
Generating Datasets for Anomaly-Based
Intrusion Detection Systems in IoT Networks

Ismael Ahmad Essop

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

 for the degree of Doctor of Philosophy

School of Engineering

Faculty of Engineering and Science

University of Greenwich

December 2021

This page intentionally left blank.

i

DECLARATION

I certify that the work contained in this thesis, or any part of it, has not been accepted in substance
for any previous degree awarded to me or any other person, and is not concurrently being
submitted for any other degree other than that of Doctor of Philosophy which has been studied at
the University of Greenwich, London, UK.

I also declare that the work contained in this thesis is the result of my own investigations, except
where otherwise identified and acknowledged by references. I further declare that no aspects of the
contents of this thesis are the outcome of any form of research misconduct.

I declare any personal, sensitive or confidential information/data has been removed or participants
have been anonymised. I further declare that where any questionnaires, survey answers or other
qualitative responses of participants are recorded/included in the appendices, all personal
information has been removed or anonymised. Where University forms (such as those from the
Research Ethics Committee) have been included in appendices, all handwritten/scanned signatures
have been removed.

Student Name: Ismael Ahmad Essop

Student Signature:

Date: 21/12/2021

First Supervisor’s Signature:

Date: 21/12/2021

First Supervisor’s Name: Dr Georgios Mantas

ii

This page intentionally left blank.

iii

ACKNOWLEDGEMENTS

Throughout this journey and the writing of this dissertation I have received a great deal of support

and help from so many people. Although I am allowed to assume the sole authorship of this

dissertation, the journey to complete this work has been a richly collaborative effort. It is first and

foremost the fruit of working alongside my supervisors, mentors, colleagues, friends, and family.

I want to begin by expressing my immense gratitude towards my Ph.D. supervisor, Dr Georgios

Mantas, for his mentorship and scholarly guidance. He is not just a true leader in the field, but a

wonderful human being who has had a significant impact on me as an individual and as a researcher.

His continuous support and unwavering belief in me encouraged me to undertake an ambitious

project with much less trepidation. His dedication to cultivating an impactful research effort and his

sense of mission in pushing the boundary of knowledge acquisition has positively impacted me. I’d

also like to thank Dr Hieu Chi Le and Professor James Gao for their generous feedback when called

upon and allowing me to focus on my research throughout my Ph.D., which has been one of the best

and most productive periods of my life. I would like to express my sincere thanks to a number of

researchers for their ideas, interests, and constructive criticisms, namely Dr Jose Ribeiro, George

Zachos, Maria Papaioannou, and Professor Jonathan Rodriguez.

I am also indebted to Professor Predrag Rapajic who inspired me to keep trudging the difficult road

of research.

I am forever indebted to my mother for her sacrifices in my life, my brother Salim for helping with

financing my undergraduate and master’s studies, my sister Zaynah for her continuous

encouragement and friendship.

I feel extremely blessed to have as my best friend and wife Aliyah, who always provides me with

unconditional understanding, love, and support. I also wish to express my enduring love to my sons,

Muhammad for his forbearance, Ali for his wits, and Hamza for his determined nature. You can now

have your father back!

Last, but not least, I dedicate this work to my late father, Idris, who never managed to complete his

primary education, but instilled in me such spiritual and moral values, that have inspired me to

surmount the numerous challenges that life throws at you.

iv

This page intentionally left blank.

v

ABSTRACT

Over the past few years, we have witnessed the emergence of Internet of Things (IoT) networks that

bring significant benefits to citizens, society, and industry. However, their heterogeneous and

resource-constrained nature makes them vulnerable to a wide range of threats and an attractive

target to attackers with a wide spectrum of motivations ranging from criminal intents, aimed at

financial gain, to industrial espionage and cyber-sabotage. Consequently, security solutions

protecting IoT networks from attackers are critical for the acceptance and wide adoption of such

networks in the coming years. Nevertheless, the high resource requirements of conventional

security mechanisms cannot be afforded by (i) the resource-constrained IoT nodes and/or (ii) the

constrained environment in which the IoT nodes are deployed. Therefore, there is an urgent need

for developing novel security mechanisms to address the pressing security challenges of IoT

networks in an effective and efficient manner, taking into consideration their resource-constrained

inherent limitations, before they gain the trust of all involved stakeholders and reach their full

potential in the IoT market. Toward this direction, considerable research efforts have recently been

put into the design and development of novel Anomaly-based Intrusion Detection Systems (AIDSs),

tailored to the resource-constrained characteristics of IoT networks, because of their ability to

detect not only known but also new, zero-day attacks, in IoT networks. However, although the

concept of IoT AIDSs is promising, it cannot be materialised before the significant gap of the scarcity

of benchmark datasets for training and evaluating Machine Learning (ML) models for IoT AIDSs is

addressed. In fact, the current scarcity of benchmark IoT datasets constitutes a significant research

gap that should be addressed in order to enable the development of more accurate and efficient IoT

AIDSs whose effectiveness is evaluated based on their performance to successfully detect IoT attacks

that is a process reliant on up-to-date, representative and well-structured IoT-specific benchmark

datasets that until now have been missing. Therefore, contribution to filling this research gap is the

main target of this thesis. In particular, the focus of this thesis is on the generation of new labelled

IoT datasets that will be publicly available to the research community and include the following

required information so as to be considered as benchmark IoT datasets for training and evaluating

ML models for IoT AIDSs: (a) information reflecting multiple benign and attack scenarios from

current IoT network environments, (b) sensor measurement data, (c) network-related information

(e.g., packet-level information) from IoT networks, and (d) information related to the behaviour of

the IoT devices deployed within IoT networks.

vi

This page intentionally left blank.

vii

Table of Contents
DECLARATION .. i

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. v

List of Figures ... xiii

List of Tables ... xviii

Key Acronyms ...xx

CHAPTER 1 Introduction ... 1

1.1 Motivation ... 1

1.2 Research Challenges ... 1

1.3 Scope of the Research ... 2

1.4 Thesis Contribution ... 3

1.5 Organisation of the Thesis .. 6

Chapter 2 Related Work .. 9

2.1 Introduction .. 9

2.2 Internet of Things (IoT) ... 9

2.2.1 An Overview ... 9

2.2.1.1 Evolution ... 10

2.2.1.2 Useful Definitions .. 10

2.2.1.3 Concept of IoT ... 10

2.2.2 Fundamental Characteristics and High-Level Requirements of the IoT 11

2.2.2.1 Fundamental Characteristics of the IoT .. 11

2.2.2.2 High-level Requirements ... 12

2.2.3 IoT Architecture ... 13

2.2.3.1 Device and Gateway Capabilities of IoT networks .. 15

2.2.4 Security Attacks in the IoT Network – Perception Layer Environment 15

2.2.4.1 Sinkhole attacks .. 15

2.2.4.2 Node capture attacks .. 15

2.2.4.3 Malicious code injection attacks ... 15

2.2.4.4 False data injection attacks ... 16

2.2.4.5 Replay attacks ... 16

2.2.4.6 Eavesdropping ... 16

2.2.4.7 Sleep deprivation attacks or Denial of Sleep attacks .. 16

2.2.4.8 Sybil attacks .. 16

2.2.4.9 Blackhole attacks .. 16

2.2.4.10 Denial of Service (DoS) attacks ... 17

viii

2.2.5 IoT Security and Privacy Requirements ... 17

2.2.6 Security Requirements of the Gateway ... 18

2.2.6 Security Considerations ... 18

2.3 Machine Learning Algorithms for Anomaly-based Intrusion Detection in IoT Networks 21

2.3.1 Naïve Bayes (NB) .. 21

2.3.2 Decision Tree (DT) .. 22

2.3.3 Linear Regression (LR) .. 23

2.3.4 Logistic Regression (LR) .. 24

2.3.5 Support Vector Machine (SVM) ... 26

2.3.6 K-Nearest Neighbor (KNN) ... 27

2.3.7 Ensemble Learning (EL) .. 28

2.3.7.1 Random Forest (RF)... 29

2.3.7.2 AdaBoost ... 30

2.3.8 Conclusions .. 31

2.4 Evaluation Metrics .. 32

2.5 Datasets for Anomaly-based Intrusion Detection in IoT Networks .. 33

2.5.1 LWSNDR Dataset .. 33

2.5.2 A Dataset for Classifying IoT Devices Using Network Traffic Characteristics 33

2.5.3 Bot-IoT Dataset .. 34

2.5.4 A Dataset for Detecting DoS Attacks on IoT Devices Using Network Traffic Traces 35

2.5.5 ToN_IoT Telemetry Dataset ... 35

2.5.5.1 Testbed “Edge” Layer .. 36

2.5.5.2 Testbed “Fog” Layer .. 36

2.5.5.3 Testbed “Cloud” Layer .. 36

2.5.5.4 ToN_IoT Datasets .. 37

2.6 An Overview of Cooja Simulator ... 38

2.7 Summary ... 39

Chapter 3 Generating Benign IoT Datasets ... 41

3.1 Introduction .. 41

3.2 Benign IoT network scenario – an example .. 41

3.3 Benign “powertrace” Dataset ... 42

3.3.1 Benign “powertrace” Dataset – Generation Process ... 42

3.3.2 Benign “powertrace” Dataset – Generated Results .. 46

3.3.2.1 Benign “pwrtrace.csv” .. 46

3.4 Benign Network Traffic Dataset .. 48

3.4.1 Benign Network Traffic Dataset – Generation Process .. 48

ix

3.4.2 Benign Network Traffic Dataset – Generated Results ... 51

3.4.2.1 Benign “radiolog.csv” .. 51

3.4.2.2 Benign “radiologICMPv6.csv” ... 53

3.4.2.3 Benign “radiologUDP.csv” ... 54

3.5 Summary ... 55

Chapter 4 Generating Malicious IoT Datasets .. 58

4.1 Introduction .. 58

4.2 UDP Flooding Attack Datasets .. 58

4.2.1 UDP Flooding Attack Scenario – an example ... 59

4.2.2 UDP Flooding Attack “powertrace” Dataset .. 60

4.2.2.1 UDP Flooding Attack “powertrace” Dataset – Generation Process 60

4.2.2.2 UDP Flooding Attack “powertrace” Dataset – Generated Results 61

4.2.2.2.1 “udp-flood-pwrtrace.csv” ... 61

4.2.3 UDP Flooding Attack Network Traffic Dataset ... 62

4.2.3.1 UDP Flooding Attack Network Traffic Dataset – Generation Process 62

4.2.3.2 UDP Flooding Attack Network Traffic Dataset – Generated Results 63

4.2.3.2.1 “udp-flood-radiolog.csv” .. 63

4.2.3.2.2 “udp-flood-radiologICMPv6.csv” .. 63

4.2.3.2.3 “udp-flood-radiologUDP.csv” ... 64

4.3 Blackhole Attack Datasets ... 65

4.3.1 Blackhole Attack Scenario – an example ... 65

4.3.2 Blackhole Attack “powertrace” Dataset .. 67

4.3.2.1 Blackhole Attack “powetrace” Dataset – Generation Process 67

4.3.2.2 Blackhole Attack “powetrace” Dataset – Generated Results 68

4.3.2.2.1 “blackhole-pwrtrace.csv” ... 68

4.3.3 Blackhole Attack Network Traffic Dataset ... 69

4.3.3.1 Blackhole Attack Network Traffic Dataset – Generation Process 69

4.3.3.2 Blackhole Attack Network Traffic Dataset – Generated Results................................... 70

4.3.3.2.1 “blackhole-radiolog.csv” ... 70

4.3.3.2.2 “blackhole-radiolog-ICMPv6.csv” ... 70

4.3.3.2.3 “blackhole-radiolog-UDP.csv” .. 71

4.4 Sinkhole Attack Datasets... 72

4.4.1 Sinkhole Attack Scenario – an example ... 73

4.4.2 Sinkhole Attack “powertrace” Dataset .. 75

4.4.2.1 Sinkhole Attack “powertrace” Dataset – Generation Process 75

x

4.4.2.2 Sinkhole Attack “powertrace” Dataset – Generated Results.. 76

4.4.2.2.1 “sinkhole-pwrtrace.csv” ... 76

4.4.3 Sinkhole Attack Network Traffic Dataset ... 77

4.4.3.1 Sinkhole Attack Network Traffic Dataset – Generation Process 77

4.4.3.2 Sinkhole Attack Network Traffic Dataset – Generated Results 78

4.4.3.2.1 “sinkhole-radiolog.csv” ... 78

4.4.3.2.2 “sinkhole-radiolog-ICMPv6.csv” ... 78

4.4.3.2.3 “sinkhole-radiolog-UDP.csv” .. 79

4.5 Sleep Deprivation Attack Datasets .. 80

4.5.1 Sleep Deprivation Attack Scenario – an example .. 80

4.5.2 Sleep Deprivation Attack “powertrace” Dataset ... 82

4.5.2.1 Sleep Deprivation Attack “powertrace” Dataset – Generation Process 82

4.5.2.2 Sleep Deprivation Attack “powertrace” Dataset – Generated Results 83

4.5.2.2.1 “sleep_depr-pwrtrace.csv” ... 83

4.5.3 Sleep Deprivation Attack Network Traffic Dataset ... 84

4.5.3.1 Sleep Deprivation Attack Network Traffic Dataset – Generation Process 84

4.5.3.2 Sleep Deprivation Attack Network Traffic Dataset – Generated Results 85

4.5.3.2.1 “sleep_depr-radiolog.csv” .. 85

4.5.3.2.2 “sleep-depr-radiolog-ICMPv6.csv” ... 85

4.5.3.2.3 “sleep_depr-radiolog-UDP.csv” .. 86

4.6 Summary ... 87

Chapter 5 Datasets Analysis .. 89

5.1 Introduction .. 89

5.2 “powertrace” Datasets Analysis.. 89

5.2.1 Malicious “powertrace” Datasets Analysis – Feature Selection .. 89

5.2.1.1 UDP Flooding Attack “powertrace” Dataset Analysis ... 89

5.2.1.2 Blackhole Attack “powertrace” Dataset Analysis ... 91

5.2.1.3 Sinkhole Attack “powertrace” Dataset Analysis ... 93

5.2.1.4 Sleep Deprivation Attack “powertrace” Dataset Analysis .. 95

5.2.2 Benign and Malicious “powertrace” Datasets Analysis – Feature Extraction 98

5.2.2.1 Benign “powertrace” Dataset – Average Total Energy Consumption per Mote 99

5.2.2.2 UDP Flooding Attack “powertrace” Dataset – Average Total Energy Consumption per

Mote .. 100

5.2.2.3 Blackhole Attack “powertrace” Dataset – Average Total Energy Consumption per

Mote .. 102

xi

5.2.2.4 Sinkhole Attack “powertrace” Dataset – Average Total Energy Consumption per Mote

 .. 104

5.2.2.5 Sleep Deprivation Attack “powertrace” Dataset – Average Total Energy Consumption

per Mote ... 107

5.3 Network Traffic Datasets Analysis .. 109

5.3.1 Benign and Malicious Network Traffic Datasets Analysis-Feature Extraction 109

5.3.1.1 Benign Network Traffic Dataset Analysis .. 109

5.3.1.2 UDP Flooding Attack Network Traffic Dataset Analysis .. 110

5.3.1.3 Blackhole Attack Network Traffic Dataset Analysis .. 111

5.3.1.4 Sinkhole Attack Network Traffic Dataset Analysis .. 113

5.3.1.5 Sleep Deprivation Attack Network Traffic Dataset Analysis 114

5.4 Summary ... 116

Chapter 6 Datasets Validation .. 117

6.1 Introduction .. 117

6.2 Dataset Pre-Processing ... 117

6.3 Normalisation .. 117

6.4 Training and Testing of ML Algorithms on the Malicious “Powertrace” Datasets 118

6.5 Performance Evaluation Results ... 119

6.5.1 “udp-flood-pwrtrace_label.csv” Dataset ... 119

6.5.2 “blackhole-pwrtrace_label.csv” Dataset .. 120

6.5.3 “sinkhole-pwrtrace_label.csv” Dataset .. 121

6.5.4 “sleep_depr-pwrtrace_label.csv” Dataset ... 122

6.5 Summary ... 123

Chapter 7 Conclusion and Future Work .. 125

7.1 Conclusions ... 125

7.2 Future Work .. 127

References .. 129

Full List of Publications ... 136

International Peer Reviewed Journal papers (4) .. 136

International Peer Reviewed Book Chapters (1) ... 136

International Peer Reviewed Conference papers (3) .. 136

Appendix 1 .. 138

A1.1 Datasets for Benign Motes ... 138

A1.1.1- Benign “mote1.csv” .. 138

A1.1.2 Benign “mote3.csv” .. 138

A1.2 - Datasets for UDP Flood Attacks .. 139

xii

A1.2.1 - “udp-flood-mote1.csv” .. 139

A1.2.2 - “udp-flood-mote2.csv” ... 139

A1.2.3 - “udp-flood-mote6.csv” ... 140

A1.3 - Datasets for Blackhole Attacks ... 140

A1.3.1 - “blackhole-mote1.csv” ... 140

A1.3.2 - “blackhole-mote4.csv” .. 141

A1.3.3 - “blackhole-mote10.csv” .. 141

A1.4 - Datasets for Sinkhole Attacks ... 142

A1.4.1 - “sinkhole-mote1.csv” .. 142

A1.4.2 - “sinkhole-mote5.csv” ... 142

A1.4.3 - “sinkhole-mote10.csv” .. 143

A1.5 - Datasets for Sleep Deprivation Attacks .. 143

A1.5.1 - “sleep_depr-mote1.csv” ... 143

A1.5.2 - “sleep_depr-mote6.csv” ... 144

A1.5.3 - “sleep_depr-mote10.csv” .. 144

xiii

List of Figures

Figure 2.1. The new Dimension of IoT. (Source: [32]) .. 11

Figure 2.2. Three-layer IoT Architecture. .. 14

Figure 2.3. IoT Gateway Security Functions. ... 18

Figure 2.4. Generic Structure of Decision Tree Model. .. 23

Figure 2.5. Simple Linear Regression Model. .. 24

Figure 2.6. Logistic Regression Model. ... 25

Figure 2.7. SVM model. ... 26

Figure 2.8. k-NN Classifier. .. 28

Figure 2.9. EL Classification. .. 28

Figure 2.10. Generic Structure of Random Forest Model. .. 29

Figure 2.11. An Example of AdaBoost Classifier. .. 30

Figure 2.12. ToN_IoT Telemetry datasets hierarchy. .. 37

Figure 3.1. Benign IoT datasets generation by utilising the Cooja simulator. 41

Figure 3.2 Cooja Simulator – motes’ outputs ... 42

Figure 3.3 “powertrace.h” library in the mote code. ... 42

Figure 3.4 Powertracing Begin. ... 42

Figure 3.5 Cooja Simulator—Mote output window.. 43

Figure 3.6 Simulation script editor. ... 44

Figure 3.7 Extract of the “IoT_Simul.sh” file. .. 44

Figure 3.8 Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the

“IoT_Simul.sh” file... 45

Figure 3.9 Location of the generated “mote1.csv”, “mote2.csv”, “mote3.csv”, “mote4.csv”,

“mote5.csv”, “mote6.csv files” by the “IoT_Simul.sh” bash file. .. 45

Figure 3.10 An overview of the process followed by the “IoT_Simul.sh” file to extract all the required

“powertrace” information from the “COOJA.testlog” file. ... 46

Figure 3.11 Benign “pwrtrace.csv”—1 to 38 records. .. 47

Figure 3.12 Benign “pwrtrace.csv”—10,757 to 10,794 records. .. 47

Figure 3.13 “Radio messages” tool—output window. .. 48

Figure 3.14 Network traffic information from the benign scenario in the “Radio messages” output

window.. 48

Figure 3.15 The “nettraffic” folder inside the root folder “2020-11-19-17-45-22” and the copy of the

“radiolog-1605811324302.pcap” file. ... 49

Figure 3.16 The first seventeenth packets in the “radiolog-1605811324302.pcap” file. 50

Figure 3.17 The “radiolog.csv” file in the “nettraffic” folder in the project environment. 50

Figure 3.18 The “radiologICMPv6.csv” file and the “radiologUDP.csv” file in the “nettraffic” folder in

the project environment. .. 50

Figure 3.20 An overview of the process followed to extract all the required network traffic

information from the “radiolog-1605811324302.pcap” file. ... 51

Figure 3.21 Benign “radiolog.csv”—1 to 40 records. .. 52

Figure 3.22 Benign “radiolog.csv” – 116,424-116,463 records. ... 52

Figure 3.23 Benign “radiologICMPv6.csv”—1 to 25 records. ... 53

Figure 3.24 Benign “radiologICMPv6.csv”—7,948 to 7,975 records. ... 53

Figure 3.25 Benign “radiologUDP.csv”—1 to 28 records. ... 54

Figure 3.26 Benign “radiologUDP.csv”—104,012 to 104,048 records.. 54

Figure 3.27 Generated Benign IoT Datasets Structure ... 55

xiv

Figure 3.28 Benign IoT Datasets – Generic Structure ... 56

Figure 4.1. UDP Flooding Attack Datasets generation by utilising the Cooja simulator. 58

Figure 4.2. Cooja Simulator — UDP flooding attack scenario — Motes’ outputs 59

Figure 4.3. Malicious code in “udp-client_udp-flood.c” to significantly increase the traffic by 50

times; generating 5 packets per second (i.e., one packet every 200ms) instead of 0.1 packets per

second (i.e., one packet every 10 seconds for benign motes). .. 59

Figure 4.4 Cooja Simulator — UDP flooding attack scenario — Mote output window. 60

Figure 4.5 Location of the generated “udp-flood-pwrtrace.csv”, “udp-flood-recv.csv”, and “udp-

flood-send.csv” files by the “IoT_Simul.sh” file. ... 60

Figure 4.6 Malicious “udp-flood-pwrtrace.csv”—1 to 38 records. ... 61

Figure 4.7 Malicious “udp-flood-pwrtrace.csv”—10,757 to 10,794 records. 61

Figure 4.8 Network traffic information from the UDP flooding attack scenario in the “Radio

messages” output window. .. 62

Figure 4.9 The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the “udp-flood-

radiolog-1607519517066.pcap” file. .. 62

Figure 4.10 The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and its included

files. ... 63

Figure 4.11 Malicious “udp-flood-radiolog.csv”—1 to 25 records. ... 63

Figure 4.12 Malicious “udp-flood-radiologICMPv6.csv”—1 to 25 records. .. 64

Figure 4.13 Malicious “udp-flood-radiologUDP.csv”—1 to 25 records. ... 64

Figure 4.14 Blackhole Attack Datasets generation by utilising the Cooja simulator. 65

Figure 4.15 Cooja Simulator – Blackhole attack scenario – Motes’ outputs. 66

Figure 4.16 Malicious code in “contiki/core/net/ipv6/uip6.c” to cause a blackhole attack by dropping

all packets that are to be forwarded. ... 66

Figure 4.17 Cooja Simulator – Blackhole attack scenario – Mote output window............................... 67

Figure 4.18 Location of the generated “blackhole-pwrtrace.csv”, “blackhole-recv.csv”, and

“blackhole-send.csv” files by the “IoT_Simul.sh” bash file. .. 67

Figure 4.19 Malicious “blackhole-pwrtrace.csv” — 1 to 30 records. ... 68

Figure 4.20 Malicious “blackhole-pwrtrace.csv”—17,961 to 17,990 records. 68

Figure 4.21 Network traffic information from the blackhole attack scenario in the “Radio messages”

output window. ... 69

Figure 4.22 The “nettraffic” folder inside the root folder “2021-10-28-22-36-22” and the “blackhole-

radiolog.pcap” file. .. 69

Figure 4.23 The “nettraffic” folder inside the root folder “2021-10-28-22-36-22” and its included

files. ... 70

Figure 4.24 Malicious “blackhole-radiolog.csv”—1 to 30 records. ... 70

Figure 4.25 Malicious “blackhole-radiolog-ICMPv6.csv”—1 to 30 records. ... 71

Figure 4.26 Malicious “blackhole-radiolog-UDP.csv”—1 to 30 records. .. 72

Figure 4.27 Sinkhole Attack Datasets generation by utilising the Cooja simulator. 73

Figure 4.28 Cooja Simulator – Sinkhole attack scenario – Motes’ outputs. ... 74

Figure 4.29 Malicious code in “contiki_modified/core/net/rpl/rpl-private.c” to cause a sinkhole

attack. ... 74

Figure 4.30 Malicious code in “contiki_modified/core/net/rpl/rpl-timers.c” to cause a sinkhole

attack. ... 74

Figure 4.31 Cooja Simulator – Sinkhole attack scenario – Mote output window 75

Figure 4.32 Location of the generated “sinkhole-pwrtrace.csv”, “sinkhole-recv.csv”, and “sinkhole-

send.csv” files by the “IoT_Simul.sh” bash file. .. 75

Figure 4.33 Malicious “sinkhole-pwrtrace.csv” – 1 to 30 records .. 76

xv

Figure 4.34 Malicious “sinkhole-pwrtrace.csv”— 17,361 to 17,390 records. 76

Figure 4.35 Network traffic information from the sinkhole attack scenario in the “Radio messages”

output window. ... 77

Figure 4.36 The “nettraffic” folder inside the root folder “2021-10-29-23-23-49” and the “sinkhole-

radiolog.pcap” file. .. 77

Figure 4.37 The “nettraffic” folder inside the root folder “2021-10-29-23-23-49” and its included

files. ... 77

Figure 4.38 Malicious “sinkhole-radiolog.csv”—1 to 30 records. ... 78

Figure 4.39 Malicious “sinkhole-radiolog-ICMPv6.csv”—1 to 30 records. ... 79

Figure 4.40 Malicious “sinkhole-radiolog-UDP.csv”—1 to 30 records. .. 79

Figure 4.41 Sleep Deprivation Datasets generation by utilising the Cooja simulator. 80

Figure 4.42 Cooja Simulator — Sleep Deprivation attack scenario — Motes’ outputs. 81

Figure 4.43 Malicious code in “udp-client-sleep_depr.c” to generate high UDP traffic (i.e., a dummy

message every 40 ms, approximately) ... 81

Figure 4.44 Malicious code in “udp-client-sleep_depr.c” to send out a dummy message 81

Figure 4.45 Cooja Simulator— Sleep deprivation attack scenario — Mote output window. 82

Figure 4.46 Location of the generated “sleep_depr-pwrtrace.csv”, “sleep_depr-recv.csv”, and

“sleep_depr-send.csv” files by the “IoT_Simul.sh” bash file. ... 82

Figure 4.47 Malicious “sleep_depr-pwrtrace.csv”—1 to 30 records. ... 83

Figure 4.48 Malicious “sleep_depr-pwrtrace.csv”—17,211 to 17,240 records. 83

Figure 4.49 Network traffic information from the sleep deprivation attack scenario in the “Radio

messages” output window. .. 84

Figure 4.50 The “nettraffic” folder inside the root folder “2021-10-27-15-06-36” and the

“sleep_depr-radiolog.pcap” file. ... 84

Figure 4.51 The “nettraffic” folder inside the root folder “2021-10-27-15-06-36”and its included files.

 .. 84

Figure 4.52 Malicious “sleep_depr-radiolog.csv”—1 to 30 records. .. 85

Figure 4.53 Malicious “sleep_depr-radiolog-ICMPv6.csv”—1 to 30 records. 86

Figure 4.54 Malicious “sleep_depr-radiolog-UDP.csv”—1 to 30 records. .. 86

Figure 4.55 Generated Malicious IoT Datasets Structure ... 87

Figure 4.56 Malicious IoT Datasets – Generic Structure ... 88

Figure 5.1 “udp-flood-pwrtrace.csv” - Average values (in ticks) for “transmit”, “idle_listen”, “lpm”,

“cpu”, and “listen”. ... 90

Figure 5.2 “blackhole-pwrtrace.csv” - Average values (in ticks) for “idle_listen”, “listen”, “lpm”,

“cpu”, and “transmit”. .. 92

Figure 5.3 “sinkhole-pwrtrace.csv” - Average values (in ticks) for “cpu”, “lpm”, “listen”, “transmit”

and “idle_listen”. .. 94

Figure 5.4 “sleep_depr-pwrtrace.csv” - Average values (in ticks) for “transmit”, “cpu”, “lpm”, “listen”,

and “idle_listen”. .. 96

Figure 5.5 Average Total Energy Consumption per Mote – Benign “powertrace” Dataset. 100

Figure 5.6 Average Total Energy Consumption per Mote – UDP Flooding Attack “powertrace”

Dataset. ... 100

Figure 5.7 Average CPU Energy Consumption per Mote – UDP Flooding Attack “powertrace” Dataset.

 .. 101

Figure 5.8 Average Radio (TX+RX) Energy Consumption per Mote – UDP Flooding Attack

“powertrace” Dataset. .. 102

Figure 5.9 Average Total Energy Consumption per Mote – Blackhole Attack “powertrace” Dataset.

 .. 103

xvi

Figure 5.10 Average Radio (TX+RX) Energy Consumption per Mote – Blackhole Attack “powertrace”

Dataset. ... 104

Figure 5.11 Average Total Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset.

 .. 105

Figure 5.12Average CPU Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset. . 106

Figure 5.13 Average Radio Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset.

 .. 106

Figure 5.14 Average Total Energy Consumption per Mote – Sleep Deprivation Attack “powertrace”

Dataset. ... 107

Figure 5.15 Average CPU Energy Consumption per Mote – Sleep Deprivation Attack “powertrace”

Dataset. ... 108

Figure 5.16 Average Radio Energy Consumption per Mote – Sleep Deprivation Attack “powertrace”

Dataset. ... 108

Figure 5.17 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Benign

Network Traffic Dataset. ... 110

Figure 5.18 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – UDP Flooding

Attack Network Traffic Dataset. .. 111

Figure 5.19 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Blackhole

Attack Network Traffic Dataset. .. 112

Figure 5.20 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Sinkhole

Attack Network Traffic Dataset. .. 114

Figure 5.21 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Sleep

Deprivation Attack Network Traffic Dataset. .. 115

Figure 6.1 Evaluation metrics for binary classification for the “udp-flood-pwrtrace_label.csv” dataset.

 .. 119

Figure 6.2 Evaluation metrics for binary classification for the “blackhole-pwrtrace_label.csv” dataset.

 .. 120

Figure 6.3 Evaluation metrics for binary classification for the “sinkhole-pwrtrace_label.csv” dataset.

