

1 0.000000 ffo: ICMPV6 64 RPL Control (DODAG Information Solicitation)
2 0.009000 ffo: ICMPV6 64 RPL Control (DODAG Information Solicitation)
3 0.026000 H ffo: ICMPVG 64 RPL Control (DODAG Information §

4 0.044000 :7405:5:505 ffo: ICMPV6 64 RPL Control [DODAG Information Solicitation)
5 0.055000 :7405:5:505 ffo: ICMPv6 64 RPL Control (DODAG Information $

6 0.084000 :7405:5:505 ffo: ICMPV6 64 RPL Control (DODAG Information §

7 0.109000 ffo: ICMPV6 64 RPL Control {[DODAG Infarmation So!

8 0.122000 ICMPVG 64 RPL Control (DODAG Information §

9 0.135000 ICMPV6 64 RPL Control (DODAG Information Solicitation)
10 0.143000 ICMPV6 64 RPL Control (DODAG Information Solicitation)
11 0.144000 ::212:7405:5:505 ICMPv6 64 RPL Control (DODAG Information Solicitation)
12 0.146000 ::212:7405:5:505 ICMPV6 64 RPL Control [DODAG Information Solicitation)
13 0.143000 212:7405:5:505 ICMPVG 64 RPL Control (DODAG Information Solicitation)
14 0.145000 :7405:5:505 ICMPV6 64 RPL Control (DODAG Information S tation)
15 0.158000 :17405:5:505 ICMPV6 64 RPL Control (DODAG Information Solicitation)
16 0.160000 212:7405:5:505 ICMPVG 64 RPL Control (DODAG Information Solicitation)
17 0.167000 :7405:5:505 ICMPV6 64 RPL Control [DODAG Information Solicitation)
18 0.168000 :7405:5:505 ICMPv6 64 RPL Control (DODAG Information Solicitation)
19 0.169000 :7405:5:505 ICMPV6 64 RPL Control (DODAG Information Solicitation)
20 0.171000 :7405:5:505 ICMPV6 64 RPL Control ([DODAG Information S

21 0.173000 212:7405:5:505 ICMPVG 64 RPL Control (DODAG Information Solicitation)
22 0.179000 :17405:5:505 ICMPV6 64 RPL Control (DODAG Information Solicitation)
23 0.180000 :7405:5:505 ICMPV6 64 RPL Control (DODAG Information S tation)
24 0.194000 212:7405:5:505 ICMPv6 64 RPL Control (DODAG Information Solicitation)
25 0.195000 fe80::212:7405:5:505 ICMPV6 64 RPL Control [DODAG Information Solicitation)
26 0.196000 ::212:7405:5:505 ICMPVG 64 RPL Control (DODAG Information Solicitation)
27 0.198000 212:7405:5:505 ICMPV6 64 RPL Control (DODAG Information Solicitation)
28 0.218000 :17405:5:505 ICMPV6 64 RPL Control (DODAG Information S tation)
29 0.240000 :7405:5:505 ICMPVG 64 RPL Control (DODAG Information Solicitation)
30 0.252000 ::212:7405:5:505 ICMPV6 64 RPL Control [DODAG Information Solicitation)

Figure 4.39 Malicious “sinkhole-radiolog-ICMPv6.csv”—1 to 30 records.

4.4.3.2.3 “sinkhole-radiolog-UDP.csv”

The generated malicious “sinkhole-radiolog-UDP.csv” file consists of 52,750 records and its first 30
records (i.e., 1-30) are depicted below in Figure 4.40.

B C D E F G H
No. Time Source Destination Protocol | Length Info
1 8.488000 2002:db8::212:7402:2:202 2002:db8:: uDP 52 Source port: ultraseek-http Destination port: rrac
2 8.490000 2002:db8::212:7402:2:202 2002:db uDP 52 Source port: ultraseek-http Destination port: rrac
3 8.490000 2002:db8::212:7402:2:202 2002:dbi UDP 52 Source port: ultraseek-http Destination port: rrac
4 8.491000 2002:db8::212:7402:2:202 2002:dbi uDP 52 Source port: ultraseek-http Destination port: rrac
5 8.493000 2002:db8::212:7402:2:202 2002:db8::ff: uDP 52 Source port: ultraseek-http Destination port: rrac
6 8.494000 2002:db8::212:7402:2:202 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
7 8.504000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac_Destination port: ultraseek-http
3 8.506000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac_Destination port: ultraseek-http
9 8.508000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 upP 6L Source port: rrac Destination port: ultraseek-http
10 8.508000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 UDP 6L Source port: rrac Destination port: ultraseek-http
11 8.509000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac Destination port: ultraseek-http
12 8.510000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac Destination port: ultraseek-http
13 8.511000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 UDP 61 Source port: rrac_Destination port: ultraseek-http
14 8.512000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac_Destination port: ultraseek-http
15 8.514000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uppP 61 Source port: rrac Destination port: ultraseek-http
16 8.514000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 6L Source port: rrac Destination port: ultraseek-http
17 8.515000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 UDP 6L Source port: rrac Destination port: ultraseek-http
13 8.516000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 6L Source port: rrac Destination port: ultraseek-http
19 8.516000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac Destination port: ultraseek-http
20 8.517000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac_Destination port: ultraseek-http
21 8.518000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac_Destination port: ultraseek-http
22 8.518000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uppP 61 Source port: rrac Destination port: ultraseek-http
23 8.519000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 6L Source port: rrac Destination port: ultraseek-http
24 8.521000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 6L Source port: rrac Destination port: ultraseek-http
25 8.522000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 6L Source port: rrac Destination port: ultraseek-http
26 8.523000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac Destination port: ultraseek-http
27 8.524000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uDP 61 Source port: rrac_Destination port: ultraseek-http
23 8.525000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 UDP 61 Source port: rrac_Destination port: ultraseek-http
23 8.525000 2002:db8::212:7401:1:101 2002:db8::212:7402:2:202 uppP 61 Source port: rrac Destination port: ultraseek-http
30 8.526000 2002:dbg::212:7401:1:101 2002:db8::212:7402:2:202 uDpP 6L Source port: rrac Destination port: ultraseek-http

Figure 4.40 Malicious “sinkhole-radiolog-UDP.csv”—1 to 30 records.
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4.5 Sleep Deprivation Attack Datasets

In this Section, we provide a detailed description of the approach followed to generate a set of
malicious datasets by implementing a sleep deprivation attack scenario in the Cooja simulator, as
shown in Figure 4.41.

Cooja Simulator —
Sleep Deprivation Attack Scenario

Network

(=[5]%]

View Zoom

fe80::L12.g01

\

feB80::1212:740a:aiala

|
11:101

" 1e80::212:7404:4:404

feg80:: 2

fe80::212:@309:9;909

fe8o:: 21 Q@xoe:s:eoe
Contiki plugin Cooja tool
“powertrace” “Radio messages”

e ————————

Sleep Deprivation Attack
“powertrace”
Dataset

P ————

Sleep Deprivation Attack
Network Traffic
Dataset

Figure 4.41 Sleep Deprivation Datasets generation by utilising the Cooja simulator.

4.5.1 Sleep Deprivation Attack Scenario — an example

The network topology of the simulated sleep deprivation attack scenario in the Cooja simulator
environment consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the
violet (malicious) UDP-client mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote
1) which is also the target of the attack through mote 4, as, as depicted in Figure 4.41. The
simulation duration was set to 60 mins and the motes’ outputs were printed out in the respective
window (e.g., Mote output) while simulations run, as shown in Figure 4.42. Moreover, the 8 yellow
(benign) UDP-client motes were configured to send text messages every 30 seconds, approximately,
to the UDP-server mote that was configured to provide a corresponding response. On the other
hand, the violet (malicious) UDP-client mote (i.e., mote 10) was compromised with malicious code,
as shown in Figure 4.43 and Figure 4.44, to generate high UDP traffic (i.e., a dummy message every
40 ms, approximately) and send it to the target mote which is mote 4. The malicious mote was
programmed to start 25 minutes later than the others allowing the network to work properly before
the attack. Finally, it is noteworthy to say that similar to the benign network scenario, the UDP
protocol was used at the Transport Layer, the IPv6 at the network layer, and the type of motes was
the Tmote Sky in the sleep deprivation attack scenario.
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Figure 4.42 Cooja Simulator — Sleep Deprivation attack scenario — Motes’ outputs.

Figure 4.43 Malicious code in “udp-client-sleep_depr.c” to generate high UDP traffic (i.e., a dummy message every 40
ms, approximately)

static void
_packet(voild *ptr)

char buf[MAX_PAYLOAD_LEN];

PRINTF("ID:%d, DATA send Du
sprintf(buf, !

uip_udp_packet_se (UDP_SERVER_PORT));

Figure 4.44 Malicious code in “udp-client-sleep_depr.c” to send out a dummy message
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4.5.2 Sleep Deprivation Attack “powertrace” Dataset
4.5.2.1 Sleep Deprivation Attack “powertrace” Dataset — Generation Process

The approach followed for the “powertrace” dataset generation from the sleep deprivation attack
scenario was similar to the approach followed for the “powertrace” dataset generation from the
benign loT network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly
enabled for collecting “powertrace” related features, summarised in Table 3, from the motes of the
attack scenario every two seconds. In Figure 4.45, the depicted mote output window displays the
captured “powertrace” information every two seconds and also the messages sent and received by
each mote during the simulation time (60 mins).

O] (R EEx
File Edit View
Time | Mote | Message

“ULT45.8IU 1074 174, DATA Sena -> "HELLO

01:45.814 1ID:5 ID:5, DATA send -> 'Hello 2'

01:45.991 ID:1  ID:1,DATA recv -> 'Hello 2', from, 4, to 1

01:45.994 ID:1  ID:1,DATA sending -> 'reply’ to ,ID:4,

01:46.019 1ID:7 ID:7, DATA send -> 'Hello 3'

01:46.156 1ID:4 ID:4, DATA recv 'Reply from server'

01:46.351 1ID:6 13573, ID:6, P, 0.18.116.6.0.6.6.6, 52, 210354, 3262624, 68771, 52375, 0, 23136, 1875, 63632, 0, 831, 0, 831
01:46.366 ID:1 ID:1,DATA recv -> 'Hello 2', from, 5, to 1

01:46,369 ID:1  ID:1,DATA sending -> 'reply’ to ,ID:5,

01:46.402 1D:8 13573, ID:8, P, 0.18.116.8.0.8.8.8, 52, 164802, 3308137, 43119, 36329, 0, 24282, 2196, 63308, 0, 1029, 0, 729

01:46.537 1ID:1 13591, ID:1, P, 0.18.116.1.0.1.1.1, 52, 159281, 3318418, 33402, 44457, 0, 24803, 10330, 59875, 4318, 3405, 0, 717

01:46.600 ID:2 13573, 1D:2, P 8.116.2.0.2.2.2, 52, 208100, 3264874, 54489, 53519, 0, 28312, 3391, 62116, 278, 1487, 0, 1103

01:46.782 1D:9 13573, ID:9. P 9, 52, 170632, 3302300, 43900, 42528, 0, 27058, 1867, 63639, 0, 577, 0, 577

01:46.800 1ID:3 13573, ID:3, P, 8.116.3.0.3.3.3, 52, 270501, 3202453, 83352, 69941, 0, 26422, 18383, 47189, 9328, 5605, 0, 451

01:46.810 1ID:4 13573, ID:4, P 4.4.4, 52, 158328, 3314612, 37101, 39199, 0, 23123, 4893, 60615, 1391, 1801, 0O, 527

01:46.843 1D:S 13573, 1ID:S, P S.5.5, 0, 28842, 5625, 59880, 1674, 1852, 0, 815 v

Filter:

.5.5, 52, 195454, 3277486, 48413, 50811,

Figure 4.45 Cooja Simulator— Sleep deprivation attack scenario — Mote output window.

When the timeout occurred, the simulation stopped, and all the captured information and prints
were stored in the “COOQJA.testlog” file. Afterwards, the “loT_Simul.sh” file, described in Section
3.3.1, created a) a new root folder named as “2021-10-27-15-06-36", and b) the “log” folder, inside
the “2021-10-27-15-06-36" folder, where the “COOJA.testlog” file was copied from the
“.../cooja/build” folder located in the Cooja Simulator. Then, the “loT_Simul.sh” file following the
same process, as described in Section 3.3.1, extracted the required “powertrace” information from
the “COOJA. testlog” file and saved it in the “sleep_depr-pwrtrace.csv” file in the “dataset” folder
that was also created by the batch file inside the “2021-10-27-15-06-36" folder, as shown below in
the left part of Figure 4.46. In the “dataset” folder, apart from the “sleep_depr-pwrtrace.csv” file,
the “loT_Simul.sh” file generated two more files (i.e., “sleep_depr-recv.csv” and “sleep_depr-
send.csv”), following the same process as in Section 3.3.1. The “sleep_depr-recv.csv” file and the
“sleep_depr-send.csv” file include the “received” and “sent” messages printed by the motes,
respectively.

2021-10-27-15-06-36 & Name Date modified Type Size
=g @] sleep_depr-pwrtrace 27/10/2021 15:22 2
log [:] sleep_depr-recy 27/10/2021 15:22 2
motedata a sleep_depr-send 2 2 2 2

Figure 4.46 Location of the generated “sleep_depr-pwrtrace.csv”, “sleep_depr-recv.csv”, and “sleep_depr-send.csv” files
by the “loT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the
“loT_Simul.sh” file extracted the information related to each mote from the “sleep_depr-
pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from
the “sleep_depr-pwrtrace.csv” file. The generated ten csv files (i.e., “sleep_depr-motel.csv”, ...,
“sleep_depr-motel0.csv”) were stored in the “motedata” folder, created also by the “loT_Simul.sh”
file, as shown in the left part of Figure 4.46.
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4.5.2.2 Sleep Deprivation Attack “powertrace” Dataset — Generated Results

The sleep deprivation attack “powertrace” dataset consists of the following csv files: “sleep_depr-
pwrtrace.csv’,  “sleep_depr-motel.csv’,  “sleep_depr-mote2.csv”,  “sleep_depr-mote3.csv”,
“sleep_depr-mote4.csv”, “sleep_depr-mote5.csv”, “sleep_depr-mote6.csv”, “sleep_depr-
mote7.csv”, “sleep_depr-mote8.csv”, “sleep_depr-mote9.csv”, and “sleep_depr-motel0.csv”. In this
Section, we present sets of records from the “sleep_depr-pwrtrace.csv”, and in Appendix 1 we
present sets of records from “sleep_depr-motel.csv”’, “sleep_depr-mote6.csv” and “sleep_depr-
motel0.csv” files.

4.5.2.2.1 “sleep_depr-pwrtrace.csv”

The generated malicious “sleep_depr-pwrtrace.csv” file consists of 17,240 records and its first 30
records (i.e., 1-30) and its last 30 records (17,211-17,240) are depicted in Figure 4.47 and Figure
4.48, respectively.

B C D E F G H I J K K M N o P C R S T u v w
id b Total measurements from the begining of the simulation [ Measurements for each of the 2-sec monitoring period
No Real time | Clock time D Rime Address | seq no all_cpu all_lpm [all_transmit| all_listen [all_idle_transmit] cpu Ipm | transmit | listen | idle_transmit | idle_listen
[us] (in ticks) (inticks) | (inticks) | (inticks) | (in ticks) (in ticks) (in ticks) [ (in ticks) | (in ticks) | (in ticks) | (in ticks) (in ticks)
1 2378800 261 1D:5 P 0.18.116.5.055.5 0 6763 59680 2591 422 0 6763 59680 2591 422 0 350
2 2668622 261 1D:4 P 0.18.116.4.04.4.4 0 2372 64068 o 599 0 2372 64069 o 599 0 565
3 2677720 261 1D:8 P 0.18.116.8.0.8.8.8 ) 2234 64207 o 375 o 2234 64207 0 375 0 375
4 2777047 261 1D:1 P 0.18.116.1.01.1.1 0 2553 63902 0 544 0 2553 63902 0 544 0 350
5 2898507 261 1D:7 P 0.18.116.7.0.7.7.7 0 2355 64086 0 536 0 2355 64086 0 536 0 350
6 3038542 261 1D:2 P 0.18.116.2.0.2.2.2 0 6884 59559 2591 604 0 6884 59559 2591 604 0 325
7 3116840 261 1D:3 P 0.18.116.3.03.3.3 0 2483 63959 0 761 0 2483 63959 o 761 0 325
8 3122111 261 1D:9 P 0.18.116.9.09.99 0 6882 59561 2591 605 0 6882 59561 2591 605 0 325
9 3224242 261 1D:6 P 0.18.116.6.0.6.6.6 ) 6894 59548 2591 619 0 6894 59549 2591 619 0 527
10 4378083 517 1D:5 P 0.18.116.5.055.5 1 7926 124011 2591 822 0 1160 64331 0 400 0 400
11 4669009 517 1D:4 P 0.18.116.4.04.4.4 ;! 3464 128471 0 999 0 1089 64402 0 400 0 400
12 4678115 517 1D:8 P 0.18.116.8.0.8.8.8 1 3326 128609 0 775 0 1089 64402 [ 400 0 400
13 4779437 517 ID:1 P 0.18.116.1.0.1.1.1 1 8285 123683 2987 989 0 5729 59781 2987 445 0 375
14 4898894 517 1D:7 P 0.18.116.7.0.7.7.7 1 3447 128488 0 936 0 1089 654402 o 400 0 400
15 5038355 517 1D:2 P 0.18.116.2.0.2.2.2 ;! 8442 123503 2591 1266 o 1555 63944 0 662 0 375
16 5117747 517 1D:3 P 0.18.116.3.03.3.3 1 3965 127979 0 1393 0 1479 64020 0 632 [ 375
17 5121653 517 1D:9 P 0.18.116.9.09.9.9 1 8045 123892 2591 1005 0 1160 64331 [ 400 0 400
18 5223775 517 1D:6 P 0.18.116.6.0.6.6.6 1 8057 123880 2591 1019 0 1160 64331 0 400 0 400
19 6378783 773 ID:5 P 0.18.116.5.0.5.5.5 2 9087 188345 2591 1222 0 1158 64334 o 400 0 400
20 6669712 773 1D:4 P 0.18.116.40444 2 4530 192839 0 1399 0 1123 64368 0 400 0 400
21 6678819 773 1D:8 P 0.18.116.8.0.8.8.8 2 4453 192977 o 1175 0 1124 64368 0 400 0 400
22 6779075 773 1D:1 P 0.18.116.1.01.1.1 2 9568 187908 2987 1389 0 1281 64225 o 400 0 400
23 6899599 773 1D:7 P 0.18.116.7.0.7.7.7 2 4573 192856 0 1336 [ 1123 64368 [ 400 0 400
24 7040060 773 1D:2 P 0.18.116.2.0.2.2.2 2 14549 182904 5579 1713 [ 6104 59401 2988 447 0 375
25 7118043 773 1D:3 P 0.18.116.3.033.3 2 5922 191529 0 2041 0 1954 63550 0 648 0 375
26 7122086 773 1D:9 { 0.18.116.9.09.9.9 2 9215 188217 2591 1405 0 1167 64325 0 400 0 400
27 7224398 773 1D:6 P 0.18.116.6.0.6.6.6 2 9581 187857 2591 1705 o 1521 63977 0 686 0 387
28 8379573 1029 ID:5 P 0.18.116.5.055.5 3 10665 252270 2591 2050 o 1575 63925 o 828 0 552
29 8670243 1029 1D:4 P [01811640444[ 3 6171 256764 [ 2101 o 1752 1578 | 63925 o 702 o 387
30 8679168 1029 1D:8 P 01811680888 3 5590 257335 [ 1575 o 1575 1134 | 64358 [ 400 o 400
Figure 4.47 Malicious “sleep_depr-pwrtrace.csv”’—1 to 30 records.
B ol D £ F G H | J K L M N o P C R S T U \i w
Total ents from the begining of the simulation surements for each of the 2-sec itoring period
No Real time | Clocktime| 1D Rime Address | seq no all_cpu all_lpm [all_transmit| all_listen all_idle_transmit] all_idle_listen cpu Ipm | transmit | listen [idle_transmit | idle_listen
[us] (in ticks) (inticks) | (inticks) | (inticks) | (in ticks) (in ticks) (in ticks) (in ticks) | (in ticks) [ (in ticks) [ (in ticks) | (in ticks) (in ticks)
17211 3594386348| 460037 1D:5 P 0.18.116.5.055.5| 1796 5931506 |111770240| 1244075 1944661 0 1349331 2143 63349 0 754 0 754
17212 3594681564| 460037 1D:4 P 0.18.116.4.04.44| 1796 19197054 | 98519438 | 8814547 6077396 0 1389936 17844 46750 8730 5516 0 1292
17213 3594686756| 460037 1D:8 | 0.18.116.8.08.8.8| 1796 4391407 |113333174| 586092 1055611 0 809018 1925 63584 0 400 0 400
17214 3594764468| 460038 1D:10 P 18.116.10.0.10.10.1 1046 22141393 | 95560457 | 12372811 | 5888151 0 885853 25199 402597 14204 7043 0 578
17215 3594788405| 460037 ID:1 P 0.18.116.1.01.1.1| 1796 19420461 | 98295853 | 9319168 6068223 [ 1214040 17763 47742 9613 5320 0 465
17216 3594907558| 460037 1D:7 P 0.18.116.7.0.7.7.7| 1796 4402955 |113321399| 578582 1102592 0 800563 1925 63584 0 400 "] 400
17217 3595045778| 460037 1D:2 P 0.18.116.2.0.2.2.2| 1796 5553246 |112147949| 977661 2162624 0 1649831 2190 63301 0 911 0 911
17218 3595129344| 460037 1D:9 P 0.18.116.9.09.9.9| 1796 5347103 |112376729| 1170323 1387884 0 794799 1934 63575 0 400 0 400
17219 3595184999| 460044 1D:3 P 0.18.116.3.03.3.3| 1796 20189520 97532318 | 8914730 6265133 0 1556182 10357 56007 3841 4121 0 1688
17220 3595231110| 460037 1D:6 P 0.18.116.6.06.6.6| 1796 4972330 |112751677| 911734 1270602 0 787320 1926 63583 0 400 o 400
17221 3596386349| 460293 1D:5 | 0.18.116.5.055.5| 1797 5933619 |111833621| 1244075 1945441 0 1350111 2110 63381 0 780 0 780
17222 3596680486 | 460293 1D:4 P 0.18.116.40444| 1797 19217970 98563997 | 8825942 6083539 0 1390786 20914 44558 11395 6143 0 850
17223 3596688176| 460293 1D:8 P 0.18.116.8.08.8.8| 1797 4396687 |113393408| 587868 1057542 o 809937 5277 60234 1776 1931 0 919
17224 3596764553 | 460294 1D:10 P 18.116.10.0.10.10.1 1047 22170710 95596639 | 12390530 | 5895807 0 886646 29314 36182 17719 7656 0 793
17225 3596788737| 460293 1D:1 P 0.18.116.1.01.1.1| 1797 19440190 | 98341626 | 9330440 6073957 0 1214504 19727 45773 11272 5734 [ 464
17226 3596909649| 460293 1D:7 P 0.18.116.7.0.7.7.7| 1797 4418860 |113371008| 587520 1107124 0 801609 15902 49609 8938 4532 0 1046
17227 3597046468 | 460293 1D:2 P 0.18.116.2.0.2.2.2| 1797 5555646 |112211042| 977661 2164214 0 1651414 2397 63093 0 1590 0 1583
17228 3597128708| 460293 1D:3 P 0.18.116.3.03.3.3| 1797 20202648 | 97582853 | 8921467 6269455 0 1557445 13126 50535 6737 4322 0 1263
17229 3597129356| 460293 1D:9 P 0.18.116.9.09.9.9| 1797 5349031 |112440311| 1170323 1388474 0 795389 1925 63582 0 590 0 590
17230 3597232853| 460293 1D:6 P 0.18.116.6.06.6.6| 1797 4985625 |11280389: 918749 1274344 0 787790 13292 52215 7015 3742 0 470
17231 460549 1D:5 P 0.18.116.5.0.5." 1798 5935722 |111897012| 1244075 1946031 ] 1350701 2100 63391 0 590 0 590
17232 3598680143 | 460549 1D:4 P 0.18.116.40444| 1798 19234279 | 98613187 | 8834105 6088487 0 1391288 16306 49190 8163 4948 0 502
17233 3598687826| 460549 1D:8 P 0.18.116.8.08.8.8| 1798 4403270 |113452337| 590855 1057993 0 810312 6580 58929 2987 451 [ 375
17234 3598788048| 460549 1D:1 P 0.18.116.1.0.1.1.1| 1798 19446218 | 98401105 | 9332864 6075964 0 1215284 6026 59479 2424 2007 0 780
17235 3598813908| 460556 1D:10 P 18.116.10.0.10.10.1 1048 22193055 | 95641412 | 12403567 | 5901830 [ 887537 22342 44773 13037 6023 0 891
17236 3598907545| 460549 1D:7 P 0.18.116.7.0.7.7.7| 1798 4420823 |113434556| 587520 1107524 0 802009 1960 63548 0 400 0 400
17237 3599045788| 460549 1D:2 P 0.18.116.2.0.2.2.2| 1798 5557802 |112274379| 977661 2165145 0 1652345 2153 63337 0 931 0 931
17238 3599128364 | 460549 1D:3 P 0.18.116.3.0.3.3.3| 1798 20217257 | 97633743 | 8928669 6273942 0 1558107 14606 50890 7202 4487 0 662
17239 3599129365| 460549 1D:9 P 0.18.116.9.0999| 1798 5351273 |11250: 1| 1170323 1389129 0 795764 2239 63270 0 655 o 375
17240 3599231134| 460548 1D:6 P 0.18.116.6.06.6.6| 1798 4987576 |112867451| 918749 1274744 0 788190 1948 63559 0 400 0 400

Figure 4.48 Malicious “sleep_depr-pwrtrace.csv”—17,211 to 17,240 records.
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4.5.3 Sleep Deprivation Attack Network Traffic Dataset
4.5.3.1 Sleep Deprivation Attack Network Traffic Dataset — Generation Process

The approach followed for the network traffic dataset generation from the sleep deprivation attack
scenario was similar to the approach followed for the network traffic dataset generation from the
benign loT network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja
simulator, was similarly used for collecting data related to the corresponding network traffic
features (e.g., source/destination IPv6 address, packet size, and protocol) from the network of the
attack scenario. During the simulation, the network traffic information was being shown in the top
part of the “Radio messages” output window as depicted in the top part of Figure 4.49.

ﬁ Radio messages: showing 30/53 packets 9@8
File Edit Analyzer View

No. Time {From V\To :Data \
22 01:46. 8% - :
23 01:46.830 6

15.4 D
24 01:46.832 1 - 15.4 D
15.4 D
26+14 01:46.836 1 - : 15.4 D
4141 01:46.884 1 - : 15.4 D
43 01:46.889 3 1 1 15.4 A
4447 01:46.906 3 - 70: 15.4 D 00:12:74:03:00:03:03:03 00:12:74:05:00:05:05: 05| IPHC|IPv6|UDP 5678 8765|001AFFAS 5265706C 79206672 6F6D2. ..
52 01:46.932 3 5 70: 15.4 D 00:12:74:03:00:03:03:03 00:12:74:05:00:05:05: 05| IPHC| IPv6|UDP 5678 8765|001AFFAS 5265706C 79206672 6FED2. ..
53 01:46.934 S 3 5: 15.4 A

IEEE 802.15.4 DATA #119

From OxABCD/00:12:74:06:00:06:06:06 to 0xABCD/00:12:74:02:00:02:02:02

Sec = false, Pend = false, ACK = true, iPAN = true, DestAddr = Long, Vers. = 1, SrcAddr = Long

IPHC HC-06

TF = 3, NH = inline, HLIM = inline, CID = 1, SAC = stateful, SAM = 1, MCast = false, DAC = stateful, DAM = 2
Contexts: sci=0 dci=0

IPv6 TC=0,FL=0

From aaaa:0000:0000:0000:0212:7407:0007:0707 to aaaa:0000:0000:0000:0000:0000:0000:0001

ubpp

Src Port: 8765, Dst Port: 5678

Payload (11 bytes)
000F9EFS 48656C6C 6F2033 .v..Hello 3

Figure 4.49 Network traffic information from the sleep deprivation attack scenario in the “Radio messages” output
window.

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the
“.../cooja/build” folder. Afterwards, the “loT_Simul.sh” file, described in Section 3.4.1, created a) a
new root folder named as “2021-10-27-15-06-36", and b) the “nettraffic” folder, inside the “2021-
10-27-15-06-36" folder, where the “radiolog.pcap” file, copied from the “.../cooja/build” folder
located in the Cooja Simulator, was saved as “sleep_depr-radiolog.pcap”. The “nettraffic” folder
inside the root folder “2021-10-27-15-06-36” and the “sleep_depr-radiolog.pcap” file in the
“nettraffic” folder are shown in Figure 4.50.

2021-10-27-15-06-36 () Mame Date modified Type Size
dataset | | sleep_depr-radiclog.pcap 27/10/2021 15:22 PCAP File 50 460 KB
log
motedata
nettraffic

Figure 4.50 The “nettraffic” folder inside the root folder “2021-10-27-15-06-36" and the “sleep_depr-radiolog.pcap” file.

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the
stored network traffic information from the “sleep_depr-radiolog.pcap” file to the “sleep_depr-
radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.51.

~

2021-10-27-15-06-36 L Name Date modified Type Size
dataset -] sleep_depr-radialog

log | | sleep_depr-radiolog.pcap

motedata £ sleep_depr-radiolog-ICMPvE

nettraffic E: sleep_depr-radiolog-UDP 27/10/2021 15:31

Figure 4.51 The “nettraffic” folder inside the root folder “2021-10-27-15-06-36"and its included files.

84



In the “nettraffic” folder, apart from the “sleep_depr-radiolog.csv” file, we also used Wireshark,
following the same process as in Section 3.4.1, to generate two more files (i.e., “sleep-depr-radiolog-
ICMPv6.csv” and “sleep_depr-radiolog-UDP.csv”) from the “sleep_depr-radiolog.pcap” file.

4.5.3.2 Sleep Deprivation Attack Network Traffic Dataset — Generated Results

The sleep deprivation attack network traffic dataset consists of the following csv files which are
located in the “nettraffic” folder as described in Section 4.4.3.1: “sleep_depr-radiolog.csv”, “sleep-
depr-radiolog-ICMPv6.csv”, and “sleep_depr-radiolog-UDP.csv” files. In this Section, we present sets
of records from these files.

4.5.3.2.1 “sleep_depr-radiolog.csv”

The generated malicious “sleep_depr-radiolog.csv” file consists of 571,079 records and its first 30
records (i.e., 1-30) are depicted below in Figure 4.52.

B C | D | E | F |6 | H
No. Time Source Destination Protocol Length Info
1 0.000000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
2 0.034000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
3 0.086000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
4 0.110000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
5 0.115000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
6 0.119000 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
7 0.123000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
8 0.127000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
9 0.131000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
10 0.136000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
11 0.158000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
12 0.179000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
13 0.197000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
14 0.214000 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
15 0.225000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
16 0.241000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
17 0.258000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
18 0.278000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
19 0.305000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
20 0.312000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
21 0.315000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
22 0.317000 fe80::212:7405:5:505 ff02::1a ICMPv6 64 RPL Control (DODAG Information Solicitation)
23 0.320000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
24 0.322000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
25 0.325000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
26 0.327000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
27 0.330000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
28 0.332000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
29 0.334000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
30 0.337000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)

Figure 4.52 Malicious “sleep_depr-radiolog.csv”’—1 to 30 records.

4.5.3.2.2 “sleep-depr-radiolog-ICMPv6.csv”

The generated malicious “sleep_depr-radiolog-ICMPv6.csv” file consists of 30,338 records and its
first 30 records (i.e., 1-30) are depicted below in Figure 4.53.
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| B (¢ D E F G | H
No. Time Source Destination Protocol Length Info
1 0.000000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
2 0.034000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
3 0.086000 fe80::212:7405:5:505 ff02::1a ICMPvV6 64 RPL Control (DODAG Information Solicitation)
4 0.110000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
5 0.115000 fe80::212:7405:5:505 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
6 0.119000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
7 0.123000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
8 0.127000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
9 0.131000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
10 0.136000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
11 0.158000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
12 0.179000 fe80::212:7405:5:505 ff02::1a ICMPvV6 64 RPL Control (DODAG Information Solicitation)
13 0.197000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
14 0.214000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
15 0.229000 | fe80::212:7405:5:505 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
16 0.241000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
17 0.258000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
18 0.278000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
19 0.305000 fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
20 0.312000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
21 0.315000 | fe80::212:7405:5:505 ffo2::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
22 0.317000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
23 0.320000 | fe80::212:7405:5:505 f02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
24 0.322000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
25 0.325000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
26 0.327000 | fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
27 0.330000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
28 0.332000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
29 0.334000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)
30 0.337000 fe80::212:7405:5:505 ff02::1a ICMPV6 64 RPL Control (DODAG Information Solicitation)

Figure 4.53 Malicious “sleep_depr-radiolog-ICMPv6.csv” —1 to 30 records.

4.5.3.2.3 “sleep_depr-radiolog-UDP.csv”

The generated malicious “sleep _depr-radiolog-UDP.csv” file consists of 526,799 records and its first

30 records (i.e., 1-30) are depicted below in Figure 4.54.