 .. 121

Figure 6.4 Evaluation metrics for binary classification for the “sleep_depr-pwrtrace_label.csv”

dataset. ... 122

Figure A1 Benign “mote1.csv”—1 to 25 records. ... 138

Figure A2 Benign “mote3.csv”—1 to 25 records. ... 138

Figure A3 Malicious “udp-flood-mote1.csv” — 1 to 25 records. .. 139

Figure A4 Malicious “udp-flood-mote2.csv” — 1 to 25 records. .. 139

Figure A5 Malicious “udp-flood-mote6.csv” — 1 to 25 records. .. 140

Figure A6 Malicious “blackhole-mote1.csv”—1 to 25 records. .. 140

Figure A7 Malicious “blackhole-mote4.csv”—1 to 25 records. .. 141

Figure A8 Malicious “blackhole-mote10.csv”—1 to 25 records…………………………………………………….. 141

Figure A9 Malicious “sinkhole-mote1.csv”—1 to 25 records………………………………………………………… 142

Figure A10 Malicious “sinkhole-mote5.csv”—1 to 25 records 142

Figure A11 Malicious “sinkhole-mote10.csv”—1 to 25 records ……………………………………………………. 142

Figure A12 Malicious “sleep_depr-mote1.csv”—1 to 25 records. ... 143

Figure A13 Malicious “sleep_depr-mote6.csv”—1 to 25 records. ... 144

Figure A14 Malicious “sleep_depr-mote10.csv”—1 to 25 records. ... 144

xvii

This page intentionally left blank.

xviii

List of Tables

Table 3.1 Set of Captured Features by “powertrace” plugin. ... 43

Table 5.1 Mutual Information – Features – “udp-flood-pwrtrace.csv”. ... 90

Table 5.2 Mutual Information – Features – “blackhole-pwrtrace.csv”. ... 91

Table 5.3. Mutual Information – Features – “sinkhole-pwrtrace.csv”. .. 93

Table 5.4 Mutual Information – Features – “sleep_depr-pwrtrace.csv”. ... 95

Table 5.5 Typical Operating Conditions for Tmote Sky motes [105]. ... 99

Table 5.6 Network Traffic and RPL Packets Overhead – Benign Network Traffic Dataset. 109

Table 5.7 Network Traffic and RPL Packets Overhead – UDP Flooding Attack Network Traffic Dataset.

 .. 110

Table 5.8 Network Traffic and RPL Packets Overhead – Blackhole Attack Network Traffic Dataset. 112

Table 5.9 Network Traffic and RPL Packets Overhead – Sinkhole Attack Network Traffic Dataset. . 113

Table 5.10 Network Traffic and RPL Packets Overhead – Sleep Deprivation Attack Network Traffic

Dataset. ... 115

Table 6.1 Summary of the hyperparameters of each selected ML algorithm. 118

Table 6.2 Evaluation metrics for binary classification for the “udp-flood-pwrtrace_label.csv” dataset.

 .. 119

Table 6.3 Evaluation metrics for binary classification for the “blackhole-pwrtrace_label.csv” dataset..

 .. 122

Table 6.4 Evaluation metrics for binary classification for the “sinkhole-pwrtrace_label.csv” dataset..

 .. 1221

Table 6.5 Evaluation metrics for binary classification for the “sleep_depr-pwrtrace_label.csv”

dataset. ... 122

xix

This page intentionally left blank.

xx

Key Acronyms

6LoWPAN IPv6 over Low-power Wireless Personal Area
Networks

AdaBoost Adaptive Boosting

AIDS Anomaly-based Intrusion Detection System

ARP Address Resolution Protocol

CIA Confidentiality, Integrity and Authenticity

CPU Central Processing Unit

CSS Cross-site Scripting

CSV Comma Separated Values

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Server

DoS/DDoS Denial of Service/Distributed Denial of Service

DT Decision Tree

EL Ensemble Learning

ENISA European Union Agency for Cybersecurity

FN False Negative

FP False Positive

FTP File Transfer Protocol

GPS Global Positioning System

HTTPS Hypertext Transfer Protocol Secure

ICMPv6 Internet Control Message Protocol version 6

IDS Intrusion Detection System

IIoT Industrial Internet of Things

IoT Internet of Things

IPv6 Internet Protocol Version 6

IT Information technology

ITU International Telecommunication Union

KNN K-nearest Neighbour

LPM Low Power Mode

LR Logistic Regression

MAP Maximum A Posteriori

MI Mutual Information

MITM Man-In-The-Middle

xxi

mJ Millijoules

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MS Milliseconds

NB Naïve Bayes

NFV Network function virtualization

NTP Network Time Protocol

OS Operating System

OT Operational technology

OWASP Open Web Application Security Project

PCAP Packet Capture

RBD Radial Basis Function

RF Random Forest

RPL Routing Protocol for Low-Power and Lossy
Networks

RX Receiving Feature

SDN Software-Defined Network

SNMP Simple Network Management Protocol

SSDP Simple Service Discovery Protocol

SVM Support Vector Machines

TB Terabyte

TCP/IP Transfer Control Protocol/Internet Protocol

TN True Negative

TP True Positive

TP-Link Twisted Pair Link

TX Transmission Feature

UDP User Datagram Protocol

USB Universal Serial Bus

VMs Virtual Machines

WiFi Wireless Fidelity

WLANs Wireless Local Area Networks

WSNs Wireless Sensor Networks

1

CHAPTER 1 Introduction

1.1 Motivation

Despite the significant benefits that the Internet of Things (IoT) networks bring to citizens, society,

and industry, the fact that these networks incorporate a wide range of different communication

technologies (e.g., WLANs, Bluetooth, and Zigbee) and types of nodes/devices (e.g.,

temperature/humidity sensors), which are vulnerable to various types of security threats, raises

many security and privacy challenges in IoT-based systems [1], [2], [3], [4]. For instance, attackers

may compromise IoT networks to manipulate sensing data (e.g., by injecting fake data) and cause

malfunction to the IoT-based systems that rely on the compromised IoT networks. It is worthwhile

mentioning that IoT networks can become an attractive target to attackers with a wide spectrum of

motivations ranging from criminal intents, aimed at financial gain, to industrial espionage and cyber-

sabotage [5], [6], [7]. Consequently, security solutions protecting IoT networks from attackers are

critical for the acceptance and wide adoption of such networks in the coming years. Nevertheless,

the high resource requirements of conventional security mechanisms cannot be afforded by (i) the

resource-constrained IoT nodes (e.g., sensors) with limited processing power, storage capacity, and

battery life; and/or (ii) the constrained environment in which the IoT nodes are deployed and

interconnected using lightweight communication protocols [1], [8]. Therefore, there is an urgent

need for developing novel security mechanisms to address the pressing security challenges of IoT

networks with reasonable cost in terms of processing and energy, taking into consideration their

resource-constrained inherent limitations, before they gain the trust of all involved stakeholders and

reach their full potential in the IoT market [2], [3], [5], [9].

Towards this direction, considerable research efforts have recently been put into the design and

development of novel Anomaly-based Intrusion Detection Systems (AIDSs), tailored to the resource-

constrained characteristics of IoT networks, because of their ability to detect not only known but

also new, zero-day attacks, in IoT networks [10], [11], [12], [13]. However, although the concept of

IoT AIDSs is promising, it cannot be materialised before the significant gap of the scarcity of

benchmark datasets for training and evaluating Machine Learning models for IoT AIDSs is addressed

[14], [15]. In fact, the current scarcity of benchmark IoT datasets constitutes a significant research

gap that should be addressed in order to enable the development of more accurate and efficient IoT

AIDSs whose effectiveness is evaluated based on their performance to successfully detect IoT attacks

that is a process reliant on up-to-date, representative and well-structured IoT-specific benchmark

datasets that until now have been missing.

1.2 Research Challenges

Although several datasets, such as KDDCUP99 [16], NSL-KDD [17], UNSW-NB15 [18], and CICD2017

[19], have been created over the past two decades for evaluation purposes of network-based

Intrusion Detection Systems (IDSs), they do not include any specific characteristics of IoT networks

as these datasets do not contain sensors’ reading data or any IoT network traffic [14], [13]. To

respond to this major issue, few efforts focused on the generation of ΙοΤ-specific datasets have also

been seen in the literature recently. Yet, they are characterised by some limitations in terms of the

IoT-specific information they include. For instance the datasets proposed in [20] and [21] are ΙοΤ-

specific datasets but they lack of events reflecting attack scenarios. To address this limitation, the

2

ΙοΤ-specific and network-related datasets proposed in [22] and [23] contain events reflecting attack

scenarios, however, they do not cover a diverse set of attack scenarios and do not include sensors’

reading data or information related to the behaviour of the IoT devices (e.g., sensors/actuators)

within the network. Therefore, these IoT datasets can mainly be used for detecting only a limited

number of network-based attacks against IoT networks as they do not contain adequate

information for detecting a wide range of network-based attacks and/or attacks that manipulate

sensor measurement data or compromise IoT devices within the IoT network.

Consequently, there is an urgent need for comprehensive IoT-specific datasets containing not only

network-related information (e.g., packet-level information) but also information reflecting

multiple benign and attack scenarios from current IoT network environments, sensor

measurement data, and information related to the behaviour of the IoT devices deployed within

the IoT network for efficient and effective training and evaluation of AIDSs suitable for IoT networks.

Towards this direction, the recent work [14], has proposed, for the first time, to the best of our

knowledge, a new dataset that includes events of a variety of IoT-related attacks and legitimate

scenarios, IoT telemetry data collected from heterogeneous IoT data sources, network traffic of IoT

network, and audit traces of operating systems [14].

Therefore, it is clear that more benchmark IoT datasets including the following required

information: i) information reflecting multiple benign and attack scenarios, ii) sensor

measurement data, iii) network-related information, and iv) information related to the behaviour

of the IoT devices are essential to be generated and become publicly available to the research

community so as to fill the significant research gap of the scarcity of benchmark IoT datasets that

will enable the development of more accurate and efficient IoT AIDSs.

1.3 Scope of the Research

Contribution to filling the significant gap of the scarcity of benchmark IoT datasets for training and

evaluating Machine Learning models for IoT AIDSs is the main target of this PhD research work. In

particular, the scope of this PhD research work is the generation of new labelled IoT datasets that

will be publicly available to the research community and include the following required information

so as to be considered as benchmark IoT datasets:

a. information reflecting multiple benign and attack scenarios from current IoT network

environments;

b. sensor measurement data;

c. network-related information (e.g., packet-level information) from IoT networks; and

d. information related to the behaviour of the IoT devices deployed within IoT networks.

It is worthwhile mentioning that the new labelled IoT datasets are generated by implementing

various benign IoT network scenarios and IoT network attack scenarios in the Cooja simulator which

is the companion network simulator of the open source Contiki Operating System (OS) that is one of

the most popular OSs for resource constrained IoT devices [24], [25]. To the best of our knowledge,

this is the first time that the Cooja simulator is used, in a systematic way, to generate benchmark IoT

datasets. In addition, the implemented attack scenarios cover the following types of IoT network

attacks which have not been considered in the datasets proposed in [14]: UDP flooding attack,

blackhole attack, sinkhole attack, and sleep deprivation attack.

3

The new labelled IoT datasets generated by the Cooja simulator are not to be considered as a

replacement of datasets captured from real IoT networks or real IoT testbeds, but instead to be

considered as complementary datasets that will contribute to fill the current gap of the scarcity of

benchmark datasets for training and evaluating Machine Learning models for IoT AIDSs.

Furthermore, the generated datasets are analysed to select important raw features for the detection

of anomalies as well as extract new features, more informative and non-redundant, based on the

raw features. Finally, different Machine Learning (ML) algorithms for IoT AIDSs (e.g., Naïve Bayes, K-

Nearest Neighbour, Random Forest, Logistic Regression, etc.) are applied to evaluate their

performance on the generated malicious datasets and validate that the generated malicious

datasets can be used for training and testing effectively ML algorithms for IoT AIDSs.

1.4 Thesis Contribution

The main contributions of this PhD research work lie in the following:

• Generation of a set of benign IoT datasets from a benign IoT network scenario

implemented in the Cooja simulator. The generated IoT-specific information from the

simulated scenario was captured from the Contiki plugin “powertrace” (i.e., features

such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic

features) to generate the “powertrace” dataset and the network traffic dataset,

respectively, within csv files. The generated datasets constitute the benign IoT datasets

for the simulated benign IoT network scenario. Furthermore, a detailed description of

the approach proposed to generate the set of benign IoT datasets has also been

provided and published in Generating Datasets for Anomaly-based Intrusion Detection

Systems in IoT and Industrial IoT Networks [26]. This contribution is covered in Chapter

3. In addition, we generated a set of malicious datasets from the following attack

scenarios implemented in the Cooja simulator: i) UDP flooding attack, ii) blackhole

attack, iii) sinkhole attack, and iv) sleep deprivation attack. The generated IoT-specific

information from the simulated attack scenarios was captured from the Contiki plugin

“powertrace” and the Cooja tool “Radio messages” in order to generate the

corresponding “powertrace” and network traffic datasets for each of the simulated

attack scenarios within csv files. The generated datasets constitute the malicious IoT

datasets for the simulated IoT attack scenarios. Moreover, a detailed description of the

approach proposed to generate the set of the malicious IoT datasets has also been

given. The description of the approach proposed to generate the set of the UDP flooding

attack datasets has been published in Generating Datasets for Anomaly-based Intrusion

Detection Systems in IoT and Industrial IoT Networks [26]. This contribution is covered in

Chapter 4.

• Analysis of the malicious “powertrace” datasets to investigate whether their raw

features can be important in the detection of anomalies in the network-level power

profiling of low-power IoT devices (i.e., motes) due to UDP flooding attacks, blackhole

attacks, sinkhole attacks, or sleep deprivation attacks. Based on the results and the

observations in Section 5.2.1, the following 5 features have been identified as the most

important for all malicious “powertrace” datasets: “transmit”, “cpu”, “lpm”, “listen”,

and “idle_listen”. Furthermore, we extracted new features, more informative and non-

redundant, based on the raw features of the generated benign and malicious

“powertrace” datasets. To this end, the total energy consumption of each mote in an IoT

4

network was investigated in Section 5.2.2 as a valuable feature for training and

evaluating IoT AIDSs. According to the observations and conclusions in Section 5.2.2, the

total energy consumption of each mote in an IoT network can play a valuable role in

anomaly-based intrusion detection for the following types of attacks in IoT networks:

UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack.

Besides that, we extracted new features, more informative and non-redundant, based

on the raw features of the generated benign and malicious network traffic datasets. The

generated benign and malicious network traffic datasets were also analysed in Section

5.3.1 and the new feature that was extracted was the “RPL packets overhead”. This new

feature provides information about the number of RPL packets (per mote and total)

transmitted over the total number of exchanged messages within the IoT network,

indicating a blackhole or sinkhole attack when its value is high and a UDP flooding attack

or sleep deprivation attack when its value is low. This contribution is covered in Chapter

5.

• Validation of the generated malicious “powertrace” datasets by applying the following

most popular ML algorithms for IoT AIDS to evaluate their performance on the

generated malicious datasets: naïve Bayes (NB), decision tree (DT), random forest (RF),

logistic regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN).

Using five-fold cross validation, these algorithms were trained and tested over the same

labelled dataset for each attack scenario. Furthermore, the traditional metrics of

accuracy, precision, recall, and F1-score were used to evaluate the performance of the

ML algorithms on the generated datasets. The evaluations results demonstrated that the

RF, KNN, and DT algorithms presented very high values regarding accuracy (between

0.93 and 1.0) and outperform the other algorithms regarding precision, recall and F1-

score for all malicious datasets. In particular, it is worthwhile mentioning that the RF,

KNN, and DT algorithms achieved precision between 0.84 and 1.0 for the “udp-flood-

pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, and the “sleep_depr-

pwrtrace_label.csv”. In principle, the evaluations results demonstrated that the

generated malicious datasets can be used for training and testing effectively ML

algorithms for IoT AIDSs. This contribution is covered in Chapter 6.

5

This PhD research work has led to the following 5 peer reviewed publications: 3 journal papers, 1

book chapter, and 1 conference paper (https://www.gre.ac.uk/people/rep/faculty-of-engineering-

and-science/ismael-essop).

Journal papers (3)

1. Zachos, Georgios, Essop, Ismael, Mantas, Georgios, Porfyrakis, Kyriakos, Ribeiro, Jose,

Rodriguez, Jonathan (2021), An anomaly-based intrusion detection system for internet of

medical things networks. Electronics, 10: 2562 (21) 2079-9292 (Online) (doi:

https://doi.org/10.3390/electronics10212562).

2. Essop, Ismael, Ribeiro, José C., Papaioannou, Maria, Zachos, Georgios, Mantas, Georgios,

Rodriguez, Jonathan (2021), Generating datasets for anomaly-based intrusion detection

systems in IoT and industrial IoT networks. Sensors, 21: 1528 (4) 1424-8220 (Online) (doi:

https://doi.org/10.3390/s21041528).

3. Papaioannou, Maria, Karageorgou, Marine, Mantas, Georgios, Sucasas, Victor, Essop, Ismael,

Rodriguez, Jonathan, Lymberopoulos, Dimitrios (2020), A Survey on security threats and

countermeasures in Internet of Medical Things (IoMT). Transactions on Emerging

Telecommunications Technologies: e4049 ISSN: 2161-3915 (Print), (doi:

https://doi.org/10.1002/ett.4049).

 Book Chapters (1)

1. Karageorgou, Marina, Mantas, Georgios, Essop, Ismael, Rodriguez, J , Lymberopoulos, D

(2020), Cybersecurity Attacks on Medical IoT Devices for Smart City Healthcare Services. In:

Fadi AI-Turjman, Muhammad Imran (eds.), IOT Technologies in Smart-Cities: From Sensors to

Big Data, Security and Trus. Institution of Engineering & Technology, pp. 171-187. ISBN:

9781785618697 (doi: https://doi.org/10.1049/PBCE128E).

Conference Papers (1)

1. Zachos, Georgios, Essop, Ismael, Mantas, Georgios, Kyriakos, Porfyrakis , Jose, Ribeiro ,

Jonathan, Rodriguez (2021), Generating IoT Edge Network Datasets based on the TON_IoT

telemetry dataset. (1st) . pp. 1-6 . ISBN: 9781665417792ISSN: 2378-4865 (Print), 2378-4873

(Online) (doi: https://doi.org/10.1109/CAMAD52502.2021.9617799).

http://gala.gre.ac.uk/id/eprint/34265
http://gala.gre.ac.uk/id/eprint/34265
https://doi.org/10.3390/electronics10212562
http://gala.gre.ac.uk/id/eprint/31390
http://gala.gre.ac.uk/id/eprint/31390
https://doi.org/10.3390/s21041528
http://gala.gre.ac.uk/id/eprint/31645
http://gala.gre.ac.uk/id/eprint/31645
https://doi.org/10.1002/ett.4049
http://gala.gre.ac.uk/id/eprint/26517
https://doi.org/10.1049/PBCE128E
http://gala.gre.ac.uk/id/eprint/34598
http://gala.gre.ac.uk/id/eprint/34598
https://doi.org/10.1109/CAMAD52502.2021.9617799

6

1.5 Organisation of the Thesis

The remaining Chapters of this thesis are organized as follows.

• Chapter 2 gives a comprehensive overview of the four main pillars of this PhD research

work: i) Internet of Things (IoT), ii) Machine Learning (ML) algorithms for anomaly-based

intrusion detection in IoT networks, iii) evaluation metrics for the performance of ML

algorithms, and iv) existing datasets for training and evaluation of anomaly-based

intrusion detection in IoT networks. Therefore, the Chapter starts with an overview of

the IoT concept. Afterwards, the three-layer IoT architecture, which is the typical IoT

architecture in the literature, is presented where the Perception Layer (i.e., IoT

network), the focal point of this PhD research work, is discussed. Following this, an

overview of the main security attacks against IoT networks is given along with security

and privacy protection requirements for IoT and security considerations for developing

secure IoT ecosystems. Next, the most popular ML algorithms used in IoT Anomaly-

based Intrusion Detection Systems (AIDS) are reviewed and their main advantages and

drawbacks are discussed, followed by the metrics based on which their performance is

evaluated. Last but not least, five of the most well-known existing datasets for training

and evaluation of IoT AIDSs are reviewed.

• Chapter 3 provides a detailed description of the approach followed to generate a set of

benign datasets from a benign IoT network scenario implemented in the Cooja

simulator. The generated IoT-specific information from the simulated scenario was

captured from the Contiki plugin “powertrace” (i.e., features such as CPU consumption)

and the Cooja tool “Radio messages” (i.e., network traffic features) to generate the

“powertrace” dataset and the network traffic dataset, respectively, within csv files. The

generated datasets constitute the benign IoT datasets for the simulated benign IoT

network scenario.

• Chapter 4 is focused on the generation of a set of malicious datasets from the following

attack scenarios implemented in the Cooja simulator: i) UDP flooding attack, ii) blackhole

attack, iii) sinkhole attack, and iv) sleep deprivation attack. The generated IoT-specific

information from the simulated attack scenarios was captured from the Contiki plugin

“powertrace” (i.e., features such as CPU consumption) and the Cooja tool “Radio

messages” (i.e., network traffic features) in order to generate the corresponding

“powertrace” and network traffic datasets for each of the simulated attack scenarios

within csv files. The generated datasets constitute the malicious IoT datasets for the

simulated IoT attack scenarios.

• Chapter 5 is focused on the analysis of the generated benign “powertrace” and network

traffic datasets, presented in Chapter 3, and the generated malicious “powertrace” and

network traffic datasets, demonstrated in Chapter 4. The Chapter starts with the

analysis of the malicious “powertrace” datasets to investigate whether their raw

features can be important in the detection of anomalies in the network-level power

profiling of low-power IoT devices due to UDP flooding attacks, blackhole attacks,

sinkhole attacks, or sleep deprivation attacks. Next, the Chapter continues with

investigating the extraction of new features, more informative and non-redundant,

based on the raw features of the generated benign and malicious datasets. The new

features are intended to constitute valuable features for anomaly-based detection of

UDP flooding attacks, blackhole attacks, sinkhole attacks and sleep deprivation attacks in

7

IoT networks. To this end, the total energy consumption of each mote is investigated as

a valuable feature in Section 5.2.2. Last but not least, the generated benign and

malicious network traffic datasets are also analysed in Section 5.3.1 to derive new

features more informative in terms of the behaviour of the network traffic.

• Chapter 6 is focused on the validation of the generated malicious “powertrace”

datasets, presented in Chapter 4, by applying different Machine Learning (ML)

algorithms for IoT AIDSs to evaluate their performance on the generated malicious

datasets. In particular, the following most popular ML algorithms for IoT AIDSs, reviewed

in Section 2.3, were applied: naïve Bayes (NB), decision tree (DT), random forest (RF),

logistic regression (LR), support vector machines (SVM), and k-nearest neighbor (KNN).

Using five-fold cross validation, these algorithms were trained and tested over the same

labelled dataset for each attack scenario. Furthermore, the following four traditional

metrics, reviewed in Section 2.4, were used to evaluate the performance of the ML

algorithms on the generated datasets when these algorithms are used for anomaly

detection in IoT AIDSs: accuracy, precision, recall, and F1-score. In all experiments, the

Python language (version 3.8.2) was used, along with the Scikit-Learn library [27] and a

Python script created, utilizing specific functions of the Scikit-Learn library, to perform

training and testing of the ML algorithms.

• Chapter 7 concludes this PhD thesis and provides future research objectives.

8

This page intentionally left blank.

9

Chapter 2 Related Work

2.1 Introduction

This Chapter is focused on giving a comprehensive overview of the four main pillars of this PhD

research work: i) Internet of Things (IoT), ii) Machine Learning (ML) algorithms for anomaly-based

intrusion detection in IoT networks, iii) evaluation metrics for the performance of ML algorithms, and

iv) existing datasets for training and evaluation of anomaly-based intrusion detection in IoT

networks. Therefore, the Chapter starts with an overview of the IoT concept. Afterwards, the three-

layer IoT architecture, which is the typical IoT architecture in the literature, is presented where the

Perception Layer (i.e., IoT network), the focal point of this PhD research work, is discussed. Following

this, an overview of the main security attacks against IoT networks is given along with security and

privacy protection requirements for IoT and security considerations for developing secure IoT

ecosystems. Next, the most popular ML algorithms used in IoT Anomaly-based Intrusion Detection

Systems (AIDS) are reviewed and their main advantages and drawbacks are discussed, followed by

the metrics based on which their performance is evaluated. Last but not least, five of the most well-

known existing datasets for training and evaluation of IoT AIDSs are reviewed.

2.2 Internet of Things (IoT)

In this Section, an overview of the IoT concept along with its fundamental characteristics and high-

level requirements is given. Then, the three-layer IoT architecture, which is the typical IoT

architecture in the literature, is presented and an overview of the main security attacks against IoT

networks is provided. Furthermore, the security and privacy protection requirements for IoT,

according to ITU-T Recommendation Y.2066 [28], are presented. Concluding this Section, concerns

that limit the consolidation of secure IoT ecosystems, according to ENISA in [29], are discussed.

2.2.1 An Overview

The Internet of Things (IoT) is the latest development in the long and continuing revolution of

computing and communications [30]. Its size, ubiquity, and influence on everyday lives, business,

and government dwarf any technical advance that has gone before.

The Internet of Things (IoT) is a term that refers to the expanding interconnection of smart devices,

ranging from appliances to tiny sensors [30]. A dominant theme is the embedding of short-range

mobile transceivers into a wide array of gadgets and everyday items, enabling new forms of

communication between people and things, and between things themselves. The Internet now

supports the interconnection of billions of industrial and personal objects, usually through cloud

systems. The objects deliver sensor information, act on their environment, and in some cases modify

themselves, to create overall management of a larger system, such as a factory or city [30].

The IoT is primarily driven by deeply embedded devices [30]. These devices are low-bandwidth, low-

repetition data capture, and low-bandwidth data-usage appliances that communicate with each

other and provide data via user interfaces. Embedded appliances, such as high-resolution video

security cameras, video VoIP phones, and a handful of others, require high bandwidth streaming

capabilities. Yet countless products simply require packets of data to be intermittently delivered.

10

 2.2.1.1 Evolution

With reference to the end systems supported, the Internet has gone through roughly four

generations of deployment culminating in the IoT [30]:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought as IT devices

by enterprise IT people, primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built by non-IT

companies, such as medical machinery, SCADA (supervisory control and data acquisition),

process control, and kiosks, bought as appliances by enterprise OT people, primarily using

wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT devices by

consumers (employees) exclusively using wireless connectivity and often multiple forms of

wireless connectivity.

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT, and OT

people exclusively using wireless connectivity, generally of a single form, as part of larger

systems. The fourth generation is usually thought of as the IoT, and which is marked by using

billions of embedded devices.

2.2.1.2 Useful Definitions

Before providing the fundamental characteristics, high-level requirements and ITU reference of the

IoT, attention must be drawn to some basic IoT-related definitions provided by ITU-T Y.2060

(06/2012) [31] in order to establish good understanding:

• Device: With regard to the IoT, this comprises a piece of equipment enabled with obligatory

communication capabilities and other optional capabilities such as sensing, actuation, data

capture, data storage and data processing capabilities.

• Internet of Things: A global information infrastructure that supports advanced services by

interconnecting physical and/or virtual Things based on existing and/or evolving

interoperable technologies. In particular, an IoT enables services for identification, data

capture, processing, and communication to a wide variety of applications whilst ensuring

security and privacy requirements.

• Thing: An object inside the IoT system enabled with capabilities of being identified and

integrated into communication systems. The thing might be physical or virtual. Physical

Thing is an object of the physical world enabled with capabilities of being sensed, actuated,

and connected to other Things and /or systems (e.g., industrial robots, electrical equipment

etc.). On the other hand, Virtual Thing is an object in the information world enabled with

capabilities of being stored, processed and accessed (e.g., multimedia content, application

software etc.).

2.2.1.3 Concept of IoT

The Internet of things (IoT) can be perceived as a far-reaching vision with technological and societal

implications [31]. IoT has become a very popular topic of Research and Innovation mainly due to the

ubiquitous transformation of computing. Devices have come to be “smart” enabled with capabilities

to sense, communicate in a pervasive way and interact with their environment making possible a

wide range of useful applications and solutions to the humanity such as Health, Transportation,

Agriculture, Home and Industrial Automation, Retail and many more. The 2005 ITU Internet Report

11

[32] was the first to add a 3rd dimension to the legacy “ANY PLACE” and “ANY TIME” communication:

the “ANY THING” communication, as illustrated in Figure 2.1. This addition changed the way we used

to perceive the word “telecommunication” to communication between everything rather than

communication between individuals only. This implied an expected exponential growth of “smart”

interconnected devices leading to network connections which should be facilitated by powerful

networks [33].

Figure 2.1. The new Dimension of IoT. (Source: [32])

To ensure connectivity and interoperability, it important to establish a common accepted reference

IoT architecture upon which all IoT applications would be based. Towards this direction, the

International Telecommunications Union (ITU) has started an effort to standardize the functional

architecture model for IoT providing a 3-layer architecture in 2012 [31]. In the following, based on

[31], we present the fundamental characteristics of IoT, its high-level requirements, the IoT

reference model proposed by ITU, fundamentals on IoT security, and finally some baseline security

recommendations provided by ENISA [34].

2.2.2 Fundamental Characteristics and High-Level Requirements of the IoT

2.2.2.1 Fundamental Characteristics of the IoT

In [31], ITU-T has also identified the fundamental characteristics of an IoT system. According to their

findings, those characteristics are the following:

• Heterogeneity: refers to the various heterogeneous IoT devices that comprise an IoT

network. These devices although they have very different hardware and networking

characteristics, they get connected to each other and interact with other IoT devices and/or

platforms on various types of networks.

• Interconnectivity: refers to the fact that any IoT device is enabled with capabilities to

interconnect/be interconnected with the global Information and Communication

Infrastructure.

12

• Enormous scale: refers to the number of devices required to be interconnected and

managed is significantly larger in an IoT environment. This practically means that the

communication initialized by devices is much higher than the one that is initialized by

humans. Even more important is the management and the analysis of the data generated.

This relates to semantics of data, as well as efficient data handling.

• Things-related services: The IoT provisions services related to the connected “things” within

their constraints such as privacy protections and semantic consistency between physical

things and their associated virtual things. To provide these thing-related services within the

constraints of things requires that both the underlying technologies and the physical and

information world change.

• Dynamic Changes: While roaming and interacting in an IoT system, the state of devices

dynamically change (e.g., get connected or disconnected, sleeping and waking up). Besides,

the context of devices dynamically changes (e.g., location speed). Additionally, the number

of interconnected devices changes dynamically as well within IoT systems.

2.2.2.2 High-level Requirements

In [31], ITU-T has provided a set of high-level IoT System Requirements for the development of an

IoT Reference Model based on the fundamental characteristics of an IoT system identified above.

According to their findings, those requirements are the following:

• Identification-based connectivity: refers to capabilities that enable the smart “Things” to be

connected to the IoT networks based on their identifiers. This includes a unified processing

of identifiers which might be heterogeneous.

• Interoperability: needs to be ensured within IoT networks to support a variety of

information and services given the fact that IoT networks are highly heterogeneous and

distributed systems.

• Autonomic services provisioning: refers to specific operations of the IoT network

infrastructure that will enable IoT services to be provided by automatically capturing,

communicating and processing of the data of the “Things” according to the rules configured

by the operators and/or configured by the subscribers. Autonomic services may depend on

automatic data fusion and data mining techniques.