B C D E F G H

No. Time Source Destination | Protocol | Length _Info

2174 7.911000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 uDpP 52 Source port: ultraseek-http Destination port: rrac
2175 7.912000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
2176 7.913000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 upP 52 Source port: ultraseek-http Destination port: rrac
2177 7.914000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 upP 52 Source port: ultraseek-http Destination port: rrac
2178 7.916000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 upP 52 Source port: ultraseek-http Destination port: rrac
2179 7.918000 2002:db8::212:7405:5:505 2002:db8::ff: uDP 52 Source port: ultraseek-http Destination port: rrac
2180 7.919000 2002:db8::212:7405:5:505 2002:db8: uppP 52 Source port: ultraseek-http Destination port: rrac
2181 7.922000 2002:db8::212:7405:5:505 2002:db8::ff: uDP 52 Source port: ultraseek-http Destination port: rrac
2182 7.923000 2002:db8::212:7405:5:505 2002:db8: ubP 52 Source port: ultraseek-http Destination port: rrac
2183 7.924000 2002:db8::212:7405:5:505 2002:db8: ubpP 52 Source port: ultraseek-http Destination port: rrac
2184 7.925000 2002:db8::212:7405:5:505 2002:db8:; upP 52 Source port: ultraseek-http Destination port: rrac
2185 7.926000 2002:db8::212:7405:5:505 2002:db8: upP 52 Source port: ultraseek-http Destination port: rrac
2186 7.926000 2002:db8::212:7405:5:505 2002:db8::ff: upP 52 Source port: ultraseek-http Destination port: rrac
2187 7.927000 2002:db8::212:7405:5:505 2002:db8: uppP 52 Source port: ultraseek-http Destination port: rrac
2188 7.927000 2002:db8::212:7405:5:505 2002:db8::ff: upP 52 Source port: ultraseek-http Destination port: rrac
2189 7.928000 2002:db8::212:7405:5:505 2002:db8::ff: uppP 52 Source port: ultraseek-http Destination port: rrac
2190 7.929000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
2191 7.929000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 upP 52 Source port: ultraseek-http Destination port: rrac
2192 7.930000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 UDP 52 Source port: ultraseek-http Destination port: rrac
2193 7.930000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 uoP 52 Source port: ultraseek-http Destination port: rrac
2194 7.931000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 upP 52 Source port: ultraseek-http Destination port: rrac
2195 7.933000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 ubDP 52 Source port: ultraseek-http Destination port: rrac
2196 7.934000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 uppP 52 Source port: ultraseek-http Destination port: rrac
2197 7.935000 2002:db8::212:7405:5:505 2002:db8::ff:fe00:1 uDP 52 Source port: ultraseek-http Destination port: rrac
2198 7.936000 2002:db8::212:7405:5:505 2002:db8::ff: uppP 52 Source port: ultraseek-http Destination port: rrac
2199 7.937000 2002:db8::212:7405:5:505 2002:db8: UDP 52 Source port: ultraseek-http Destination port: rrac
2200 7.938000 2002:db8::212:7405:5:505 2002:db8: uppP 52 Source port: ultraseek-http Destination port: rrac
2201 7.939000 2002:db8::212:7405:5:505 2002:db8: uDP 52 Source port: ultraseek-http Destination port: rrac
2202 7.940000 2002:db8::212:7405:5:505 2002:db8: upP 52 Source port: ultraseek-http Destination port: rrac
2203 7.941000 2002:db8::212:7405:5:505 2002:db8: UDP 52 Source port: ultraseek-http Destination port: rrac

Figure 4.54 Malicious
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4.6 Summary

This Chapter provided a detailed description of the approach proposed to generate a set of
malicious datasets from the following attack scenarios implemented in the Cooja simulator: i) UDP
flooding attack, ii) blackhole attack, iii) sinkhole attack, and iv) sleep deprivation attack. Similar to
the approach followed for the generation of the benign datasets in Section 3, the loT-specific
information from the simulated attack scenarios was captured from the Contiki plugin “powertrace”
and the Cooja tool “Radio messages” in order to generate the corresponding “powertrace” and
network traffic datasets for each of the simulated attack scenarios within csv files. The structure of
the generated malicious loT datasets from the above mentioned four attack scenarios is shown
below in Figure 4.55.

udp-flood-motel.csv
UDP Flooding Attack

“powertrace” Dataset udp-flood-pwrtrace.csv :
UDP Flooding Attack udp-flood-mote6.csv
Datasets
. udp-flood-radiolog.csv
UDP Flooding Attack
Network Traffic Dataset / udp-flood-radiolog|CMPv6.csv
\ udp-flood-radiologUDP.csv
blackhole-motel.csv
Blackhole Attack
“powertrace” Dataset blackhole-pwrtrace.csv
Blackhole Attack blackhole-mote10.csv
Datasets
blackhole-radiolog.csv
Blackhole Attack Network
Traffic Dataset / blackhole-radiolog-ICMPv6.csv
\ blackhole-radiolog-UDP.csv
sinkhole-motel.csv
Sinkhole Attack
“powertrace” Dataset sinkhole-pwrtrace.csv
Sinkhole Attack sinkhole-mote10,csv
Datasets
. sinkhole-radiolog.csv
Sinkhole Attack Network
Traffic Dataset / sinkhole-radiolog-ICMPv6.csv
\ sinkhole-radiolog-UDP.csv
sleep_depr-motel.csv
Sleep Deprivation Attack
“powertrace” Dataset sleep_depr-pwrtrace.csv
Sleep Deprivation sleep_depr-mote10.csv
Attack Datasets

sleep_depr-radiolog.csv

Sleep Deprivation Attack
Network Traffic Dataset / sleep_depr-radiolog-ICMPV6.csv

\ sleep_depr-radiolog-UDP.csv

Figure 4.55 Generated Malicious loT Datasets Structure

In principle, the proposed approach in this Chapter can be extended for generating malicious loT
datasets from j different scenarios of i different attack types, where each attack scenario,
implemented in the Cooja simulator, may include n different motes. The generic structure of
malicious loT datasets generated according to the proposed approach is shown in Figure 4.56.
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Figure 4.56 Malicious loT Datasets — Generic Structure
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Chapter 5 Datasets Analysis

5.1 Introduction

This Chapter is focused on the analysis of the generated benign “powertrace” and network traffic
datasets, presented in Chapter 3, and the generated malicious “powertrace” and network traffic
datasets, demonstrated in Chapter 4. The Chapter starts with the analysis of the malicious
“powertrace” datasets to investigate whether their raw features can be important in the detection
of anomalies in the network-level power profiling of low-power IoT devices due to UDP flooding
attacks, blackhole attacks, sinkhole attacks, or sleep deprivation attacks. Next, the Chapter continues
with investigating the extraction of new features, more informative and non-redundant, based on
the raw features of the generated benign and malicious datasets. The new features are intended to
constitute valuable features for anomaly-based detection of UDP flooding attacks, blackhole attacks,
sinkhole attacks and sleep deprivation attacks in loT networks. To this end, the total energy
consumption of each mote is investigated as a valuable feature in Section 5.2.2. Last but not least,
the generated benign and malicious network traffic datasets are also analysed in Section 5.3.1 to
derive new features more informative in terms of the behaviour of the network traffic.

5.2 “powertrace” Datasets Analysis

5.2.1 Malicious “powertrace” Datasets Analysis — Feature Selection

The generated malicious “powertrace” datasets, presented in Chapter 4 include information about
raw features (e.g., “all_cpu”, “all_transmit”, “all_listen”, “cpu”, “lpm”, etc.) that can be analysed to
investigate whether they can be important in the detection of anomalies in the network-level power
profiling of low-power loT devices (i.e., motes) [107] due to one of the following attacks in the loT
network: UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack.
Towards this direction, the Mutual Information (MI) method is applied to measure the importance of
the different features of each malicious “powertrace” dataset (i.e., “udp-flood-pwrtrace.csv”,
“blackhole-pwrtrace.csv”, “sinkhole-pwrtrace.csv”, and “sleep_depr-pwrtrace.csv”) and identify the
most significant ones. The MI method was selected as it is commonly used to measure the
usefulness of a feature in discriminating the different classes in a dataset [108]. Before applying the
MI method, all malicious “powertrace” datasets were pre-processed in the following way: the
feature “Clock_time” was filtered out along with the features related to the simulation duration (i.e.,
“all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, ”all_idle_transmit”, and “all_idle_listen” features)
and the “seq no” feature. Besides that, the “P” feature was omitted, because it only has a fixed value
throughout all of the collected records. Finally, the “ID” and “Rime Address” were also filtered out

because it was observed that they led to overfitting.

5.2.1.1 UDP Flooding Attack “powertrace” Dataset Analysis

The following features from the processed “udp-flood-pwrtrace.csv” file were the features whose
importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious)
by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The
results, sorted by value in descending order, are shown below in Table 5.1, where the

“idle_transmit” feature is the one with the least importance.
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Feature Ml (in bits)
“transmit” 0.3571
“idle_listen” 0.3432
“Ipm” 0.2669
“cpu” 0.2630
“listen” 0.1888
“idle_transmit” 0.0039

Table 5.1 Mutual Information — Features — “udp-flood-pwrtrace.csv”.

In addition, the average values of the first five features included in Table 5.1 for each mote were
calculated and the results are shown below in Figure 5.1.

Average "transmit" (in ticks)

Average "idle_listen" (in ticks)

1400
1200
1000
800
600
400
= o
0
D D D ) D >
o & & & & o
& ,»\ '\,\ o ,9\ P
0 & & & & &
S & o ) & &
& & & & € O
&
\(‘0
&
(QG
Average "cpu" (in ticks)

30000

25000

20000

15000

10000

5000

° = /= | =
& & & & & &
\.r"ca \e& \‘}\E’ & & &
& & & & & &
& & & & & &
&
\‘.
&
&

Average "listen" (in ticks)

16000
14000
12000
10000
BO0O
6000
4000
2000
0 [ | | | |
B 2 D ) 3 D
& & & & & &
& & & & & &
& & & & & Q&“Q
&
&
g
&
(a)
Average "lpm" (in ticks)
70000
60000
50000
40000
30000
20000
10000
0
N R R R 2 a
"é_‘a G\e“ & @z° \E}F}\ é\é‘
S & & & & &
& & & & & &
8 & & & & &
&
\(’0
&
(QD
(c)
8000
7000
6000
5000
4000
3000
2000
1000
: H =
& & &
& A o
.@} & &
& & &

(e)

Figure 5.1 “udp-flood-pwrtrace.csv” - Average values (in ticks) for “transmit”, “idle_listen”, “lpm”, “cpu”, and “listen”.
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Based on the results included in Figure 5.1, the following observations have been made:

e Mote 6 (i.e.,, compromised client) and mote 1 (i.e., UDP-server) have the highest average
value for the “transmit” feature. Although this is expected for mote 1 as it the server in the
loT network scenario, it is not normal for a benign client. Nevertheless, it is expected for a
compromised mote implementing a UDP flooding attack by transmitting many UDP packets
to the target mote (i.e., mote 1 — UDP-server mote).

e Mote 6 (i.e., compromised client) and mote 1 (i.e., UDP-server) have the lowest average
value for the “lpm” feature. Although this is expected for mote 1 as it the server in the loT
network scenario, it is not expected for a benign client. Nevertheless, it is expected for a
compromised mote implementing a UDP flooding attack by generating and transmitting
many UDP packets.

e Mote 6 (i.e., compromised client) and mote 1 (i.e., UDP-server) have the highest average
value for the “cpu” feature. Although this is expected for mote 1 as it the server in the loT
network scenario, it is not expected for a benign client. However, it is expected for a
compromised mote implementing a UDP flooding attack by generating and transmitting
many UDP packets to the target mote (i.e., mote 1 — UDP-server mote).

e Mote 6 (i.e., compromised client) has the highest average value for the “listen” feature that
is expected for the compromised client that we implemented to simulate a UDP flooding
attack as it receives a high number of responses (i.e., a kind of acknowledgement packets
sent back by the target-server) due the way the compromised mote was implemented.

Therefore, based on the information included in Table 5.1 and the above observations from Figure
5.1, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from the
“udp-flood-pwrtrace.csv” dataset as its Ml is close to zero, meaning that the “idle_transmit” feature
provides very little information for the “label” feature (i.e., “0” for normal and “1” for malicious);
and b) the following features can be valuable for anomaly-based detection of UDP flooding attacks in
loT networks as they can characterise the behaviour of the compromised node: “transmit”,
“idle_listen”, “listen”, “lpm”, and “cpu”.

5.2.1.2 Blackhole Attack “powertrace” Dataset Analysis

The following features from the processed “blackhole-pwrtrace.csv” file were the features whose
importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious)
by applying the Ml method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The
results, sorted by value in descending order, are shown below in 5.2, where the “idle_transmit”

feature is the one with the least importance.

Feature Ml (in bits)
“idle_listen” 0.2217
“listen” 0.2214
“Ipm” 0.1533
“cpu” 0.1475
“transmit” 0.0101
“idle_transmit” 0.0020

Table 5.2 Mutual Information — Features — “blackhole-pwrtrace.csv”.
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Furthermore, the average values of the first five features included in Table 5.2 for each mote were
calculated and the results are presented below in Figure 5.2.
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Figure 5.2 “blackhole-pwrtrace.csv” - Average values (in ticks) for “idle_listen”, “listen”, “lpm”, “cpu”, and “transmit”.

Based on the results included in Figure 5.2, the following observations have been made:

e Mote 10 (i.e., compromised client) has the highest average value for the “lpm” feature
which is expected for a compromised mote implementing a blackhole attack by dropping the
packets that it has to forward.

e Mote 10 (i.e., compromised client) has the lowest average value for the “cpu” feature which
is expected for a compromised mote implementing a blackhole attack by dropping the
packets that it has to forward.

e Mote 10 (i.e., compromised client) has the lowest average value for the “transmit” feature
(i.e., it is 0), which is not very common for benign client, but it is expected for a
compromised mote dropping the packets that it has to forward in order to implement a
blackhole attack.
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e The average value for the “listen” and “idle_listen” features are zero because of the way we
implemented the blackhole attack. Both features should be higher because of the behaviour
of the compromised mote that implements a blackhole attack. In particular, we
programmed the compromised mote to switch off, after 25 minutes from the beginning, not
only the transmission feature in order to disrupt the communication chain but also the
receiving feature. The fix of this issue in the blackhole implementation in the Cooja simulator
is going to be part of our future work.

Consequently, based on the information included in Table .2 and the above observations derived
from Figure 5.2, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted
from the “blackhole-pwrtrace.csv” dataset as its Ml is close to 0, meaning that the “idle_transmit”
feature provides very little information for the “label” feature (i.e., “0” for normal and “1” for
malicious); and b) the following features can be valuable for anomaly-based detection of blackhole
attacks in l1oT networks as they can characterise the behaviour of the compromised mote: “lpm”,
“cpu”, and “transmit”. The importance of the “listen” and “idle_listen” features that achieve the
highest Ml scores will be evaluated further in the near future, when the implementation issue is
fixed, based also on their average values.

5.2.1.3 Sinkhole Attack “powertrace” Dataset Analysis

The following features from the processed “sinkhole-pwrtrace.csv” file were the features whose
importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious)
by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The
results, sorted by value in descending order, are shown below in Table , where the “idle_transmit”

feature is the one with the least importance.

Feature Ml (in bits)
“cpu” 0.1009
“Iom” 0.0899

“transmit” 0.0698
“listen” 0.0518
“idle_listen” 0.0174
“idle_transmit” 0.0000

Table 5.3. Mutual Information — Features — “sinkhole-pwrtrace.csv”.

Furthermore, the average values of the first five features included in Table 5.3 for each mote were
calculated and the results are presented below in Figure 5.3.
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Ipm”, “listen”, “transmit” and “idle_listen”.

Based on the results included in Figure 5.3, the following observations have been made:

Mote 10 (i.e., compromised client) has the lowest average value for the “cpu” feature which
is expected for a compromised mote implementing a sinkhole attack by dropping the
received packets before they are processed and forwarded.

Mote 10 (i.e., compromised client) has the highest average value for the “lpm” feature
which is expected for a compromised mote implementing a sinkhole attack by dropping the
received packets before they are processed and forwarded.

Mote 10 (i.e., compromised client) has the lowest average value for the “transmit” feature,
which is expected for a compromised mote that drops the received packets that it has to
forward in order to implement a sinkhole attack. However, the average value of the
transmit” feature is not zero because at the beginning of the simulation the compromised
mote spends time to proclaim appealing false capabilities so that nearby motes will choose it
as the forwarding mote in the routing process due to its very attractive false capabilities.

Mote 10 (i.e., compromised client) has the highest average value for the “idle_listen”
feature which is not very common for a benign client, but it is expected for a compromised



mote implementing a sinkhole attack as it should spend time listening to the medium to
check if there is any packet in the air even though there is no packet being transmitted to it.
It is worthwhile mentioning that the compromised mote that we programmed for the
implementation of the sinkhole attack scenario in the Cooja simulator is a UDP-server mote
and not a client mote in order to achieve the desired behaviour for the compromised mote
that implements a sinkhole attack. This also explains the fact that its average value for the
“idle_listen” feature is comparable, although higher, with the corresponding value of mote 1
which is the benign server of the sinkhole scenario.

Therefore, based on the information included in Table 5.3 and the above observations derived from
Figure 5.3, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from
the “sinkhole-pwrtrace.csv” dataset as its Ml is 0, meaning that the “idle_transmit” feature provides
zero information for the “label” feature (i.e., “0” for normal and “1” for malicious); and b) the
following features can be valuable for anomaly-based detection of sinkhole attacks in loT networks
as they can characterise the behaviour of the compromised mote: “cpu”, “lpm”, “transmit”,
“idle_listen” and “listen”.

5.2.1.4 Sleep Deprivation Attack “powertrace” Dataset Analysis

The following features from the processed “sleep_depr-pwrtrace.csv” file were the features whose
importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious)
by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The
results, sorted by value in descending order, are shown below in Table 5.4, where the

“idle_transmit” feature is the one with the least importance.

Feature Ml (in bits)
“transmit” 0.1944
“cpu” 0.1200
“lpm” 0.1166
“listen” 0.0946
“idle_listen” 0.0859
“idle_transmit” 0.0024

Table 5.4 Mutual Information — Features — “sleep_depr-pwrtrace.csv”.

In addition, the average values of the first five features included in Table 5.4 for each mote were
calculated and the results are demonstrated below in Figure 5.4.
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Figure 5.4 “sleep_depr-pwrtrace.csv” - Average values (in ticks) for “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”.

Based on the results included in Figure 5.4, the following observations have been made:

Mote 10 (i.e., compromised client) has the highest average value for the “transmit” feature
which is expected for a compromised mote implementing a sleep deprivation attack by
transmitting a high UDP traffic volume to the target mote (i.e., mote 4) which is the closest
mote to the compromised mote.

Mote 10 (i.e., compromised client) has the highest average value for the “cpu” feature which
is expected for a compromised mote implementing a sleep deprivation attack by generating
and transmitting many UDP packets to the target mote in order to break its programmed
sleep routines and keep it continuously active until it is shut down due to a drained battery.
Mote 10 (i.e., compromised client) has the lowest average value for the “lpm” feature which
is expected for a compromised mote implementing a sleep deprivation attack by generating
and transmitting many UDP packets to the target mote.

Mote 10 (i.e., compromised client) has the highest average value for the “listen” feature that
is expected for the compromised client that we implemented to simulate a sleep deprivation
attack as it receives a high number of responses (i.e., a kind of acknowledgement packets
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sent back by the server when it receives, via forwarding, the UDP packets sent by the
compromised mote to mote4) due the way the compromised mote was implemented.

Therefore, based on the information included in Table 5.4 and the above observations derived from
Figure 5.4, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from
the “sleep_depr-pwrtrace.csv” dataset as its score for Ml is close to zero, meaning that the
“idle_transmit” feature provides very little information for the “label” feature (i.e., “0” for normal
and “1” for malicious); and b) the following features can be valuable for anomaly-based detection of
sleep deprivation attacks in loT networks as they can characterise the behaviour of the
compromised node: “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”.
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5.2.2 Benign and Malicious “powertrace” Datasets Analysis — Feature Extraction
The generated malicious “powertrace” datasets, presented in Chapter 4 include information about
raw features (e.g., “all_cpu”, “all_Ipm”, “all_transmit”, “all_listen”, “all_idle_transmit”,

” “" ” "

“all_idle_listen”, “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit”, “idle_listen” etc.) that can be
used to derive new features more informative, in terms of the behaviour of each mote, and non-
redundant. The new features are intended to constitute valuable features for training and evaluating
AIDS for loT networks. Towards this direction, the total energy consumption of each mote in an loT
network is investigated in this Section as a valuable feature for attack detection.

Based on [109] and [110], the total energy consumption of each mote, at the reading (i.e., record) i,
is given by the sum of a) the energy consumption in the CPU state; b) the energy consumption in the
LPM state; c) the energy consumption in the TX state; and d) the energy consumption in the RX
state, at the reading (i.e., record) i, as shown in the equation below:

EtOtali(m]) = ECputotal[ + Elpmtotali + Etxtotali + Erxtotah':
= (Iyy X Viyy X T, I Vi XT Ty X Vi X T (5.1)
- ( cpu X cpu X cpui) + ( lpm X lpm X lpmi) + ( tx X Vix X txi)

+ (IT'.X X V;’x X Trx,-)

where

Ipu: the nominal current in the CPU state;

lipm: the nominal current in the LPM state;

Itx: the nominal current in the TX state;

Ix: the nominal current in the RX state;

Vepu: the nominal voltage in the CPU state;

Viom: the nominal voltage in the LPM state;

Vi: the nominal voltage in the TX state;

Vix: the nomnal voltage in the RX state;

_ cpu; (# ticks) _cpuy (# ticks)
PYi " RTIMER_ARCH_SECOND 32,768

T _ lpm; (# ticks) _ lpm; (# ticks)
’™: ™ RTIMER_ARCH_SECOND ~ 32,768
tx; (# ticks) _ tx;(# ticks)

T,. = =
Y™ RTIMER_ARCH_SECOND 32,768

T rx ;(# ticks) _ rx; (# ticks)
"™ " RTIMER_ARCH SECOND =~ 32,768
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Based on Equation (5.1) and Table 5.5 [105] that provides the typical operating conditions for a
Tmote Sky mote, the total energy consumption, at the reading (i.e., record) i, is given by the

Equation (5.2):

MIN NO,M MAX | UNIT
(Typical)
Supply voltage 2.1 3.0 3.6 \Y
Supply voltage during flash memory programming 2.7 3.0 3.6 \Y
Operating free air temperature -40 85 oC
Current Consumption: MCU on, Radio RX 21.8 23 mA
Current Consumption: MCU on, Radio TX 19.5 21 mA
Current Consumption: MCU on, Radio off 1800 2400 A
Current Consumption: MCU idle, Radio off 54.5 1200 MA
Current Consumption: MCU standby 5.1 21.0 MA
Table 5.5 Typical Operating Conditions for Tmote Sky motes [105].
Evota,(m)) = 1.8 x 3 X (%) + 0.0545 X 3 X (%)
+19.5 x 3 X (—txi(# tiCkS)) + 21.8 X3 X (_rxi # tiCkS)> o
32,768 32,768

5.2.2.1 Benign “powertrace” Dataset — Average Total Energy Consumption per Mote
Based on Equation (5.2) and the following features, from the generated benign “pwrtrace.csv”
dataset in Section 3.3, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”; and d) “all_listen”,
the average total energy consumption by each mote, during the simulation time (i.e., 60 min = 3600
sec) is shown below in Figure 5.5. The confidence interval has been considered to be the acquisition

time which is 2 seconds.
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Figure 5.5 Average Total Energy Consumption per Mote — Benign “powertrace” Dataset.

5.2.2.2 UDP Flooding Attack “powertrace” Dataset — Average Total Energy Consumption per Mote

Based on Equation (5.2) and the following features, from the generated malicious “udp-flood-
pwrtrace.csv” dataset in Section 4.2.2, for each mote: a) “all_cpu”; b) “all_Ilpm”; c) “all_transmit”;
and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e.,
60 min = 3600 sec) is shown below in Figure 5.6. The confidence interval has been considered to be
the acquisition time which is 2 seconds.
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Figure 5.6 Average Total Energy Consumption per Mote — UDP Flooding Attack “powertrace” Dataset.
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According to the results demonstrated in Figure 5.6, it is clear that the compromised mote (i.e.,
mote6) that carried out the UDP flooding attack consumed much more energy than any other
benign motes (i.e., client or server) in the UDP flooding attack scenario as it generated and
transmitted many UDP packets to the target server-mote (i.e., motel). In addition, it is observed
that the server-mote consumed a high level of energy as it received a high number of UDP packets
from the compromised mote. In particular, the server-mote in the UDP flooding attack consumed
much more energy than the energy it consumed in the benign scenario as demonstrated in Figure
5.6. These observations are also reflected in Figure 5.7 and Figure 5.8 demonstrating the average
CPU energy consumption and the average Radio (i.e., TX+RX) energy consumption per mote,
respectively.

Average CPU Energy Consumption per Mote —
UDP Flooding Attack “powertrace” Dataset

gy
wn

o]

=
]

Energy [m)J]
=

o
wn

=]

0 500 1000 1500 2000 2500 3000 3500 4000

Simulation Time [s]

mote2 (client) mote3 (client)

motel (server)

moted (client) mote5 (client) mote6 (compromised client)

Figure 5.7 Average CPU Energy Consumption per Mote — UDP Flooding Attack “powertrace” Dataset.
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Average Radio Energy Consumption per Mote —
UDP Flooding Attack “powertrace” Dataset
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Figure 5.8 Average Radio (TX+RX) Energy Consumption per Mote — UDP Flooding Attack “powertrace” Dataset.

5.2.2.3 Blackhole Attack “powertrace” Dataset — Average Total Energy Consumption per Mote

Based on Equation (5.2) and the following features, from the generated malicious “blackhole-
pwrtrace.csv” dataset in Section 4.3.2, for each mote: a) “all_cpu”; b) “all_Ilpm”; c) “all_transmit”;
and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e.,
60 min = 3600 sec) is shown below in Figure 5.9. The confidence interval has been considered to be
the acquisition time which is 2 seconds.

102



Average Total Energy Consumption per Mote —
Blackhole Attack “powertrace” Dataset
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Figure 5.9 Average Total Energy Consumption per Mote — Blackhole Attack “powertrace” Dataset.

According to the results demonstrated in Figure 5.9, it is clear that the compromised mote (i.e.,
motel0) decreased its total energy consumption significantly (please see red arrow) as it was
programmed to switch off, after 25 minutes (1,500 sec) from the beginning of the simulation, not
only the transmission feature (TX) in order to disrupt the communication chain but also the receiving
feature (RX). This observation is also clear in Figure 5.10 demonstrating the average Radio (i.e.,
TX+RX) energy consumption per mote. Furthermore, in Figure 5.9, it is shown that mote3, mote4,
and mote5 increased their total energy consumption (see black dotted ellipse) because they
increased their average radio energy consumption, as particularly depicted in Figure 5.10, as they
were trying to re-establish connection with the mote-server due to the impact of the blackhole
attack on the network.
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Average Radio Energy Consumption per Mote —
Blackhole Attack “powertrace” Dataset
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Figure 5.10 Average Radio (TX+RX) Energy Consumption per Mote — Blackhole Attack “powertrace” Dataset.

5.2.2.4 Sinkhole Attack “powertrace” Dataset — Average Total Energy Consumption per Mote

Based on Equation (5.2) and the following features, from the generated malicious “sinkhole-
pwrtrace.csv” dataset in Section 4.4.2, for each mote: a) “all_cpu”; b) “all_Ipm”; c) “all_transmit”;
and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e.,
60 min = 3600 sec) is shown below in Figure 5.11. The confidence interval has been considered to be
the acquisition time which is 2 seconds.
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Figure 5.11 Average Total Energy Consumption per Mote — Sinkhole Attack “powertrace” Dataset.

Figure 5.11 shows that the compromised mote (i.e., motel0) that carried out the sinkhole attack
consumed little total energy compared to the other benign motes (i.e., client or server) in the
sinkhole scenario as it dropped the received packets before them being processed and forwarded. It
is worthwhile noting that the spike of the energy consumption of the compromised mote at 1200
second was due to the fact that at that moment, the compromised mote was programmed to turn
on as mentioned in section 4.4.1 (Sinkhole Attack Scenario — an example). This is also shown in
detail in Figure 5.12. On the other hand, as also seen in Figure 5.13, all the other motes increased
their energy consumption due to their efforts to respond to the impact of the sinkhole attack on the
network.
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Figure 5.12Average CPU Energy Consumption per Mote - Sinkhole Attack “powertrace” Dataset.

Figure 5.13 Average Radio Energy Consumption per Mote — Sinkhole Attack “powertrace” Dataset.
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5.2.2.5 Sleep Deprivation Attack “powertrace” Dataset — Average Total Energy Consumption per Mote
Based on Equation (5.2) and the following features, from the generated malicious “sleep_depr-
pwrtrace.csv” dataset in Section 4.5.2, for each mote: a) “all_cpu”; b) “all_Ipm”; c) “all_transmit”;
and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e.,
60 min = 3600 sec) is shown below in Figure 5.14. The confidence interval has been considered to be
the acquisition time which is 2 seconds.

Average Total Energy Consumption per Mote —
Sleep Deprivation Attack “powertrace” Dataset
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Figure 5.14 Average Total Energy Consumption per Mote - Sleep Deprivation Attack “powertrace” Dataset.

Figure 5.14 shows that the compromised mote (i.e., mote10) that carried out the sleep deprivation
attack consumed more energy compared to the other benign motes (i.e., client or server) in the
sleep deprivation scenario as it generated and transmitted many UDP packets to the target client-
mote (i.e., moted). Besides that, motel0 received a high number of responses (i.e., a kind of
acknowledgement packets sent back by the server when it receives, via forwarding, the UDP packets
sent by the compromised mote to mote4) due the way the compromised mote was implemented. It
is worthwhile mentioning that the spike of the energy consumption of the compromised mote at
1500th second was due to the fact that at that moment, the compromised mote was programmed
to turn on as mentioned in section 4.5.1 (Sleep Deprivation Attack Scenario — an example). This
observation is also presented in detail in Figure . In addition, it is observed in Figure 5.16 that the
server-mote (i.e., motel) and the target client mote (i.e., mote4) consumed a high level of radio
energy as they both received a high number of UDP packets from the compromised mote.
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Figure 5.15 Average CPU Energy Consumption per Mote — Sleep Deprivation Attack “powertrace” Dataset.

Average Radio Energy Consumption per Mote —
Sleep Deprivation Attack “powertrace” Dataset

Energy [mlJ]
ey

1000

motel (sever)

mote4 (client)

mote7 (client)

motel0 (compromised)

1500 2000

Simulation Time [s]

mote2 (client)
mote5 (client)

mote8 (client)

2500

3000

mote3 (client)
mote6 (client)

mote9 (client)

3500

4000

Figure 5.16 Average Radio Energy Consumption per Mote — Sleep Deprivation Attack “powertrace” Dataset.
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5.3 Network Traffic Datasets Analysis

5.3.1 Benign and Malicious Network Traffic Datasets Analysis-Feature Extraction

The generated benign network traffic dataset (i.e., “radiolog.csv”), presented in Section 3.4, and the
generated malicious network traffic datasets (i.e., “udp-flood-radiolog.csv”, “blackhole-radiolog.csv”,
“sinkhole-radiolog.csv”, and “sleep_depr-radiolog.csv”), presented in Sections 4.2.3, 4.3.3, 4.4.3, and
4.5.3, include information about raw features, such as “source” address, “destination” address,
“protocol”, and packet “length”, which can be used to derive new features more informative, in
terms of the behaviour of the network traffic, and non-redundant. The new features are intended to
constitute valuable features for training and evaluating AIDS for loT networks. Towards this
direction, the generated benign and malicious network traffic datasets are analysed in this Section in
order to extract valuable features for anomaly-based detection of UDP flooding attacks, blackhole
attacks, sinkhole attacks and sleep deprivation attacks in loT networks.

5.3.1.1 Benign Network Traffic Dataset Analysis

From the generated benign “radiolog.csv” dataset in Section 3.4, Table 5.6 was extracted,
demonstrating, in the last column, the percentage of the RPL packets overhead per mote! which is
calculated as follows: the number of RPL packets per mote over the total number of exchanged
packets within the network during the simulation time (i.e., 116,463 packets). The last row of Table
5.6 contains the total number of RPL packets (7,975), UDP packets (104,048) and other protocol
packets (4,440) exchanged within the network, and the total RPL packets overhead which is equal to
6.85 %. The number of other packets for each mote is not shown because Wireshark cannot decode
properly the information from the pcap file generated by Cooja.

Number of Number of Number of RPL Packets

RPL Packets UDP Packets Other Packets? Overhead [%]
Motel 290 43,804 - 0.25
Mote2 1,982 11,621 - 1.70
Mote3 1,621 11,883 - 1.39
Moted 1,604 11,827 - 1.38
Mote5 1,308 12,556 - 1.12
Moteb 1,170 12,357 - 1.00
Total 7,975 104,048 4,440 6.85

Table 5.6 Network Traffic and RPL Packets Overhead — Benign Network Traffic Dataset.

Based on the information included in Table 5.6, the calculated RPL packets overhead per mote and
the total RPL packets overhead are depicted in Figure 5.17.

1 For example, the calculated RPL packets overhead for motel is calculated as:

290

116,463
2 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.

X 100% = 0.25 %
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Figure 5.17 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) — Benign Network Traffic Dataset.

5.3.1.2 UDP Flooding Attack Network Traffic Dataset Analysis

From the generated malicious “udp-flood-radiolog.csv” dataset in Section 4.2.3, Table 5.7 was
extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote
which is calculated as follows: the number of RPL packets per mote over the total number of
exchanged packets within the network during the simulation time (702,332 packets). The last row of
Table 5.7 contains the total number of RPL packets (9,908), UDP packets (670,671), and other
protocol packets (21,753) exchanged within the network, and the total RPL packets overhead which
is equal to 1.41 %.

Network Traffic and RPL Packets Overhead — UDP Flooding Attack Network Traffic

Dataset

Number of RPL  Number of UDP Number of RPL Packets

Packets Packets Other Packets? Overhead [%]
Motel 203 254,796 - 0.03
Mote2 2,228 28,953 - 0.32
Mote3 2,768 30,238 - 0.39
Moted 1,976 27,260 - 0.28
Mote5 2,084 31,247 - 0.30
Mote6 6,490 298,177 - 0.09
Total 9,908 670,671 21,753 1.41

Table 5.7 Network Traffic and RPL Packets Overhead — UDP Flooding Attack Network Traffic Dataset.

Based on the information included in Table 5.7, the calculated RPL packets overhead per mote and
the total RPL packets overhead are depicted in Figure 5.18.

3 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.
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Figure 5.18 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) — UDP Flooding Attack Network
Traffic Dataset.

According to Figure , it is clear that the total RPL packets overhead in the UDP flooding attack
scenario (1.41%) is much lower than the total RPL packets overhead in the benign scenario (6.85%)
because of the huge amount of UDP packets transmitted by the compromised mote (i.e., mote6) to
the target server-mote (i.e., motel) in the attack scenario. For the same reason, the RPL packets
overhead of mote6 in the UDP flooding attack scenario (0.09%) is much less than the corresponding
overhead in the benign scenario (1%).

5.3.1.3 Blackhole Attack Network Traffic Dataset Analysis

From the generated malicious “blackhole-radiolog.csv” dataset in Section 4.3.3, Table 5.8 was
extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote
which is calculated as follows: the number of RPL packets per mote over the total number of
exchanged packets within the network during the simulation time (99,622 packets). The last row of
Table 5.8 contains the total number of RPL packets (24,011), UDP packets (73,551), and other
protocol packets (2,060) exchanged within the network, and the total RPL packets overhead which is
equal to 24.10 %.
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Network Traffic and RPL Packets Overhead — Blackhole Attack Network Traffic Dataset \

Number of RPL  Number of UDP Number of Other RPL Packets

Packets Packets Packets* Overhead [%]
Motel 290 19,196 - 0,29
Mote2 4,292 3,821 - 4,31
Mote3 5,341 9,595 - 5,36
Moted 3,849 10,910 - 3,86
Mote5 2,604 11,756 - 2,61
Moteb 1,433 1,948 - 1,44
Mote7 1,660 3,612 - 1,67
Mote8 1,264 3,779 - 1,27
Mote9 1,580 6,045 - 1,59
Motel0 1,698 2,889 - 1,70
Total 24,011 73,551 2,060 24,10

Table 5.8 Network Traffic and RPL Packets Overhead — Blackhole Attack Network Traffic Dataset.

Based on the information included in Table 5.8, the calculated RPL packets overhead per mote and
the total RPL packets overhead are depicted in Figure 5.19.
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Figure 5.19 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) — Blackhole Attack Network Traffic
Dataset.

According to Figure 5.19, it is clear that the total RPL packets overhead in the blackhole attack
scenario (24.10%) is much higher than the total RPL packets overhead in the benign scenario (6.85%)
because of the large number of RPL packets transmitted by the motes in the attack scenario as they
were trying to re-establish connection with the mote-server due to the impact of the blackhole
attack on the network. On top of that, many UDP packets were dropped by the compromised mote
(i.e. motel0) instead of being forwarded. It is worthwhile mentioning that we intend, as future work,
to generate a network traffic dataset from a benign scenario with 10 motes (i.e., the current one
includes 6) as the blackhole attack scenario so that we can get a more accurate value for the total

4 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.
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RPL packets overhead in the benign scenario. However, it is expected that value of the total RPL
packets overhead in a benign scenario with 10 motes and the same conditions as the benign
scenario with 6 motes will be close to the value of the overhead in the scenario with the 6 motes
because as the number of UDP packets will be increased due to the 4 more motes, the RPL packets
transmitted in the network will be increased analogously.

5.3.1.4 Sinkhole Attack Network Traffic Dataset Analysis

From the generated malicious “sinkhole-radiolog.csv” dataset in Section 4.4.3, Table 5.9 was
extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote
which is calculated as follows: the number of RPL packets per mote over the total number of
exchanged packets within the network during the simulation time (463,581 packets). The last row of
Table 5.9 contains the total number of RPL packets (404,290), UDP packets (52,750), and other
protocol packets (6,541) exchanged within the network, and the total RPL packets overhead which is
equal to 87.21 %.