• Automatic Networking: refers to specific operations of the IoT network infrastructure that

will enable automatic networking including self-management, self-configuration, self-

healing, self-optimization, and self-protection for supporting and facilitating adaptation in

different application domains, different communication environments and large number and

types of devices.

• Location-based capabilities: Localization is a key enabling technology in IoT considering that

location-based services must be supported. Towards this direction, smart Things should be

enabled with capabilities to track their position to facilitate the provision of services which

depend on their location. Attention must be drawn to the fact that, nowadays, location-

based communication and services are highly restricted by Regulations and Laws and thus,

when addressing this requirement, we should keep in mind that we need to comply with

them.

• Privacy protection: Data acquired by “Things” may contain sensitive private information of

the consequent users. It is very important that privacy concerns should comply with the

13

relevant established privacy Regulations and Laws and privacy protection to be taken into

consideration during all processes related to data such as data transmission, data

aggregation, data storage, data mining and data processing while, at the same time, not

setting a barrier to data source authentication.

• Security: refers to the necessity to integrate security policy and measures related to the

things and their communication in an IoT framework. This is mainly because the capabilities

of Things to connect at any time, any place and any (other) thing introduces significant

security threats against CIA (Confidentiality, Integrity and Authenticity) for both data and

services within IoT networks. Therefore, security comprises an important requirement that

needs be addressed in advance in order for the emerging IoT applications to gain the trust of

all involved stakeholders and reach their full potential in the 5G market.

• High quality and highly secure human body related services: refers to the requirement of

guaranteeing high data quality, data accuracy and data security for data derived

automatically or through human intervention for particular services that are based on the

capturing, communicating, and processing of data related to human static features and

dynamic behaviour with or without human intervention.

• Manageability: generally, the applications in an IoT system have to work automatically and

without or insignificant human intervention or participation. Towards this direction, there is

the necessity for the whole operation process to be easily manageable by the relevant

entities in order to ensure normal network operations without significant delays.

• Plug and Play: refers to plug and play capabilities of IoT systems in order to enable or

facilitate on-the-fly generation, composition and acquisition of semantic-based

configurations to seamlessly integrate an internetwork of things with the respective

applications and efficiently respond to these applications’ requirements.

2.2.3 IoT Architecture

The three-layer IoT architecture, shown in Figure 2.2, is the typical IoT architecture consisting of

three main layers [1], [35]: 1) perception layer; 2) network layer; and 3) application layer, which are

further described below. In this PhD work, the simulated scenarios in the Cooja simulator are

restricted only to the perception layer of the 3-layer IoT architecture.

14

Figure 2.2. Three-layer IoT Architecture.

Perception Layer: This layer consists of devices (i.e., sensors) that enable the perception of their

environment and thus, it can also be perceived as the Device Layer in the ITU-T reference model

[31]. The Perception Layer can be considered as an analogue to the senses or nerve endings of a

human being such as the eyes, ears, nose, skin, etc. In particular, the perception layer includes

sensing devices such as thermometers, humidity sensors, and medical sensors [36], [37], [38], [39]

that measure and gather information about different parameters or conditions in their surrounding

environment at a Gateway, and send it, through the Network Layer, to the Application Layer where

it is processed and stored. In addition to its sensing capabilities, this layer also includes devices (i.e.,

actuators) which are responsible to perform actions (e.g., control commands) based on the decisions

taken at the Application Layer.

Network Layer: It is the transmission layer and its main function is to to receive the data, gathered

by the Perception Layer, through a Gateway, and determine the routes so as to transmit them to the

Application Layer through integrated networks. On the other hand, the Network Layer is responsible

to transmit the required actions (e.g., control commands) determined at the Application Layer to the

actuators in the Perception Layer, through a Gateway. The Network Layer might be implemented

using the current or the evolving network and mobile technologies such as IEEE802.11 standards,

4G, 5G, Bluetooth, Zigbee, and also numerous types of networking and data collection protocols

such as MQTT, TCP/IP etc [39], [40], [41], [42]. In addition to its capabilities for connectivity and

networking, this layer includes management operation for the seamless and flawless operation of

the integrated IoT systems.

Application Layer: This layer is in charge of delivering IoT application services to the

users/subscribers. To do this, it utilizes the gathered context from the layers below to deliver

intelligent applications such as smart-home, e-health, smart-transport etc. to the end users [43],

[44], [45], [46], [47]. This layer comprises the final goal of the IoT system consolidating inputs from

the underlying technologies to offer useful and user-friendly applications to the end users. It

therefore mostly includes intelligent software development functions. It can be seen as the means to

converge between the social IoT needs and the industrial technology in such a way as to have a

broad impact on the global or local economic or social development.

15

2.2.3.1 Device and Gateway Capabilities of IoT networks

In general, the leading purpose of IoT is to connect objects (e.g., physical things, virtual things etc.)

into the IoT network, and to measure, gather and handle the information provided by these objects

through IoT devices of the IoT edge network (i.e., perception layer) that transmit the gathered

information to the next layer (i.e., network layer) of the IoT-based smart system via domain

interfaces [48]. To achieve that, IoT networks are enabled with capabilities that logically can be

classified into two main categories [31]: i) device capabilities that mainly include the direct

interaction with the communication network, indirect interaction with the communication network,

ad-hoc networking, and sleeping and waking-up capabilities, and (ii) gateway capabilities that

include multiple interfaces support and protocol conversion as there are generally two situations

where protocol conversion is required. The first situation is when communications at the device

layer use different device layer protocols, such as Bluetooth technology protocols and ZigBee

technology protocols. While the second one is when communications involve two different layers

(i.e., perception/device layer and network layer) and different protocols are utilized at each layer

(e.g., a Bluetooth technology protocol at the perception/device layer and a 4G/5G technology

protocol at the network layer) [31].

2.2.4 Security Attacks in the IoT Network – Perception Layer Environment

Security on IoT network – Perception Layer is a significant challenge due to the heterogeneity and

vast number of its IoT devices and connections [3], [6], [49], [50], [51]. As the main purpose of the

IoT network is to gather data, attackers mainly target to forge/steal transmitted/collected IoT data,

damage perception IoT devices, and make the whole IoT network or specific IoT nodes unavailable,

as presented below.

2.2.4.1 Sinkhole attacks

In this type of attacks, a compromised IoT node (i.e., IoT gateway) in the Perception Layer proclaims

very appealing false capabilities of power, computation and communication (e.g., shortest route) [1]

so that nearby nodes (i.e., adjacent IoT sensors) will choose it as the forwarding node in the routing

process due to its very attractive capabilities. As a consequence, the compromised IoT node can

increase the amount of obtained IoT data that in turn are dropped or modified before they are

delivered to the Application Layer system via the Network Layer. Therefore, a sinkhole attack can

not only compromise the confidentiality of the IoT data but also can constitute an initial step to

launch additional attacks such as DoS/DDoS attacks [1], [51], [52].

2.2.4.2 Node capture attacks

In this type of attack, the adversary is able to extract important information about the captured

node, such as the group communication key, radio key, etc. Additionally, the adversary can copy the

important information related to the captured node to a malicious node, and afterwards fake the

malicious node as a legitimate node to connect to the IoT network (i.e., Perception Layer). This type

of attack is also known as node cloning/replication attack. This attack may lead to compromising the

security of the complete IoT-based system [1], [53].

2.2.4.3 Malicious code injection attacks

An attacker can take control of an IoT node or device in the Perception Layer by exploiting its

security vulnerabilities in software and hardware and injecting malicious code into its memory.

Afterwards, using the malicious code, the attacker can force the node or device to perform

unintended operations. For example, the infected IoT node(s) or device(s) can be used as a bot(s) to

16

launch further attacks (e.g., DoS, DDoS) against other devices or nodes within the Perception Layer

or even against the other Layers. In addition, the attacker can use the injected malicious code in the

infected device or node to get access into the IoT-based system and/or get full control of the system

[1], [6], [54].

2.2.4.4 False data injection attacks

After capturing an IoT node or device in the Perception Layer, the adversary can inject false data in

place of benign data measured by the captured IoT node or device and transmit the false data to the

Application Layer via the Network Layer. Thereafter, receiving the false data, the Application Layer

may provide wrong services, which further negatively impacts the effectiveness of IoT-based system

relying on the Perception Layer [1], [55].

2.2.4.5 Replay attacks

In the Perception Layer, the attacker can use a malicious IoT node or device to transmit to the

destination host (i.e., IoT gateway) with legitimate identification information, already received by

the destination host, so that the malicious node or device can become a trusted node/device to the

destination host. Replay attacks are commonly launched in authentication process to destroy the

validity of certification [1].

2.2.4.6 Eavesdropping

As the IoT nodes and devices in Perception Layer communicate via wireless networks, an attacker

(i.e., eavesdropper) can retrieve sensitive IoT data by overhearing the wireless transmission. For

instance, an adversary within the Perception Layer can eavesdrop exchanged information by tracking

wireless communications and reading the contents of the transmitted packages. The eavesdropper

can passively intercept the wireless communication between a sensor (e.g., environment industrial

sensors or sensors on the machine resources) and the IoT gateway, and extract confidential data

(e.g., through traffic analysis) in order to maliciously use them [1], [56], [57].

2.2.4.7 Sleep deprivation attacks or Denial of Sleep attacks

These attacks target to drain the battery of the resource constrained IoT nodes of the Perception

Layer. In principle, the IoT nodes in the Perception Layer are usually programmed to follow a sleep

routine when they are inactive in order to reduce the power consumption and extend their life cycle.

However, an adversary may break the programmed sleep routines and keep the IoT nodes

continuously active until they are shut down due to a drained battery. Attackers can achieve this by

running infinite loops in these resources using malicious code or by artificially increasing their power

consumption [1], [3], [58].

2.2.4.8 Sybil attacks

In a sybil attack, a malicious or sybil node or device can illegitimately claim multiple identities,

allowing it to impersonate them within the Perception Layer. For instance, the malicious node can

achieve to connect with several other devices in order to maximize its influence and even deceive

the complete system to draw incorrect conclusions[1], [59], [60].

2.2.4.9 Blackhole attacks

In a blackhole attack, the intention of the attacker is to create an artificial packet loss in the

Perception Layer. To achieve that, a compromised IoT node drops the received packets that have to

be routed to other IoT nodes [61]. This attack can be very damaging when combined with a sinkhole

attack causing the loss of a large part of the traffic. If the compromised node is located at a strategic

position in the network it can isolate several nodes [62], [63].

17

2.2.4.10 Denial of Service (DoS) attacks

The main target of these attacks is to deplete resources of the Perception Layer in order to make the

whole IoT network or specific nodes or devices (e.g., IoT gateway) unavailable. For instance,

jamming attacks are a type of DoS attacks where an attacker transmits a high-range signal to

overload the communication channel between two communicating entities and disrupt their

communication. Within the Perception Layer, jamming attacks can disrupt the communication

between the IoT sensors and the Gateway in order to prevent IoT data from being transmitted to the

Gateway, leading to malfunctions in the provided services to the authorized users. Jamming attacks

can be performed by passively listening to the wireless medium so as to broadcast on the same

frequency band as the legitimate transmitting signal. Moreover, a DoS attack can be carried out

within the Perception Layer by a compromised IoT node flooding the Gateway with a lot of

transmitted data/requests (e.g., UDP packets) and render it unavailable or disrupt its normal

operations [1], [35], [64], [65].

2.2.5 IoT Security and Privacy Requirements

According to ITU-T Recommendation Y.2066 [66], a list of security and privacy protection

requirements for IoT is provided. The requirements refer to the functional requirements during

capturing, storing, transferring, aggregating, and processing the data of things, as well as to the

provision of services which involve things. These requirements are related to all the IoT actors. The

requirements are the following:

• Communication security: Secure, trusted, and privacy protected communication capability

is required so that unauthorized access to the content of data can be prohibited, data

integrity can be guaranteed, and privacy-related content of data can be protected during

data transmission or transfer in IoT.

• Data management security: Secure, trusted, and privacy protected data management

capability is required so that unauthorized access to the content of data can be forbidden,

data integrity can be guaranteed, and privacy-related content of data can be secured when

storing or processing data in IoT.

• Service provision security: Secure, trusted, and privacy protected service provision

capability is required so that unauthorized access to service and illicit service provision can

be forbidden and privacy information related to IoT users can be protected.

• Integration of security policies and techniques: The ability to integrate different security

policies and techniques is required in order to ensure a consistent security control over the

variety of devices and user networks in IoT.

• Mutual authentication and authorization: Before a device (or an IoT user) can access the

IoT, mutual authentication and authorisation between the device (or the IoT user) and IoT is

essential to be performed based on predefined security policies.

• Security audit: Security audit is necessary to be supported in IoT. Any data access or

attempt to access IoT applications are required to be fully transparent, traceable and

reproducible based on appropriate regulation and laws. In particular, IoT is required to

support security audit for data transmission, storage, processing, and application access.

18

2.2.6 Security Requirements of the Gateway

A key element in achieving security in an IoT deployment is the Gateway. ITU-T Recommendation

Y.2067 in [28] provides specific security requirements that the Gateway should implement, some of

which are illustrated in Figure 2.3.

Figure 2.3. IoT Gateway Security Functions.

In particular, according to [28], the Gateway is required to:

• support identification of each access to the connected devices.

• support authentication with devices. Based on application requirements and device

capabilities, the Gateway is required to support mutual or one-way authentication with

devices.

• support mutual authentication with applications.

• support the security of the data that are stored in devices and the Gateway, or

transferred between the Gateway and devices, or transferred between the Gateway and

applications – the Gateway is required to support the security of these data based on

security levels.

• support mechanisms to protect confidentiality for devices and the Gateway.

2.2.6 Security Considerations

As time passes, we are becoming increasingly dependent on smart, interconnected devices for a lot

of tasks in our everyday lives. Nevertheless, the same devices or “things” can be the target of attacks

and intrusions that can cause malfunction of devices and endanger our personal privacy and public

safety. Thus, it is evident that security is one of the main challenges that should be seriously

considered together with safety in IoT. These two matters are always closely connected with the

physical world. Furthermore, one more issue concerns the administration of IoT devices, meaning

who will be the supervisor and manage the devices. The difficulty of the administration task can be

better understood, considering the inherent complexity and diversity of the IoT ecosystem and its

scalability issues [29].

There are a lot of different concerns that limit the consolidation of secure IoT ecosystems. Below,

some of these concerns are presented [29]:

• Very large attack surface: IoT-related risks and threats are many in number and are

constantly changing. Also, IoT devices and services affect citizens’ health, safety and privacy

since devices gather, exchange and process data from various sources sometimes including

19

sensitive data. Because of the aforementioned, the attack range related to IoT is extremely

wide.

• Limited device resources: Technical constraints in IoT means that conventional security

practices cannot be applied as they are, but significant reengineering will be required. A

characteristic of a majority of IoT devices is their inherent limited capabilities as far as

processing, storage and power are concerned. Therefore, advanced security controls cannot

be effectively implemented.

• Complex ecosystem: One more reason that security concerns regarding IoT are enhanced is

that IoT is often depicted as a collection of independent devices. In reality, it should be

considered as a large and diverse ecosystem including devices, communications, interfaces

and people.

• Fragmentation of standards and regulations: IoT security concerns are additionally

complicated due to the fact that standards and regulations about IoT security measures are

slowly adopted, and simultaneously new technologies are constantly emerging.

• Widespread deployment: Not only commercial IoT applications, but also Critical

Infrastructures (Cis) have recently started to migrate toward Smart ones. This is achieved by

implementing IoT on top of legacy infrastructures.

• Security integration: The potentially opposing viewpoints and requirements from all

involved stakeholders complicate matters relating to security integration. An instance of that

would be IoT systems with different authentication methods, which should be able to

communicate and operate with each other seamlessly.

• Safety aspects: The presence of actuators or other devices which operate on the physical

world turns security threats into safety threats in the IoT context.

• Low cost: As IoT and its advanced functionalities are employed in several sectors, the

potential for considerable cost savings is further highlighted. The reduced costs can be

achieved by implementing features such as data flows, advanced monitoring, and

integration. However, the low cost of IoT devices and systems can become an important

obstacle in implementing security solutions. Manufacturers tend to care more about

decreasing production costs. As a result, security features become more limited and product

security possibly cannot protect against specific IoT attacks.

• Lack of expertise: Since the IoT domain is a comparatively new one, not a lot of people

possess the suitable skillset and experience in IoT cybersecurity.

• Security updates: It is extremely challenging to apply security updates to IoT systems. IoT

User interfaces, in their majority, do not allow traditional update mechanisms. Securing of

those mechanisms, especially considering Over-The-Air updates, is in itself a really difficult

task.

• Insecure programming: The “time to market” pressure for products of the IoT domain is

higher compared to other domains and thus, limitations are imposed on the efforts to

develop security and privacy by design. For this reason, and sometimes also due to budget

issues, more emphasis is directed towards the functionality of the IoT products rather than

their integrated security.

20

• Unclear liabilities: The assignment of liabilities is unclear. Therefore, in case of security

incidents, many ambiguities and conflicts can be raised, especially considering the large and

complex supply chain involved in IoT. On top of that, the challenge of how to manage

security if one single component was shared by several parties remains open. Last but not

least, enforcing liability is another major challenge.

21

2.3 Machine Learning Algorithms for Anomaly-based Intrusion Detection in

IoT Networks

In this Section, we review the most popular ML algorithms used in IoT Anomaly-Based Intrusion

Detection Systems (AIDS). In particular, the most commonly used algorithms in the literature are the

following: naïve Bayes (NB), decision tree (DT), random forest (RF), linear regression (LR), logistic

regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN). In [67], the authors

stated that the aforementioned ML algorithms have been commonly used in the design and

development of various efficient and effective AIDS for IoT. On top of that, in [14], the authors also

highlighted that k-nearest neighbor (KNN), logistics regression (LR), support vector machines (SVM),

decision tree (DT), random forest (RF), and naïve Bayes (NB) constitute suitable ML algorithms for

the design and development of efficient and effective AIDS for IoT. At the end of the section, we

provide Table 2.1 with an overview of all ML algorithms presented in this section, along with their

main advantages and drawbacks when applied in the design and development of anomaly detection

systems for IoT.

2.3.1 Naïve Bayes (NB)

Naive Bayes (NB) is a supervised ML algorithm that operates by applying Bayes’ theorem to calculate

the probability of occurrence of an event (i.e., normal or abnormal [68]) based on previous

observations of similar events with the “naive” assumption of conditional independence between

every pair of features given the value of the class variable in order to simplify the process of

modelling [69]. Regardless this controversial assumption, it is anticipated that Naïve Bayes is a fast

classifier and has a great performance in practice for many domains. The NB classifier is a commonly

employed supervised classifier with main advantages the ease of implementation and its simplicity.

Given events Y and X with 𝑃(𝑋) ≠ 0, Bayes’ theorem states the following:

𝑃(𝑌|𝑋) =
𝑃(𝑌)𝑃(𝑋|𝑌)

𝑃(𝑋)

where,

𝑃(𝑌|𝑋) represents the conditional probability of Y occurring given that X is true,

𝑃(𝑋|𝑌) represents the conditional probability of X occurring given that Y is true,

𝑃(𝑌) represents the probability of Y occurring without any condition, and

𝑃(𝑋) represents the probability of X occurring without any condition.

Nevertheless, in a real case classification problem, there can be multiple X variables depending on

the features of the training data. Hence, in the situation, Bayes Theorem is extended to Naïve Bayes

considering that features are independent:

𝑃(𝑌|𝑋1, ⋯ , 𝑋𝑛) =
𝑃(𝑌)𝑃(𝑋1, ⋯ , 𝑋𝑛|𝑌)

𝑃(𝑋1, ⋯ , 𝑋𝑛)

(2.1)

Based on the “naive” assumption of class-conditional independence, the features are conditionally

independent of one another given the class, thus:

𝑃(𝑋1, ⋯ , 𝑋𝑛|𝑌) = 𝑃(𝑋1|𝑌) ⋯ 𝑃(𝑋𝑛|𝑌) = ∏ 𝑃(𝑋𝑖|𝑌)
𝑛

𝑖=1

(2.2)

22

Based on (2.1) and (2.2), we have:

𝑃(𝑌|𝑋1, ⋯ , 𝑋𝑛) =
𝑃(𝑌) ∏ 𝑃(𝑋𝑖|𝑌)𝑛

𝑖=1

𝑃(𝑋1, ⋯ , 𝑋𝑛)

(2.3)

Since 𝑃(𝑋1, ⋯ , 𝑋𝑛) is constant given the input, we can use the following classification rule:

𝑃(𝑌|𝑋1, ⋯ , 𝑋𝑛) ∝ 𝑃(𝑌) ∏ 𝑃(𝑋𝑖|𝑌)

𝑛

𝑖=1

�̂� = 𝑎𝑟𝑔 max
𝑌

𝑃(𝑌) ∏ 𝑃(𝑋𝑖|𝑌)

𝑛

𝑖=1

In addition, we can use Maximum A Posteriori (MAP) estimation to estimate 𝑃(𝑌) and 𝑃(𝑋𝑖|𝑌); the

former is then the relative frequency of class Y in the training set. This was, computing posterior

probability, the algorithm classifies new unlabeled instances as normal or abnormal. Another

advantage of NB is that in both binary and multi-label classification problems it does not require

many samples for its proper running during its training phase. However, its feature independence

assumption might negatively impact its accuracy as the NB classifier fails to perceive

interdependencies among the features of a dataset [67].

It is worthwhile to highlight that there are different types of NB classifiers mainly based on the

assumptions they make regarding the distribution of 𝑃(𝑋𝑖|𝑌). In general, these assumptions to

define the likelihood of the features are strongly depending on the type of the data (e.g., categorical

data, multinomially distributed data etc.), as well as on the application (e.g., text classification,

binary classification, large scale classification etc.). For instance, it implements Bernoulli NB for data

that are distributed based on multivariate Bernoulli distributions; i.e., there may be multiple

features on a given training dataset, however each one is assumed to be a binary-valued (i.e.,

Bernoulli, Boolean) variable.

2.3.2 Decision Tree (DT)

A decision tree (DT) is a supervised ML algorithm used for classification. The main target of DTs

classifier is to extract features of the training dataset and then organize an ordered tree based on

the value of these features [69]. In a DT, a node corresponds to a feature of the training dataset and

the branches of that node correspond to the values of that feature. The construction of the ordered

tree starts from the origin node of the tree which is known as the root node. The main challenge of

DTs algorithm is to select the feature, which will be the root node of the tree, in order to optimally

split up the training dataset into subsets, one for every value of the selected feature. Afterwards, the

process might be repeated recursively for each branch, using only those training instances that

actually reach the branch (i.e., they have the feature value of the particular branch). If at any time all

training instances at a node have the same classification, then the development of that part of the

tree is stopped, and this class is considered the terminal node (detect or not an anomaly in the

system). In order to determine which feature to split on in order to create the ordered tree, various

metrics, such as Gini Index, Entropy and Information Gain, are utilized for identification of the

feature that will be considered the root node, which will optimally divide the training dataset [67],

[69], and for identification of which feature to split on. An example of a DT classifier is illustrated in

Figure 2.4.

23

Figure 2.4. Generic Structure of Decision Tree Model.

In [67], the authors discuss that DTs algorithms carry out two different processes: the induction

process and the inference process [70]. During the induction process, the algorithm combines

unoccupied nodes and branches to construct the DT. Initially, the optimal feature is selected as the

root node of the DT based on the Gini Index, Entropy and Information Gain or other measures. Then,

in each subsequent step, the induction process continues by selecting more features as tree nodes

constructing that way the ordered tree. The main idea during the selection of the features is to keep

to the minimum the overlapping among the different classes of the training dataset. In the end, the

ordered tree is constructed by identifying and classifying the leaves of each sub-DT according to

their corresponding classes.

On the other hand, the inference process involves the classification of new unknown instances and

thus, occurs in a constructed DT. During the inference process, the algorithm, through an iterative

comparison with the created DT, classifies unknown instances. This process is completed when a

matching leaf node is found, and under this node the unknown instance is classified [67]. The

authors in [71] performed experiments using the Gini index as a measure to select both the root

node of the DT and the rest of the tree nodes. In addition, they set to 10 the minimum number of

samples per leaf node in order to avoid overfitting and to end up with a pruned tree [71], [72].

2.3.3 Linear Regression (LR)

Linear Regression (LR) is a statistical supervised ML algorithm that functions by predicting the

quantitative value of a variable forming a linear relationship with one or more independent features

[69], as it is illustrated in Figure 2.5. In order to build a LR model, it is required to take into

consideration the following assumptions [69]:

• Every independent feature in the data should be Normally Distributed. This can be examined

using visualization techniques such as histogram, Q-Q plot, etc.

• The independent variables should have a linear relationship with the dependent variables.

This can be also examined using visualization techniques such as Scatter plot, pairplot,

Heatmap etc. in order to visualize each feature of the data in one particular plot.

• The variance of the residual should remain consistent throughout the data. This property is

also referred to as homoscedasticity and can be confirmed with the residual vs fitted plot.

• The mean of the residual should be zero. Residual is the difference between the observed

and predicted y-values and thus, residuals virtually zero show that the model is working well.

24

• Finally, there should be little or no autocorrelation in the data. Autocorrelation appears

when the residuals are not independent with each other. This typically can be examined in

time series analysis plotting the ACF plot or performing Durbin-Watson test. Generally, when

performing Durbin-Watson test:

o if the output is 2, there is no autocorrelation;

o if the output is a value less than 2, the autocorrelation is positive; and

o if the output is a value greater than 2 and less than 4, the autocorrelation is

negative.

There are 2 different types of linear regression models. The very simplest type of linear regression is

when there is a single predictor variable x and a single response variable y, also referred to as simple

linear regression. The extension to multiple predictor variables (i.e., X1, X2,.. Xi,) is known as

multiple linear regression. In fact, multiple linear regression is a generalization of simple linear

regression when there are more than one independent variables. The basic models for simple and

multiple linear regression are following:

𝑦 = 𝑏0 + 𝑏1𝑥1 (2.4)

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2+. . +𝑏𝑖𝑥𝑖 + 𝜖 (2.5)

where:

𝑦: dependent variable

𝑏0: constant

𝑏1, 𝑏2, … , 𝑏𝑖: coefficients

𝑥1, 𝑥2, … , 𝑥𝑖: independent variables

Figure 2.5. Simple Linear Regression Model.

2.3.4 Logistic Regression (LR)

A logistic regression (LR) algorithm functions by estimating the probability of a particular instance to

belong in a specific class and is commonly used in an effective and efficient manner in classification

problems for spam filtering (e.g., in [73]) and intrusion detection (e.g., in [74]), as illustrated in Figure

25

2.6. Additionally, the authors, in [75], designed and implemented a security solution based on a LR

algorithm and discussed that it is possible to secure an IoT-based production line against DDoS

attacks by using ML algorithms and commonly available tools for network traffic analysis.

Figure 2.6. Logistic Regression Model.

The LR algorithm classifies new unknown instances utilizing a predetermined probability threshold.

For example, in the case of binary classification problem (i.e., normal or abnormal activity), a

threshold of 50% would mean that an instance is normal if its estimated probability is less than 50%.

If the estimated probability is greater than 50%, then the LR classifier will output that this is an

attack instance. The LR algorithm operates estimating this probability utilizing the following

equation:

ℎ𝜃(𝑥) = 𝜎(𝜃𝛵 × 𝑥) (2.6)

where:

hθ is the hypothesis function, which outputs the estimated probability,

x is the feature vector of the instance,

θ is the model’s parameter,

θT is the transpose of θ, and

σ(.) is a sigmoid (i.e., logistic) function that defines the threshold.

The equation of the sigmoid function σ(.) is the following:

𝜎(𝑧) =
1

(1 + 𝑒(−𝑧))
 (2.7)

𝑧 = (𝜃𝛵 × 𝑥) (2.8)

It is worthwhile mentioning that the output of the sigmoid function is a value between 0 and 1. In

particular, a number closer to 0 indicates an observation of a normal behaviour, whereas a number

26

closer to 1 indicates an observation of an abnormal behaviour, or in other words an attack

observation. During the training phase, the LR model calculates the parameter θ.

2.3.5 Support Vector Machine (SVM)

The SVM classification algorithm operates by creating an optimal hyperplane in the feature space

which accurately demarks the two or more different classes. Optimal hyperplane is considered the

separating hyperplane which maximizes the distance – also referred to as ‘Margin’ - between the

nearest training instances (i.e., from both classes, meaning from both sides of the hyperplane) and

the hyperplane. In particular, a margin is considered to be good if the separation is larger for both

classes, and points belonging to one class should not cross to another class. In the initialization of

SVM algorithm, the algorithm plots x random hyperplanes along with the training data, as for

instance it is shown in Figure 2.7 (i.e., 7a) where three hyperplanes, namely ‘A’, ‘B’ and ‘C’, have

been considered. After that, SVM attempts to adjust the orientation of the hyperplanes in such a

way that it homogeneously divides the given classes. In Figure 2.7 (i.e., 7b), we can observe that all

three hyperplanes, namely ‘A’, ‘B’ and ‘C’, segregate the two classes (i.e., yellow and green circles

that represent sample of normal and abnormal observations) well. The main challenge then is to

decide which of all created hyperplanes is the most appropriate (i.e., optimal) hyperplane for the

particular application with the given training instances. The answer to this is to select the hyperplane

with the higher margin from the nearest training instances. In this way, SVM achieves higher degree

of robustness as the chance of misclassification is lower. In the example in Figure 2.7b, the

hyperplane ‘B’ is selected as the optimal hyperplane given that the margin for hyperplane ‘B’ is

comparatively higher than both hyperplanes ‘A’ and ‘C’. Therefore, the hyperplane ‘B’ is considered

as the optimal hyperplane [69].

Figure 2.7. SVM model.

The best use case for SVMs is when the classification problem relates to classes with large feature

sets and fewer data instances [67]. In these cases, SVM appears to have many advantages. First of

all, a SVM classifier is considered to be highly scalable, due to its simplicity during both training and

operating phases. Furthermore, its main advantage in intrusion detections classification problems is

that SMV classifier is able to efficiently operate tasks such as anomaly-based intrusion detection in

real-time, including real-time learning. In addition, a SVM classifier does not require much storage or

27

memory to implement and does not requires many initialization parameters for each proper running

[67]. As a result, due to their scalability and low requirements, SVMs appear to be suitable for use in

IDSs that are implemented in a resource-constrained IoT system, and thus they require more

lightweight solutions in order to operate in an effective and efficient manner. However, it is crucial

to carefully consider and select the kernel function that the SVM algorithm will apply to optimally

split the training data in the case that the data are not linearly separable. After finding the best

kernel function to achieve a specific classification, its performance speed has always been a

challenge [67]. The authors in [71], tested several functions and parameters in their SVM model for

performing anomaly-based intrusion detection and in their experiments they selected an SVM

classifier with a Gaussian radial basis function (RBF) kernel.