Number of RPL Number of UDP Number of Other RPL Packets

Packets Packets Packets® Overhead [%]

Motel 10,344 14,878 - 2.23
Mote2 56,427 4,130 - 12.17
Mote3 46,048 3,864 - 9.93
Mote4d 52,087 5,279 - 11.24
Mote5 46,576 3,916 - 10.05
Mote6 43,657 4,643 - 9.42
Mote7 44,872 5,642 - 9.68
Mote8 46,974 4,282 - 10.13
Mote9 46,788 6,116 - 10.09
MotelO 10,517 0 - 2.27

Total 404,290 52,750 6,541 87.21

Table 5.9 Network Traffic and RPL Packets Overhead — Sinkhole Attack Network Traffic Dataset.

Based on the information included in Table 5.9, the calculated RPL packets overhead per mote and
the total RPL packets overhead are depicted in Figure 5.20.

5 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.
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Figure 5.20 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) — Sinkhole Attack Network Traffic
Dataset.

According to Figure 5.20, it is clear that the total RPL packets overhead in the sinkhole attack
scenario (87.21%) is significantly higher than the total RPL packets overhead in the benign scenario
(6.85%) because of the huge number of RPL packets transmitted by the motes in the attack scenario
as they were trying to respond to the impact of the sinkhole attack on the network. In addition,
many UDP packets were dropped by the compromised mote (i.e. motel0) instead of being
forwarded. It is worthwhile mentioning that we intend, as future work, to generate a network traffic
dataset from a benign scenario with 10 motes (i.e., the current one includes 6) as the sinkhole attack
scenario so that we can get a more accurate value for the total RPL packets overhead in the benign
scenario. However, it is expected that value of the total RPL packets overhead in a benign scenario
with 10 motes and the same conditions as the benign scenario with 6 motes will be close to the
value of the overhead in the scenario with the 6 motes because as the number of UDP packets will
be increased due to the 4 more motes, the RPL packets transmitted in the network will be increased
analogously.

5.3.1.5 Sleep Deprivation Attack Network Traffic Dataset Analysis

From the generated malicious “sleep_depr-radiolog.csv” dataset in Section 4.5.3, was extracted,
demonstrating, in the last column, the percentage of the RPL packets overhead per mote which is
calculated as follows: the number of RPL packets per mote over the total number of exchanged
packets within the network during the simulation time (571,079 packets). The last row of Table 5.10
contains the total number of RPL packets (30,338), UDP packets (526,799), and other protocol
packets (13,942) exchanged within the network, and the total RPL packets overhead which is equal
t05.31 %.
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Network Traffic and RPL Packets Overhead — Sleep Deprivation Attack Network Traffic

Dataset

Number of RPL Number of UDP Number of Other RPL Packets

Packets Packets Packets® Overhead [%]
Motel 261 237,640 - 0.05
Mote2 3,288 2,782 - 0.58
Mote3 2,709 3,075 - 0.47
Moted 2,063 4,531 - 0.36
Mote5 5,550 4,256 - 0.97
Mote6 2,936 8,322 - 0.51
Mote7 2,617 9,595 - 0.46
Mote8 3,936 13,000 - 0.69
Mote9 6,248 10,708 - 1.09
Motel0 730 232,890 - 0.13
Total 30,338 526,799 13,942 5.31

Table 5.10 Network Traffic and RPL Packets Overhead — Sleep Deprivation Attack Network Traffic Dataset.

Based on the information included in Table 5.10, the calculated RPL packets overhead per mote and
the total RPL packets overhead are depicted in Figure 5.24.

RPL Packets Overhead -
Sleep Deprivation Attack Network Traffic Dataset
6.00

5.00
4.00

3.00

Overhead [%]

2.00

1.00

motel mote2 mote3 moted moteS mote6 mote7 mote8 mote9 motelO Total
Motes

Figure 5.21 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) — Sleep Deprivation Attack Network
Traffic Dataset.

According to Figure 5.21, the total RPL packets overhead in the sleep deprivation attack scenario
(5.31%) is lower than the total RPL packets overhead in the benign scenario (6.85%) because of the
large number of UDP packets transmitted by the compromised mote (i.e., motel0) to the target
client-mote (i.e., mote4). It is worthwhile mentioning that we intend, as future work, to generate a
network traffic dataset from a benign scenario with 10 motes (i.e., the current one includes 6) as the
sleep deprivation attack scenario so that we can get a more accurate value for the total RPL packets
overhead in the benign scenario. However, it is expected that value of the total RPL packets

6 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.
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overhead in a benign scenario with 10 motes and the same conditions as the benign scenario with 6
motes will be close to the value of the overhead in the scenario with the 6 motes because as the
number of UDP packets will be increased due to the 4 more motes, the RPL packets transmitted in
the network will be increased analogously.

5.4 Summary

This Chapter was focused on the analysis of the generated benign “powertrace” and network traffic
datasets, presented in Chapter 3, and the generated malicious “powertrace” and network traffic
datasets, demonstrated in Chapter 4. The Chapter started with the analysis of the malicious
“powertrace” datasets to investigate whether their raw features can be important in the detection
of anomalies in the network-level power profiling of low-power loT devices (i.e., motes) due to UDP
flooding attacks, blackhole attacks, sinkhole attacks, or sleep deprivation attacks. Towards this
direction, all malicious “powertrace” datasets were pre-processed before applying the Ml method to
measure the importance of the different features of each malicious “powertrace” dataset (i.e., “udp-
flood-pwrtrace.csv’,  “blackhole-pwrtrace.csv”,  “sinkhole-pwrtrace.csv”, and “sleep_depr-
pwrtrace.csv”) and identify the most significant features. In addition, the average values of the most
significant features, based on MI, were calculated. Based on the results and the observations in
Section 5.2.1, the following 5 features have been identified as the most important for all malicious
“powertrace” datasets: “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”.

Next, the Chapter continued with investigating the extraction of new features, more informative and
non-redundant, based on the raw features of the generated benign and malicious “powertrace”
datasets and the generated benign and malicious network traffic datasets. To this end, the total
energy consumption of each mote in an loT network was investigated in Section 5.2.2 as a valuable
feature for training and evaluating loT AIDSs. According to the observations and conclusions in
Section 5.2.2, the total energy consumption of each mote in an loT network can play a valuable role
in anomaly-based intrusion detection for the following types of attacks in loT networks: UDP
flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack. This is because any
observation considerably deviating from the normal total energy consumption, and particularly the
total CPU energy consumption and the total Radio (i.e., TX+RX) energy consumption per mote, can
be considered as an anomalous behaviour, triggering alerts so that proper countermeasures can be
taken to minimise the risk. On the other hand, the generated benign and malicious network traffic
datasets were also analysed in Section 5.3.1 and the new feature that was extracted was the “RLP
packets overhead”. This new feature provides information about the number of RPL packets (per
mote and total) transmitted over the total number of exchanged messages within the loT network,
indicating a blackhole or sinkhole attack when its value is high and a UDP flooding attack or sleep
deprivation attack when its value is low.
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Chapter 6 Datasets Validation

6.1 Introduction

This Chapter is focused on the validation of the generated malicious “powertrace” datasets,
presented in Chapter 4, by applying different Machine Learning (ML) algorithms for loT AIDSs to
evaluate their performance on the generated malicious datasets. In particular, the following most
popular ML algorithms for loT AIDSs, reviewed in Section 2.3, were applied: naive Bayes (NB),
decision tree (DT), random forest (RF), logistic regression (LR), support vector machines (SVM), and
k-nearest neighbor (KNN). Using five-fold cross validation, these algorithms were trained and tested
over the same labelled dataset for each attack scenario. Furthermore, the following four traditional
metrics, reviewed in Section 2.4, were used to evaluate the performance of the ML algorithms on
the generated datasets when these algorithms are used for anomaly detection in loT AIDSs:
accuracy, precision, recall, and F1-score. In all experiments, the Python language (version 3.8.2) was
used, along with the Scikit-Learn library [27] and a Python script created, utilizing specific functions
of the Scikit-Learn library, to perform training and testing of the ML algorithms.

6.2 Dataset Pre-Processing

The pre-processing phase involved the removal of unnecessary features from the four malicious
“powertrace” datasets (i.e., “udp-flood-pwrtrace.csv”, “blackhole-pwrtrace.csv”’, “sinkhole-
pwrtrace.csv”, and “sleep_depr-pwrtrace.csv”) and the addition of the “label” feature (i.e., “0” for
normal and “1” for malicious) to all of them. In particular, the feature “Clock_time” was filtered out
along with the features related to the simulation time (i.e., “sim time”) and the simulation duration
(i.e., “all_cpu”, “all_Ipm”, “all_transmit”, “all_listen”, ”all_idle_transmit”, “all_idle_listen”) and the
“seq no” feature. Besides that, the “P” feature was omitted, because it only has a fixed value
throughout all of the collected records of the malicious “powertrace” datasets. Moreover the “ID”
and “Rime Address” were also filtered out because it was observed that they led to overfitting. Last
but not least, the “idle_transmit” feature was filtered out as well, because it had the lowest
calculated importance, based on the “label” feature, by applying the MI method for all malicious
“powertrace” datasets. After the pre-processing phase, the new labelled malicious “powertrace”
datasets were named as “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, “sinkhole-
pwrtrace_label.csv’, and “sleep_depr-pwrtrace_label.csv”, and contained the following features:

”  u.

“cpu”, “lpm”, “transmit”, “listen”, and “idle_listen”.

6.3 Normalisation

The data normalization step was performed to the numeric values of each feature. If the values of a
feature are significantly larger compared to the values of other features, this may lead to inaccurate
results. Thus, data normalisation helps to ensure that features with significantly large values do not
outweigh features with smaller values. To achieve this, all of the features’ values are scaled within
the range of [0.0, 1.0] by performing a min—max normalization process on each feature. This
normalization process is described by the following equation:

Z= (X - Xmin)/(xmax - Xmin) (61)

where z is the normalized value (i.e., after scaling), x is the value before scaling, and Xmax and Xmi, are
the maximum and minimum values of the feature, respectively.
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6.4 Training and Testing of ML Algorithms on the Malicious “Powertrace”
Datasets

The selected ML algorithms were trained and tested separately over the four labelled malicious
“powertrace” datasets: “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, “sinkhole-
pwrtrace_label.csv”, and “sleep_depr-pwrtrace_label.csv”. Initially, each of the four datasets was
split into two parts: the train part and the test part. The train part consisted of 80% of the dataset
and the ML algorithms were trained and evaluated with this part. On the other hand, the test part
consisted of 20% of the dataset and was held back for further evaluation of the models with unseen
data. The percentage split of 80% train—20% test was determined according to [72] as the best ratio
to avoid the overfitting problem. After that, the training process of each ML algorithm over each
dataset was performed using the five-fold cross validation method. According to this method, the
training dataset was divided into five subsets of equal size and the records of each subset were
randomly selected. The training process was repeated five times. Each time, four out of the five
subsets were utilized for the training of the ML algorithm and the remaining subset was used for
validation. The final performance results were produced by averaging the results of the five folds
[72]. Table 6.1 presents a summary of the set hyperparameters of each of the six ML algorithms.

e The Gini index was used to select tree nodes.
Decision Tree (DT)
e Minimum samples per leaf node set to 10

Naive Bayes (NB) e The Gaussian variant of the NB algorithm was used.
Logistic Regression (LR) -
e The Gini index was used to select tree nodes.

e The minimum number of samples per leaf node

Random Forest (RF) was set to 10

e The random forest consisted of 10 decision trees.

e The value of K was set to 5.
K-Nearest Neighbour (KNN) e The Euclidean distance was set as the distance

metric.

e  The Gaussian radial basis function (RBF) was set as

Support Vector Machine (SVM) the kernel function

Table 6.1 Summary of the hyperparameters of each selected ML algorithm.
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6.5 Performance Evaluation Results

6.5.1 “udp-flood-pwrtrace_label.csv” Dataset

The selected ML algorithms were trained and tested on the “udp-flood-pwrtrace_label.csv” dataset
for binary classification, using the five-fold cross validation method. The performance of the selected
ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score.
The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the
“udp-flood-pwrtrace_label.csv”, are shown in Table 6.2 and Figure 6.1.

ML Algorithm Accuracy Precision
Decision Tree (DT) 0.9818 0.9509 0.9396 0.9451
Naive Bayes (NB) 0.9148 0.6774 0.9354 0.7855
Logistic Regression (LR) 0.9742 0.9333 0.9104 0.9216
Random Forest (RF) 0.9885 0.9739 0.9569 0.9653
K-Nearest Neighbor (KNN) 0.9931 0.9853 0.9729 0.9790
Support Vector Machine (SVM) 0.9890 0.9773 0.9562 0.9666

Table 6.2 Evaluation metrics for binary classification for the “udp-flood-pwrtrace_label.csv” dataset.
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Figure 6.1 Evaluation metrics for binary classification for the “udp-flood-pwrtrace_label.csv” dataset.

It is observed that the KNN, SVM and RF algorithms demonstrate an almost perfect accuracy score
(i.e., around 0.99), followed by the DT and LR (i.e., close to 0.98). The same trend can be seen in the
precision, recall, and Fl-score, as the KNN, SVM and RF algorithms show high values between 0.95 —
0-99, while the DT and LR classifiers demonstrate values between 0.91-0.96. On the other hand,
although the NB achieves accuracy and recall higher than 0.91, it shows the lowest precision of
0.6774 and the lowest F1-score of 0.7855.
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6.5.2 “blackhole-pwrtrace_label.csv” Dataset

The selected ML algorithms were trained and tested on the “blackhole-pwrtrace_label.csv” dataset
for binary classification, using the five-fold cross validation method. The performance of the selected
ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score.
The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the
“blackhole-pwrtrace_label.csv”, are shown in Table 6.3 and Figure 6.2.

ML Algorithm Accuracy Precision Fl-score
Decision Tree (DT) 1.0000 1.0000 1.0000 1.0000
Naive Bayes (NB) 0.9999 1.0000 0.9976 0.9988
Logistic Regression (LR) 1.0000 1.0000 1.0000 1.0000
Random Forest (RF) 1.0000 1.0000 1.0000 1.0000
K-Nearest Neighbor (KNN) 1.0000 1.0000 1.0000 1.0000
Support Vector Machine (SVM) 1.0000 1.0000 1.0000 1.0000

Table 6.3 Evaluation metrics for binary classification for the “blackhole-pwrtrace_label.csv” dataset.
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Figure 6.2 Evaluation metrics for binary classification for the “blackhole-pwrtrace_label.csv” dataset.

It can be easily observed that the KNN, RF, SVM, DT and LR algorithms achieve perfect accuracy,
precision, recall, and F1-score, while the NB algorithm achieves an almost perfect performance.
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6.5.3 “sinkhole-pwrtrace_label.csv” Dataset

The selected ML algorithms were trained and tested on the “sinkhole-pwrtrace_label.csv” dataset
for binary classification, using the five-fold cross validation method. The performance of the selected
ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score.
The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the
“sinkhole-pwrtrace_label.csv”, are shown in Table 6.4 and Figure 6.3.

ML Algorithm Accuracy Precision Recall Fl-score
Decision Tree (DT) 0.9517 0.6836 0.5578 0.6138
Naive Bayes (NB) 0.9062 0.0414 0.1277 0.0625
Logistic Regression (LR) 0.9304 0.0667 0.0010 0.0021
Random Forest (RF) 0.9545 0.7560 0.5005 0.6017
K-Nearest Neighbor (KNN) 0.9367 0.5630 0.4035 0.4685
Support Vector Machine (SVM) 0.9311 0.0000 0.0000 0.0000

Table 6.4 Evaluation metrics for binary classification for the “sinkhole-pwrtrace_label.csv” dataset.

1.0000

0.9000
0.8000
0.7000

mDT
0.6000

mNB
0.5000

ELR
0.4000

RF

03000 B KNN
02000 HSVM
0.1000 I
0.0000 ull []

Accuracy Precision Recall Fl-score

Values of Evaluation Metrics

Evaluations Metrics

Figure 6.3 Evaluation metrics for binary classification for the “sinkhole-pwrtrace_label.csv” dataset.

It is observed that all algorithms demonstrate high accuracy, with the lowest accuracy (0.9062) being
achieved by NB and the highest (0.9545) being achieved by the RF classifier, followed by the DT and
KNN. On the other hand, in principle, the performance of all algorithms in terms of precision, recall,
and Fl-score is very low. The highest precision of 0.7560 was achieved by the RF and the highest
recall and Fl-score by the DT, 0.5578 and 0.6138, respectively. Moreover, it is worthwhile
mentioning that the SVM shows the lowest precision, recall, and Fl-score of 0. This is because the
precision was ill-defined (i.e., division by zero).
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6.5.4 “sleep_depr-pwrtrace_label.csv” Dataset

The selected ML algorithms were trained and tested on the “sleep_depr-pwrtrace_label.csv” dataset
for binary classification, using the five-fold cross validation method. The performance of the selected
ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score.
The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the
“sleep_depr-pwrtrace_label.csv”, are shown in Table 6.5 and Figure 6.4.

ML Algorithm Accuracy Precision Fl-score
Decision Tree (DT) 0.9739 0.8143 0.7402 0.7749
Naive Bayes (NB) 0.9034 0.3506 0.6403 0.4476
Logistic Regression (LR) 0.9478 0.6552 0.3075 0.4173
Random Forest (RF) 0.9766 0.8559 0.7402 0.7937
K-Nearest Neighbor (KNN) 0.9759 0.8439 0.7401 0.7885
Support Vector Machine (SVM) 0.9393 0.5000 0.0036 0.0071

Table 6.5 Evaluation metrics for binary classification for the “sleep_depr-pwrtrace_label.csv” dataset.
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Figure 6.4 Evaluation metrics for binary classification for the “sleep_depr-pwrtrace_label.csv” dataset.

It is observed that all algorithms demonstrate high accuracy, with the lowest accuracy (0.9034) being
achieved by NB and the highest (0.9766) being achieved by the RF classifier, followed by the KNN
(0.9759) and DT (0.9739). In terms of precision, the top three values were achieved by the RF, KNN
and DT, and the lowest by the SVM. Furthermore, the RF, KNN, and DT outperform the other
algorithms in terms of recall and F1-score.
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6.5 Summary

This Chapter was focused on the validation of the generated malicious “powertrace” datasets,
presented in Chapter 4, by applying the following most popular ML algorithms for loT AIDS to
evaluate their performance on the generated malicious datasets: naive Bayes (NB), decision tree
(DT), random forest (RF), logistic regression (LR), support vector machines (SVM), and k-nearest
neighbour (KNN). Using five-fold cross validation, these algorithms were trained and tested over the
same labelled dataset for each attack scenario. Furthermore, the traditional metrics of accuracy,
precision, recall, and F1-score were used to evaluate the performance of the ML algorithms on the
generated datasets. The evaluations results demonstrated that the RF, KNN, and DT algorithms
presented very high values regarding accuracy (between 0.93 and 1.0) and outperform the other
algorithms regarding precision, recall and Fl-score for all malicious datasets. In particular, it is
worthwhile mentioning that the RF, KNN, and DT algorithms achieved precision between 0.84 and
1.0 for the “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv’, and the “sleep_depr-
pwrtrace_label.csv”. In principle, the evaluation results demonstrated that the generated malicious
datasets can be used for training and testing effectively ML algorithms for loT AIDSs.
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Chapter 7 Conclusion and Future Work

7.1 Conclusions

The focus of this PhD research work was on the generation of new labelled loT datasets that will be
publicly available to the research community and include the following required information so as to
be considered as benchmark loT datasets for training and evaluating Machine Learning models for
loT AIDSs: (a) information reflecting multiple benign and attack scenarios from current loT network
environments, (b) sensor measurement data, (c) network-related information (e.g., packet-level
information) from loT networks, and (d) information related to the behaviour of the loT devices
deployed within l1oT networks. It is worthwhile mentionioning that the new labelled loT datasets
were generated by implementing various benign IoT network scenarios and loT network attack
scenarios in the Cooja simulator which is the companion network simulator of the open source
Contiki Operating System (OS) which is one of the most popular OSs for resource constrained loT
devices. To the best of our knowledge, this is the first time that the Cooja simulator is used, in a
systematic way, to generate benchmark loT datasets. The new labelled loT datasets generated by
the Cooja simulator are not to be considered as a replacement of datasets captured from real loT
networks or real 10T testbeds, but instead to be considered as complementary datasets that will
contribute to fill the current gap of the scarcity of benchmark datasets for training and evaluating
Machine Learning models for loT AIDSs. Furthermore, the generated datasets were analysed to
select important raw features for the detection of anomalies as well as extract new features, more
informative and non-redundant, based on the raw features. Finally, different Machine Learning (ML)
algorithms for loT AIDSs were applied to evaluate their performance on the generated malicious
datasets and validate that the generated malicious datasets can be used for training and testing
effectively ML algorithms for loT AIDSs.

The main contribution of this PhD research work is summarised as follows.

e Generation of a set of benign loT datasets from a benign loT network scenario implemented
in the Cooja simulator. The generated datasets constitute the benign IoT datasets for the
simulated benign loT network scenario. Furthermore, a detailed description of the approach
proposed to generate the set of benign loT datasets has also been provided. In addition, it is
worthwhile mentioning that the proposed approach can be extended for generating benign
loT datasets from j different benign scenarios, where each scenario, implemented in the
Cooja simulator, may include n different motes. The generic structure of the benign loT
datasets generated according to the proposed approach has been provided and constitutes
a roadmap for generating more and richer benign loT datasets.

e Generation of a set of malicious datasets from the following attack scenarios implemented
in the Cooja simulator: i) UDP flooding attack, ii) blackhole attack, iii) sinkhole attack, and iv)
sleep deprivation attack. The generated datasets constitute the malicious loT datasets for
the simulated loT attack scenarios. Moreover, a detailed description of the approach
proposed to generate the set of the malicious 10T datasets has also been given. On top of
that, it is important to highlight that the proposed approach can be extended for generating
malicious loT datasets from j different attack scenarios of i different attack types, where
each attack scenario, implemented in the Cooja simulator, may include n different motes.
The generic structure of the malicious |oT datasets generated according to the proposed
approach has been provided and constitutes a roadmap for generating more and richer
malicious loT datasets.
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Analysis of the malicious “powertrace” datasets to investigate whether their raw features
can be important in the detection of anomalies in the network-level power profiling of low-
power loT devices (i.e., motes) due to UDP flooding attacks, blackhole attacks, sinkhole
attacks, or sleep deprivation attacks. According to the analysis, the following 5 features have
been identified as the most important for all malicious “powertrace” datasets: “transmit”,
“cpu”, “lpm”, “listen”, and “idle_listen”.

Extraction of new features, more informative and non-redundant, based on the raw features
of the generated benign and malicious “powertrace” datasets. To this end, the total energy
consumption of each mote in an loT network was investigated as a valuable feature for
training and evaluating loT AIDSs. According to the observations and conclusions, the total
energy consumption of each mote in an loT network can play a valuable role in anomaly-
based intrusion detection for the following types of attacks in loT networks: UDP flooding
attack, blackhole attack, sinkhole attack, and sleep deprivation attack. This is because any
observation considerably deviating from the normal total energy consumption, and
particularly the total CPU energy consumption and the total Radio energy consumption per
mote, can be considered as an anomalous behaviour, triggering alerts so that proper
countermeasures can be taken to minimise the risk.

Extraction of new features, more informative and non-redundant, based on the raw features
of the generated benign and malicious network traffic datasets. The generated benign and
malicious network traffic datasets were analysed and the new feature that was extracted
was the “RPL packets overhead”. This new feature provides information about the number
of RPL packets (per mote and total) transmitted over the total number of exchanged
messages within the loT network, indicating a blackhole or sinkhole attack when its value is
high and a UDP flooding attack or sleep deprivation attack when its value is low.

Validation of the generated malicious “powertrace” datasets by applying the following most
popular ML algorithms for IoT AIDS to evaluate their performance on the generated
malicious datasets: naive Bayes (NB), decision tree (DT), random forest (RF), logistic
regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN). Using five-
fold cross validation, these algorithms were trained and tested over the same labelled
dataset for each attack scenario. Furthermore, the traditional metrics of accuracy, precision,
recall, and F1-score were used to evaluate the performance of the ML algorithms on the
generated datasets. The evaluations results demonstrated that the generated malicious
datasets can be used for training and testing effectively ML algorithms for loT AIDSs.
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7.2 Future Work

This thesis laid the foundation for future research efforts towards the generation of rich benchmark
loT datasets for effective training and evaluation of different ML models for loT AIDSs by
implementing various benign loT network scenarios and loT network attack scenarios in the Cooja
simulator. In this context, considering the generic structure of the benign loT datasets, proposed in
Chapter 3, as a roadmap for generating more and richer benign loT datasets, we plan to continue
generating more benign loT datasets from a wide spectrum of different benign loT scenarios, where
each scenario, implemented in the Cooja simulator, will include a different number of motes.
Furthermore, considering the generic structure of the malicious loT datasets, proposed in Chapter 4,
as a roadmap for generating more and richer malicious loT datasets, we will continue generating
more malicious loT datasets from several different loT attack scenarios of different attack types,
where each attack scenario, implemented in the Cooja simulator, will include a different number of
motes. In particular, additional attack scenarios for each of the four attack types considered in this
PhD work (i.e., UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack)
can be implemented in the Cooja simulator, examining with different number of motes and
configuring different topologies. Following the research methodology defined in this PhD work, the
newly implemented scenarios will contribute to more and richer loT datasets.

Besides that, different feature selection techniques will be applied on the generated loT datasets to
identify those raw features that are important in the detection of anomalies in loT networks and
devices deployed in these networks due to loT attacks. On top of that, we will continue with the
extraction of new features, more informative and non-redundant, based on the raw features of the
generated benign and malicious “powertrace” datasets, and the generated benign and malicious
network traffic datasets. The target is to identify and/or extract a rich set of very informative and
non-redundant features that will allow not only the detection of anomalies due to loT attacks but
also the identification of the type of the attack causing the detected anomalies. Last but not least,
the validation of the generated datasets by applying different ML algorithms to evaluate their
performance on the generated datasets, based on the original (i.e., raw) set of features, the subset
of the selected features, and/or the new extracted features, is of utmost importance. In fact, it
constitutes the essential final step where the performance evaluation results will indicate whether
or not the generated datasets meet the requirements of benchmark loT datasets for training and
evaluation of various ML models for loT AIDSs.
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Appendix 1

Al.1 Datasets for Benign Motes

A1.1.1- Benign “motel.csv”
The generated benign “motel.csv” file, related to the UDP-server motel, consists of 1,799
records and its first 25 records (i.e., 1-25) are depicted in Figure Al.

B D | E | F |G H L1 s kK | L | M | N | o | [ R | s | 7 | u | w | w
I Total measurements from the begining of the simulation Measurements for each of the 2-sec monitoring period
No Real time [Clock time 1D Rime Address  |eq all_jisten [all_idle_transmit] sll_idle_listen || cpu lpm | transmit | listen | idle_transmit | idle_listen
[us] (in ticks) (in ticks) [ (in ticks) (in ticks) (in ticks) (in ticks) (in ticks) [ (in ticks) | (in ticks) | (in ticks) (in ticks) (in ticks)
1 2907083 261|101 P[01811610111 2827 63628 o 1003 0 744 2827 63628 o 1003 0 744
2 4509515 517|100 P[0181161011.1 1472 0 1134/ 5753 55755 2980 469 o] 330|
3 6909795 773 1D:1 P|018.11610111 21.]‘5' 0 1537 1486 64054 0 701 0 40__5'
4 BI09413 1029|101 P (01811610111 13115 QE‘ 0| 62418 o 2182 o 916
5 10509061] 1285 101 | P 01811610111 15371 5170) 0 63257 o 815 of 364
& 12910930/ 1541|101 P (01811610111 26285 ?02]‘[ 0 54602 5422 1857 [ 325
7 14910148 1797|101 P (01811610111 8-\2‘ 0 61942 322 1409 0 857
] 16910444 2053[ 1001 P 01811610111 10364] s 61626 129 1928 o 312
9 18910474 2309 10:1 P (01811610111 11755 0 62045 128 1391 [ 764
10 20910478 2565|101 P|018.11610111 12794 0| 61839 707 1039 [+ 390
11 22909837 2821| 10c1 P (01811610111 42731| 678822 9588 13210] 0 63656 o 416 0 ‘EI
12 24911683 3077|101 | P |01811610111 s0785| 736283] 12763  1sees) 0 57461 3081 2459 of 364
13 26910214 3333|101 P|018.11610111 12769 16596 0| 63266 [+ 931 [+ 640
14 28911377 3589 101 P (01811610111 15881 17365 0| 58152 3112 769 o 364
15 30511696] 3845|101 | P 01811610111 18964] 20188 o 57128] 3083 2821 of 532
16 32911330 4101( 10:1 P (01811610111 19286 22050 0 61345 322 1864 [ 476
17 34910554 4357|101 P|01811610111 1§I 74981| 1039640 19286 22701 0 63466 0 651 0 390
18 36911684 4613 1001 P 01811610111 17| 78639| 1101436 19992 23726 0 61796 706 1025 o 403
15 35055851 4887| 10:1 P (01811610111 18' 85571 1154?90[ 22815 25741 0 63354 2823 2015 [ BQOI
20 40912039 5125/ 101 P|01811610111 27863 0| 53539 2567 2122 [+ 325
21 42910986 5381( 10c1 P[01811610111 lﬁﬂ 0 63569 Q 416 0 416
2 44910988] 5637|101 | P |01811610111 28655] 9 63633 [ 416 of 18]
23 46912744 5893|101 P|018.11610111 30140 0 60538 1025 1445 0 577'
24 49042516 6165( 101 P (01811610111 31740 33875 0 57548 5333 3735 o EI
5 50912404] 6405101 | P 01811610111 120359| 1518361] 34719 34317] 0 s4723] 2979 [T 0 364

Figure Al Benign “motel.csv”’—1 to 25 records.

A1.1.2 Benign “mote3.csv”
The generated benign “mote3.csv” file, related to the UDP-client mote3, consists of 1,799
records and its first 25 records (i.e., 1-25) are depicted in Figure .

B Y] E F G H | K L M N o P R 5 T u v w
Total measurements from the begining of the simulation Measurements for each of the 2-sec monitoring period
No Real time  [Clock time) 1D Rime Address  heqnal all cpu | all_lpm all_listen [all_idle_transmit| all_idle_listen || cpu lpm ansmit | Esten idle_listen
[us] (in ticks) (in ticks) | (in ticks) {in ticks) {in ticks) (in ticks) {in ticks) | (in ticks) | (in ticks) | (in ticks) {im ticks)

1 2816245 261|103 [P 018116303833 [ 2184 64270 o 350| 0| 390 2184] 64270 [ 390 o 390
2 4821159 517|103 |P|01811630333 1 3569 128521 [ 1094 0| 1043 1382 4251 [ 0|

3 6817450 773[ 103 [r 018116303533 2 4957 192526 o 1510| 0| 1459 1385 64005 [ 0|

4 8820944] 1029)10:3 P 01811630333 E] | IEEEEE] 244367 7942 4101 [ 1823)] 13e63[ s1sa1| 794z 0|

5 10819122 1285|103 |P 01811630333 afl 20093 308390 7942 4517 0| 2239 1468| 64023 [ 0|

& 12819256 1541)10:3 P 01811630333 Ll 21848 372149 7942 5306 of 2806 ] 1753)| 63755 o o

7 1481?&' 1797103 | P |018.1163.0333 6] 435261 BO52 5066 0| 3209 2383 63112 110 0|

& 16820524| 2053103 e |018116303833 7| 493450 11582 6868| 0| 3559 7308|  s8195] 3540 [

E) 18819429 230903 [P |0a811630333 8| 557485 11592 7184 0| [ 0|

10 i3 |pf01811630333 5| ansﬁ 115902] 7877 0| [ [

1 103 |P|01811630333 685628 11592 8293 [ [ |

12 03 |p 018116303533 749636 11592 9083 0| [ 0|

13 o3 P 01811630333 809085 14572 9551 ] 2980| o

14 28820333)  sse9|ip3  |p|0i1811630333 872839 14572 10204 [ 6594 1758 63750 [ [

15 |  seas|ios  |e|oisiie30333 927418) 15688 13909 0| 7148 10023 sasve|  siig o

16 32821729) s1o1|ip3  |p|0a811630333 87419 21721 15730 0| 7512 sep9| cooos| 2033 1m2 0|

17 34820668 4357|103 [P 01811630333 21721 mﬁ 0| ?923' 1495| 63997 0| 41 [

18 36820587 4613[10:3  |P 01811630333 1115450 21721 16759 [ 8541 1451 [ |

19 3gs20584|  4seo|ip3 | |0i1811630333 | sl esess| 1179528 21721 17175 0| 8957 1424 0| 0|

20 40820557 5125) 103 P 01811630333 15| 67414] 1243501 21721 17965 of 9747 1415 o o

21 azsz1085|  szei| 03 |ploas11630333 | oof sssaz|  13o7s0i) 21721 18381 0| 10163 1510 [ [

22 44821087  sea7| o e |oasi1e30333 | 2l 7osara] 1371623 21721 18757 0| 10579 1484 [ o

23 46822409 5893|103 P |01811630333 | 22f 74360  1433167) 22816 20316 0| 11159 3943  61544] 1095 [

24 48821051 EI 03 |elois116303833 | 23l  7sass|  1497164) 22816 20929 0| 11772 1496| 63997 [ [

5 so821118) 40503 [P loas11630333 | 2ef 77seo[  1se0sse 12816 21750] [ 12562 1718]  63790] of [

Figure A2 Benign “mote3.csv”’—1 to 25 records.
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Al.2 - Datasets for UDP Flood Attacks

A1.2.1 - “udp-flood-motel.csv”
The generated “udp-flood-motel.csv” file, related to the benign UDP-server motel, consists of 1,799
records and its first 25 records (i.e., 1-25) are depicted below in Error! Reference source not found..

Figure A3 Malicious “udp-flood-motel.csv” — 1 to 25 records.

Al1.2.2 - “udp-flood-mote2.csv”
The generated “udp-flood-mote2.csv” file, related to the benign UDP-client mote2, consists of 1,799
records and its first 25 records (i.e., 1-25) are depicted below in Figure .