2.3.6 K-Nearest Neighbor (KNN)

The k-Nearest Neighbor (k-NN) classifier serves as an illustration of a non-parametric statistical

approach and does not require any initial parameter for its proper working. The main idea of k-NN

classifier is that it predicts the label of a new unclassified instance after observing the labels of the k

closest training instances to this new instance (i.e., the k-nearest neighbors), and the majority class

of the k closest training instances is assigned to the new instance. To achieve this, it determines the

k closest training instances using a distance metric, and selects the dominant class label among them

as the relevant class [69]. Generally, the Euclidean distance is typically used, while other options

include Chebyshev, Manhattan, and Minkowski distances [69].

It is noteworthy that the choice of k - which defines the number of closest training instances (i.e.,

nearest neighbors) required to accurately classify the new instance - constitutes an important

parameter that affects the overall performance of the classifier [69], [76], [77]. Nevertheless, the k

can be determined experimentally, i.e., starting with k=1, we estimate the accuracy of the classifier,

and the process is repeated increasing the number of the k-nearest neighbors used to predict the

label of the new unclassified instance. Then, the k-value that achieves the higher accuracy may be

selected. In general, the larger the number of training instances is, the larger the value of k will be.

In Figure 2.8, we can observe that the yellow circles depict the instances of observations of normal

behavior, the green squares depict the instances of observations of abnormal behavior, or in other

words an attack observation, while the new unclassified instance is represented by a dark red

square. This new unclassified instance will be classified under a known class (i.e., normal or

abnormal behaviour) based on the majority class of the k closest training instances. As mentioned

previously, k is the number of nearest neighbors used for the classification of the new instance and it

is worthwhile to highlight that the classification might be different depending on the chosen value of

k [69].

28

Figure 2.8. k-NN Classifier.

2.3.7 Ensemble Learning (EL)

Ensemble Learning (EL) functions by combining the classification results of several classification

algorithms and then generating a majority vote out for the final classification [67], as shown in

Figure 2.9. This way, EL builds on the strong points of the utilized classifiers and through this

combination of various homogeneous/heterogeneous classifiers’ outputs significantly improves

classification accuracy [78], [79]. In [80], the author showed that the accuracy of every ML

classification algorithm strongly depends on the application as well as the associated data (i.e.,

training and testing data). Hence, there is not a single ML algorithm that can be described as “one

size fits all solution” with high accuracy for various generalized applications. On the contrary, EL

schemes which combine a variety of classification results derived from several classification

algorithms might comprise an optimal solution for generalized applications as they appear to be best

suited for maximizing accuracy through a reduction in variance and avoiding overfitting [67].

Figure 2.9. EL Classification.

29

Nevertheless, the high accuracy of EL classifiers has a result of high cost in terms of increased time

and complexity, due to the use of multiple classifiers at the same time [81]. There are various studies

in the literature that have examined the efficiency of EL for the intrusion detection problem [82],

[83], [84]. Furthermore, there are research works on the feasibility of EL in resource-constrained

environments such as IoT networks. For instance, in [85], the authors proposed a generalized

application lightweight EL framework being proposed for online anomaly detection in IoT networks.

On top of that, the authors in this study demonstrated that the proposed EL framework outputted

better and more accurate results than each member classifier individually [85].

2.3.7.1 Random Forest (RF)

A random forest (RF) is a supervised ensemble ML algorithm used for classification, regression and

other tasks that functions by constructing a multitude of DTs at training time, as it can be seen in

Figure 2.10. This way, it achieves error resistant classifications, while it is proved to be more

accurate than simple DTs [67], [71], [72]. To do this, during the training phase, the algorithm

constructs random DTs from the features of the training dataset and afterwards the model is trained

to classify new unknown instances based on to majority voting of those DTs [67], [71], [72]. The DTs

that constitute an RF classifier are trained in a different way compared to the simple DTs described

in Section 2.3.2. In particular, the difference relies on the fact that the ruleset of a simple DT is

created based on the given training dataset during the training phase, while in a RF ensemble ML

model the various DTs are generated using randomly picked instances from the training dataset as

an input [86].

Figure 2.10. Generic Structure of Random Forest Model.

30

According to [67], [71], [72], the inherent randomness during the training of a RF model outputs a

more robust and accurate model, and on top of that, the output RF model appears to be more

resistant to overfitting. Apart from that, it does not require proper feature selection, and thus it

needs significantly less inputs for each proper running. In [87], the authors showed that a RF

classifier performs better, more accurately and efficiently detection of DDoS attacks in IoT networks

rather than other classifications algorithms including the SVM, the KNN, and an artificial neural

network (ANN) classifiers. The authors in [71] performed their experiments using the Gini index to

construct the various DT components, setting to 10 the minimum number of samples per leaf node

in order to avoid over fitting, as suggested in [72], demonstrating significant classification results.

2.3.7.2 AdaBoost

Adaptive Boosting or AdaBoost is a statistical classification meta-algorithm (i.e., it is not an ML

algorithm by itself, but rather uses other (basic) algorithms to build a stronger one) and is the most

widely used and studied for EL, with applications in numerous fields [69], [88]. AdaBoost can be

applied in conjunction with many other types of learning algorithms in order to improve

performance [89], [90]. The final output of the boosted classifier is represented by the weighted sum

of the output of the several other learning algorithms/classifiers, as shown in Figure 2.11, also

referred to as “weak learners”. AdaBoost is considered adaptive as the subsequent “weak learners”

are tweaked in favor of those instances misclassified by previous classifiers [69], [88]. AdaBoost

appears to be less susceptible to the overfitting problem than other learning algorithms, in

particular, in classification problems [91]. It is important to highlight that although the individual

learners might be weak in terms of performance, as long as their individual performance is slightly

better than random guessing, then, the final model can be proven to converge to a strong learner.

Attention must be drawn to the fact that every ML algorithm tends to suit better to particular

problem types [88], [89], [90], [91]. On top of that, each ML algorithm typically has various

parameters and configurations that need to be adjusted in order to achieve optimal performance on

a certain dataset.

Figure 2.11. An Example of AdaBoost Classifier.

https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Meta-algorithm

31

2.3.8 Conclusions

A summary of the main advantages and drawbacks of the reviewed ML algorithms is given below in

Table 2.1.

ML Algorithm Advantages Drawbacks

Naïve Bayes

▪ Can be used in both binary and

multi-class classification.

▪ Simple to use.

▪ Few samples required to train.

▪ The assumption about features

independence can lead to low

classification accuracy.

▪ “Zero frequency” problem. In the case

where a class does not appear during

training, it will be assigned a probability

of zero.

Decision Tree

▪ Simple to use.

▪ Performance is not different for

linearly and non-linearly separated

parameters.

▪ Vulnerable to overfitting.

▪ Unstable (i.e., small data variation may

result in the construction of extremely

different DTs).

Linear

Regression

▪ Simple to use.

▪ Computationally efficient.

▪ Overfitting can be reduced by

regularization.

▪ Prone to underfitting.

▪ Prone to noise and overfitting.

▪ Sensitive to outliers.

▪ Limited use due to several assumptions

that LR takes into consideration for its

running.

Logistic

Regression

▪ Simple to use.

▪ Easy to implement.

▪ Difficult to perform classification in case

of non-linearly separable classes.

Support

Vector

Machine

▪ Better performance in datasets

with few classes and many

instances per class.

▪ Scalable.

▪ Reduced storage requirements.

▪ Finding the most appropriate kernel

function is a challenge.

K-Nearest

Neighbor

▪ Simple to use.

▪ Easy to implement.

▪ Difficult to find the optimal k.

▪ The computational speed decreases as

the number of the k variable, the

number of data points, or the number of

classes increases.

Random

Forest

▪ Resistant to overfitting.

▪ Feature selection is performed

inherently.

▪ Fewer inputs required.

▪ Fast only in the case of a small number

of trees.

▪ May require large datasets.

AdaBoost

▪ Robust to overfitting.

▪ Low computational complexity

and error rates.

Sensitive to noisy data and outliers.

Table 2.1. Main advantages and drawbacks of the reviewed ML algorithms.

32

2.4 Evaluation Metrics

Various metrics are used to evaluate the performance of ML algorithms based on testing datasets. In

order to calculate the evaluation metrics, the first step is the calculation of the values of the

confusion matrix. The confusion matrix is generated when a trained ML model is used to classify the

instances of a testing dataset. The confusion matrix compares values regarding the actual labels of

the instances of the testing dataset and the corresponding labels predicted by the ML model. Table 2

shows the 2-by-2 confusion matrix regarding a classification problem with two classes (i.e., normal

and attack).

Predicted Label

Positive (Attack) Negative (Normal)

Actual Label
Positive (Attack) True Positive (TP) False Negative (FN)

Negative (Normal) False Positive (FP) True Negative (TN)

Table 2.2 Confusion Matrix for Binary Classification Problems.

The true positive (TP) and true negative (TN) relate to the correctly classified attack instances and

normal instances, respectively. The false positive (FP) and false negative (FN) refer to the incorrectly

classified normal instances and attacks instances, respectively. Based on these values, it is possible

to compute several evaluation metrics, as shown in [67], [92], [93], [94]. In our case, the metrics of

accuracy, precision, recall, and F1-score were used, and each metric is shortly presented below,

along with its equation.

• Accuracy: shows the overall success of the model by comparing the amount of the correctly

classified attack and normal instances to the total amount of instances.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (9)

• Precision: estimates the overall effectiveness of the model by calculating the percentage that an

observation recognized as an attack is actually an attack observation.

Precision = TP/(TP + FP) (10)

• Recall: shows the overall success of the model by computing the percentage that an actual attack

observation is correctly classified.

Recall = TP/(TP + FN) (11)

• F1-score: is calculated by the precision and recall metrics as their harmonious mean. It is a

statistical function for estimating the accuracy of the model. As the precision and recall of a

model approach the value of 100%, the F1-score and accuracy are maximized, and every instance

is classified correctly.

F1-score = 2 × (Recall × Precision)/(Recall + Precision) (12)

33

2.5 Datasets for Anomaly-based Intrusion Detection in IoT Networks

In this Section, the following five of the most well-known existing datasets for training and

evaluation of IoT AIDSs are reviewed: (i) the LWSNDR dataset [20], (ii) the dataset presented in [21]

for classifying IoT devices using network traffic characteristics, (iii) the “Bot-IoT” dataset [22], (iv) the

dataset presented in [23] for detecting DoS attacks on IoT devices using network traffic traces, and

(v) the “TON_IoT Telemetry” dataset [14], which is the most recent and representative data-driven

IoT/IIoT-based dataset [95].

2.5.1 LWSNDR Dataset

The authors in [20] created two wireless sensor networks (WSNs) in order to serve as testbeds for

the simulation of a single-hop sensor-data collection scenario and a multi-hop sensor-data collection

scenario, respectively. In both scenarios, Crossbow TelosB motes were used as sensor nodes, and

real humidity–temperature sensor data were collected.

In the single-hop scenario, four motes are used as sensor nodes and one mote as the base station

node. The four sensor nodes were split into two sets of two nodes, and the first set of nodes

collected indoor data, whereas the other set of nodes collected outdoor data. Both sets of sensor

nodes transmitted the gathered data to the base station node. In addition, anomalies were

introduced to one sensor node in each set (i.e., indoor and outdoor) by utilizing a hot water kettle

that alters both the temperature and the humidity simultaneously.

In the multi-hop scenario, four motes are used as sensor nodes, two motes as router nodes, and one

mote as the base station node. The router nodes exist in the testbed because the sensor nodes are

placed at a distance from where they cannot directly transmit their data to the base station node.

The sensor nodes and the router nodes are split in two sets. In each set, two sensor nodes are

connected to one router node, whereas the router node connects to the base station node. The two

sensor nodes collect humidity–temperature data and send these data to the router node, which

then transmits the data to the base station node. The sensor nodes of the first set are responsible

for gathering indoor sensor readings, whereas the sensor nodes of the other set collect outdoor

sensor readings. Similar to the single-hop scenario, in the multi-hop scenario, anomalies were also

introduced to one sensor node in each set (i.e., indoor and outdoor) using a hot water kettle, which

leads to an increase in both the temperature and the humidity simultaneously.

In both the single-hop and multi-hop scenarios, real labeled data were generated and were

organized in a labelled dataset in order to be used for the purpose of evaluating anomaly detection

algorithms. However, the produced dataset (i.e., “LWSNDR” dataset) contains only pure sensor

telemetry data, and no information related to either the sensor behavior (e.g., energy consumption)

or the network traffic flowing through the WSN is included. In addition, the given dataset does not

include any specific attack scenarios, as also mentioned in [14]. Finally, the “LWSNDR” dataset was

created in 2010 and cannot be easily considered as recent and representative regarding the current

IoT devices or the attacks targeting them.

2.5.2 A Dataset for Classifying IoT Devices Using Network Traffic Characteristics

The authors in [21], designed and developed a robust framework that performs the classification of

IoT devices separately, in addition to one class of non-IoT devices, with high accuracy, utilizing

statistical attributes derived from network traffic characteristics. One of the authors’ contributions

was the creation of a smart environment infrastructure that served as a testbed in order to gather

34

and synthesize traffic traces from several IoT devices. The smart environment contains a wide range

of IoT devices (i.e., 28 unique IoT devices), non-IoT devices (e.g., smart phones, laptops) and a Wi-Fi

access point (i.e., TP-Link access point). The Wi-Fi access point enables the IoT devices and non-IoT

devices to communicate with the Internet servers via a gateway [21]. The authors considered the

following types of IoT devices: cameras, controllers/hubs, energy management devices (e.g., lights,

plugs, motion sensors), appliances, and health-monitors.

Using the created smart environment, traffic traces were collected and synthesized for a period of

six months. The traffic traces were collected using the “tcpdump” tool and were stored as “pcap”

files on an external USB hard drive of 1 terabyte (TB) storage attached to the gateway. The captured

IoT traffic traces comprise (a) traffic produced by the IoT devices without any human interaction

(e.g., DNS, NTP), and (b) traffic produced because of the users’ interaction with the IoT devices (e.g.,

motion sensors, lightbulb color change upon user request). Next, the traffic traces were analyzed to

gain insight on how to utilize them in order to perform classification of the IoT devices. The analysis

of the authors showed that network traffic characteristics, such as activity cycles, port numbers,

signaling patterns, and cipher suites, can be exploited in order to properly classify each IoT device.

A subset of these traffic traces was made publicly available as a dataset in order to be used by the

scientific community. However, these traffic traces were not generated based on a specific type of

attack scenario, and, as a result, they are not representative regarding the behavior of IoT devices or

the traffic of IoT networks when under attack.

2.5.3 Bot-IoT Dataset

The authors in [22] generated a dataset, named as the “Bot-IoT” dataset, by incorporating simulated

legitimate IoT network traffic, as well as IoT network traffic related to several different types of

attacks. In order to generate the “Bot-IoT” dataset, a realistic testbed was developed, with the aim

of being representative of an IoT network, and it comprises three components: (i) the network

platforms, (ii) the simulated IoT services, and (iii) the extracting features and forensics analytics.

Initially, as far as the network platforms of the testbed are concerned, both normal and attacking

virtual machines (VMs) with additional network devices (i.e., firewall, tap) were included.

Furthermore, the Node-RED tool [96] was employed in order to simulate certain IoT services (e.g.,

weather station, smart fridge). Finally, regarding the extracting features and forensics analytics, after

the authors gathered the normal and attack traffic of the testbed in “pcap” files, they employed the

Argus tool in order to extract the flow data and used a MySQL database in order to further process

the extracted flow data. Then, statistical models were used in order to identify the most important

features for discriminating normal and abnormal instances, and ML techniques were trained and

evaluated so as to assess the value of the dataset in comparison to other benchmark datasets [22].

The produced dataset contains both normal and attack network traffic based on benign scenarios

and botnet scenarios, respectively. The botnet scenarios include probing, DoS, DDoS, data theft, and

keylogging attacks.

The “Bot-IoT” dataset contains over 72 million records of network traffic, and a scaled-down version

of the dataset with roughly 3.6 million records is also provided by the authors for evaluation

purposes. However, the “Bot-IoT” dataset does not include a variety of attack types (e.g.,

ransomware and XSS cross-site scripting), as mentioned in [14]. Additionally, the “Bot-IoT” dataset

was made available to the scientific community in 2018 and, thus, cannot be easily considered as the

most recent and representative dataset containing information about normal or attack traffic of a

current IoT network and information about the behavior of IoT devices when they function under

normal operation conditions, as well as when they function under attack.

35

2.5.4 A Dataset for Detecting DoS Attacks on IoT Devices Using Network Traffic

Traces

The authors in [23] created an IoT-based dataset by collecting both normal traffic and traffic

generated when various types of DoS attacks (e.g., TCP SYN flooding, Ping of Death) were carried

out. A testbed was designed and comprises (i) a TPLink gateway with OpenWrt firmware, (ii) several

IoT devices (e.g., WeMo motion sensor, Samsung smart-camera, Philips Hue bulb), (iii) two attackers,

and (iv) two victims. One attacker was placed locally (inside the LAN) and the other attacker existed

remotely (on the Internet). Moreover, both attackers were capable of attacking both victims. In

order to store the network packet traces of all of the network traffic, a 1 TB external hard disk was

attached to the gateway. The packet traces were stored as “pcap” files using the “tcpdump” tool.

In addition, two types of attacks were implemented: (a) direct attacks (i.e., ARP spoofing, TCP SYN

flooding, UDP flooding, and Ping of Death), and (b) reflection attacks (i.e., SNMP, SSDP, TCP SYN, and

Smurf). All of the types of DoS attacks were performed using different traffic rates (i.e., how many

packets were sent to the victim). Furthermore, the attacks originated from either one of the

attackers or both of them and targeted either one of the victims or both of them.

The authors made their dataset available to the community. The released dataset refers to a one-

month period of benign and attack traffic relating to ten IoT devices, and annotations of those

attacks are included. The dataset consists of 30 “pcap” files, and each file corresponds to a trace

collected over a day [23]. Nevertheless, this dataset does not have a variety of attack types (e.g.,

ransomware and XSS cross-site scripting), as mentioned in [14]. In addition, similarly to the “Bot-IoT”

dataset mentioned in Section 2.5.3, this dataset was made available to the community in 2018 and,

therefore, cannot be easily considered as the most recent and representative dataset containing

information about normal or attack traffic of a current IoT network and information about the

behavior of IoT devices when they function under normal operation conditions, as well as when they

function under attack.

2.5.5 ToN_IoT Telemetry Dataset

The “TON_IoT Telemetry” dataset includes events of a variety of IoT-related attacks and legitimate

scenarios, IoT telemetry data collected from heterogeneous IoT/IIoT data sources, network traffic of

the IoT/IIoT network, and audit traces of operating systems. Each of the classes of the “TON_IoT

Telemetry” dataset describes either a normal record or the related type of attack in the case of an

attack record. In [14], the authors presented the testbed that they developed in order to generate

the “TON_IoT Telemetry” dataset [97]. The authors developed a testbed integrating IoT sensors

(e.g., weather and modbus sensors), physical network components (e.g., switches, routers), several

virtual machines (e.g., VMs of offensive Kali systems, VMs of Windows client systems), hacking

platforms, cloud platforms, and fog platforms, and the testbed components were organized into the

three layers of “Edge”, “Fog”, and “Cloud”. In addition, the testbed employed a software-defined

network (SDN) and network function virtualization (NFV) through the NSX-VMware platform [98].

The NSX-VMware platform enabled: a) the establishment of a virtualized “Fog” layer and a

virtualized “Cloud” layer that simultaneously operated to offer the IoT/IIoT and network services; b)

the emulation and control of multiple virtual machines (VMs) in the testbed for both hacking and

normal operations, and c) the management of the interaction between the three layers.

36

2.5.5.1 Testbed “Edge” Layer

The “Edge” layer is fundamental in IoT/IIoT applications because its devices measure real-world

physical conditions and transmit the collected information to the “Fog” or “Cloud” for further

analysis [99]. The “Edge” layer of the testbed contains various IoT/IIoT devices (e.g., weather and

light bulb sensors) and physical gateways (i.e., routers and switches) to the Internet, as well as host

systems. Besides, the “Edge” layer includes the physical host systems “NSX-VMware Server” and

“vSphere System” used to deploy the “Fog” layer and the “Cloud” layer, respectively, by means of

virtualization through the NSX-VMware platform [98] and the NSX-VMware hypervisor platform,

respectively. The “Edge” layer of the testbed is linked to the “Fog” layer through the “vSwitch”.

2.5.5.2 Testbed “Fog” Layer

The purpose of the “Fog” layer is to extend the Cloud computing and services to the “Edge” layer of

the network in order to provide limited computing capacity and storage near to the data sources

[99]. The “Fog” layer of the testbed consists of the VMs and the virtualization technology that

manages the VMs and their services using the NSX-VMware platform [14]. The included VMs and

their roles are as follows:

• VMs where the Offensive Kali systems [100] are installed and include the scripts to simulate

various attack scenarios;

• VMs (i.e., Metaspoitable3, OWASP security Shepherd, and Damn Vulnerable Web App

(DVWA)) which offer vulnerabilities that can be exploited by the Offensive Kali systems [100]

;

• VMs of client systems (i.e., Windows 7 and 10);

• an Ubuntu 18.04 Middleware server where the Node-Red [96] and Mosquitee MQTT broker

tools were deployed to manage the IoT/IIoT services and to operate seven IoT/IIoT sensors:

weather, smart garage door, smart fridge, smart TCP/IP Modbus, GPS tracker, motion-

enabled light, and smart thermostat;

• an Ubuntu 14.04 LTS orchestrated server that offered network services, including DNS (i.e.,

mydns.com), HTTP(s), DHCP, email server (i.e., Zimbra), Kerberos, and FTP, and generated

network traffic between VMs; and

• a VM with the Security Onion tool that is used to log the network data of all the active

systems in the testbed.

2.5.5.3 Testbed “Cloud” Layer

The general purpose of the “Cloud” layer is to host large-size data centers with a significant capacity

for both computation power and storage in order to support IoT/IIoT applications and satisfy the

resource requirements for big data analysis. The “Cloud” layer of the testbed includes:

• a Hive-MQTT broker [101] that is used to publish and subscribe the sensing data of the

IoT/IIoT services using the Node-Red tool;

• a vulnerable PHP website [102] used to execute injection attacking events; and

• Cloud centers services (e.g., Microsoft Azure IoT Hub [103] and Amazon Web Services

Lambda [104]) that were configured to subscribe and publish IoT/IIoT topics between them

and the VMs of the “Fog” layer through the MQTT protocol.

37

2.5.5.4 ToN_IoT Datasets

The authors in [14] simulated several different types of attack scenarios (i.e., scanning, DoS, DDoS,

ransomware, backdoor, data injection, cross-site scripting (XSS), password cracking, and man-in-the-

middle (MITM)) on their testbed, and collected data from the different components of their testbed

in dataset files. All of the datasets are provided in files that follow the “csv” (comma separated

values) format. The datasets files are split into two main folders: (i) the “Processed” datasets folder,

and (ii) the “Train_Test” datasets folder.

The “Processed” datasets contain a processed and filtered version of the datasets with: (a) their

standard features, (b) a label feature indicating whether an observation is normal or malicious, and

(c) a type feature indicating the attacks’ sub-classes for multi-class classification problems [14]. On

the other hand, the “Train_Test” datasets contain selected records of the “Processed” datasets that

were used by the authors in [14] as training and testing datasets for training and evaluating the

accuracy and efficiency of various ML algorithms.

Both the “Processed” datasets and the “Train_Test” datasets consist of four types of dataset files

(i.e., “Network”, “IoT”, “Linux”, “Windows”), with each referring to either the network traffic or a

specific type of device (e.g., sensor, server, desktop) of the testbed, as also demonstrated in Figure

2.12. In particular, the “Network” datasets contain the traffic data that passed through the entire

testbed and were captured during the simulations, whereas the “IoT” datasets contain the data

related to each of the seven IoT/IIoT sensors that were simulated in the testbed. Finally, the “Linux”

datasets and the “Windows” datasets contain the data relating to the two Ubuntu systems and the

two Windows systems in the testbed, respectively.

Figure 2.12. ToN_IoT Telemetry datasets hierarchy.

38

2.6 An Overview of Cooja Simulator
Open Source simulators like Cooja have only emerged within the last few years to reflect a new class

of tools for simulating/hosting and managing IoT/IIoT based on cloud or remote deployment and an

array of features to allow system level deployment. These platforms can be run as simulators in ways

that could be considered more representative of deployed systems. Accurate simulation of IoT

network nodes is nowadays often coupled to the operating system running on top of the node. Most

of the specialised IoT operating systems provide a rather complex simulation environment for

researchers and developers. Cooja for Contiki OS is one of the most popular representatives of this

class of embedded IoT operating system simulators. COOJA is a flexible Java-based simulator

designed for simulating networks of sensors running the Contiki operating system . COOJA is flexible

in that many parts of the simulator can be easily replaced or extended with additional functionality

[25]. Example parts that can be expanded include the simulated radio medium, simulated node

hardware, and plug-ins for simulated input/output. A simulated node in COOJA has three basic

properties: its data memory, the node type, and its hardware peripherals. The node type may be

shared between several nodes and determines features common to all these nodes. For example,

nodes of the same type run the same program code on the same simulated hardware peripherals.

And nodes of the same type are initialized with the same data memory. During execution, however,

nodes' data memories will come to differ due to for example different external inputs.

COOJA is now able to execute Contiki programs in two different ways. This can be done either by

running the program code as compiled native code directly on the host CPU, or by running compiled

program code in an instruction-level TI MSP430 emulator. COOJA is also capable of simulating non-

ontiki nodes, such as nodes implemented in Java or even nodes running another operating system.

All different approaches have advantages as well as shortcomings. Java-based nodes enable much

speedier simulations but cannot run deployable code. Hence, they are useful for the development of

distributed algorithms. Emulating nodes provides more detailed execution details compared to Java-

based nodes or nodes running native code. Finally, native code simulations are more efficient than

node emulations and is still able to simulate deployable code. Since the need of abstraction in a

heterogeneous simulated network may differ between the different simulated nodes, there are

advantages in combining several different abstraction levels in one simulation. For example, in a

large, simulated network a few nodes may be simulated at the hardware level while the rest are

implemented at the pure Java level. Using this method, it combines the advantages of the different

levels. The simulation is faster than when emulating all nodes, but at the same time enables a user

to receive fine-grained execution details from the few emulated nodes.

Java-based nodes enable much faster simulations but do not run deployable code. Finally, native

code simulations are more efficient than node emulations, and COOJA executes native code by

making Java Native Interface calls (JNI) from the Java environment to a compiled Contiki system. The

Contiki system comprises of the entire Contiki core, pre-selected user processes, and a set of special

simulation glue drivers. Another interesting consequence of using JNI is the ability to debug Contiki

code using any regular debugger, such as gdb, by attaching it to the entire Java simulator and

breaking when the JNI call is performed. Also, entire simulation states may be saved and later

restored, skipping back simulations over time. The hardware peripherals of simulated nodes are

called interfaces, and enable the Java simulator to detect and trigger events such as incoming radio

traffic or a LED being lit. Interfaces also represent properties of simulated nodes such as positions

that the actual node is not aware of. All interactions with simulations and simulated nodes are

performed via plugins.

39

2.7 Summary

In this Chapter, a comprehensive overview of the four main pillars of this PhD research work was

given: i) Internet of Things (IoT), ii) Machine Learning (ML) algorithms for anomaly-based intrusion

detection in IoT networks, iii) evaluation metrics for the performance of ML algorithms, and iv)

existing datasets for training and evaluation of anomaly-based intrusion detection in IoT networks.

The Chapter started with an overview of the IoT concept along with its fundamental characteristics

and high-level requirements. Afterwards, the three-layer IoT architecture, which is the typical IoT

architecture in the literature, was presented where the Perception Layer (i.e., IoT network), the focal

point of this PhD research work, was discussed. Following this, an overview of the main security

attacks against IoT networks was given. Furthermore, the security and privacy protection

requirements for IoT, according to ITU-T Recommendation Y.2066 [28], were presented. Concluding

the overview on IoT, concerns that limit the consolidation of secure IoT ecosystems, according to

ENISA in [29], were discussed. Next, the most popular ML algorithms used in IoT Anomaly-based

Intrusion Detection Systems (AIDS) were reviewed and their main advantages and drawbacks were

discussed, followed by the metrics based on which their performance is evaluated. Moreover, five of

the most well-known existing datasets for training and evaluation of IoT AIDSs were reviewed.

Finally, an overview of Cooja simulator was provided.

40

This page intentionally left blank.

41

Chapter 3 Generating Benign IoT Datasets

3.1 Introduction

This Chapter provides a detailed description of the approach followed to generate a set of benign

datasets by implementing a benign IoT network scenario in the Cooja simulator [25], as shown in

Figure 3.1. The implemented scenario is an example scenario of a benign IoT network, and Cooja has

been configured properly to simulate it as described in sections 3.3. The generated IoT-specific

information from the simulated scenario was captured from the Contiki plugin “powertrace” (i.e.,

features such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic

features) to generate the “powertrace” dataset and the network traffic dataset, respectively, which

constitute the benign datasets for the simulated benign IoT network scenario.

Figure 3.1. Benign IoT datasets generation by utilising the Cooja simulator.

3.2 Benign IoT network scenario – an example

The network topology of the simulated example benign IoT network scenario in the Cooja simulator

environment consists of 5 yellow UDP-client motes (i.e., motes 2, 3, 4, 5, and 6) and the green UDP-

server mote (i.e., mote 1), as depicted in Figure 3.1. The simulation duration was set to 60 mins and

the motes’ outputs were printed out in the respective window (e.g., Mote output) while simulations

run, as shown in Figure 3.2. In addition, the yellow UDP-client motes were configured to send text

messages every 10 seconds, approximately, to the green UDP-server mote that was configured to

provide a corresponding response. The UDP protocol was used at the Transport Layer and the IPv6

at the network layer. Moreover, the type of motes used in this scenario was the Tmote Sky that is an

ultra-low power wireless module for use in sensor networks, monitoring applications, and rapid

application prototyping. In addition, Tmote Sky motes leverage industry standards such as USB and

IEEE 802.15.4 to interoperate seamlessly with other devices. By using industry standards, integrating

humidity, temperature, and light sensors, and providing flexible interconnection with peripherals,

Tmote Sky motes enable several mesh network applications [105].

42

Figure 3.2 Cooja Simulator – motes’ outputs

3.3 Benign “powertrace” Dataset

3.3.1 Benign “powertrace” Dataset – Generation Process

The “powertrace” dataset includes information about features such as such as total CPU energy

consumption and low power mode (LPM) energy consumption. In fact, it is the dataset of the

simulated benign IoT network scenario that includes records about information related to the

energy consumption of the IoT devices (i.e., motes) deployed within the simulated IoT network. To

enable the “powertrace” plugin and generate the “powertrace” dataset, the motes of the benign IoT

network were programmed to make use of the “powertrace” plugin for collecting “powertrace”

related features every 2 seconds. In particular, we included the “powertrace.h” library into the code

of each mote (i.e. #include “powertrace.h”), as shown in Figure 3.3, and defined to start

powertracing, once every 2 seconds, in the code of each mote as shown in Figure 3.4.

Figure 3.3 “powertrace.h” library in the mote code.

Figure 3.4 Powertracing Begin.

More precisely, the “powertrace” plugin captured raw information, every 2 seconds, about the set of

features summarised in Table 3.1. In particular, the “powertrace” plugin tracks the duration (i.e.,

number of cpu ticks) of activities of a mote being in each power state. Particularly, the outputs

demonstrate the fraction of time in which a mote remains in a given power state. There are the

43

following six power states: i) cpu; ii) lpm; iii) transmit; iv) listen; v) idle_transmit; and vi) idle_listen,

as shown in Table 3.1. These are measured with a hardware timer (i.e., clock frequency is defined in

RTIMER_SECOND or 32,768 Hz for XM1000). In addition, it is worthwhile mentioning that in our

simulated scenarios the value range for the following features was between 0 and 65535: cpu, lpm,

transmit, listen, idle_transmit, idle_listen. This is because our acquisition time was 2 seconds and the

hardware_timer is 32,768. Besides that, the value ranges for rimeaddr and seqno are dependent on

the number of motes included in each simulated scenario, and the number of acquired samples

during the monitoring time.

Index Feature Description

1 sim time simulation time

2 clock_time() clock time (i.e., by default, 128 ticks/second)

3 ID Mote ID

4 P label

5 rimeaddr rime address

6 seqno sequence number

7 all_cpu accumulated CPU energy consumption

8 all_lpm accumulated Low Power Mode energy consumption

9 all_transmit accumulated transmission energy consumption

10 all_listen accumulated listen energy consumption

11 all_idle_transmit accumulated idle transmission energy consumption

12 all_idle_listen accumulated idle listen energy consumption

13 cpu CPU energy consumption for this cycle

14 lpm LPM energy consumption for this cycle

15 transmit transmission energy consumption for this cycle

16 listen listen energy consumption for this cycle

17 idle_transmit idle transmission energy consumption for this cycle

18 idle_listen idle listen energy consumption for this cycle

Table 3.1 Set of Captured Features by “powertrace” plugin.

In Figure 3.1, the depicted Mote output window displays the captured “powertrace” information

every 2 seconds and also the messages sent/received by each mote (printouts/printf from each

mote).

Figure 3.5 Cooja Simulator—Mote output window.

Furthermore, the Simulation script editor, shown in Figure 3.6, is a Cooja tool used to display

messages and set a timer on the simulation. As shown in Figure 3.6, the upper part of the Simulation

44

script editor was used to create scripts and the lower part to show the captured “powertrace”

information and the printouts (i.e., printf messages) from the motes until the timeout occurs. In our

implementation, we considered the simulation duration to be 60 mins and thus, the timeout was set

at 3,600,000 ms. When the timeout occurred, the simulation stopped, and all the captured

information and prints were stored in the log file named “COOJA.testlog”.

Figure 3.6 Simulation script editor.

Having collected all the captured raw information from the “powertrace” plugin in the

“COOJA.testlog” file, the challenging task was to extract this information from the “COOJA.testlog”

file to a csv file that would be the “powertrace” dataset of the simulated benign IoT network

scenario including records about the energy consumption of the motes. To address this challenge,

the “IoT_Simul.sh” bash file was developed to extract all the required “powertrace” information

from the “COOJA.testlog” file to the “pwrtrace.csv” file. An extract of the “IoT_Simul.sh” bash file is

shown in Figure 3.7.

Figure 3.7 Extract of the “IoT_Simul.sh” file.

45

Initially, the “IoT_Simul.sh” file created the root folder named with the simulation date and time

(i.e., “2020-11-19-17-45-22” folder), as shown below in the left part of Figure 3.8. Afterwards, the

bash file created the “log” folder, inside the “2020-11-19-17-45-22” folder, where the

“COOJA.testlog” file was copied from the “…/cooja/build” folder located in the Cooja Simulator

environment.

Figure 3.8 Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “IoT_Simul.sh” file.

In addition, in the “IoT_Simul.sh” file, the Linux tool “grep” was used to extract the required

“powertrace” information by selecting the label “P” in each “powertrace” row from the

“COOJA.testlog” file and save it in the “pwrtrace.csv” file in the “dataset” folder that was also

created by the batch file inside the “2020-11-19-17-45-22” folder, as shown in the left part of Figure

3.8. In particular, it was implemented with the following command:

grep "P" log/COOJA.testlog >> dataset/pwrtrace.csv

However, in the “dataset” folder, apart from the “pwrtrace.csv” file, the “IoT_Simul.sh” file

generated two more files, based on the information included in the “COOJA.testlog” file, as shown in

Figure 3.8; the “recv.csv” file and the “send.csv” file that include the “received” and “sent”messages

printed by the motes, respectively.

Finally, the “IoT_Simul.sh” file extracted the information related to each mote, from the

“pwrtrace.csv” file, and generated one csv file for each mote with the corresponding information

from “pwrtrace.csv” file. It was implemented with the following command, where “n” is the mote

number (i.e., 1 to 6):

grep "ID:"$n dataset/pwrtrace.csv >> motedata/mote$n.csv

The generated 6 csv files (i.e., mote1.csv, mote2.csv, mote3.csv, mote4.csv, mote5.csv, mote6.csv)

were stored in the “motedata” folder, as shown in Figure . The “motedata” folder was also created

by the “IoT_Simul.sh” file inside the “2020-11-19-17-45-22” folder.

Figure 3.9 Location of the generated “mote1.csv”, “mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, “mote6.csv

files” by the “IoT_Simul.sh” bash file.

46

An overview of the described process followed to extract the required information from the

“COOJA.testlog” file to the “pwrtrace.csv”, “recv.csv”, “send.csv”, “mote1.csv”, “mote2.csv”,

“mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv” files are depicted in Figure .

Figure 3.10 An overview of the process followed by the “IoT_Simul.sh” file to extract all the required “powertrace”

information from the “COOJA.testlog” file.

3.3.2 Benign “powertrace” Dataset – Generated Results
The “powertrace” dataset consists of the following csv files: “pwrtrace.csv”, “mote1.csv”,

“mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv” files. In this Section, we

present sets of records from the “pwrtrace.csv”, and in Appendix 1 we present sets of records from

“mote1.csv”, and “mote3.csv” files.

3.3.2.1 Benign “pwrtrace.csv”

The generated benign “pwrtrace.csv” file consists of 10,794 records and its first 38 records (i.e., 1–

38) and its last 38 records (10,757–10,794) are depicted in Figure 3.11 and Figure 3.12, respectively.

47

Figure 3.11 Benign “pwrtrace.csv”—1 to 38 records.

Figure 3.12 Benign “pwrtrace.csv”—10,757 to 10,794 records.

48

3.4 Benign Network Traffic Dataset

3.4.1 Benign Network Traffic Dataset – Generation Process

The generated network traffic dataset constitutes the dataset of the simulated benign IoT network

scenario that includes records consisting of IoT network traffic features such as source/destination

IPv6 address, packet size, and communication protocol. The Cooja simulator provides the “Radio

messages” tool that allowed the collection of data related to the corresponding network traffic

features. In Figure 3.13, the “Radio messages” output window is depicted along with the three

configuration options that are provided by the “Radio messages” tool:

Figure 3.13 “Radio messages” tool—output window.

The “6LoWPAN Analyzer with PCAP” option was selected and the “Radio messages” tool saved the

captured network traffic data from the simulated IoT network into a pcap file whose file-naming

format was as follows: “radiolog-“+ System.currentTimeMillis()+“.pcap”. During the simulation, the

network traffic information about the transmitted data was also being shown in the top part of the

“Radio messages” output window as depicted in the top part of Figure 3.14. When the simulation

stopped, the generated pcap file was saved as “radiolog-1605811324302.pcap” within the

“…/cooja/build” folder.

Figure 3.14 Network traffic information from the benign scenario in the “Radio messages” output window.

49

Having now saved all the captured raw network traffic information, through the “Radio messages”

tool, into a pcap file, the challenging task was to extract this information from the pcap file to a csv

file that would be the network traffic dataset of the simulated benign IoT network scenario. This

challenge was addressed by utilising the “IoT_Simul.sh” file that was also used in the “powertrace”

dataset generation process, as described in Section 3.3.1, and the well-known network protocol

analyser Wireshark [106].

In particular, the first step was the use of the “IoT_Simul.sh” file in order to copy the “radiolog-

1605811324302.pcap” file from the “…/cooja/build” folder located in the Cooja Simulator

environment to the “nettraffic” folder that was created by the “IoT_Simul.sh” file inside the root

folder “2020-11-19-17-45-22” that was also created by the “IoT_Simul.sh” during the “powertrace”

dataset generation process. The “nettraffic” folder inside the root folder “2020-11-19-17-45-22” and

the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic” folder are shown in Figure .

Figure 3.15 The “nettraffic” folder inside the root folder “2020-11-19-17-45-22” and the copy of the “radiolog-

1605811324302.pcap” file.

After having the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic” folder, the next

step was the extraction of the stored network traffic information from the “radiolog-

1605811324302.pcap” file to the “radiolog.csv” file. This was achieved through Wireshark as

Wireshark allows opening a pcap file and exporting data to a csv file. In Figure 3.16, the upper panel

of the Wireshark window shows the seventeen first packets included in the “radiolog-

1605811324302.pcap” file that was opened via Wireshark. The middle panel shows the protocol

details of the 10th packet selected in the upper panel and the bottom panel presents the protocol

details of the selected 10th packet in both HEX and ASCII format.

50

Figure 3.16 The first seventeenth packets in the “radiolog-1605811324302.pcap” file.

The data from the “radiolog-1605811324302.pcap” file were exported and saved, through

Wireshark, into the “radiolog.csv” file in the “nettraffic” folder in the project environment, as shown

in Figure 3.17. Furthermore, it is worthwhile mentioning that we also used Wireshark to filter the

“radiolog-1605811324302.pcap” file based on the ICMPv6 protocol and the UDP protocol and then

exported and saved the filtered results, through Wireshark, in the “radiologICMPv6.csv” file and the

“radiologUDP.csv” file, respectively, in the “nettraffic” folder in the project environment, as shown

in Figure . The “radiologICMPv6.csv” file and the “radiologUDP.csv” file facilitated the analysis of the

capture traffic as shown in Chapter 5.

Figure 3.17 The “radiolog.csv” file in the “nettraffic” folder in the project environment.

Figure 3.18 The “radiologICMPv6.csv” file and the “radiologUDP.csv” file in the “nettraffic” folder in the project

environment.

Finally, an overview of the above-described process followed to extract the required information

from the “radiolog-1605811324302.pcap” file to the “radiolog.csv”, “radiologICMPv6.csv” and

“radiologUDP.csv” files is depicted in Figure 3.20.

51

Figure 3.20 An overview of the process followed to extract all the required network traffic information from the

“radiolog-1605811324302.pcap” file.

3.4.2 Benign Network Traffic Dataset – Generated Results

The network traffic dataset consists of the following csv files which are located in the “nettraffic”

folder in the project environment as described in Section 3.4.1: “radiolog.csv”,

“radiologICMPv6.csv”, and “radiologUDP.csv” files. In this Section, we present sets of records from

these files.

3.4.2.1 Benign “radiolog.csv”

The generated benign “radiolog.csv” file consists of 116,463 records and its first 40 records (i.e., 1–

40) and its last 40 records (116,424-116,463) are depicted in Figure 3.21 and Figure 3.22,

respectively.

52

Figure 3.21 Benign “radiolog.csv”—1 to 40 records.

Figure 3.22 Benign “radiolog.csv” – 116,424-116,463 records.

53

3.4.2.2 Benign “radiologICMPv6.csv”

The generated benign “radiologICMPv6.csv” file consists of 7,975 records and its first 25 records

(i.e., 1–25) and its last 27 records (i.e., 7,948–7,975) are depicted in Figure 3.23 and Figure 3.24,

respectively.

Figure 3.23 Benign “radiologICMPv6.csv”—1 to 25 records.

Figure 3.24 Benign “radiologICMPv6.csv”—7,948 to 7,975 records.

54

3.4.2.3 Benign “radiologUDP.csv”

The generated benign “radiologUDP.csv” file consists of 104,048 records and its first 28 records (i.e.,

1–28) and its last 37 records (i.e., 104,012–104,048) are depicted in Figure 3.25 and Figure 3.26,

respectively.

Figure 3.25 Benign “radiologUDP.csv”—1 to 28 records.

Figure 3.26 Benign “radiologUDP.csv”—104,012 to 104,048 records.

55

3.5 Summary

In this Chapter, a detailed description of the approach proposed to generate a set of benign IoT

datasets from a benign IoT network scenario implemented in the Cooja simulator was provided. The

IoT-specific information from the simulated scenario was captured from the Contiki plugin

“powertrace” and the Cooja tool “Radio messages” in order to generate the “powertrace” dataset

and the network traffic dataset within csv files, respectively, which constitute the benign IoT

datasets for the simulated benign IoT network scenario. In particular, the “powertrace” dataset

consists of the following csv files: the “pwrtrace.csv” file and one csv file for each mote

(i.e.,“mote1.csv”, “mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv”) with its

corresponding information from the “pwrtrace.csv” file , while the network traffic dataset consists of

the following csv files: “radiolog.csv”, “radiologICMPv6.csv”, and “radiologUDP.csv”. The structure of

the generated benign IoT datasets from the benign IoT network scenario implemented in the Cooja

simulator, as described in this Chapter, is shown in Figure 3.27.

Figure 3.27 Generated Benign IoT Datasets Structure

In principle, the proposed approach in this Chapter can be extended for generating benign IoT

datasets from j different benign scenarios, where each scenario, implemented in the Cooja

simulator, may include n different motes. The generic structure of benign IoT datasets generated

according to the proposed approach is shown in Figure 3.28.

56

Figure 3.28 Benign IoT Datasets – Generic Structure

57

This page intentionally left blank.

58

Chapter 4 Generating Malicious IoT Datasets

4.1 Introduction

This Chapter is focused on the generation of a set of malicious datasets by implementing four

scenarios of the following IoT attacks: i) UDP flooding attack, ii) blackhole attack, iii) sinkhole

attack, and iv) sleep deprivation attack. The implemented scenarios are example scenarios and

Cooja has been configured properly to simulate them, as described in Sections 4.2.1, 4.3.1, 4.4.1,

and 4.5.1. Similar to the approach followed for the generation of the benign datasets in Chapter 3,

the generated IoT-specific information from the simulated attack scenarios was captured from the

Contiki plugin “powertrace” (i.e., features such as CPU consumption) and the Cooja tool “Radio

messages” (i.e., network traffic features) in order to generate the corresponding “powertrace” and

network traffic datasets for the simulated attack scenarios.

4.2 UDP Flooding Attack Datasets

In this Section, we provide a detailed description of the approach followed to generate a set of

malicious datasets by implementing a UDP flooding attack scenario in the Cooja simulator, as shown

in Figure 4.1.

Figure 4.1. UDP Flooding Attack Datasets generation by utilising the Cooja simulator.

59

4.2.1 UDP Flooding Attack Scenario – an example

The network topology of the simulated UDP flooding attack scenario in the Cooja simulator

environment consists of 4 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, and 5), the violet

(malicious) UDP-client mote (i.e., mote 6) and the green (benign) UDP-server mote (i.e., mote 1)

which is also the target of the attack, as depicted in Figure 4.1. The simulation duration was set to 60

mins and the motes’ outputs were printed out in the respective window (e.g., Mote output) while

simulations run, as shown in Figure 4.2. Moreover, the 4 yellow (benign) UDP-client motes were

configured to send text messages every 10 seconds, approximately, to the UDP-server mote that was

configured to provide a corresponding response. On the other hand, the violet (malicious) UDP-

client mote (i.e., mote 6) was compromised with malicious code, as shown in Figure 4.3, to send UDP

packets within a very short period of time (i.e., every 200ms). Finally, it is noteworthy to say that

similar to the benign network scenario, the UDP protocol was used at the Transport Layer, the IPv6

at the network layer, and the type of motes was the Tmote Sky in the UDP flooding attack scenario.

Figure 4.2. Cooja Simulator — UDP flooding attack scenario — Motes’ outputs

Figure 4.3. Malicious code in “udp-client_udp-flood.c” to significantly increase the traffic by 50 times; generating 5

packets per second (i.e., one packet every 200ms) instead of 0.1 packets per second (i.e., one packet every 10 seconds
for benign motes).

60

4.2.2 UDP Flooding Attack “powertrace” Dataset

4.2.2.1 UDP Flooding Attack “powertrace” Dataset – Generation Process

The approach followed for the “powertrace” dataset generation from the UDP flooding attack

scenario was similar to the approach followed for the “powertrace” dataset generation from the

benign IoT network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly

enabled for collecting “powertrace” related features, summarised in Table 3, from the motes of the

attack scenario every two seconds. In Figure 4.4, the depicted mote output window displays the

captured “powertrace” information every two seconds and also the messages sent and received by

each mote during the simulation time (60 mins).

Figure 4.4 Cooja Simulator — UDP flooding attack scenario — Mote output window.

When the timeout occurred, the simulation stopped, and all the captured information and prints

were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file, described in Section

3.3.1, created a) a new root folder named as “2020-12-09-14-59-59”, and b) the “log” folder, inside

the “2020-12-09-14-59-59” folder, where the “COOJA.testlog” file was copied from the

“…/cooja/build” folder located in the Cooja Simulator. Then, the “IoT_Simul.sh” file following the

same process, as described in Section 3.3.1, extracted the required “powertrace” information from

the “COOJA.testlog” file and saved it in the “udp-flood-pwrtrace.csv” file in the “dataset” folder that

was also created by the batch file inside the “2020-12-09-14-59-59” folder, as shown below in the

left part of Figure 4.5. In the “dataset” folder, apart from the “udp-flood-pwrtrace.csv” file, the

“IoT_Simul.sh” file generated two more files (i.e., “udp-flood-recv.csv” and “udp-flood-send.csv”),

following the same process as in Section 3.1.1. The “udp-flood-recv.csv” file and the “udp-flood-

send.csv” file include the “received” and “sent” messages printed by the motes, respectively.

Figure 4.5 Location of the generated “udp-flood-pwrtrace.csv”, “udp-flood-recv.csv”, and “udp-flood-send.csv” files by

the “IoT_Simul.sh” file.

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the

“IoT_Simul.sh” file extracted the information related to each mote from the “udp-flood-

pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from

the “udp-flood-pwrtrace.csv” file. The generated six csv files (i.e., “udp-flood-mote1.csv”,…, “udp-

flood-mote6.csv”) were stored in the “motedata” folder, created also by the “IoT_Simul.sh” file, as

shown in the left part of Figure 4.5.

61

4.2.2.2 UDP Flooding Attack “powertrace” Dataset – Generated Results

The UDP flooding attack “powertrace” dataset consists of the following csv files: “udp-flood-

pwrtrace.csv”, “udp-flood-mote1.csv”, “udp-flood-mote2.csv” “udp-flood-mote3.csv” “udp-flood-

mote4.csv” “udp-flood-mote5.csv”, and “udp-flood-mote6.csv”. In this Section, we present sets of

records from the “udp-flood-pwrtrace.csv”, and in Appendix 1 we present sets of records from “udp-

flood-mote1.csv”, “udp-flood-mote2.csv” and “udp-flood-mote6.csv” files.

4.2.2.2.1 “udp-flood-pwrtrace.csv”

The generated malicious “udp-flood-pwrtrace.csv” file consists of 10,794 records and its first 38

records (i.e., 1–38) and its last 38 records (i.e., 10,757–10,794) are depicted in Figure 4.6 and Figure

4.7, respectively.

Figure 4.6 Malicious “udp-flood-pwrtrace.csv”—1 to 38 records.

Figure 4.7 Malicious “udp-flood-pwrtrace.csv”—10,757 to 10,794 records.

62

4.2.3 UDP Flooding Attack Network Traffic Dataset

4.2.3.1 UDP Flooding Attack Network Traffic Dataset – Generation Process

The approach followed for the network traffic dataset generation from the UDP flooding attack

scenario was similar to the approach followed for the network traffic dataset generation from the

benign IoT network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja

simulator, was similarly used for collecting data related to the corresponding network traffic

features (e.g., source/destination IPv6 address, packet size, and protocol) from the network of the

attack scenario. During the simulation, the network traffic information was being shown in the top

part of the “Radio messages” output window as depicted in the top part of Figure 4.8.

Figure 4.8 Network traffic information from the UDP flooding attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog-1607519517066.pcap”

within the “…/cooja/build” folder. Afterwards, the “IoT_Simul.sh” file, described in Section 3.4.1,

created a) a new root folder named as “2020-12-09-14-59-59”, and b) the “nettraffic” folder, inside

the “2020-12-09-14-59-59” folder, where the “radiolog-1607519517066.pcap” file, copied from the

“…/cooja/build” folder located in the Cooja Simulator, was saved as “udp-flood-radiolog-

1607519517066.pcap”. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the

“udp-flood-radiolog-1607519517066.pcap” file in the “nettraffic” folder are shown in Figure 4.9.

Figure 4.9 The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the “udp-flood-radiolog-

1607519517066.pcap” file.

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the

stored network traffic information from the “udp-flood-radiolog-1607519517066.pcap” file to the

“udp-flood-radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.10.

63

Figure 4.10 The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and its included files.

In the “nettraffic” folder, apart from the “udp-flood-radiolog.csv” file, we also used Wireshark,

following the same process as in Section 3.4.1, to generate two more files (i.e., the “udp-flood-

radiologICMPv6.csv” file and the “udp-flood-radiologUDP.csv” file) from the “udp-flood-radiolog-

1607519517066.pcap” file.

4.2.3.2 UDP Flooding Attack Network Traffic Dataset – Generated Results

The UDP flooding attack network traffic dataset consists of the following csv files which are located

in the “nettraffic” folder as described in Section 4.2.3.1: “udp-flood-radiolog.csv”, “udp-flood-

radiologICMPv6.csv”, and “udp-flood-radiologUDP.csv” files. In this Section, we present sets of

records from these files.

4.2.3.2.1 “udp-flood-radiolog.csv”

The generated malicious “udp-flood-radiolog.csv” file consists of 702,332 records and its first 25

records (i.e., 1–25) are depicted below in Figure 4.11.

Figure 4.11 Malicious “udp-flood-radiolog.csv”—1 to 25 records.

4.2.3.2.2 “udp-flood-radiologICMPv6.csv”

The generated malicious “udp-flood-radiologICMPv6.csv” file consists of 9,908 records and its first

25 records (i.e., 1–25) are depicted below in Figure 4.12.

64

Figure 4.12 Malicious “udp-flood-radiologICMPv6.csv”—1 to 25 records.

4.2.3.2.3 “udp-flood-radiologUDP.csv”

The generated malicious “udp-flood-radiologUDP.csv” file consists of 670,671 records and its first 25

records (i.e., 1–25) are depicted below in Figure 4.13.

Figure 4.13 Malicious “udp-flood-radiologUDP.csv”—1 to 25 records.

65

4.3 Blackhole Attack Datasets

In this Section, we provide a detailed description of the approach followed to generate a set of

malicious datasets by implementing a blackhole attack scenario in the Cooja simulator, as shown in

Figure 4.14.

Figure 4.14 Blackhole Attack Datasets generation by utilising the Cooja simulator.

4.3.1 Blackhole Attack Scenario – an example

The network topology of the simulated blackhole attack scenario in the Cooja simulator environment

consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the violet

(malicious) UDP-client mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote 1), as

depicted in Figure 4.14. The simulation duration was set to 60 mins and the motes’ outputs were

printed out in the respective window (e.g., Mote output) while simulations run, as shown in Figure

4.15. Moreover, the 8 yellow (benign) UDP-client motes were configured to send text messages

every 30 seconds, approximately, to the UDP-server mote that was configured to provide a

corresponding response. On the other hand, the violet (malicious) UDP-client mote (i.e., mote 10)

was compromised with malicious code, as shown in Figure , to switch off transmission and disrupt

the communication chain. The (malicious) mote was programmed to start as a normal mote and

after 25 minutes later to switch off the radio, leading to a blackhole attack. Finally, it is noteworthy

to say that similar to the benign network scenario, the UDP protocol was used at the Transport

Layer, the IPv6 at the network layer, and the type of motes was the Tmote Sky in the blackhole

attack scenario.

66

Figure 4.15 Cooja Simulator – Blackhole attack scenario – Motes’ outputs.

Figure 4.16 Malicious code in “contiki/core/net/ipv6/uip6.c” to cause a blackhole attack by dropping all packets that are

to be forwarded.

67

4.3.2 Blackhole Attack “powertrace” Dataset

4.3.2.1 Blackhole Attack “powetrace” Dataset – Generation Process

The approach followed for the “powertrace” dataset generation from the blackhole attack scenario

was similar to the approach followed for the “powertrace” dataset generation from the benign IoT

network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly enabled for

collecting “powertrace” related features, summarised in Table 3, from the motes of the attack

scenario every two seconds. In Figure 4.17, the depicted mote output window displays the captured

“powertrace” information every two seconds and also the messages sent and received by each mote

during the simulation time (60 mins).

Figure 4.17 Cooja Simulator – Blackhole attack scenario – Mote output window

When the timeout occurred, the simulation stopped, and all the captured information and prints

were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file, described in Section

3.3.1, created a) a new root folder named as “2021-10-28-22-36-22”, and b) the “log” folder, inside

the “2021-10-28-22-36-22” folder, where the “COOJA.testlog” file was copied from the

“…/cooja/build” folder located in the Cooja Simulator. Then, the “IoT_Simul.sh” file following the

same process, as described in Section 3.3.1, extracted the required “powertrace” information from

the “COOJA.testlog” file and saved it in the “blackhole-pwrtrace.csv” file in the “dataset” folder that

was also created by the batch file inside the “2021-10-28-22-36-22” folder, as shown below in the

left part of Figure 4.18. In the “dataset” folder, apart from the “blackhole-pwrtrace.csv” file, the

“IoT_Simul.sh” file generated two more files (i.e., “blackhole-recv.csv” and “blackhole-send.csv”),

following the same process as in Section 3.3.1. The “blackhole-recv.csv” file and the “blackhole-

send.csv” file include the “received” and “sent” messages printed by the motes, respectively.

Figure 4.18 Location of the generated “blackhole-pwrtrace.csv”, “blackhole-recv.csv”, and “blackhole-send.csv” files by

the “IoT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the

“IoT_Simul.sh” file extracted the information related to each mote from the “blackhole-

pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from

the “blackhole-pwrtrace.csv” file. The generated ten csv files (i.e., “blackhole-mote1.csv”,…,

“blackhole-mote10.csv”) were stored in the “motedata” folder, created also by the “IoT_Simul.sh”

file, as shown in the left part of Figure 4.18.

68

4.3.2.2 Blackhole Attack “powetrace” Dataset – Generated Results

The blackhole attack “powertrace” dataset consists of the following csv files: “blackhole-

pwrtrace.csv”, “blackhole-mote1.csv” “blackhole-mote2.csv” “blackhole-mote3.csv” “blackhole-

mote4.csv” “blackhole-mote5.csv” “blackhole-mote6.csv” “blackhole-mote7.csv” “blackhole-

mote8.csv” “blackhole-mote9.csv” and “blackhole-mote10.csv”. In this Section, we present sets of

records from the “blackhole-pwrtrace.csv”, and in Appendix 1 we present sets of records from

“blackhole-mote1.csv”, “blackhole-mote4.csv” and “blackhole-mote10.csv” files.

4.3.2.2.1 “blackhole-pwrtrace.csv”

The generated malicious “blackhole-pwrtrace.csv” file consists of 17,990 records and its first 30

records (i.e., 1–30) and its last 30 records (17,961–17,990) are depicted in Figure 4.19 and Figure

4.20, respectively.

Figure 4.19 Malicious “blackhole-pwrtrace.csv” — 1 to 30 records.

Figure 4.20 Malicious “blackhole-pwrtrace.csv”—17,961 to 17,990 records.

69

4.3.3 Blackhole Attack Network Traffic Dataset

4.3.3.1 Blackhole Attack Network Traffic Dataset – Generation Process

The approach followed for the network traffic dataset generation from the blackhole attack scenario

was similar to the approach followed for the network traffic dataset generation from the benign IoT

network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja simulator, was

similarly used for collecting data related to the corresponding network traffic features (e.g.,

source/destination IPv6 address, packet size, and communication protocol) from the network of the

attack scenario. During the simulation, the network traffic information was being shown in the top

part of the “Radio messages” output window as depicted in the top part of Figure 4.21.

Figure 4.21 Network traffic information from the blackhole attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the

“…/cooja/build” folder. Afterwards, the “IoT_Simul.sh” file, described in Section 3.4.1, created a) a

new root folder named as “2021-10-28-22-36-22”, and b) the “nettraffic” folder, inside the “2021-

10-28-22-36-22” folder, where the “radiolog.pcap”, copied from the “…/cooja/build” folder located

in the Cooja Simulator, was saved as “blackhole-radiolog.pcap”. The “nettraffic” folder inside the

root folder “2021-10-28-22-36-22” and the “blackhole-radiolog.pcap” file in the “nettraffic” folder

are shown in Figure 4.22.

Figure 4.22 The “nettraffic” folder inside the root folder “2021-10-28-22-36-22” and the “blackhole-radiolog.pcap” file.

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the

stored network traffic information from the “blackhole-radiolog.pcap” file to the “blackhole-

radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.23.

70

Figure 4.23 The “nettraffic” folder inside the root folder “2021-10-28-22-36-22” and its included files.

In the “nettraffic” folder, apart from the “blackhole-radiolog.csv” file, we also used Wireshark,

following the same process as in Section 3.4.1, to generate two more files (i.e., “blackhole-radiolog-

ICMPv6.csv” and “blackhole-radiolog-UDP.csv”) from the “blackhole-radiolog.pcap” file.

4.3.3.2 Blackhole Attack Network Traffic Dataset – Generated Results

The blackhole attack network traffic dataset consists of the following csv files which are located in

the “nettraffic” folder as described in Section 4.3.3.1: “blackhole-radiolog.csv”, “blackhole-radiolog-

ICMPv6.csv”, and “blackhole-radiolog-UDP.csv” files. In this Section, we present sets of records from

these files.

4.3.3.2.1 “blackhole-radiolog.csv”

The generated malicious “blackhole-radiolog.csv” file consists of 99,622 records and its first 30

records (i.e., 1–30) are depicted below in Figure 4.24.

Figure 4.24 Malicious “blackhole-radiolog.csv”—1 to 30 records.

4.3.3.2.2 “blackhole-radiolog-ICMPv6.csv”

The generated malicious “blackhole-radiolog-ICMPv6.csv” file consists of 24,011 records and its first

30 records (i.e., 1–30) are depicted below in Figure .4.25

71

Figure 4.25 Malicious “blackhole-radiolog-ICMPv6.csv”—1 to 30 records.