B o E F G H I K L M N o P R = T u v
Total measurements from the begining of the simulation Measurements for each of the 2-sec monitoring per)
No Real time  [Clock time] 10 Mime Address feqna| allcpu | ol lpm  |all_transmit| all_Esten [sll_idle_transmit pu lpm | transmit | listen | idle_transmit | i
[us] [in ticks) (in ticks) [ [in ticks) linticks) | ([inticks) {in ticks) {in ticks) | {in ticks) | (in ticks) [ (in ticks) [ ([in ticks)

1 2555692 261 1D:2 P 01811620222 o 6742 59714 2589 442 [+ 6742 59714 2589 442 0

2 4554578 517]10:2 P 01811620222 1 7504 124063 2583 858 0| 1155| 64349 0| 416 0|

3 6555663 773[ 102 P 01811620222 2 9577 187908 1569 1471 o 1670] 63845 Ol 613 o)

4 8557499 1029 ID:2 P|01811620222 3 15580 247416 5574 140 0| I MI S9508| 2985 469 0|

5 10558220 1285)10:2 P 01811620222 4 25340 303155 10934 4504] 0| 9757] S5739) 5360] 2664] o

6 12557468 1541[ 102 P 01811620222 5 271?0' 366840 10934 5773 o il 1828) 63685 0 ll&?l o)

7 14557450 1797( 1D:2 P 01811620222 Gf| 28685 430834 10934 6773 0| 8 1513] 63994 0| 1000| 0|

8 16558581 2053[10:2 P|01811620222 7 38345 486687 16000 9069 o) 9656) 5$553| S066| 2396 o)

9 18558981 2309( 10:2 P (01811620222 B 49026 541517 21275 13194 o 10678| 54830 5275 41@ o)

10 2565 1D0:2 P[01811620222 9 59768 596284 26554 17580 0| 10735 54767 5279 4386 o)

i 22559417 2821[10:2 P 01811620222 0§ 55882 655686 29193 20905 o) 59402 2639 3325 o)

12 24558752 3077 ID:2 P 01811620222 11] 67763 719321 29193 22554 o 0O 1649 0]

13 26559400 3333 10:2 P 01811620222 12 75242 777351 32273 25571 0| 3080 3017 o)

14 28559386 3589( 102 P 01811620222 13 84743 833356 37257 27504 o) 4984 1933 o)

15 30557884 3g45|10:2 P|01811620222 14/ B6264 897333 37257 28471 [+ 0| 967 0|

18 32560119 4101/ 10:2 P 01811620222 15, 96971 952142 42532 32934 0| 5275 4463 0| 1283
17 34560430 4357( 10:2 P 01811620222 16) 104482 1010130 45616 36198 o 3084 3164 o) 1099
18 36559347 4613 1D:2 P 01811620222 17§] 106037 1074072 45616 ETﬁ 0| 0| 1334 [+ 1334
19 38558673 4869( 10:2 P|01811620222 18f] 107544 1138060 45616 38315 o) o 783 o 783
0 40559330 5125[10:2 P 01811620222 19 108988 1202110 45616 39689 o o 1374 o 1374
21 42559418 5381 10:2 P 01811620222 20f 110875 1265734 45616 41153 0| 0| 1504 0| 1504
2 ussuvsal 5637[10:2 P 01811620222 21l 121376 1320730 50782 456, o) 22078 10498] 54996 5166 4434 o 1099
23 46558668 5893 ID:2 P[01811620222 22§ 122889 1384711 50782 4 o 22881 1510) 63981 0| 803 0 803
24 | 6149 10:2 P 01811620222 23l 124378 1448721 S0782 47587 0| 24038 1483| 64010 0| IE' 0| 1157
5 50559423| 640502 |p[oas11s20222 | 28] 126148]  1s12450] So782|  sasas| [ 2534§I 1770] 63729 o] 1259 [ 1210

Figure A4 Malicious “udp-flood-mote2.csv” — 1 to 25 records.
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A1.2.3 - “udp-flood-mote6.csv”
The generated “udp-flood-mote6.csv” file, related to the malicious UDP-client mote6, consists of
1,799 records and its first 25 records (i.e., 1-25) are depicted below in Figure .

B ¢ D | E | F |G H L S I T I I | o | P € R | S | T | U | N | w
| Total from the begining of th Meas for each of the 2-sec period
No Real time [ Rime Address  seq all_lpm | all_transmit | all_listen (all_idle_transmit] i _idle_listen U lpm | transmit | listen | idle_transmit | idle_listen
[us] lin ticks) lin ticks) {in ticks) {in ticks) {in ticks) {in ticks) {in ticks) | [in ticks) | (in ticks) | (in ticks) | (in ticks) (in ticks)

i 2570487 261] 106 PlO1811660666 58725 2590 442 o 364 7709 58725 2590 442 0 364
2 4575548 517| ID:6 P |0.18.1166.06.6.6 121854] 2590 1159 o 767 2516 63129 0 717 o 403y
3 6573145 773 1D:6 P (01811660666 8529 0 S48 30315 35023 17860 7370 0 221
4 Pl01811660666 14939 0 0 234
5 P |018.1166.066.6 22039 0 0 234
& P |01811660666 30327 0 0 484)
7 P 01811660666 0 0 143]
& P |0.1811660655 0 0 513]
9 PlO1811660666 o 0 234
10 P | 01811660666 0 o 15_9'
11 22701154 P 01811660666 0 ) 254|
12 24575331 PlO1811660666 483252 165981 73020 o 0 434'
13 26575271 P |0.18.1166.06.6.6 518932 182767 80200 o 4250 29804 35680 16786 7180 o 473
14 28580204 P 01811660666 551896 201528 88485 0 4635 32677 32564 18761 8285 0 385
15 30575294 P 01811660655 595375] 212870 93995| 0 agea)| 21848 aza7a) 113e2]  ssi [ 234
16 32575591 P |018.1166.066.6 630539 229745 102008 0 L] 30324 35164 16875 8012 0 130
17 34576299 P [01811660656 a 5445 155926 49552 7758 4153 o] 450}
18 36580519 P |0.18.1166.066.6 0 32193 17555 0 307'
19 38575623 P 01811660666 0 0 169)
0 PlO1811660666 o 0 373
21 42578587 5381] I0:6 P |018.11660666 o 0 185
22 44611891 5641| 1D:6 P 01811660666 0 1) 320
3 46598614 5896|106 PlO1811660666 o 0 195)
24 48575269 6149] ID:6 P |0.18.116.6.06.6.6 952172' 336769 154816/ o o 470
25 50703586 8421|106 P (01811660666 9911!!' 353558 162821 0 0 221

Figure A5 Malicious “udp-flood-mote6.csv” — 1 to 25 records.

A1l.3 - Datasets for Blackhole Attacks

A1.3.1 - “blackhole-motel.csv”
The generated malicious “blackhole-motel.csv” file, related to the benign UDP-server motel,
consists of 1,799 records and its first 25 records (i.e., 1-25) are depicted below in Figure .

B o E E G H ) K L M N o P L R 5 T u L w
) ) o B | i Measurements for each of the 2-sec monitoring period
No Real time  [Clock time] 1D Rime Address  [seq all_idle_transmit) all_idle_listen pu lpm | transmit | Nisten | idle_transmit | idle_listen
[us] (in ticks) lin ticks) {in ticks) {in ticks] | (in ticks) | {in ticks) | (in ticks) |  (in ticks) {in ticks)

1 2569838 261[i1 [P loas11610111 o 756) o 540 53768, [ 756/ o 540
2 4572517 s17[ip1  |p 01811610011 2987 1201 0| 59781 2987 445 [ 375
3 6571873 7731 [P [oas1is10111 2987 1601 [} [ 400| 0| 400
4 8572499]  1029|D:1 | P |01811610111 11647 2987 2487 [ [ 56| [ 564
5 10572864 1285101 [P 018116101011 14084| 314409 2987 3814 o o] 1317 0| 300
3 12573582  1s41]ip1 [P {ois116100101 s zo0s3s] 373666 5971 4238] [ 2984 424] [ 350
7 14572873 179701 | P [01811610111 6I 22651] 436861 5971 5618 0 5221' 2311 ﬁalssl 0] 1380 0| 692
& 16573209] 20531 [P oisi1610111 7)| 25251 asoves 5971 7315| [ 4448 2508] 62907 o E{ [ 1227
9 18572505  2309)i>1 [P 01811610111 sI 26940| 563591 5971 7715 o ua-‘.sl 1686) 63823 [ 00| 0| 400
10 20572521) 2565|101 |P 01811610111 sl 28772 e27270] 5971 8302 [ 5223 1823 63679 o 587 [ 375
11 22572919]  zs21|i1 [P 01811610111 wI 30594| 690956 5971 8919 0| 5820 1819 63586 [ 617 0| 597
12 24572920)  3077)i0ct [P oisi1610111 | 11l 32716] 754843 5971 9717 [ 6170 2119] 63387 o 758| [ 350
13 26573301] 3333 ip1 [P loasileaoand | 12fl 34s33] sisos7 5971 10395 0| 6557 1814 63594 [ 678 0| 387
14 2ms74800)  3ses| ot |poisi11610111 | 18 4244| a7sess 9471 11580 [ 7118 7910] s7601]  3500] 1188 [ 559
15 30574365 384501 |P|0u811600111 | 14)] 45251 936363 9471 13129) o 8017 2803| 62715 0] 1549 0| 901
16 32574106  4101)i0ct [P |oisii610111 | 1s)  47ses| 1001541 9471 14181 [ 8354 2312] 63178 o] 1082 [ 337
17 34573644) 435701 |P 01811600111 | 16) 49246| 1065371 9471 14561 0| 8754 1677] 63830 [ 400| [ 400
18 ses7aess|  4s13) it P 01811610111 ul 50982| 1126176 9471 145981 [ 9154 1703  e3805 [ uﬁ [ 400
19 38573648 Plo1s11610111 | 18l 52628| 1193011 9471 15361 0| 9554 1673| 63835 [ 400)| 0| 400
20 40573597 Plois11610111 | 15l  s44e7| 1256684 9471 16158 [ 10119 1835 uﬁ' [ ?F} 0| 565
21 42573976 P 01811610001 Jol 56558] 1320105 9471 1?@‘ 0| mdsll 2088] _63221) [} 868| [ ECH |
22 44573555 P 01811610111 21 58485| 1383650 9471 17550 0 10856 1524| 63585 2] 564 0 375
23 46575735 P 01811600011 | 22) 64799] 1242887 11534 19?13} 0| 11361' 6311] 59197]  2063]  2129| 0| 505
24 48576079 Ploi811610211 23| T1257| 1501942 13665) 22686 o 12831 6455| 59055) 2151 2567 o 1470
25 50575102 plois1161.01001 | 24 74523 1564190] 14177) 23570 [ 15206' 3262] 62248 512 B84 [ 375

Figure A6 Malicious “blackhole-motel.csv”’—1 to 25 records.
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A1.3.2 - “blackhole-mote4.csv”
The generated malicious “blackhole-mote4.csv” file, related to the benign UDP-client mote4,
consists of 1,799 records and its first 25 records (i.e., 1-25) are depicted below in Figure .

8 e | E | F |6 H i K | L | M N ] P R | s | 71 [ v w
Total measurements from the begining of the simulation Measurements for each of the 2-sec monitoring period
No Hime Address  [seqnal| sl cpu |  all_lpm all_listen [all_idle_transmit| all_idle_lsten || cpu ‘transmit idle_listen
(inticks] | (inticks) | [inticks) [ (in ticks) [in ticks) (in ticks) lin ticks) {in ticks)
1 P 01811640444 0 64075 0 588 0 552 Q 0
2 P|01811640444 1 128477 0 0 952 1089 64402 o 0
3 P 01811640444 2 192715) il 1580, 0 1339 1255 64238 0 0 387'
4 P|01811640444 3 257072 0 1980, 0 1733 1134 64357 [ o 400]
5 P (01811640444 4 320993 0| 2846/ 0 2291 1584 63921 o 9 552
6 13076528 1541 104 P 01811640444 5 11762 382177 1619 4152 0 21868 4319 61184 1619 0 577)
7 2 P|01811640444 & 17904 441532 4605' 4769, 0 341!' 6133 55355 2586 0 S-‘SI
8 P 01811640444 7 0 3788. 1854 63645 o 0 375
9 P 01811640444 8 0 4188 1586 63921 o 0 400]
10 2565 P|01811640444 9 0 5154 B010| 55496 2345 0 66|
i1 23077456 2821[ 104 P 01811640444 0 5878 9741 55767 4279 lﬁﬂll 0 724
12 25076361 3077 104 P 01811640444 0 6455 2443 63059 o ﬁﬁl 0 577)
13 27076325 3333[ 104 P (01811640444 0 7019 2450 63056 o 850 9 564
14 29078167 3589 104 P 01811640444 0 B494 4617 60891 1293 2086 0 1475
18 31077761 3845 10:4 P|01811640444 0 9359 6622 SBE8E 2506 2028 0 QG;I
16 33076317 4101[ 104 P 01811640444 0 9989 044 63461 o 590 9 590
17 35078139 4357 104 P 01811640444 0 10364 6600 58911 2985 448 0 375
18 37077130 4613 10:4 P|01811640444 64, 0 10739 2502 63005 o 629 0 375
19 P 01811640444 0 11331 21B10| 62825 0 942 0 592
20 P 01811640444 73951 0 12a53f) 6724 SBE53 2907 2342 0 1122
2 P (01811640444 20 76033 0 12853 2079 m'_u 400 9 400
22 45077060 5637( 104 P 01811640444 21 78025 0 13253 1989 63518 o 400 0 400
23 47077111 SE58/ 10:4 P|01811640444 22 80045 1427547 20920] 21786/ 0 14210 2017 63450 o 957 0 957
14 49077089 6149( 104 P 01811640444 3 82124 1490980 20920] 22730 0 15154 2076 63433 o 944 0 944
25 51077073 6405( 104 P 01811640444 24 84116 1554497 20920 23130/ 0| 15554 1989 63517 a 400 0 400]

Figure A7 Malicious “blackhole-moted.csv”—1 to 25 records.

A1.3.3 - “blackhole-mote10.csv”
The generated “blackhole-motel0.csv” file, related to the malicious UDP-client motel0, consists of
1,799 records and its first 25 records (i.e., 1-25) are depicted below in Figure .

B & O | E | F |G H L1y K | L M | N o ] [ ¢ R | 8 | T | w | v | w
Total measurements from the begining of the simulstion Meas for each of the g period
No. Real time  (Clock timel 1D Rime Address  fseqnoll sl cou | oi_lpm | all_transmit| all_Bsten |all_idbe_transmit| all_idle_listen ||  cpu lpm | teansmit [ listen | idle_transmit | idle_listen
[us) {in ticks) linticks) | (inticks) | (inticks) [ (inticks) {in ticks) Ginticks) | fin ticks) | [in ticks) | (in ticks) | {in ticks) | (inticks) | (in ticks)

1 3144754 261)ipa0 [P |oasni6100001d o 2363 54047 [ 595 [ 54047 [ 595 0 565
2 5279647 s3a| 110 | e |0.18.116.100.000 1 128196] 2591 1071 o 64149 2591 478 0 400)
3 7146973 773[ 1010 | P |018116100201] 2 1681 o 55619 [ SEI
4 91a7664]  1028[i0a0 [P |oasiisaonsoad  sf 251827 2591 2081 [ 64012 0 400
5 11149145]  1285[10:10 | P | 0181161001010 4)|  19610] 308833 6947 3521 [ 0 729
3 13145130 uﬁim-m P |oieii6100101d  s|| 24279 369653 o 0 787
7 15148013]  1797[ionie [P [oasiis100101] 6 [ 0 906
& 17149241]  20s3[ip10 [P loasni6i00000d 7 o 0 702
s 19148076] 2308|1010 | P | 0.18.1161001010 8 o 0 400
10 21150232] 2565|1010 | P 08116100101 9 [ 0 1371
11 23150147]  2821) 1010 [P | 0.18.116.10.0.00 o 0 B66)
12 25145895) 30771010 | P |0.1811610.0.101 12824 [ [ 375)
13 27150142]  333sficao |e[oas11610.0.10. [ [ sisff
14 29150142]  3ses|ipcic [P |0.18.116.10.0.001 [ of 915'
15 51150548 5845|10c10 | P | 0181161001010 14 80153 903330 30873 21135) e} o 527
16 33150523]  s1o01fipae [efoasai6100001d 1s||  ssaiel 963769 32570 22707 o [ i |
17 4357] ID:10_| P | 0.18.116.10.0.10.14 1s| 87466 1027008 32570] 23387 o of 630]
18 37154693]  4sa3ficao |e|oasieiooioad 17f] 9eses|  10ss7e7 35557 24082 [ 0 250
19 39149492]  4sss|ipic |p|0a8116.100.001 96294 1140173 35557 zuﬂ 0 0 400
20 a1151878]  s125[ip:16 | P | 0.18.116.10.0.00.14 1203528 20642 28575) o [ 1535]
2 43149797]  s3s1ficio | P |0.a8.116.10.01014 109511 1266951 20642 28975 [ 0 400
22 45149780]  5637) 1010 | P | 0.18116100.101] 21|| 111438 1330518 20642 29375 [ 0 400)
23 a7151550]  ssss|iDcio | P | 0.18.116100.001q 22| 11788s|  13sssia 22887 32266) o 0 1181
24 29151552]  s148)ipae |p|oasiisionaoad 23l 123186) 1249788 44637 34474 [ 60210} of 1058]
25 51150507] 6405|100 | P | 0181161001010 24|| 126568 1511915 45154] 35377 o 62127 517 203 0 577

Figure A8 Malicious “blackhole-mote10.csv”—1 to 25 records.
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A1l.4 - Datasets for Sinkhole Attacks

Al1.4.1 - “sinkhole-motel.csv”’
The generated “sinkhole-motel.csv” file, related to the benign UDP-server motel, consists of 1,799
records and its first 25 records (i.e., 1-25) are depicted in Figure .

B [} | E | F |G| H [ K LM | N | [} ] [ ¢ R | S | T W | ¥ | w
1 the begining of the sis [ far each of the 2-sec monitoring pericd
No Rime Address  peqnal all_cpu | alllpm | all_transmit| all listen |all_idle_transemit| all_idle_listen cpu lpm | transmit | listen | idle_transmit | idle_listen
{inticks) [ (inticks) | (inticks) [ (inticks) {in ticks) [ ticks) {in ticks) [ (in ticks] | (in ticks) | {in ticks) |  [in ticks) {in ticks)
1 : P|01B11610111 2784 0 514 2744 53?4 [i 917 0 514
2 Plol811610111 o BES) 5728| 59781 2987 445 o 375
3 P[01811610111 0 1519 1491 64041 0 678 0 630
4 Plol8116101.11 o 2650| 2540) 62593 [s) 1927 1] 113;'
s 10442518]  12ss|ipa [eois11610111 0 2962 3431 ﬁzuzsl o 7 0 312
6 12443238 1541|101 Plo18116101.11 o 3312 6858) 58512 2984 a4 1] 350
7 1«4@ 179701 [P 01811610111 0 4476 2687 ﬁzaml o] 1461 0 1164
8 16442537 2053|101 Pl01811610111 0| 5462 3319) s2184) Q 1590 o 985
9 18442879 2309 P 01811610111 o 5951] 3451 62053 [ 393 0 Een)
10 20442525  2565) P 01811610111 [ 6351 2273 s;nal 0 E‘ | 400
11 22442048 2821 p 01811610111 [ 6751 2253] 63255 3 | [ 400
12 24442576 P 01811610111 0 7151 2332] 63173 o 400 0 45'
13 26442949 3333 ID:1 Pl0O1B11610111 0| 0 972 0 ',hlﬂ
14 28444107 asasl o2 [P 01811610111 0 2988 £a4 0 350
15 30443328 3845| 1D:1 Pl0O1B11610111 [+ 0 1273 0Of 757
16 s2e43321]  aimafioa [P |oaBai610111 0 o 1482 0 599
17 34443658 4357] 1>:1 PlO1B11610111 [+ 0| 1097 0Of 325
18 o2 [P 01811610111 0 [ 400 0 200
18 D1 |P | 01811610111 0 0 620 0 375
20 o1 [P 01811610101 0 o 43' 0 400
21 D1 |P 01811610111 0 0 400 [ s |
22 o1 |P|018116101.11 0 [ 400 0 400
23 ss07[ o1 [P loaeit610111 | 22f] sovai| 1430ess] 21748 0 3855 2847 0 564
24 4p4essaz|  e1s9ioa  |Ploasiieioial | 23]  s7ssi| 1475338 21166) 26984 0 13182f] 17107| 4eems|  s3sz|  sa3s [ 679
25 sosdaa0]  esos|ip1  [ploaeii610111 | 24 100223] 1538475 21166] 27384 0 1354:' 2365 63137] o 400) 0 400

Figure A9 Malicious “sinkhole-motel.csv”—1 to 25 records.