4.3.3.2.3 “blackhole-radiolog-UDP.csv”

The generated malicious “blackhole-radiolog-UDP.csv” file consists of 73,551 records and its first 30

records (i.e., 1–30) are depicted below in Figure 4.26.

72

Figure 4.26 Malicious “blackhole-radiolog-UDP.csv”—1 to 30 records.

4.4 Sinkhole Attack Datasets

In this Section, we provide a detailed description of the approach followed to generate a set of

malicious datasets by implementing a sinkhole attack scenario in the Cooja simulator, as shown in

Figure 4.27.

73

Figure 4.27 Sinkhole Attack Datasets generation by utilising the Cooja simulator.

4.4.1 Sinkhole Attack Scenario – an example

The network topology of the simulated sinkhole attack scenario in the Cooja simulator environment

consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the violet

(malicious) UDP-server mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote 1),

as depicted in Figure 4.27. The simulation duration was set to 60 mins and the motes’ outputs were

printed out in the respective window (e.g., Mote output) while simulations run, as shown in Figure

4.28. Moreover, the 8 yellow (benign) UDP-client motes were configured to send text messages

every 30 seconds, approximately, to the UDP-server mote that was configured to provide a

corresponding response. On the other hand, the violet (malicious) UDP-server mote (i.e., mote 10)

was compromised with malicious code, as shown in Figure 4.29 and Figure 4.30, to decrease the

malicious mote’s Rank number and make it the preferable parent node. With most of the

neighbours to be connected to it, it starts dropping all the traffic that it should forward. The

malicious mote was programmed to start 20 minutes later than the others allowing the network to

work properly before the attack. Finally, it is noteworthy to say that similar to the benign network

scenario, the UDP protocol was used at the Transport Layer, the IPv6 at the network layer, and the

type of motes was the Tmote Sky in the sinkhole attack scenario.

74

Figure 4.28 Cooja Simulator – Sinkhole attack scenario – Motes’ outputs.

Figure 4.29 Malicious code in “contiki_modified/core/net/rpl/rpl-private.c” to cause a sinkhole attack.

Figure 4.30 Malicious code in “contiki_modified/core/net/rpl/rpl-timers.c” to cause a sinkhole attack.

75

4.4.2 Sinkhole Attack “powertrace” Dataset

4.4.2.1 Sinkhole Attack “powertrace” Dataset – Generation Process

The approach followed for the “powertrace” dataset generation from the sinkhole attack scenario

was similar to the approach followed for the “powertrace” dataset generation from the benign IoT

network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly enabled for

collecting “powertrace” related features, summarised in Table 3, from the motes of the attack

scenario every two seconds. In Figure 4.31, the depicted mote output window displays the captured

“powertrace” information every two seconds and also the messages sent and received by each mote

during the simulation time (60 mins).

Figure 4.31 Cooja Simulator – Sinkhole attack scenario – Mote output window

When the timeout occurred, the simulation stopped, and all the captured information and prints

were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file, described in Section

3.3.1, created a) a new root folder named as “2021-10-29-23-23-49”, and b) the “log” folder, inside

the “2021-10-29-23-23-49” folder, where the “COOJA.testlog” file was copied from the

“…/cooja/build” folder located in the Cooja Simulator. Then, the “IoT_Simul.sh” file following the

same process, as described in Section 3.3.1, extracted the required “powertrace” information from

the “COOJA.testlog” file and saved it in the “sinkhole-pwrtrace.csv” file in the “dataset” folder that

was also created by the batch file inside the “2021-10-29-23-23-49” folder, as shown below in the

left part of Figure 4.32. In the “dataset” folder, apart from the “sinkhole-pwrtrace.csv” file, the

“IoT_Simul.sh” file generated two more files (i.e., “sinkhole-recv.csv” and “sinkhole-send.csv”),

following the same process as in Section 3.3.1. The “sinkhole-recv.csv” file and the “sinkhole-

send.csv” file include the “received” and “sent” messages printed by the motes, respectively.

Figure 4.32 Location of the generated “sinkhole-pwrtrace.csv”, “sinkhole-recv.csv”, and “sinkhole-send.csv” files by the

“IoT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the

“IoT_Simul.sh” file extracted the information related to each mote from the “sinkhole-pwrtrace.csv”

file and generated one csv file for each mote with the corresponding information from the “sinkhole-

pwrtrace.csv” file. The generated ten csv files (i.e., sinkhole-mote1.csv, …, sinkhole-mote10.csv)

were stored in the “motedata” folder, created also by the “IoT_Simul.sh” file, as shown in the left

part of Figure 4.32.

76

4.4.2.2 Sinkhole Attack “powertrace” Dataset – Generated Results

The sinkhole attack “powertrace” dataset consists of the following csv files: “sinkhole-pwrtrace.csv”,

“sinkhole-mote1.csv”, “sinkhole-mote2.csv”, “sinkhole-mote3.csv”, “sinkhole-mote4.csv”, “sinkhole-

mote5.csv”, “sinkhole-mote6.csv”, “sinkhole-mote7.csv”, “sinkhole-mote8.csv”, “sinkhole-

mote9.csv”, and “sinkhole-mote10.csv” files. In this Section, we present sets of records from the

“sinkhole-pwrtrace.csv”, and in Appendix 1 we present sets of records from “sinkhole-mote1.csv”,

“sinkhole-mote5.csv” and “sinkhole-mote10.csv” files.

4.4.2.2.1 “sinkhole-pwrtrace.csv”

The generated malicious “sinkhole-pwrtrace.csv” file consists of 17,390 records and its first 30

records (i.e., 1–30) and its last 30 records (17,361–17,390) are depicted in Figure 4.33 and Figure

4.34, respectively.

Figure 4.33 Malicious “sinkhole-pwrtrace.csv” – 1 to 30 records

Figure 4.34 Malicious “sinkhole-pwrtrace.csv”— 17,361 to 17,390 records.

77

4.4.3 Sinkhole Attack Network Traffic Dataset

4.4.3.1 Sinkhole Attack Network Traffic Dataset – Generation Process

The approach followed for the network traffic dataset generation from the sinkhole attack scenario

was similar to the approach followed for the network traffic dataset generation from the benign IoT

network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja simulator, was

similarly used for collecting data related to the corresponding network traffic features (e.g.,

source/destination IPv6 address, packet size, and communication protocol) from the network of the

attack scenario. During the simulation, the network traffic information was being shown in the top

part of the “Radio messages” output window as depicted in the top part of Figure 4.35.

Figure 4.35 Network traffic information from the sinkhole attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the

“…/cooja/build” folder. Afterwards, the “IoT_Simul.sh” file, described in Section 3.4.1, created a) a

new root folder named as “2021-10-29-23-23-49”, and b) the “nettraffic” folder, inside the “2021-

10-29-23-23-49” folder, where the “radiolog.pcap” file, copied from the “…/cooja/build” folder

located in the Cooja Simulator, was saved as “sinkhole-radiolog.pcap”. The “nettraffic” folder inside

the root folder “2021-10-29-23-23-49” and the “sinkhole-radiolog.pcap” file in the “nettraffic” folder

are shown in Figure 4.36.

Figure 4.36 The “nettraffic” folder inside the root folder “2021-10-29-23-23-49” and the “sinkhole-radiolog.pcap” file.

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the

stored network traffic information from the “sinkhole-radiolog.pcap” file to the “sinkhole-

radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.37.

Figure 4.37 The “nettraffic” folder inside the root folder “2021-10-29-23-23-49” and its included files.

78

In the “nettraffic” folder, apart from the “sinkhole-radiolog.csv” file, we also used Wireshark,

following the same process as in Section 3.4.1, to generate two more files (i.e., “sinkhole-radiolog-

ICMPv6.csv” and “sinkhole-radiolog-UDP.csv”) from the “sinkhole-radiolog.pcap” file.

4.4.3.2 Sinkhole Attack Network Traffic Dataset – Generated Results

The sinkhole attack network traffic dataset consists of the following csv files which are located in the

“nettraffic” folder as described in Section 4.4.3.1: “sinkhole-radiolog.csv”, “sinkhole-radiolog-

ICMPv6.csv”, and “sinkhole-radiolog-UDP.csv” files. In this Section, we present sets of records from

these files.

4.4.3.2.1 “sinkhole-radiolog.csv”

The generated malicious “sinkhole-radiolog.csv” file consists of 463,581 records and its first 30

records (i.e., 1–30) are depicted below in Figure 4.38.

Figure 4.38 Malicious “sinkhole-radiolog.csv”—1 to 30 records.

4.4.3.2.2 “sinkhole-radiolog-ICMPv6.csv”

The generated malicious “sinkhole-radiolog-ICMPv6.csv” file consists of 404,290 records and its first

30 records (i.e., 1–30) are depicted below in Figure 4.39.

79

Figure 4.39 Malicious “sinkhole-radiolog-ICMPv6.csv”—1 to 30 records.

4.4.3.2.3 “sinkhole-radiolog-UDP.csv”

The generated malicious “sinkhole-radiolog-UDP.csv” file consists of 52,750 records and its first 30

records (i.e., 1–30) are depicted below in Figure 4.40.

Figure 4.40 Malicious “sinkhole-radiolog-UDP.csv”—1 to 30 records.

80

4.5 Sleep Deprivation Attack Datasets

In this Section, we provide a detailed description of the approach followed to generate a set of

malicious datasets by implementing a sleep deprivation attack scenario in the Cooja simulator, as

shown in Figure 4.41.

Figure 4.41 Sleep Deprivation Datasets generation by utilising the Cooja simulator.

4.5.1 Sleep Deprivation Attack Scenario – an example

The network topology of the simulated sleep deprivation attack scenario in the Cooja simulator

environment consists of 8 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4, 5, 6, 7, 8 and 9), the

violet (malicious) UDP-client mote (i.e., mote 10) and the green (benign) UDP-server mote (i.e., mote

1) which is also the target of the attack through mote 4, as, as depicted in Figure 4.41. The

simulation duration was set to 60 mins and the motes’ outputs were printed out in the respective

window (e.g., Mote output) while simulations run, as shown in Figure 4.42. Moreover, the 8 yellow

(benign) UDP-client motes were configured to send text messages every 30 seconds, approximately,

to the UDP-server mote that was configured to provide a corresponding response. On the other

hand, the violet (malicious) UDP-client mote (i.e., mote 10) was compromised with malicious code,

as shown in Figure 4.43 and Figure 4.44, to generate high UDP traffic (i.e., a dummy message every

40 ms, approximately) and send it to the target mote which is mote 4. The malicious mote was

programmed to start 25 minutes later than the others allowing the network to work properly before

the attack. Finally, it is noteworthy to say that similar to the benign network scenario, the UDP

protocol was used at the Transport Layer, the IPv6 at the network layer, and the type of motes was

the Tmote Sky in the sleep deprivation attack scenario.

81

Figure 4.42 Cooja Simulator — Sleep Deprivation attack scenario — Motes’ outputs.

Figure 4.43 Malicious code in “udp-client-sleep_depr.c” to generate high UDP traffic (i.e., a dummy message every 40

ms, approximately)

Figure 4.44 Malicious code in “udp-client-sleep_depr.c” to send out a dummy message

82

4.5.2 Sleep Deprivation Attack “powertrace” Dataset

4.5.2.1 Sleep Deprivation Attack “powertrace” Dataset – Generation Process

The approach followed for the “powertrace” dataset generation from the sleep deprivation attack

scenario was similar to the approach followed for the “powertrace” dataset generation from the

benign IoT network scenario in Section 3.3.1. In addition, the “powertrace” plugin was similarly

enabled for collecting “powertrace” related features, summarised in Table 3, from the motes of the

attack scenario every two seconds. In Figure 4.45, the depicted mote output window displays the

captured “powertrace” information every two seconds and also the messages sent and received by

each mote during the simulation time (60 mins).

Figure 4.45 Cooja Simulator— Sleep deprivation attack scenario — Mote output window.

When the timeout occurred, the simulation stopped, and all the captured information and prints

were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file, described in Section

3.3.1, created a) a new root folder named as “2021-10-27-15-06-36”, and b) the “log” folder, inside

the “2021-10-27-15-06-36” folder, where the “COOJA.testlog” file was copied from the

“…/cooja/build” folder located in the Cooja Simulator. Then, the “IoT_Simul.sh” file following the

same process, as described in Section 3.3.1, extracted the required “powertrace” information from

the “COOJA.testlog” file and saved it in the “sleep_depr-pwrtrace.csv” file in the “dataset” folder

that was also created by the batch file inside the “2021-10-27-15-06-36” folder, as shown below in

the left part of Figure 4.46. In the “dataset” folder, apart from the “sleep_depr-pwrtrace.csv” file,

the “IoT_Simul.sh” file generated two more files (i.e., “sleep_depr-recv.csv” and “sleep_depr-

send.csv”), following the same process as in Section 3.3.1. The “sleep_depr-recv.csv” file and the

“sleep_depr-send.csv” file include the “received” and “sent” messages printed by the motes,

respectively.

Figure 4.46 Location of the generated “sleep_depr-pwrtrace.csv”, “sleep_depr-recv.csv”, and “sleep_depr-send.csv” files

by the “IoT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in Section 3.3.1, the

“IoT_Simul.sh” file extracted the information related to each mote from the “sleep_depr-

pwrtrace.csv” file and generated one csv file for each mote with the corresponding information from

the “sleep_depr-pwrtrace.csv” file. The generated ten csv files (i.e., “sleep_depr-mote1.csv”, …,

“sleep_depr-mote10.csv”) were stored in the “motedata” folder, created also by the “IoT_Simul.sh”

file, as shown in the left part of Figure 4.46.

83

4.5.2.2 Sleep Deprivation Attack “powertrace” Dataset – Generated Results

The sleep deprivation attack “powertrace” dataset consists of the following csv files: “sleep_depr-

pwrtrace.csv”, “sleep_depr-mote1.csv”, “sleep_depr-mote2.csv”, “sleep_depr-mote3.csv”,

“sleep_depr-mote4.csv”, “sleep_depr-mote5.csv”, “sleep_depr-mote6.csv”, “sleep_depr-

mote7.csv”, “sleep_depr-mote8.csv”, “sleep_depr-mote9.csv”, and “sleep_depr-mote10.csv”. In this

Section, we present sets of records from the “sleep_depr-pwrtrace.csv”, and in Appendix 1 we

present sets of records from “sleep_depr-mote1.csv”, “sleep_depr-mote6.csv” and “sleep_depr-

mote10.csv” files.

4.5.2.2.1 “sleep_depr-pwrtrace.csv”

The generated malicious “sleep_depr-pwrtrace.csv” file consists of 17,240 records and its first 30

records (i.e., 1–30) and its last 30 records (17,211–17,240) are depicted in Figure 4.47 and Figure

4.48, respectively.

Figure 4.47 Malicious “sleep_depr-pwrtrace.csv”—1 to 30 records.

Figure 4.48 Malicious “sleep_depr-pwrtrace.csv”—17,211 to 17,240 records.

84

4.5.3 Sleep Deprivation Attack Network Traffic Dataset

4.5.3.1 Sleep Deprivation Attack Network Traffic Dataset – Generation Process

The approach followed for the network traffic dataset generation from the sleep deprivation attack

scenario was similar to the approach followed for the network traffic dataset generation from the

benign IoT network scenario in Section 3.4.1. The “Radio messages” tool, provided by the Cooja

simulator, was similarly used for collecting data related to the corresponding network traffic

features (e.g., source/destination IPv6 address, packet size, and protocol) from the network of the

attack scenario. During the simulation, the network traffic information was being shown in the top

part of the “Radio messages” output window as depicted in the top part of Figure 4.49.

Figure 4.49 Network traffic information from the sleep deprivation attack scenario in the “Radio messages” output

window.

When the simulation stopped, the generated pcap file was saved as “radiolog.pcap” within the

“…/cooja/build” folder. Afterwards, the “IoT_Simul.sh” file, described in Section 3.4.1, created a) a

new root folder named as “2021-10-27-15-06-36”, and b) the “nettraffic” folder, inside the “2021-

10-27-15-06-36” folder, where the “radiolog.pcap” file, copied from the “…/cooja/build” folder

located in the Cooja Simulator, was saved as “sleep_depr-radiolog.pcap”. The “nettraffic” folder

inside the root folder “2021-10-27-15-06-36” and the “sleep_depr-radiolog.pcap” file in the

“nettraffic” folder are shown in Figure 4.50.

Figure 4.50 The “nettraffic” folder inside the root folder “2021-10-27-15-06-36” and the “sleep_depr-radiolog.pcap” file.

Then, following the same process, as described in Section 3.4.1, we used Wireshark to extract the

stored network traffic information from the “sleep_depr-radiolog.pcap” file to the “sleep_depr-

radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 4.51.

Figure 4.51 The “nettraffic” folder inside the root folder “2021-10-27-15-06-36”and its included files.

85

In the “nettraffic” folder, apart from the “sleep_depr-radiolog.csv” file, we also used Wireshark,

following the same process as in Section 3.4.1, to generate two more files (i.e., “sleep-depr-radiolog-

ICMPv6.csv” and “sleep_depr-radiolog-UDP.csv”) from the “sleep_depr-radiolog.pcap” file.

4.5.3.2 Sleep Deprivation Attack Network Traffic Dataset – Generated Results

The sleep deprivation attack network traffic dataset consists of the following csv files which are

located in the “nettraffic” folder as described in Section 4.4.3.1: “sleep_depr-radiolog.csv”, “sleep-

depr-radiolog-ICMPv6.csv”, and “sleep_depr-radiolog-UDP.csv” files. In this Section, we present sets

of records from these files.

4.5.3.2.1 “sleep_depr-radiolog.csv”

The generated malicious “sleep_depr-radiolog.csv” file consists of 571,079 records and its first 30

records (i.e., 1–30) are depicted below in Figure 4.52.

Figure 4.52 Malicious “sleep_depr-radiolog.csv”—1 to 30 records.

4.5.3.2.2 “sleep-depr-radiolog-ICMPv6.csv”

The generated malicious “sleep_depr-radiolog-ICMPv6.csv” file consists of 30,338 records and its

first 30 records (i.e., 1–30) are depicted below in Figure 4.53.

86

Figure 4.53 Malicious “sleep_depr-radiolog-ICMPv6.csv”—1 to 30 records.

4.5.3.2.3 “sleep_depr-radiolog-UDP.csv”

The generated malicious “sleep_depr-radiolog-UDP.csv” file consists of 526,799 records and its first

30 records (i.e., 1–30) are depicted below in Figure 4.54.

Figure 4.54 Malicious “sleep_depr-radiolog-UDP.csv”—1 to 30 records.

87

4.6 Summary

This Chapter provided a detailed description of the approach proposed to generate a set of

malicious datasets from the following attack scenarios implemented in the Cooja simulator: i) UDP

flooding attack, ii) blackhole attack, iii) sinkhole attack, and iv) sleep deprivation attack. Similar to

the approach followed for the generation of the benign datasets in Section 3, the IoT-specific

information from the simulated attack scenarios was captured from the Contiki plugin “powertrace”

and the Cooja tool “Radio messages” in order to generate the corresponding “powertrace” and

network traffic datasets for each of the simulated attack scenarios within csv files. The structure of

the generated malicious IoT datasets from the above mentioned four attack scenarios is shown

below in Figure 4.55.

Figure 4.55 Generated Malicious IoT Datasets Structure

In principle, the proposed approach in this Chapter can be extended for generating malicious IoT

datasets from j different scenarios of i different attack types, where each attack scenario,

implemented in the Cooja simulator, may include n different motes. The generic structure of

malicious IoT datasets generated according to the proposed approach is shown in Figure 4.56.

88

Figure 4.56 Malicious IoT Datasets – Generic Structure

89

Chapter 5 Datasets Analysis

5.1 Introduction

This Chapter is focused on the analysis of the generated benign “powertrace” and network traffic

datasets, presented in Chapter 3, and the generated malicious “powertrace” and network traffic

datasets, demonstrated in Chapter 4. The Chapter starts with the analysis of the malicious

“powertrace” datasets to investigate whether their raw features can be important in the detection

of anomalies in the network-level power profiling of low-power IoT devices due to UDP flooding

attacks, blackhole attacks, sinkhole attacks, or sleep deprivation attacks. Next, the Chapter continues

with investigating the extraction of new features, more informative and non-redundant, based on

the raw features of the generated benign and malicious datasets. The new features are intended to

constitute valuable features for anomaly-based detection of UDP flooding attacks, blackhole attacks,

sinkhole attacks and sleep deprivation attacks in IoT networks. To this end, the total energy

consumption of each mote is investigated as a valuable feature in Section 5.2.2. Last but not least,

the generated benign and malicious network traffic datasets are also analysed in Section 5.3.1 to

derive new features more informative in terms of the behaviour of the network traffic.

5.2 “powertrace” Datasets Analysis

5.2.1 Malicious “powertrace” Datasets Analysis – Feature Selection
The generated malicious “powertrace” datasets, presented in Chapter 4 include information about

raw features (e.g., “all_cpu”, “all_transmit”, “all_listen”, “cpu”, “lpm”, etc.) that can be analysed to

investigate whether they can be important in the detection of anomalies in the network-level power

profiling of low-power IoT devices (i.e., motes) [107] due to one of the following attacks in the IoT

network: UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack.

Towards this direction, the Mutual Information (MI) method is applied to measure the importance of

the different features of each malicious “powertrace” dataset (i.e., “udp-flood-pwrtrace.csv”,

“blackhole-pwrtrace.csv”, “sinkhole-pwrtrace.csv”, and “sleep_depr-pwrtrace.csv”) and identify the

most significant ones. The MI method was selected as it is commonly used to measure the

usefulness of a feature in discriminating the different classes in a dataset [108]. Before applying the

MI method, all malicious “powertrace” datasets were pre-processed in the following way: the

feature “Clock_time” was filtered out along with the features related to the simulation duration (i.e.,

“all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, ”all_idle_transmit”, and “all_idle_listen” features)

and the “seq no” feature. Besides that, the “P” feature was omitted, because it only has a fixed value

throughout all of the collected records. Finally, the “ID” and “Rime Address” were also filtered out

because it was observed that they led to overfitting.

5.2.1.1 UDP Flooding Attack “powertrace” Dataset Analysis

The following features from the processed “udp-flood-pwrtrace.csv” file were the features whose

importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious)

by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The

results, sorted by value in descending order, are shown below in Table 5.1, where the

“idle_transmit” feature is the one with the least importance.

90

Feature MI (in bits)

“transmit” 0.3571

“idle_listen” 0.3432

“lpm” 0.2669

“cpu” 0.2630

“listen” 0.1888

“idle_transmit” 0.0039

Table 5.1 Mutual Information – Features – “udp-flood-pwrtrace.csv”.

In addition, the average values of the first five features included in Table 5.1 for each mote were

calculated and the results are shown below in Figure 5.1.

 (a) (b)

 (c) (d)

(e)

Figure 5.1 “udp-flood-pwrtrace.csv” - Average values (in ticks) for “transmit”, “idle_listen”, “lpm”, “cpu”, and “listen”.

91

Based on the results included in Figure 5.1, the following observations have been made:

• Mote 6 (i.e., compromised client) and mote 1 (i.e., UDP-server) have the highest average

value for the “transmit” feature. Although this is expected for mote 1 as it the server in the

IoT network scenario, it is not normal for a benign client. Nevertheless, it is expected for a

compromised mote implementing a UDP flooding attack by transmitting many UDP packets

to the target mote (i.e., mote 1 – UDP-server mote).

• Mote 6 (i.e., compromised client) and mote 1 (i.e., UDP-server) have the lowest average

value for the “lpm” feature. Although this is expected for mote 1 as it the server in the IoT

network scenario, it is not expected for a benign client. Nevertheless, it is expected for a

compromised mote implementing a UDP flooding attack by generating and transmitting

many UDP packets.

• Mote 6 (i.e., compromised client) and mote 1 (i.e., UDP-server) have the highest average

value for the “cpu” feature. Although this is expected for mote 1 as it the server in the IoT

network scenario, it is not expected for a benign client. However, it is expected for a

compromised mote implementing a UDP flooding attack by generating and transmitting

many UDP packets to the target mote (i.e., mote 1 – UDP-server mote).

• Mote 6 (i.e., compromised client) has the highest average value for the “listen” feature that

is expected for the compromised client that we implemented to simulate a UDP flooding

attack as it receives a high number of responses (i.e., a kind of acknowledgement packets

sent back by the target-server) due the way the compromised mote was implemented.

Therefore, based on the information included in Table 5.1 and the above observations from Figure

5.1, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from the

“udp-flood-pwrtrace.csv” dataset as its MI is close to zero, meaning that the “idle_transmit” feature

provides very little information for the “label” feature (i.e., “0” for normal and “1” for malicious);

and b) the following features can be valuable for anomaly-based detection of UDP flooding attacks in

IoT networks as they can characterise the behaviour of the compromised node: “transmit”,

“idle_listen”, “listen”, “lpm”, and “cpu”.

5.2.1.2 Blackhole Attack “powertrace” Dataset Analysis

The following features from the processed “blackhole-pwrtrace.csv” file were the features whose

importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious)

by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The

results, sorted by value in descending order, are shown below in 5.2, where the “idle_transmit”

feature is the one with the least importance.

Feature MI (in bits)

“idle_listen” 0.2217

“listen” 0.2214

“lpm” 0.1533

“cpu” 0.1475

“transmit” 0.0101

“idle_transmit” 0.0020

Table 5.2 Mutual Information – Features – “blackhole-pwrtrace.csv”.

92

Furthermore, the average values of the first five features included in Table 5.2 for each mote were

calculated and the results are presented below in Figure 5.2.

 (a) (b)

 (c) (d)

(e)

Figure 5.2 “blackhole-pwrtrace.csv” - Average values (in ticks) for “idle_listen”, “listen”, “lpm”, “cpu”, and “transmit”.

Based on the results included in Figure 5.2, the following observations have been made:

• Mote 10 (i.e., compromised client) has the highest average value for the “lpm” feature

which is expected for a compromised mote implementing a blackhole attack by dropping the

packets that it has to forward.

• Mote 10 (i.e., compromised client) has the lowest average value for the “cpu” feature which

is expected for a compromised mote implementing a blackhole attack by dropping the

packets that it has to forward.

• Mote 10 (i.e., compromised client) has the lowest average value for the “transmit” feature

(i.e., it is 0), which is not very common for benign client, but it is expected for a

compromised mote dropping the packets that it has to forward in order to implement a

blackhole attack.

93

• The average value for the “listen” and “idle_listen” features are zero because of the way we

implemented the blackhole attack. Both features should be higher because of the behaviour

of the compromised mote that implements a blackhole attack. In particular, we

programmed the compromised mote to switch off, after 25 minutes from the beginning, not

only the transmission feature in order to disrupt the communication chain but also the

receiving feature. The fix of this issue in the blackhole implementation in the Cooja simulator

is going to be part of our future work.

Consequently, based on the information included in Table .2 and the above observations derived

from Figure 5.2, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted

from the “blackhole-pwrtrace.csv” dataset as its MI is close to 0, meaning that the “idle_transmit”

feature provides very little information for the “label” feature (i.e., “0” for normal and “1” for

malicious); and b) the following features can be valuable for anomaly-based detection of blackhole

attacks in IoT networks as they can characterise the behaviour of the compromised mote: “lpm”,

“cpu”, and “transmit”. The importance of the “listen” and “idle_listen” features that achieve the

highest MI scores will be evaluated further in the near future, when the implementation issue is

fixed, based also on their average values.

5.2.1.3 Sinkhole Attack “powertrace” Dataset Analysis

The following features from the processed “sinkhole-pwrtrace.csv” file were the features whose

importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious)

by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The

results, sorted by value in descending order, are shown below in Table , where the “idle_transmit”

feature is the one with the least importance.

Feature MI (in bits)

“cpu” 0.1009

“lpm” 0.0899

 “transmit” 0.0698

“listen” 0.0518

“idle_listen” 0.0174

“idle_transmit” 0.0000

Table 5.3. Mutual Information – Features – “sinkhole-pwrtrace.csv”.

Furthermore, the average values of the first five features included in Table 5.3 for each mote were

calculated and the results are presented below in Figure 5.3.

94

 (a) (b)

 (c) (d)

(e)

Figure 5.3 “sinkhole-pwrtrace.csv” - Average values (in ticks) for “cpu”, “lpm”, “listen”, “transmit” and “idle_listen”.

Based on the results included in Figure 5.3, the following observations have been made:

• Mote 10 (i.e., compromised client) has the lowest average value for the “cpu” feature which

is expected for a compromised mote implementing a sinkhole attack by dropping the

received packets before they are processed and forwarded.

• Mote 10 (i.e., compromised client) has the highest average value for the “lpm” feature

which is expected for a compromised mote implementing a sinkhole attack by dropping the

received packets before they are processed and forwarded.

• Mote 10 (i.e., compromised client) has the lowest average value for the “transmit” feature,

which is expected for a compromised mote that drops the received packets that it has to

forward in order to implement a sinkhole attack. However, the average value of the

transmit” feature is not zero because at the beginning of the simulation the compromised

mote spends time to proclaim appealing false capabilities so that nearby motes will choose it

as the forwarding mote in the routing process due to its very attractive false capabilities.

• Mote 10 (i.e., compromised client) has the highest average value for the “idle_listen”

feature which is not very common for a benign client, but it is expected for a compromised

95

mote implementing a sinkhole attack as it should spend time listening to the medium to

check if there is any packet in the air even though there is no packet being transmitted to it.

It is worthwhile mentioning that the compromised mote that we programmed for the

implementation of the sinkhole attack scenario in the Cooja simulator is a UDP-server mote

and not a client mote in order to achieve the desired behaviour for the compromised mote

that implements a sinkhole attack. This also explains the fact that its average value for the

“idle_listen” feature is comparable, although higher, with the corresponding value of mote 1

which is the benign server of the sinkhole scenario.

Therefore, based on the information included in Table 5.3 and the above observations derived from

Figure 5.3, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from

the “sinkhole-pwrtrace.csv” dataset as its MI is 0, meaning that the “idle_transmit” feature provides

zero information for the “label” feature (i.e., “0” for normal and “1” for malicious); and b) the

following features can be valuable for anomaly-based detection of sinkhole attacks in IoT networks

as they can characterise the behaviour of the compromised mote: “cpu”, “lpm”, “transmit”,

“idle_listen” and “listen”.

5.2.1.4 Sleep Deprivation Attack “powertrace” Dataset Analysis

The following features from the processed “sleep_depr-pwrtrace.csv” file were the features whose

importance was calculated based on the “label” feature (i.e., “0” for normal and “1” for malicious)

by applying the MI method: “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit” and “idle_listen”. The

results, sorted by value in descending order, are shown below in Table 5.4, where the

“idle_transmit” feature is the one with the least importance.

Feature MI (in bits)

“transmit” 0.1944

“cpu” 0.1200

“lpm” 0.1166

“listen” 0.0946

“idle_listen” 0.0859

“idle_transmit” 0.0024

Table 5.4 Mutual Information – Features – “sleep_depr-pwrtrace.csv”.

In addition, the average values of the first five features included in Table 5.4 for each mote were

calculated and the results are demonstrated below in Figure 5.4.

96

 (a) (b)

 (c) (d)

(e)

Figure 5.4 “sleep_depr-pwrtrace.csv” - Average values (in ticks) for “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”.

Based on the results included in Figure 5.4, the following observations have been made:

• Mote 10 (i.e., compromised client) has the highest average value for the “transmit” feature

which is expected for a compromised mote implementing a sleep deprivation attack by

transmitting a high UDP traffic volume to the target mote (i.e., mote 4) which is the closest

mote to the compromised mote.

• Mote 10 (i.e., compromised client) has the highest average value for the “cpu” feature which

is expected for a compromised mote implementing a sleep deprivation attack by generating

and transmitting many UDP packets to the target mote in order to break its programmed

sleep routines and keep it continuously active until it is shut down due to a drained battery.

• Mote 10 (i.e., compromised client) has the lowest average value for the “lpm” feature which

is expected for a compromised mote implementing a sleep deprivation attack by generating

and transmitting many UDP packets to the target mote.

• Mote 10 (i.e., compromised client) has the highest average value for the “listen” feature that

is expected for the compromised client that we implemented to simulate a sleep deprivation

attack as it receives a high number of responses (i.e., a kind of acknowledgement packets

97

sent back by the server when it receives, via forwarding, the UDP packets sent by the

compromised mote to mote4) due the way the compromised mote was implemented.

Therefore, based on the information included in Table 5.4 and the above observations derived from

Figure 5.4, the following conclusions are drawn: a) the “idle_transmit” feature can be omitted from

the “sleep_depr-pwrtrace.csv” dataset as its score for MI is close to zero, meaning that the

“idle_transmit” feature provides very little information for the “label” feature (i.e., “0” for normal

and “1” for malicious); and b) the following features can be valuable for anomaly-based detection of

sleep deprivation attacks in IoT networks as they can characterise the behaviour of the

compromised node: “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”.

98

5.2.2 Benign and Malicious “powertrace” Datasets Analysis – Feature Extraction
The generated malicious “powertrace” datasets, presented in Chapter 4 include information about

raw features (e.g., “all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, “all_idle_transmit”,

“all_idle_listen”, “cpu”, “lpm”, “transmit”, “listen”, “idle_transmit”, “idle_listen” etc.) that can be

used to derive new features more informative, in terms of the behaviour of each mote, and non-

redundant. The new features are intended to constitute valuable features for training and evaluating

AIDS for IoT networks. Towards this direction, the total energy consumption of each mote in an IoT

network is investigated in this Section as a valuable feature for attack detection.

Based on [109] and [110], the total energy consumption of each mote, at the reading (i.e., record) i,

is given by the sum of a) the energy consumption in the CPU state; b) the energy consumption in the

LPM state; c) the energy consumption in the TX state; and d) the energy consumption in the RX

state, at the reading (i.e., record) i, as shown in the equation below:

𝐸𝑡𝑜𝑡𝑎𝑙𝑖
(𝑚𝐽) = 𝐸𝑐𝑝𝑢𝑡𝑜𝑡𝑎𝑙𝑖

+ 𝐸𝑙𝑝𝑚𝑡𝑜𝑡𝑎𝑙𝑖
+ 𝐸𝑡𝑥𝑡𝑜𝑡𝑎𝑙𝑖

+ 𝐸𝑟𝑥𝑡𝑜𝑡𝑎𝑙𝑖
=

= (𝐼𝑐𝑝𝑢 × 𝑉𝑐𝑝𝑢 × 𝑇𝑐𝑝𝑢𝑖
) + (𝐼𝑙𝑝𝑚 × 𝑉𝑙𝑝𝑚 × 𝑇𝑙𝑝𝑚𝑖

) + (𝐼𝑡𝑥 × 𝑉𝑡𝑥 × 𝑇𝑡𝑥𝑖
)

+ (𝐼𝑟𝑥 × 𝑉𝑟𝑥 × 𝑇𝑟𝑥𝑖
)

(5.1)

where

Icpu: the nominal current in the CPU state;

Ilpm: the nominal current in the LPM state;

Itx: the nominal current in the TX state;

Irx: the nominal current in the RX state;

Vcpu: the nominal voltage in the CPU state;

Vlpm: the nominal voltage in the LPM state;

Vtx: the nominal voltage in the TX state;

Vrx: the nomnal voltage in the RX state;

𝑇𝑐𝑝𝑢𝑖
=

𝑐𝑝𝑢𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

𝑅𝑇𝐼𝑀𝐸𝑅_𝐴𝑅𝐶𝐻_𝑆𝐸𝐶𝑂𝑁𝐷
=

𝑐𝑝𝑢𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768

𝑇𝑙𝑝𝑚𝑖
=

𝑙𝑝𝑚𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

𝑅𝑇𝐼𝑀𝐸𝑅_𝐴𝑅𝐶𝐻_𝑆𝐸𝐶𝑂𝑁𝐷
=

𝑙𝑝𝑚𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768

𝑇𝑡𝑥𝑖
=

𝑡𝑥𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

𝑅𝑇𝐼𝑀𝐸𝑅_𝐴𝑅𝐶𝐻_𝑆𝐸𝐶𝑂𝑁𝐷
=

𝑡𝑥𝑖(# 𝑡𝑖𝑐𝑘𝑠)

32,768

𝑇𝑟𝑥𝑖
=

𝑟𝑥 𝑖(# 𝑡𝑖𝑐𝑘𝑠)

𝑅𝑇𝐼𝑀𝐸𝑅_𝐴𝑅𝐶𝐻_𝑆𝐸𝐶𝑂𝑁𝐷
=

𝑟𝑥𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768

99

Based on Equation (5.1) and Table 5.5 [105] that provides the typical operating conditions for a

Tmote Sky mote, the total energy consumption, at the reading (i.e., record) i, is given by the

Equation (5.2):

 MIN
NOM

(Typical)
MAX UNIT

Supply voltage 2.1 3.0 3.6 V

Supply voltage during flash memory programming 2.7 3.0 3.6 V

Operating free air temperature -40 85 ºC

Current Consumption: MCU on, Radio RX 21.8 23 mA

Current Consumption: MCU on, Radio TX 19.5 21 mA

Current Consumption: MCU on, Radio off 1800 2400 µA

Current Consumption: MCU idle, Radio off 54.5 1200 µA

Current Consumption: MCU standby 5.1 21.0 µA

Table 5.5 Typical Operating Conditions for Tmote Sky motes [105].

𝐸𝑡𝑜𝑡𝑎𝑙𝑖
(𝑚𝐽) = 1.8 × 3 × (

𝑐𝑝𝑢𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768
) + 0.0545 × 3 × (

𝑙𝑝𝑚𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768
)

+ 19.5 × 3 × (
𝑡𝑥𝑖(# 𝑡𝑖𝑐𝑘𝑠)

32,768
) + 21.8 × 3 × (

𝑟𝑥𝑖 (# 𝑡𝑖𝑐𝑘𝑠)

32,768
)

(5.2)

5.2.2.1 Benign “powertrace” Dataset – Average Total Energy Consumption per Mote

Based on Equation (5.2) and the following features, from the generated benign “pwrtrace.csv”

dataset in Section 3.3, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”; and d) “all_listen”,

the average total energy consumption by each mote, during the simulation time (i.e., 60 min = 3600

sec) is shown below in Figure 5.5. The confidence interval has been considered to be the acquisition

time which is 2 seconds.

100

Figure 5.5 Average Total Energy Consumption per Mote – Benign “powertrace” Dataset.

5.2.2.2 UDP Flooding Attack “powertrace” Dataset – Average Total Energy Consumption per Mote

Based on Equation (5.2) and the following features, from the generated malicious “udp-flood-

pwrtrace.csv” dataset in Section 4.2.2, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”;

and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e.,

60 min = 3600 sec) is shown below in Figure 5.6. The confidence interval has been considered to be

the acquisition time which is 2 seconds.

Figure 5.6 Average Total Energy Consumption per Mote – UDP Flooding Attack “powertrace” Dataset.

101

According to the results demonstrated in Figure 5.6, it is clear that the compromised mote (i.e.,

mote6) that carried out the UDP flooding attack consumed much more energy than any other

benign motes (i.e., client or server) in the UDP flooding attack scenario as it generated and

transmitted many UDP packets to the target server-mote (i.e., mote1). In addition, it is observed

that the server-mote consumed a high level of energy as it received a high number of UDP packets

from the compromised mote. In particular, the server-mote in the UDP flooding attack consumed

much more energy than the energy it consumed in the benign scenario as demonstrated in Figure

5.6. These observations are also reflected in Figure 5.7 and Figure 5.8 demonstrating the average

CPU energy consumption and the average Radio (i.e., TX+RX) energy consumption per mote,

respectively.

Figure 5.7 Average CPU Energy Consumption per Mote – UDP Flooding Attack “powertrace” Dataset.

102

Figure 5.8 Average Radio (TX+RX) Energy Consumption per Mote – UDP Flooding Attack “powertrace” Dataset.

5.2.2.3 Blackhole Attack “powertrace” Dataset – Average Total Energy Consumption per Mote

Based on Equation (5.2) and the following features, from the generated malicious “blackhole-

pwrtrace.csv” dataset in Section 4.3.2, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”;

and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e.,

60 min = 3600 sec) is shown below in Figure 5.9. The confidence interval has been considered to be

the acquisition time which is 2 seconds.

103

Figure 5.9 Average Total Energy Consumption per Mote – Blackhole Attack “powertrace” Dataset.

According to the results demonstrated in Figure 5.9, it is clear that the compromised mote (i.e.,

mote10) decreased its total energy consumption significantly (please see red arrow) as it was

programmed to switch off, after 25 minutes (1,500 sec) from the beginning of the simulation, not

only the transmission feature (TX) in order to disrupt the communication chain but also the receiving

feature (RX). This observation is also clear in Figure 5.10 demonstrating the average Radio (i.e.,

TX+RX) energy consumption per mote. Furthermore, in Figure 5.9, it is shown that mote3, mote4,

and mote5 increased their total energy consumption (see black dotted ellipse) because they

increased their average radio energy consumption, as particularly depicted in Figure 5.10, as they

were trying to re-establish connection with the mote-server due to the impact of the blackhole

attack on the network.

104

Figure 5.10 Average Radio (TX+RX) Energy Consumption per Mote – Blackhole Attack “powertrace” Dataset.

5.2.2.4 Sinkhole Attack “powertrace” Dataset – Average Total Energy Consumption per Mote

Based on Equation (5.2) and the following features, from the generated malicious “sinkhole-

pwrtrace.csv” dataset in Section 4.4.2, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”;

and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e.,

60 min = 3600 sec) is shown below in Figure 5.11. The confidence interval has been considered to be

the acquisition time which is 2 seconds.

105

Figure 5.11 Average Total Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset.

Figure 5.11 shows that the compromised mote (i.e., mote10) that carried out the sinkhole attack

consumed little total energy compared to the other benign motes (i.e., client or server) in the

sinkhole scenario as it dropped the received packets before them being processed and forwarded. It

is worthwhile noting that the spike of the energy consumption of the compromised mote at 1200th

second was due to the fact that at that moment, the compromised mote was programmed to turn

on as mentioned in section 4.4.1 (Sinkhole Attack Scenario – an example). This is also shown in

detail in Figure 5.12. On the other hand, as also seen in Figure 5.13, all the other motes increased

their energy consumption due to their efforts to respond to the impact of the sinkhole attack on the

network.

106

Figure 5.12Average CPU Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset.

Figure 5.13 Average Radio Energy Consumption per Mote – Sinkhole Attack “powertrace” Dataset.

107

5.2.2.5 Sleep Deprivation Attack “powertrace” Dataset – Average Total Energy Consumption per Mote

Based on Equation (5.2) and the following features, from the generated malicious “sleep_depr-

pwrtrace.csv” dataset in Section 4.5.2, for each mote: a) “all_cpu”; b) “all_lpm”; c) “all_transmit”;

and d) “all_listen”, the average total energy consumption per mote, during the simulation time (i.e.,

60 min = 3600 sec) is shown below in Figure 5.14. The confidence interval has been considered to be

the acquisition time which is 2 seconds.

Figure 5.14 Average Total Energy Consumption per Mote – Sleep Deprivation Attack “powertrace” Dataset.

Figure 5.14 shows that the compromised mote (i.e., mote10) that carried out the sleep deprivation

attack consumed more energy compared to the other benign motes (i.e., client or server) in the

sleep deprivation scenario as it generated and transmitted many UDP packets to the target client-

mote (i.e., mote4). Besides that, mote10 received a high number of responses (i.e., a kind of

acknowledgement packets sent back by the server when it receives, via forwarding, the UDP packets

sent by the compromised mote to mote4) due the way the compromised mote was implemented. It

is worthwhile mentioning that the spike of the energy consumption of the compromised mote at

1500th second was due to the fact that at that moment, the compromised mote was programmed

to turn on as mentioned in section 4.5.1 (Sleep Deprivation Attack Scenario – an example). This

observation is also presented in detail in Figure . In addition, it is observed in Figure 5.16 that the

server-mote (i.e., mote1) and the target client mote (i.e., mote4) consumed a high level of radio

energy as they both received a high number of UDP packets from the compromised mote.

108

Figure 5.15 Average CPU Energy Consumption per Mote – Sleep Deprivation Attack “powertrace” Dataset.

Figure 5.16 Average Radio Energy Consumption per Mote – Sleep Deprivation Attack “powertrace” Dataset.

109

5.3 Network Traffic Datasets Analysis

5.3.1 Benign and Malicious Network Traffic Datasets Analysis-Feature Extraction
The generated benign network traffic dataset (i.e., “radiolog.csv”), presented in Section 3.4, and the

generated malicious network traffic datasets (i.e., “udp-flood-radiolog.csv”, “blackhole-radiolog.csv”,

“sinkhole-radiolog.csv”, and “sleep_depr-radiolog.csv”), presented in Sections 4.2.3, 4.3.3, 4.4.3, and

4.5.3, include information about raw features, such as “source” address, “destination” address,

“protocol”, and packet “length”, which can be used to derive new features more informative, in

terms of the behaviour of the network traffic, and non-redundant. The new features are intended to

constitute valuable features for training and evaluating AIDS for IoT networks. Towards this

direction, the generated benign and malicious network traffic datasets are analysed in this Section in

order to extract valuable features for anomaly-based detection of UDP flooding attacks, blackhole

attacks, sinkhole attacks and sleep deprivation attacks in IoT networks.

5.3.1.1 Benign Network Traffic Dataset Analysis

From the generated benign “radiolog.csv” dataset in Section 3.4, Table 5.6 was extracted,

demonstrating, in the last column, the percentage of the RPL packets overhead per mote1 which is

calculated as follows: the number of RPL packets per mote over the total number of exchanged

packets within the network during the simulation time (i.e., 116,463 packets). The last row of Table

5.6 contains the total number of RPL packets (7,975), UDP packets (104,048) and other protocol

packets (4,440) exchanged within the network, and the total RPL packets overhead which is equal to

6.85 %. The number of other packets for each mote is not shown because Wireshark cannot decode

properly the information from the pcap file generated by Cooja.

Network Traffic and RPL Packets Overhead - Benign Network Traffic Dataset

 Number of
RPL Packets

Number of
UDP Packets

Number of
Other Packets2

RPL Packets
Overhead [%]

Mote1 290 43,804 - 0.25

Mote2 1,982 11,621 - 1.70

Mote3 1,621 11,883 - 1.39

Mote4 1,604 11,827 - 1.38

Mote5 1,308 12,556 - 1.12

Mote6 1,170 12,357 - 1.00

Total 7,975 104,048 4,440 6.85
Table 5.6 Network Traffic and RPL Packets Overhead – Benign Network Traffic Dataset.

Based on the information included in Table 5.6, the calculated RPL packets overhead per mote and

the total RPL packets overhead are depicted in Figure 5.17.

1 For example, the calculated RPL packets overhead for mote1 is calculated as:

290

116,463
× 100% = 0.25 %

2 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.

110

Figure 5.17 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Benign Network Traffic Dataset.

5.3.1.2 UDP Flooding Attack Network Traffic Dataset Analysis

From the generated malicious “udp-flood-radiolog.csv” dataset in Section 4.2.3, Table 5.7 was

extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote

which is calculated as follows: the number of RPL packets per mote over the total number of

exchanged packets within the network during the simulation time (702,332 packets). The last row of

Table 5.7 contains the total number of RPL packets (9,908), UDP packets (670,671), and other

protocol packets (21,753) exchanged within the network, and the total RPL packets overhead which

is equal to 1.41 %.

Network Traffic and RPL Packets Overhead – UDP Flooding Attack Network Traffic
Dataset

 Number of RPL
Packets

Number of UDP
Packets

Number of
Other Packets3

RPL Packets
Overhead [%]

Mote1 203 254,796 - 0.03

Mote2 2,228 28,953 - 0.32

Mote3 2,768 30,238 - 0.39

Mote4 1,976 27,260 - 0.28

Mote5 2,084 31,247 - 0.30

Mote6 6,490 298,177 - 0.09

Total 9,908 670,671 21,753 1.41

Table 5.7 Network Traffic and RPL Packets Overhead – UDP Flooding Attack Network Traffic Dataset.

Based on the information included in Table 5.7 , the calculated RPL packets overhead per mote and

the total RPL packets overhead are depicted in Figure 5.18.

3 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.

111

Figure 5.18 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – UDP Flooding Attack Network
Traffic Dataset.

According to Figure , it is clear that the total RPL packets overhead in the UDP flooding attack

scenario (1.41%) is much lower than the total RPL packets overhead in the benign scenario (6.85%)

because of the huge amount of UDP packets transmitted by the compromised mote (i.e., mote6) to

the target server-mote (i.e., mote1) in the attack scenario. For the same reason, the RPL packets

overhead of mote6 in the UDP flooding attack scenario (0.09%) is much less than the corresponding

overhead in the benign scenario (1%).

5.3.1.3 Blackhole Attack Network Traffic Dataset Analysis

From the generated malicious “blackhole-radiolog.csv” dataset in Section 4.3.3, Table 5.8 was

extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote

which is calculated as follows: the number of RPL packets per mote over the total number of

exchanged packets within the network during the simulation time (99,622 packets). The last row of

Table 5.8 contains the total number of RPL packets (24,011), UDP packets (73,551), and other

protocol packets (2,060) exchanged within the network, and the total RPL packets overhead which is

equal to 24.10 %.

112

Network Traffic and RPL Packets Overhead – Blackhole Attack Network Traffic Dataset

 Number of RPL
Packets

Number of UDP
Packets

Number of Other
Packets4

RPL Packets
Overhead [%]

Mote1 290 19,196 - 0,29

Mote2 4,292 3,821 - 4,31

Mote3 5,341 9,595 - 5,36

Mote4 3,849 10,910 - 3,86

Mote5 2,604 11,756 - 2,61

Mote6 1,433 1,948 - 1,44

Mote7 1,660 3,612 - 1,67

Mote8 1,264 3,779 - 1,27

Mote9 1,580 6,045 - 1,59

Mote10 1,698 2,889 - 1,70

Total 24,011 73,551 2,060 24,10

Table 5.8 Network Traffic and RPL Packets Overhead – Blackhole Attack Network Traffic Dataset.

Based on the information included in Table 5.8 , the calculated RPL packets overhead per mote and

the total RPL packets overhead are depicted in Figure 5.19.

Figure 5.19 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Blackhole Attack Network Traffic

Dataset.

According to Figure 5.19, it is clear that the total RPL packets overhead in the blackhole attack

scenario (24.10%) is much higher than the total RPL packets overhead in the benign scenario (6.85%)

because of the large number of RPL packets transmitted by the motes in the attack scenario as they

were trying to re-establish connection with the mote-server due to the impact of the blackhole

attack on the network. On top of that, many UDP packets were dropped by the compromised mote

(i.e. mote10) instead of being forwarded. It is worthwhile mentioning that we intend, as future work,

to generate a network traffic dataset from a benign scenario with 10 motes (i.e., the current one

includes 6) as the blackhole attack scenario so that we can get a more accurate value for the total

4 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.

113

RPL packets overhead in the benign scenario. However, it is expected that value of the total RPL

packets overhead in a benign scenario with 10 motes and the same conditions as the benign

scenario with 6 motes will be close to the value of the overhead in the scenario with the 6 motes

because as the number of UDP packets will be increased due to the 4 more motes, the RPL packets

transmitted in the network will be increased analogously.

5.3.1.4 Sinkhole Attack Network Traffic Dataset Analysis

From the generated malicious “sinkhole-radiolog.csv” dataset in Section 4.4.3, Table 5.9 was

extracted, demonstrating, in the last column, the percentage of the RPL packets overhead per mote

which is calculated as follows: the number of RPL packets per mote over the total number of

exchanged packets within the network during the simulation time (463,581 packets). The last row of

Table 5.9 contains the total number of RPL packets (404,290), UDP packets (52,750), and other

protocol packets (6,541) exchanged within the network, and the total RPL packets overhead which is

equal to 87.21 %.

Network Traffic and RPL Packets Overhead – Sinkhole Attack Network Traffic Dataset

 Number of RPL
Packets

Number of UDP
Packets

Number of Other
Packets5

RPL Packets
Overhead [%]

Mote1 10,344 14,878 - 2.23

Mote2 56,427 4,130 - 12.17

Mote3 46,048 3,864 - 9.93

Mote4 52,087 5,279 - 11.24

Mote5 46,576 3,916 - 10.05

Mote6 43,657 4,643 - 9.42

Mote7 44,872 5,642 - 9.68

Mote8 46,974 4,282 - 10.13

Mote9 46,788 6,116 - 10.09

Mote10 10,517 0 - 2.27

Total 404,290 52,750 6,541 87.21

Table 5.9 Network Traffic and RPL Packets Overhead – Sinkhole Attack Network Traffic Dataset.

Based on the information included in Table 5.9 , the calculated RPL packets overhead per mote and

the total RPL packets overhead are depicted in Figure 5.20.

5 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.

114

Figure 5.20 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Sinkhole Attack Network Traffic

Dataset.

According to Figure 5.20, it is clear that the total RPL packets overhead in the sinkhole attack

scenario (87.21%) is significantly higher than the total RPL packets overhead in the benign scenario

(6.85%) because of the huge number of RPL packets transmitted by the motes in the attack scenario

as they were trying to respond to the impact of the sinkhole attack on the network. In addition,

many UDP packets were dropped by the compromised mote (i.e. mote10) instead of being

forwarded. It is worthwhile mentioning that we intend, as future work, to generate a network traffic

dataset from a benign scenario with 10 motes (i.e., the current one includes 6) as the sinkhole attack

scenario so that we can get a more accurate value for the total RPL packets overhead in the benign

scenario. However, it is expected that value of the total RPL packets overhead in a benign scenario

with 10 motes and the same conditions as the benign scenario with 6 motes will be close to the

value of the overhead in the scenario with the 6 motes because as the number of UDP packets will

be increased due to the 4 more motes, the RPL packets transmitted in the network will be increased

analogously.

5.3.1.5 Sleep Deprivation Attack Network Traffic Dataset Analysis

From the generated malicious “sleep_depr-radiolog.csv” dataset in Section 4.5.3, was extracted,

demonstrating, in the last column, the percentage of the RPL packets overhead per mote which is

calculated as follows: the number of RPL packets per mote over the total number of exchanged

packets within the network during the simulation time (571,079 packets). The last row of Table 5.10

contains the total number of RPL packets (30,338), UDP packets (526,799), and other protocol

packets (13,942) exchanged within the network, and the total RPL packets overhead which is equal

to 5.31 %.

115

Network Traffic and RPL Packets Overhead – Sleep Deprivation Attack Network Traffic
Dataset

 Number of RPL
Packets

Number of UDP
Packets

Number of Other
Packets6

RPL Packets
Overhead [%]

Mote1 261 237,640 - 0.05

Mote2 3,288 2,782 - 0.58

Mote3 2,709 3,075 - 0.47

Mote4 2,063 4,531 - 0.36

Mote5 5,550 4,256 - 0.97

Mote6 2,936 8,322 - 0.51

Mote7 2,617 9,595 - 0.46

Mote8 3,936 13,000 - 0.69

Mote9 6,248 10,708 - 1.09

Mote10 730 232,890 - 0.13

Total 30,338 526,799 13,942 5.31

Table 5.10 Network Traffic and RPL Packets Overhead – Sleep Deprivation Attack Network Traffic Dataset.

Based on the information included in Table 5.10 , the calculated RPL packets overhead per mote and

the total RPL packets overhead are depicted in Figure 5.24.

Figure 5.21 RPL Packets Overhead per Mote (%) and Total RPL Packets Overhead (%) – Sleep Deprivation Attack Network

Traffic Dataset.

According to Figure 5.21, the total RPL packets overhead in the sleep deprivation attack scenario

(5.31%) is lower than the total RPL packets overhead in the benign scenario (6.85%) because of the

large number of UDP packets transmitted by the compromised mote (i.e., mote10) to the target

client-mote (i.e., mote4). It is worthwhile mentioning that we intend, as future work, to generate a

network traffic dataset from a benign scenario with 10 motes (i.e., the current one includes 6) as the

sleep deprivation attack scenario so that we can get a more accurate value for the total RPL packets

overhead in the benign scenario. However, it is expected that value of the total RPL packets

6 The number of other packets for each mote is not shown because Wireshark cannot decode properly the
information from the pcap file generated by Cooja.

116

overhead in a benign scenario with 10 motes and the same conditions as the benign scenario with 6

motes will be close to the value of the overhead in the scenario with the 6 motes because as the

number of UDP packets will be increased due to the 4 more motes, the RPL packets transmitted in

the network will be increased analogously.

5.4 Summary
This Chapter was focused on the analysis of the generated benign “powertrace” and network traffic

datasets, presented in Chapter 3, and the generated malicious “powertrace” and network traffic

datasets, demonstrated in Chapter 4. The Chapter started with the analysis of the malicious

“powertrace” datasets to investigate whether their raw features can be important in the detection

of anomalies in the network-level power profiling of low-power IoT devices (i.e., motes) due to UDP

flooding attacks, blackhole attacks, sinkhole attacks, or sleep deprivation attacks. Towards this

direction, all malicious “powertrace” datasets were pre-processed before applying the MI method to

measure the importance of the different features of each malicious “powertrace” dataset (i.e., “udp-

flood-pwrtrace.csv”, “blackhole-pwrtrace.csv”, “sinkhole-pwrtrace.csv”, and “sleep_depr-

pwrtrace.csv”) and identify the most significant features. In addition, the average values of the most

significant features, based on MI, were calculated. Based on the results and the observations in

Section 5.2.1, the following 5 features have been identified as the most important for all malicious

“powertrace” datasets: “transmit”, “cpu”, “lpm”, “listen”, and “idle_listen”.

Next, the Chapter continued with investigating the extraction of new features, more informative and

non-redundant, based on the raw features of the generated benign and malicious “powertrace”

datasets and the generated benign and malicious network traffic datasets. To this end, the total

energy consumption of each mote in an IoT network was investigated in Section 5.2.2 as a valuable

feature for training and evaluating IoT AIDSs. According to the observations and conclusions in

Section 5.2.2, the total energy consumption of each mote in an IoT network can play a valuable role

in anomaly-based intrusion detection for the following types of attacks in IoT networks: UDP

flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack. This is because any

observation considerably deviating from the normal total energy consumption, and particularly the

total CPU energy consumption and the total Radio (i.e., TX+RX) energy consumption per mote, can

be considered as an anomalous behaviour, triggering alerts so that proper countermeasures can be

taken to minimise the risk. On the other hand, the generated benign and malicious network traffic

datasets were also analysed in Section 5.3.1 and the new feature that was extracted was the “RLP

packets overhead”. This new feature provides information about the number of RPL packets (per

mote and total) transmitted over the total number of exchanged messages within the IoT network,

indicating a blackhole or sinkhole attack when its value is high and a UDP flooding attack or sleep

deprivation attack when its value is low.

117

Chapter 6 Datasets Validation

6.1 Introduction

This Chapter is focused on the validation of the generated malicious “powertrace” datasets,

presented in Chapter 4, by applying different Machine Learning (ML) algorithms for IoT AIDSs to

evaluate their performance on the generated malicious datasets. In particular, the following most

popular ML algorithms for IoT AIDSs, reviewed in Section 2.3, were applied: naïve Bayes (NB),

decision tree (DT), random forest (RF), logistic regression (LR), support vector machines (SVM), and

k-nearest neighbor (KNN). Using five-fold cross validation, these algorithms were trained and tested

over the same labelled dataset for each attack scenario. Furthermore, the following four traditional

metrics, reviewed in Section 2.4, were used to evaluate the performance of the ML algorithms on

the generated datasets when these algorithms are used for anomaly detection in IoT AIDSs:

accuracy, precision, recall, and F1-score. In all experiments, the Python language (version 3.8.2) was

used, along with the Scikit-Learn library [27] and a Python script created, utilizing specific functions

of the Scikit-Learn library, to perform training and testing of the ML algorithms.

6.2 Dataset Pre-Processing

The pre-processing phase involved the removal of unnecessary features from the four malicious

“powertrace” datasets (i.e., “udp-flood-pwrtrace.csv”, “blackhole-pwrtrace.csv”, “sinkhole-

pwrtrace.csv”, and “sleep_depr-pwrtrace.csv”) and the addition of the “label” feature (i.e., “0” for

normal and “1” for malicious) to all of them. In particular, the feature “Clock_time” was filtered out

along with the features related to the simulation time (i.e., “sim time”) and the simulation duration

(i.e., “all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, ”all_idle_transmit”, “all_idle_listen”) and the

“seq no” feature. Besides that, the “P” feature was omitted, because it only has a fixed value

throughout all of the collected records of the malicious “powertrace” datasets. Moreover the “ID”

and “Rime Address” were also filtered out because it was observed that they led to overfitting. Last

but not least, the “idle_transmit” feature was filtered out as well, because it had the lowest

calculated importance, based on the “label” feature, by applying the MI method for all malicious

“powertrace” datasets. After the pre-processing phase, the new labelled malicious “powertrace”

datasets were named as “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, “sinkhole-

pwrtrace_label.csv”, and “sleep_depr-pwrtrace_label.csv”, and contained the following features:

“cpu”, “lpm”, “transmit”, “listen”, and “idle_listen”.

6.3 Normalisation

The data normalization step was performed to the numeric values of each feature. If the values of a

feature are significantly larger compared to the values of other features, this may lead to inaccurate

results. Thus, data normalisation helps to ensure that features with significantly large values do not

outweigh features with smaller values. To achieve this, all of the features’ values are scaled within

the range of [0.0, 1.0] by performing a min–max normalization process on each feature. This

normalization process is described by the following equation:

z = (x − xmin)/(xmax − xmin) (6.1)

where z is the normalized value (i.e., after scaling), x is the value before scaling, and xmax and xmin are

the maximum and minimum values of the feature, respectively.