Al1.4.2 - “sinkhole-mote5.csv”
The generated “sinkhole-mote5.csv” file, related to the benign UDP-client mote5, consists of 1,799
records and its first 25 records (i.e., 1-25) are depicted in Figure .

] ] E F o6 H vy & | M | N | o [ R s T | v | v w
Il Total measurements from the begining of the simulation Measurements for each of the
Mo Resl time  [Clock time] 1D fime Address feqnall allcpu | alllpm | all_transmit| all_listen (all_idle_transmit| all_idle_listen listen idle_listen
[us] {im ticks] linticks) | (inticks) | (in ticks) (in ticks) (in ticks) (inticks) | (inticks) | (inticks)

1 2439634 261|105 |P 01811650555 59630 2591 422 of 350 422 0

2 4439452 517|105 | P | 01811650555 123673 2591 1017, [ 55| [

3 55205 | P | 01811650555 5580 1464 of 447 [ 375
4 844574 P | 01811650555 B324 4412 [ 2548 0 961
5 10440688 P|01811650558 8324 4589 of 577 [ 1093
3 12440391 P | 01611650555 §324 5603 of 614 [ 375)
7 14441748]  1797[i05 | P [0.1811650555 11309 6371 of 768] 0 375
& 16440711]  2083li0s [ [oie11650558 G548 [ of 577 [ 577)
[ 2309[105 [P [01811650555 9794 of 2845 [} [ |
10 P 01811650555 10194 of of 400 0 400|
11 P 01811650555 10594 of [ 400] [ 400)
12 P | 01611650555 10594 of [ 400| [ 400)
13 26441488]  33ss[ips e 01811650555 795033 11394 [ [ 400)| 0 400|
14 28441547]  sses|ios e [o01811650555 [ 13 861735 12326 [ [ 532 [ 350)
15 30442977]  3ses|ips [P |o0a11650555 | 1sfl es7ss 917779 21399 13475 | o9 1149 [ 350)
16 szulsool s101fips  [ploie11650555 | 15| esa17 90826 21399 14308 of [ 833 0 572
17 344a1962] 435705 |7 [0.1811650858 10443132/ 21399 14885 [ [ 877 [ 577)
18 36441847] 4613)ips [P |01811650555 1107807 21399 15285 of 8877 2011/ of 00| [ 400
15 3s441883]  aseo]ips [P 01811650555 1171338 21399 15685 [ 9277 1974, of 400) 0 400|
20 40441827]  s1as[i0s |7 [0.1811650858 1234883 21399 16085 [ 5677 [ 400) [ 400)
21 42442268) 5381|105 |P |0.1811650555 1296381 21399 16485 of 10077 of 00| [ 400
22 44442260] 563705 [P [0.1811650555 1361900 21399 16885 of 10477, of 400) [ 400|
23 464a2205]  sssa[iDs |7 [0.1811650858 1425391 21399 17285 [ 10877 [ 400] [ 400]
24 28442960) 6148 ips [P |0a811650555 | 23l] se2s7|  14ssass| 21399 18326 [ 11918 062]  63448] of o4 [ 1041
25 sosd2270] 6405/ 105 |p 01811650555 | 2l sesce| 1ss2ssy) 21399 18726 of 12318 2010]  63496) of 00| 0 400|

Figure A10 Malicious “sinkhole-mote5.csv”—1 to 25 records.
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Al1.4.3 - “sinkhole-mote10.csv”
The generated “sinkkhole-mote10.csv” file, related to the malicious UDP-server mote10, consists of
1,199 records and its first 25 records (i.e., 1-25) are depicted in Figure .

E 1] E F 6 H L1 K M N [:] P ¢ R | s | T 1} v w
Measurements for each of the 2-sec monitoring period
Mo Real time Rime Address all_transmit all_idle_listen || cpu lpm [ transmit idle_listen
[us] {im ticks) linticks) | [in ticks) {in ticks) {in ticks) {in ticks) {in ticks)

1 1202523621 r 018116100101 o 39105879 of [ 365 o [

2 1204524913 Ploisi16100101d 1 35165426 2586 1375] [ 1081 59447 2986 [

3 1206523845] 154374[ 1010 | P |0.16.116.100.00 2f| 265767 39229148 2985, 2737 [ 1956/ 1785| 63722 o] 1382 [ 905
4 mmsmzonl 154630 10:10 [P 018116100101 3 35291814 2886 4281 [ 3182 2838] 62666 o] 1544 [ 1196
B 1210617887] 1s4897) 1010 |P Jolsisi00101d sl 27613 5972 4953 [ 672 of 375)
3 1212523860] 155142] 1010 [P [0.18.116.10.0101 s a7szes| 39413178 5972 5967 [ 1044 of 782
7 1214524188] 158388010 [p[oasi16100101d s 2s0ss2] 3s47sssy 5572 7742 [ 1748 [ 1156]
B 1215523929 155654/ 110 [P |oasiisi00001] 7 5972 2865 [ 1123 [ (A |
[ 1218525672] 155910] 1010 | p [0.18.116.10.01001 3 B96D)| 10107 [} 1242 of 1048
10 1220524542 010 | [018116100101d o 292831 8960 11588) [ 1452 [ 1204]
11 1222524293 e |ploasii6io0a0ad 1off 295114 39723873 8960 12155) [ 596 | 375
12 1224525694] 156678]1D:10 | P [0.18.116.10.0001d 11| 3o1e28| 39782671 11841 12602 [ 447) of 315'
13 1226524988| 156934| 1010 |P |0a8116100300d 12| 30s209] 39845797 11941 13188] [ 586 [ 577
14 1228525010] 157190) 010 [p Jo1s116100101d 13l 306504 39908013 11941 13973} [ 785] [ 552
15 1280524970] 157448] 1010 [P [oas116100101q 14| scseri] sse72184 11841 14587 [ 584 [ 375)
16 1232526382] 157702) 1010 |e oasii6i00301d as|| 315873 14923] 15584] [ 1027 | ke |
17 1234525362 10 |ploasai6100401d  16]| siss23]|  aooezazs 14923} 16751 [} 1207) [ 775
18 1236525638] 1582141010 [P [018116100101d 17| 321366 4o1se1ss 14523} 18015] [ 1224 [ 1084]
19 1238574879] 158476| 1010 | P |0aB116.100401d 18| 328457 <0216201 17907 19019) [ 1004 [ 502
20 1240525007 1587261010 | P |0.18116100101] 19| 3308as] ac2777ac) 17807 19864] [ 845 [ 794
21 1242525316) 1ss9s2|ioi0 [P ois1i6100101d 20f 3331s2 ao3s08s8 17907 21018 [ 1154 of 519
22 1244526026] 159238)10:10 | P |0aB116.100.401d 21| 339955 s03g96e3 20892 21642 [ 16307 6760]  S8745] 2985 624 of 552
28 1 1594041010 [P oie116100001d 22l s4ases[  aoasarsy 20852 22756, [ 17418] 2351 63114 o] 1114 [ 1108}
24 1248525656] 159750) 1010 | P [018116100301q 23| 344997| 40525620 20892 24613] [ 18873/ 2646 62863 o] 1857 of 1458
25 1250526717 160006] 010 [P [o1s116100101q 24| 352535 23878 26957 [ 20867 7536] s7970]  2em6| 2344 of 1994

Figure A11 Malicious “sinkhole-mote10.csv”—1 to 25 records.

A1.5 - Datasets for Sleep Deprivation Attacks

Al1.5.1- “sleep_depr-motel.csv”
The generated “sleep_depr-motel.csv” file, related to the benign UDP-server motel, consists of
1,799 records and its first 25 records (i.e., 1-25) are depicted below in Figure .

] b | E F |6 H I S T S O | o I R | s | T | w | v | w
l Total measurements from the begining of the simulation Measurements for each of the 2-sec monitoring period
No Real time  (Clock timeg 1D Rime Address  seq all_cpu | all_lpm |all_transmit all_idle_listen pu lpm | transmit | listen | idle_transmit | idle_listen
fus] (in ticks) (in ticks) | [in ticks) (in ticks) lin ticks) {in ticks) | {in ticks) | (in ticks) | (in ticks) {in ticks) (in ticks)

1 2777047 261] 1Bl P|01811610111 o o 544 o 350
2 4779437 517] D1 P 01811610111 o 2987 445 Q 375
3 6779075 773|121 P|01811610111 o o) 00| L 400
4 8780028 1028] iDL P 01811610111 o 0| 1033} Q 579
5 10779652 1285) 10:1 P|0181161011.1 =} o S585) o 577

& 12781115 1541 1D:1 P 01811610111 o 2984 1DDD| Q L |
7 14779713 1797|102 P|01811610111 =} o 818 o 350
B8 16780062 2053) D1 P 01811610111 o 0| 12' Q 719
9 18779709 2309' 10:1 P|0181161011.1 o 0| 791 o 565
10 20779711 2565) ID:1 P 01811610111 7522 o 0| 4Dﬂ Q 400
11 22780445 2821) 101 P|0181161011.1 8601 =} ] 1075 o ?G_II
12 24780114 3077) D1 P 01811610111 9205 o 0| 604 Q 5?5_'
13 26780101 5333) 102 Pl0181161011.1 9834 s} o 625 o 375
14 28781643 3589) D1 P 01811610111 10477 o 2988 6543 o 350|
15 30780512 3845' 10:1 Pl01811610111 11078] =) o 501 o 375
16 32782012 llUlI D1 P 01811610111 lSI 45575| 1003551 8959 12115] o 0| 1037 Q 572
17 34780852 4357 10:1 P 01811610111 16| 47485 1067126 8559 12747] o o 632 o 375
1B 36780847 4613] ID:1 P (01811610111 17] 49386] 1130736 B959 13377 o 0| 630| Q 590]
15 38780843 4865|101 P 01811610111 18 $1060| 1194572 8559 13777 o 0| QEi o 400
0 40780843 5125] 10:1 P 01811610111 19 52964 1258176 B959 14380] o 0| 603 Q 577
21 42781185 S381) 101 P|01811610111 2ﬂ| $4871| 1321780 8559 14979] o 0| 599 o 577
22 44781169 5637) 101 P 01811610111 21 56558] 1385604 B959 15379 o 10754 1684] 63824 [+ 400] Q 400
23 46783351 5893|101 P|01811610111 22| £7342| 1440331 13611 18965] o 11465 10781 54727 4652 A586) o ?HI
24 48781595 6149] ID:1 P 01811610111 23] 69123] 1504063 13611 19365 o 11865 1778 63732 o) 00| Q 400
25 50781604 6405|101 P|01811610111 24 70822 1567875 1361 19’SS| o 12265 1696/ 63812 0| 400| o 400

Figure A12 Malicious “sleep_depr-motel.csv”—1 to 25 records.
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A1.5.2 - “sleep_depr-mote6.csv”
The generated “sleep_depr-mote6.csv” file, related to the benign UDP-client mote6, consists of
1,799 records and its first 25 records (i.e., 1-25) are depicted below in Figure .

B D | E | F |s] H L L. M | N | 1] P R s T u o v w
Total measurements from the begining of the simulation Measurements for each of the 2-see monitoring period

No Real time  [Clock time] 1D Rime Address all_lpm | all_transmit| all_sten [all_jdle_transmit] all_idle_listen || cpu Ilpm | transmit | listen | idle_transmit | idle_listen

[us] [in ticks) (inticks) | (inticks) | [in ticks) {in ticks) {in ticks) i ticks) | {in ticks) | {in ticks) | (in ticks) [ (inticks) | {in ticks)

1 3224242 61|06 |P|01811660666 of 59549 2591 619 o 527 6894| sosan 2501 619 o
2 5223775 517|106 |P | 01811660666 1 123880)] 2881 1019 o 527 1160]  64331] of 400] [
3 7224398 773|106 [P |01811660666 2 9581 187857 2591 1705 o 1314 1521] 63977 [ s?' [
3 s224021 1029] 16 |P | 01811660666 sl| 11078 251870] 2581 2105| 0 1714 1492] 4013 0 | 0 400)
5 11226017 1285] 106 | P | 01811660666 afl 17224 311233 o 0 350
6 13226310  1541] 1006 [P |018.11660666 s)| 368869 o [ 905|
7 15298244 1806[1D:6 | P |0.18.1166.0666 6 430419 0 0 375
8 17225257 2053|106 | P | 01811660666 7 231432 o 0 375
] 19226779 2309|106 |P | 01811660666 8l 37949] 552525] o [
10 21225202 2565[10:6 | P | 0.18.1166.0666 sfl sa777 616207 0] o
11 23227221 2821|106 | P 01811660666 676534 [ [
12 | P 01811660666 [ o
13 P |0O18116 60666 0 0
14 P 01811660666 [ g
15 P |0181166066.6 0 o
16 P 01811660666 [ 0
17 P [01811660666 [ [
18 37227937 4613106 |P | 01811660666 68783] 1111289 [} o
13 35226480] 4863|106 | P |01811660666 | 18| 7o604] 1174877 [ o
20 41226426 5125|106 [P |01811660665 | 1238722 o [
21 43228222 5381|ID:6  |P 01811660666 | 2o)l 76513 1300091 0 1129| 0
22 45226870] 5687|106 | P |01811660666 | 21| 7asas]  136376s) 21717 18083 o 0 400 0
3 47226895 5693|106 [P |01821660666 | 22| sois0|  1427464) 21717 13493 o 0 400| [
23 40226872  6149) 106 | P [01811660666 | 23)l 81973 1491162 21717 18893 [} of 400| 0
25 51226856 6405|106 | P |018.116606665 | 24| 85750]  15548885) 21717 15283 0 0 400 0

Figure A13 Malicious “sleep_depr-mote6.csv”—1 to 25 records.

A1.5.3 - “sleep_depr-motel10.csv”
The generated “sleep_depr-motel0.csv” file, related to the malicious UDP-client motel0, consists of
1,049 records and its first 25 records (i.e., 1-25) are depicted below in Figure .

[ o | E | F & H I [ M N [ P ¢ R | S5 T | uw | ¥ | w
it Measurements for each of the 2-sec monitoring period
No Rime Address cpu lpm | transmit | listen | idle_transmit | idle_listen
lin ticks) | {in ticks) | (in ticks] | (in ticks) (in ticks) lin ticks)

1 P [0.18.116.10.0.10.1¢ 325387 49E+07] 0Of 365 0 365
2 P (018116100101 63245 2595 L

3 1506?5?212' 192??I| 010 [P [018.116.10.0.10.14 59724 0 o

4 1508758845 193030(10:10 [P [(0.18.11610.0.10.1 S6804 ] 3591 0

5 1510759739 1932861010 (P (018116100101 47367 9994 3922 o 1007
& 1512799117 1935‘7' 010 [P [018.116.10.0.10.14 57220| 59?5' 2776 o 892
7 1514760194 193798[10:10 [P [018.116.10.0.10.1 53175 4845 3624 0 1213
8 1516783451 1940571010 [P (018116100101 42598 13590 5396 o 750]
9 1518879497 194525' 010 [P [018.116.10.0.10.14 5125. 23513 45137 14212' 5784 o 464]
10 1520760181 194566[10:10 [P [0.18.11610.0.10.1 6588 18812 42780 10695 4517 0 465
11 1522760619 1948221010 [P (018116100101 7440 22193 43311 12763 5900 o 852
12 1524760566 195078|/10:10 [P (0.18.116.10.0.10.14 BOES 24317 41189 14654 6187 o 625
13 | 195340 10:10 [P (0.18.116.10.0.10.14 8919 20163 46949 11683 5268 0 854
14 1528761180 19559Q( 1010 [P (018116100101 10595 12884 50995 6189 o 1676
15 1530800745 195851|i0:10 [P (0.18.116.10.0.10.14 10845 22549 44256] 13209 Q. 250
16 196120(10:10 [P [0.18116.10.0.10.14 | 135129 11473 22974 45852 13027 0 528
17 1534760467 1963581010 [P (018116100101 4’555776' 138275 55608 11938 B492 52376 3[45' 2436 o 465
18 1536761144 196614|/10:10 [P (018.116.10.0.10.14 49699964 150407 71262 12750 21314 44188 12132 5654 o 812
19 1538761137 196870[10:10 [P (0181161001014 45757655 167037 78246 13164' 27805 37691 16630| 6984 0 414
0 1540761126 197126( 1010 [P (018116100101 176657 83055 lﬂilll 17294 o llﬂ?l
21 1542760782 197382( 010 [P (0.18.116.10.0.10.14 49834673 186091 87337 14611 16696 Q. 300
22 1544761495 197e38)10:10 [P (0181161001014 45877074 199202 54015 15586 23101 0 1375
3 l545751478| 197694 010 [P (0181161001014 49921345 210963 FIEI6| 17072 21224 o 1086
24 1548810503 198156(/0:10 [P (0.18.116.10.0.10.14 49970246 220851 104603 0 894
25 1550761161 198406|10:10 [P (0181161001014 20026501 223556 107043 0 0 1276

Figure A14 Malicious “sleep_depr-motel0.csv”’—1 to 25 records.
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