118

6.4 Training and Testing of ML Algorithms on the Malicious “Powertrace”

Datasets

The selected ML algorithms were trained and tested separately over the four labelled malicious

“powertrace” datasets: “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, “sinkhole-

pwrtrace_label.csv”, and “sleep_depr-pwrtrace_label.csv”. Initially, each of the four datasets was

split into two parts: the train part and the test part. The train part consisted of 80% of the dataset

and the ML algorithms were trained and evaluated with this part. On the other hand, the test part

consisted of 20% of the dataset and was held back for further evaluation of the models with unseen

data. The percentage split of 80% train–20% test was determined according to [72] as the best ratio

to avoid the overfitting problem. After that, the training process of each ML algorithm over each

dataset was performed using the five-fold cross validation method. According to this method, the

training dataset was divided into five subsets of equal size and the records of each subset were

randomly selected. The training process was repeated five times. Each time, four out of the five

subsets were utilized for the training of the ML algorithm and the remaining subset was used for

validation. The final performance results were produced by averaging the results of the five folds

[72]. Table 6.1 presents a summary of the set hyperparameters of each of the six ML algorithms.

ML Algorithm Hyperparameters

Decision Tree (DT)
• The Gini index was used to select tree nodes.

• Minimum samples per leaf node set to 10

Naïve Bayes (NB) • The Gaussian variant of the NB algorithm was used.

Logistic Regression (LR) -

Random Forest (RF)

• The Gini index was used to select tree nodes.

• The minimum number of samples per leaf node
was set to 10.

• The random forest consisted of 10 decision trees.

K-Nearest Neighbour (KNN)

• The value of K was set to 5.

• The Euclidean distance was set as the distance
metric.

Support Vector Machine (SVM)
• The Gaussian radial basis function (RBF) was set as

the kernel function.

Table 6.1 Summary of the hyperparameters of each selected ML algorithm.

119

6.5 Performance Evaluation Results

6.5.1 “udp-flood-pwrtrace_label.csv” Dataset
The selected ML algorithms were trained and tested on the “udp-flood-pwrtrace_label.csv” dataset

for binary classification, using the five-fold cross validation method. The performance of the selected

ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score.

The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the

“udp-flood-pwrtrace_label.csv”, are shown in Table 6.2 and Figure 6.1.

ML Algorithm Accuracy Precision Recall F1-score

Decision Tree (DT) 0.9818 0.9509 0.9396 0.9451

Naïve Bayes (NB) 0.9148 0.6774 0.9354 0.7855

Logistic Regression (LR) 0.9742 0.9333 0.9104 0.9216

Random Forest (RF) 0.9885 0.9739 0.9569 0.9653

K-Nearest Neighbor (KNN) 0.9931 0.9853 0.9729 0.9790

Support Vector Machine (SVM) 0.9890 0.9773 0.9562 0.9666

Table 6.2 Evaluation metrics for binary classification for the “udp-flood-pwrtrace_label.csv” dataset.

Figure 6.1 Evaluation metrics for binary classification for the “udp-flood-pwrtrace_label.csv” dataset.

It is observed that the KNN, SVM and RF algorithms demonstrate an almost perfect accuracy score

(i.e., around 0.99), followed by the DT and LR (i.e., close to 0.98). The same trend can be seen in the

precision, recall, and F1-score, as the KNN, SVM and RF algorithms show high values between 0.95 –

0-99, while the DT and LR classifiers demonstrate values between 0.91-0.96. On the other hand,

although the NB achieves accuracy and recall higher than 0.91, it shows the lowest precision of

0.6774 and the lowest F1-score of 0.7855.

120

6.5.2 “blackhole-pwrtrace_label.csv” Dataset
The selected ML algorithms were trained and tested on the “blackhole-pwrtrace_label.csv” dataset

for binary classification, using the five-fold cross validation method. The performance of the selected

ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score.

The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the

“blackhole-pwrtrace_label.csv”, are shown in Table 6.3 and Figure 6.2.

ML Algorithm Accuracy Precision Recall F1-score

Decision Tree (DT) 1.0000 1.0000 1.0000 1.0000

Naïve Bayes (NB) 0.9999 1.0000 0.9976 0.9988

Logistic Regression (LR) 1.0000 1.0000 1.0000 1.0000

Random Forest (RF) 1.0000 1.0000 1.0000 1.0000

K-Nearest Neighbor (KNN) 1.0000 1.0000 1.0000 1.0000

Support Vector Machine (SVM) 1.0000 1.0000 1.0000 1.0000

Table 6.3 Evaluation metrics for binary classification for the “blackhole-pwrtrace_label.csv” dataset.

Figure 6.2 Evaluation metrics for binary classification for the “blackhole-pwrtrace_label.csv” dataset.

It can be easily observed that the KNN, RF, SVM, DT and LR algorithms achieve perfect accuracy,

precision, recall, and F1-score, while the NB algorithm achieves an almost perfect performance.

121

6.5.3 “sinkhole-pwrtrace_label.csv” Dataset
The selected ML algorithms were trained and tested on the “sinkhole-pwrtrace_label.csv” dataset

for binary classification, using the five-fold cross validation method. The performance of the selected

ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score.

The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the

“sinkhole-pwrtrace_label.csv”, are shown in Table 6.4 and Figure 6.3.

ML Algorithm Accuracy Precision Recall F1-score

Decision Tree (DT) 0.9517 0.6836 0.5578 0.6138

Naïve Bayes (NB) 0.9062 0.0414 0.1277 0.0625

Logistic Regression (LR) 0.9304 0.0667 0.0010 0.0021

Random Forest (RF) 0.9545 0.7560 0.5005 0.6017

K-Nearest Neighbor (KNN) 0.9367 0.5630 0.4035 0.4685

Support Vector Machine (SVM) 0.9311 0.0000 0.0000 0.0000

Table 6.4 Evaluation metrics for binary classification for the “sinkhole-pwrtrace_label.csv” dataset.

Figure 6.3 Evaluation metrics for binary classification for the “sinkhole-pwrtrace_label.csv” dataset.

It is observed that all algorithms demonstrate high accuracy, with the lowest accuracy (0.9062) being

achieved by NB and the highest (0.9545) being achieved by the RF classifier, followed by the DT and

KNN. On the other hand, in principle, the performance of all algorithms in terms of precision, recall,

and F1-score is very low. The highest precision of 0.7560 was achieved by the RF and the highest

recall and F1-score by the DT, 0.5578 and 0.6138, respectively. Moreover, it is worthwhile

mentioning that the SVM shows the lowest precision, recall, and F1-score of 0. This is because the

precision was ill-defined (i.e., division by zero).

122

6.5.4 “sleep_depr-pwrtrace_label.csv” Dataset
The selected ML algorithms were trained and tested on the “sleep_depr-pwrtrace_label.csv” dataset

for binary classification, using the five-fold cross validation method. The performance of the selected

ML algorithms was evaluated by the evaluation metrics of accuracy, precision, recall, and F1-score.

The numerical results of the evaluation metrics for the selected ML algorithms, when applied to the

“sleep_depr-pwrtrace_label.csv”, are shown in Table 6.5 and Figure 6.4.

ML Algorithm Accuracy Precision Recall F1-score

Decision Tree (DT) 0.9739 0.8143 0.7402 0.7749

Naïve Bayes (NB) 0.9034 0.3506 0.6403 0.4476

Logistic Regression (LR) 0.9478 0.6552 0.3075 0.4173

Random Forest (RF) 0.9766 0.8559 0.7402 0.7937

K-Nearest Neighbor (KNN) 0.9759 0.8439 0.7401 0.7885

Support Vector Machine (SVM) 0.9393 0.5000 0.0036 0.0071

Table 6.5 Evaluation metrics for binary classification for the “sleep_depr-pwrtrace_label.csv” dataset.

Figure 6.4 Evaluation metrics for binary classification for the “sleep_depr-pwrtrace_label.csv” dataset.

It is observed that all algorithms demonstrate high accuracy, with the lowest accuracy (0.9034) being

achieved by NB and the highest (0.9766) being achieved by the RF classifier, followed by the KNN

(0.9759) and DT (0.9739). In terms of precision, the top three values were achieved by the RF, KNN

and DT, and the lowest by the SVM. Furthermore, the RF, KNN, and DT outperform the other

algorithms in terms of recall and F1-score.

123

6.5 Summary

This Chapter was focused on the validation of the generated malicious “powertrace” datasets,

presented in Chapter 4, by applying the following most popular ML algorithms for IoT AIDS to

evaluate their performance on the generated malicious datasets: naïve Bayes (NB), decision tree

(DT), random forest (RF), logistic regression (LR), support vector machines (SVM), and k-nearest

neighbour (KNN). Using five-fold cross validation, these algorithms were trained and tested over the

same labelled dataset for each attack scenario. Furthermore, the traditional metrics of accuracy,

precision, recall, and F1-score were used to evaluate the performance of the ML algorithms on the

generated datasets. The evaluations results demonstrated that the RF, KNN, and DT algorithms

presented very high values regarding accuracy (between 0.93 and 1.0) and outperform the other

algorithms regarding precision, recall and F1-score for all malicious datasets. In particular, it is

worthwhile mentioning that the RF, KNN, and DT algorithms achieved precision between 0.84 and

1.0 for the “udp-flood-pwrtrace_label.csv”, “blackhole-pwrtrace_label.csv”, and the “sleep_depr-

pwrtrace_label.csv”. In principle, the evaluation results demonstrated that the generated malicious

datasets can be used for training and testing effectively ML algorithms for IoT AIDSs.

124

This page intentionally left blank.

125

Chapter 7 Conclusion and Future Work

7.1 Conclusions
The focus of this PhD research work was on the generation of new labelled IoT datasets that will be

publicly available to the research community and include the following required information so as to

be considered as benchmark IoT datasets for training and evaluating Machine Learning models for

IoT AIDSs: (a) information reflecting multiple benign and attack scenarios from current IoT network

environments, (b) sensor measurement data, (c) network-related information (e.g., packet-level

information) from IoT networks, and (d) information related to the behaviour of the IoT devices

deployed within IoT networks. It is worthwhile mentionioning that the new labelled IoT datasets

were generated by implementing various benign IoT network scenarios and IoT network attack

scenarios in the Cooja simulator which is the companion network simulator of the open source

Contiki Operating System (OS) which is one of the most popular OSs for resource constrained IoT

devices. To the best of our knowledge, this is the first time that the Cooja simulator is used, in a

systematic way, to generate benchmark IoT datasets. The new labelled IoT datasets generated by

the Cooja simulator are not to be considered as a replacement of datasets captured from real IoT

networks or real IoT testbeds, but instead to be considered as complementary datasets that will

contribute to fill the current gap of the scarcity of benchmark datasets for training and evaluating

Machine Learning models for IoT AIDSs. Furthermore, the generated datasets were analysed to

select important raw features for the detection of anomalies as well as extract new features, more

informative and non-redundant, based on the raw features. Finally, different Machine Learning (ML)

algorithms for IoT AIDSs were applied to evaluate their performance on the generated malicious

datasets and validate that the generated malicious datasets can be used for training and testing

effectively ML algorithms for IoT AIDSs.

The main contribution of this PhD research work is summarised as follows.

• Generation of a set of benign IoT datasets from a benign IoT network scenario implemented

in the Cooja simulator. The generated datasets constitute the benign IoT datasets for the

simulated benign IoT network scenario. Furthermore, a detailed description of the approach

proposed to generate the set of benign IoT datasets has also been provided. In addition, it is

worthwhile mentioning that the proposed approach can be extended for generating benign

IoT datasets from j different benign scenarios, where each scenario, implemented in the

Cooja simulator, may include n different motes. The generic structure of the benign IoT

datasets generated according to the proposed approach has been provided and constitutes

a roadmap for generating more and richer benign IoT datasets.

• Generation of a set of malicious datasets from the following attack scenarios implemented

in the Cooja simulator: i) UDP flooding attack, ii) blackhole attack, iii) sinkhole attack, and iv)

sleep deprivation attack. The generated datasets constitute the malicious IoT datasets for

the simulated IoT attack scenarios. Moreover, a detailed description of the approach

proposed to generate the set of the malicious IoT datasets has also been given. On top of

that, it is important to highlight that the proposed approach can be extended for generating

malicious IoT datasets from j different attack scenarios of i different attack types, where

each attack scenario, implemented in the Cooja simulator, may include n different motes.

The generic structure of the malicious IoT datasets generated according to the proposed

approach has been provided and constitutes a roadmap for generating more and richer

malicious IoT datasets.

126

• Analysis of the malicious “powertrace” datasets to investigate whether their raw features

can be important in the detection of anomalies in the network-level power profiling of low-

power IoT devices (i.e., motes) due to UDP flooding attacks, blackhole attacks, sinkhole

attacks, or sleep deprivation attacks. According to the analysis, the following 5 features have

been identified as the most important for all malicious “powertrace” datasets: “transmit”,

“cpu”, “lpm”, “listen”, and “idle_listen”.

• Extraction of new features, more informative and non-redundant, based on the raw features

of the generated benign and malicious “powertrace” datasets. To this end, the total energy

consumption of each mote in an IoT network was investigated as a valuable feature for

training and evaluating IoT AIDSs. According to the observations and conclusions, the total

energy consumption of each mote in an IoT network can play a valuable role in anomaly-

based intrusion detection for the following types of attacks in IoT networks: UDP flooding

attack, blackhole attack, sinkhole attack, and sleep deprivation attack. This is because any

observation considerably deviating from the normal total energy consumption, and

particularly the total CPU energy consumption and the total Radio energy consumption per

mote, can be considered as an anomalous behaviour, triggering alerts so that proper

countermeasures can be taken to minimise the risk.

• Extraction of new features, more informative and non-redundant, based on the raw features

of the generated benign and malicious network traffic datasets. The generated benign and

malicious network traffic datasets were analysed and the new feature that was extracted

was the “RPL packets overhead”. This new feature provides information about the number

of RPL packets (per mote and total) transmitted over the total number of exchanged

messages within the IoT network, indicating a blackhole or sinkhole attack when its value is

high and a UDP flooding attack or sleep deprivation attack when its value is low.

• Validation of the generated malicious “powertrace” datasets by applying the following most

popular ML algorithms for IoT AIDS to evaluate their performance on the generated

malicious datasets: naïve Bayes (NB), decision tree (DT), random forest (RF), logistic

regression (LR), support vector machines (SVM), and k-nearest neighbour (KNN). Using five-

fold cross validation, these algorithms were trained and tested over the same labelled

dataset for each attack scenario. Furthermore, the traditional metrics of accuracy, precision,

recall, and F1-score were used to evaluate the performance of the ML algorithms on the

generated datasets. The evaluations results demonstrated that the generated malicious

datasets can be used for training and testing effectively ML algorithms for IoT AIDSs.

127

7.2 Future Work
This thesis laid the foundation for future research efforts towards the generation of rich benchmark

IoT datasets for effective training and evaluation of different ML models for IoT AIDSs by

implementing various benign IoT network scenarios and IoT network attack scenarios in the Cooja

simulator. In this context, considering the generic structure of the benign IoT datasets, proposed in

Chapter 3, as a roadmap for generating more and richer benign IoT datasets, we plan to continue

generating more benign IoT datasets from a wide spectrum of different benign IoT scenarios, where

each scenario, implemented in the Cooja simulator, will include a different number of motes.

Furthermore, considering the generic structure of the malicious IoT datasets, proposed in Chapter 4,

as a roadmap for generating more and richer malicious IoT datasets, we will continue generating

more malicious IoT datasets from several different IoT attack scenarios of different attack types,

where each attack scenario, implemented in the Cooja simulator, will include a different number of

motes. In particular, additional attack scenarios for each of the four attack types considered in this

PhD work (i.e., UDP flooding attack, blackhole attack, sinkhole attack, and sleep deprivation attack)

can be implemented in the Cooja simulator, examining with different number of motes and

configuring different topologies. Following the research methodology defined in this PhD work, the

newly implemented scenarios will contribute to more and richer IoT datasets.

Besides that, different feature selection techniques will be applied on the generated IoT datasets to

identify those raw features that are important in the detection of anomalies in IoT networks and

devices deployed in these networks due to IoT attacks. On top of that, we will continue with the

extraction of new features, more informative and non-redundant, based on the raw features of the

generated benign and malicious “powertrace” datasets, and the generated benign and malicious

network traffic datasets. The target is to identify and/or extract a rich set of very informative and

non-redundant features that will allow not only the detection of anomalies due to IoT attacks but

also the identification of the type of the attack causing the detected anomalies. Last but not least,

the validation of the generated datasets by applying different ML algorithms to evaluate their

performance on the generated datasets, based on the original (i.e., raw) set of features, the subset

of the selected features, and/or the new extracted features, is of utmost importance. In fact, it

constitutes the essential final step where the performance evaluation results will indicate whether

or not the generated datasets meet the requirements of benchmark IoT datasets for training and

evaluation of various ML models for IoT AIDSs.

128

This page intentionally left blank.

129

References

[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things:
Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet
Things J., vol. 4, no. 5, pp. 1125–1142, Oct. 2017.

[2] M. binti Mohamad Noor and W. H. Hassan, “Current research on Internet of Things (IoT)
security: A survey,” Comput. Networks, vol. 148, pp. 283–294, Jan. 2019.

[3] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A Survey on IoT Security:
Application Areas, Security Threats, and Solution Architectures,” IEEE Access, vol. 7. Institute
of Electrical and Electronics Engineers Inc., pp. 82721–82743, 2019.

[4] Y. Lu and L. Da Xu, “Internet of things (IoT) cybersecurity research: A review of current
research topics,” IEEE Internet Things J., vol. 6, no. 2, pp. 2103–2115, Apr. 2019.

[5] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet
of things: The road ahead,” Computer Networks, vol. 76. Elsevier B.V., pp. 146–164, 15-Jan-
2015.

[6] I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu, and W. Ni, “Anatomy of Threats to the
Internet of Things,” IEEE Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1636–1675, Apr. 2019.

[7] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial Internet of Things:
Challenges, Opportunities, and Directions,” IEEE Trans. Ind. Informatics, vol. 14, no. 11, pp.
4724–4734, Nov. 2018.

[8] P. P. Ray, “A survey on Internet of Things architectures,” Journal of King Saud University -
Computer and Information Sciences, vol. 30, no. 3. King Saud bin Abdulaziz University, pp.
291–319, 01-Jul-2018.

[9] E. L. C. Macedo et al., “On the security aspects of Internet of Things: A systematic literature
review,” Journal of Communications and Networks, vol. 21, no. 5. Korean Institute of
Communication Sciences, pp. 444–457, 01-Oct-2019.

[10] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A survey of intrusion
detection in Internet of Things,” Journal of Network and Computer Applications, vol. 84.
Academic Press, pp. 25–37, 15-Apr-2017.

[11] K. A. P. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and V. H. C. de Albuquerque, “Internet of
Things: A survey on machine learning-based intrusion detection approaches,” Comput.
Networks, vol. 151, pp. 147–157, Mar. 2019.

[12] A. Khraisat and A. Alazab, “A critical review of intrusion detection systems in the internet of
things: techniques, deployment strategy, validation strategy, attacks, public datasets and
challenges,” Cybersecurity, vol. 4, no. 1, pp. 1–27, Dec. 2021.

[13] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki, “Network Intrusion
Detection for IoT Security Based on Learning Techniques,” IEEE Commun. Surv. Tutorials, vol.
21, no. 3, pp. 2671–2701, Jul. 2019.

[14] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “TON_IoT Telemetry Dataset: A
New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems,” IEEE
Access, vol. 8, pp. 165130–165150, Sep. 2020.

[15] T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and F. T. H. den Hartog, “ToN_IoT: The

130

Role of Heterogeneity and the Need for Standardization of Features and Attack Types in IoT
Network Intrusion Datasets,” IEEE Internet Things J., 2021.

[16] “KDD Cup 1999 Data.” [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[17] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99
data set,” in IEEE Symposium on Computational Intelligence for Security and Defense
Applications, CISDA 2009, 2009, pp. 1–6.

[18] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set),” in 2015 Military Communications and
Information Systems Conference, MilCIS 2015, 2015, pp. 1–6.

[19] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating a New Intrusion
Detection Dataset and Intrusion Traffic Characterization,” in ICISSP2018, 2018, pp. 108–116.

[20] S. Suthaharan, M. Alzahrani, S. Rajasegarar, C. Leckie, and M. Palaniswami, “Labelled data
collection for anomaly detection in wireless sensor networks,” in Proceedings of the 2010 6th
International Conference on Intelligent Sensors, Sensor Networks and Information Processing,
ISSNIP 2010, 2010, pp. 269–274.

[21] A. Sivanathan et al., “Classifying IoT Devices in Smart Environments Using Network Traffic
Characteristics,” IEEE Trans. Mob. Comput., vol. 18, no. 8, pp. 1745–1759, Aug. 2019.

[22] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of
realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT
dataset,” Futur. Gener. Comput. Syst., vol. 100, pp. 779–796, Nov. 2019.

[23] A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman, “Detecting Volumetric Attacks
on IoT Devices via SDN-Based Monitoring of MUD Activity,” in SOSR 2019 - Proceedings of the
2019 ACM Symposium on SDN Research, 2019, pp. 36–48.

[24] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things (IoT): Research,
simulators, and testbeds,” IEEE Internet Things J., vol. 5, no. 3, pp. 1637–1647, Jun. 2018.

[25] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor network
simulation with COOJA,” in Proceedings - Conference on Local Computer Networks, LCN, 2006,
pp. 641–648.

[26] I. Essop, J. C. Ribeiro, M. Papaioannou, G. Zachos, G. Mantas, and J. Rodriguez, “Generating
Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks,”
Sensors, vol. 21, no. 4, 2021.

[27] “scikit-learn: machine learning in Python — scikit-learn 1.0.1 documentation.” [Online].
Available: https://scikit-learn.org/stable/. [Accessed: 19-Dec-2021].

[28] ITU-T, “Y.4101 : Common requirements and capabilities of a gateway for Internet of things
applications,” 2017.

[29] ENISA, “Baseline Security Recommendations for IoT — ENISA,” 2017.

[30] W. Stallings and L. Brown, Computer Security: Principles and Practice, 4th ed. Pearson
Education, 2018.

[31] ITU-T, “Recommendation ITU-T Y.2060 ‘Overview of the Internet of Things,’” 2012.

[32] ITU, “The Internet of Things - Executive Summary,” 2005.

131

[33] D. Evans, “The Internet of Things: How the Next Evolution of the Internet Is Changing
Everything,” 2011.

[34] ENISA, “GUIDELINES FOR SECURING THE INTERNET OF THINGS: Secure supply chain for IoT,”
2020.

[35] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things (IoT) security: Current
status, challenges and prospective measures,” in 2015 10th International Conference for
Internet Technology and Secured Transactions, ICITST 2015, 2016, pp. 336–341.

[36] Q. Qi and F. Tao, “A Smart Manufacturing Service System Based on Edge Computing, Fog
Computing, and Cloud Computing,” IEEE Access, vol. 7, pp. 86769–86777, 2019.

[37] U. Satija, B. Ramkumar, and S. M. Manikandan, “Real-Time Signal Quality-Aware ECG
Telemetry System for IoT-Based Health Care Monitoring,” IEEE Internet Things J., vol. 4, no. 3,
pp. 815–823, Jun. 2017.

[38] R. K. Pathinarupothi, P. Durga, and E. S. Rangan, “IoT-based smart edge for global health:
Remote monitoring with severity detection and alerts transmission,” IEEE Internet Things J.,
vol. 6, no. 2, pp. 2449–2462, Apr. 2019.

[39] D. Mocrii, Y. Chen, and P. Musilek, “IoT-based smart homes: A review of system architecture,
software, communications, privacy and security,” Internet of Things (Netherlands), vol. 1–2.
Elsevier B.V., pp. 81–98, 01-Sep-2018.

[40] C. C. Sobin, “A Survey on Architecture, Protocols and Challenges in IoT,” Wireless Personal
Communications, vol. 112, no. 3. Springer, pp. 1383–1429, 01-Jun-2020.

[41] S. Balaji, K. Nathani, and R. Santhakumar, “IoT Technology, Applications and Challenges: A
Contemporary Survey,” Wireless Personal Communications, vol. 108, no. 1. Springer New
York LLC, pp. 363–388, 15-Sep-2019.

[42] W. Kassab and K. A. Darabkh, “A–Z survey of Internet of Things: Architectures, protocols,
applications, recent advances, future directions and recommendations,” J. Netw. Comput.
Appl., vol. 163, p. 102663, Aug. 2020.

[43] A. R. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta, and M. Alikarar, “A smart home energy
management system using IoT and big data analytics approach,” IEEE Trans. Consum.
Electron., vol. 63, no. 4, pp. 426–434, Nov. 2017.

[44] M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and M. L. M. Kiah, “A review of smart home
applications based on Internet of Things,” Journal of Network and Computer Applications, vol.
97. Academic Press, pp. 48–65, 01-Nov-2017.

[45] K. Saravanan, E. G. Julie, and Y. H. Robinson, “Smart cities & IoT: Evolution of applications,
architectures & technologies, present scenarios & future dream,” in Intelligent Systems
Reference Library, vol. 154, Springer Science and Business Media Deutschland GmbH, 2019,
pp. 135–151.

[46] V. Agarwal and S. Sharma, “IoT Based Smart Transport Management System,” in
Communications in Computer and Information Science, 2021, vol. 1394 CCIS, pp. 207–216.

[47] S. Sicari, A. Rizzardi, and A. Coen-Porisini, “Smart transport and logistics: A Node-RED
implementation,” Internet Technol. Lett., vol. 2, no. 2, p. e88, Mar. 2019.

[48] A. Čolaković and M. Hadžialić, “Internet of Things (IoT): A review of enabling technologies,
challenges, and open research issues,” Computer Networks, vol. 144. Elsevier B.V., pp. 17–39,
24-Oct-2018.

132

[49] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “Demystifying IoT
Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-
Scale IoT Exploitations,” IEEE Commun. Surv. Tutorials, vol. 21, no. 3, pp. 2702–2733, 2019.

[50] P. Anand, Y. Singh, A. Selwal, M. Alazab, S. Tanwar, and N. Kumar, “IoT vulnerability
assessment for sustainable computing: Threats, current solutions, and open challenges,” IEEE
Access, vol. 8, pp. 168825–168853, 2020.

[51] X. Liang and Y. Kim, “A Survey on Security Attacks and Solutions in the IoT Network,” in 2021
IEEE 11th Annual Computing and Communication Workshop and Conference, CCWC 2021,
2021, pp. 853–859.

[52] M. A. Ferrag, L. Maglaras, A. Argyriou, D. Kosmanos, and H. Janicke, “Security for 4G and 5G
cellular networks: A survey of existing authentication and privacy-preserving schemes,”
Journal of Network and Computer Applications, vol. 101. Academic Press, pp. 55–82, 01-Jan-
2018.

[53] K. Zhao and L. Ge, “A survey on the internet of things security,” in Proceedings - 9th
International Conference on Computational Intelligence and Security, CIS 2013, 2013, pp.
663–667.

[54] X. Yang et al., “Towards a Low-Cost Remote Memory Attestation for the Smart Grid,” Sensors,
vol. 15, no. 8, pp. 20799–20824, Aug. 2015.

[55] J. Lin, W. Yu, and X. Yang, “Towards Multistep Electricity Prices in Smart Grid Electricity
Markets,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1, pp. 286–302, Jan. 2016.

[56] G. Gomez, F. J. Lopez-Martinez, D. Morales-Jimenez, and M. R. McKay, “On the equivalence
between interference and eavesdropping in wireless communications,” IEEE Trans. Veh.
Technol., vol. 64, no. 12, pp. 5935–5940, Dec. 2015.

[57] N. Zhao, F. R. Yu, M. Li, and V. C. M. Leung, “Anti-eavesdropping schemes for interference
alignment (IA)-based wireless networks,” in IEEE Transactions on Wireless Communications,
2016, vol. 15, no. 8, pp. 5719–5732.

[58] S. Hoffmann and G. Bumiller, “Identification and Simulation of a Denial-of-Sleep Attack on
Open Metering System,” in Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies
Europe, ISGT-Europe 2019, 2019.

[59] J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil attack in sensor networks: analysis &
defenses - IEEE Conference Publication,” in Third International Symposium on Information
Processing in Sensor Networks, 2004. IPSN 2004, 2004.

[60] K. Zhang, X. Liang, R. Lu, and X. Shen, “Sybil attacks and their defenses in the internet of
things,” IEEE Internet Things J., vol. 1, no. 5, pp. 372–383, Oct. 2014.

[61] K. N. Qureshi, S. S. Rana, A. Ahmed, and G. Jeon, “A novel and secure attacks detection
framework for smart cities industrial internet of things,” Sustain. Cities Soc., vol. 61, p.
102343, Oct. 2020.

[62] A. Mayzaud, R. Badonnel, and I. Chrisment, “A Taxonomy of Attacks in RPL-based Internet of
Things,” Int. J. Netw. Secur., vol. 18, no. 3, pp. 459–473, 2016.

[63] I. Butun, P. Osterberg, and H. Song, “Security of the Internet of Things: Vulnerabilities,
Attacks, and Countermeasures,” IEEE Commun. Surv. Tutorials, vol. 22, no. 1, pp. 616–644,
Jan. 2020.

[64] M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A Survey of Internet of Things (IoT)

133

Authentication Schemes,” Sensors, vol. 19, no. 5, p. 1141, Mar. 2019.

[65] M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating critical security issues of the IoT
world: Present and future challenges,” IEEE Internet Things J., vol. 5, no. 4, pp. 2483–2495,
2018.

[66] ITU-T, “Y.2066 : Common requirements of the Internet of things,” 2014.

[67] J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and A. Wahab, “A Review of
Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things:
Challenges, Solutions and Future Directions,” Electronics, vol. 9, no. 7, p. 1177, Jul. 2020.

[68] G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem,” Nucl. Inst.
Methods Phys. Res. A, vol. 362, no. 2–3, pp. 487–498, Aug. 1995.

[69] I. Witten, E. Frank, and M. Hall, Data Mining: Practical Machine Learning Tools and
Techniques. Elsevier, 2011.

[70] S. B. Kotsiantis, “Decision trees: A recent overview,” Artificial Intelligence Review, vol. 39, no.
4. Springer, pp. 261–283, 29-Apr-2013.

[71] G. Zachos, I. Essop, G. Mantas, K. Porfyrakis, J. C. Ribeiro, and J. Rodriguez, “An Anomaly-
Based Intrusion Detection System for Internet of Medical Things Networks,” Electronics, vol.
10, no. 21, p. 2562, Oct. 2021.

[72] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
tools, and techniques to build intelligent systems. O’Reilly Media, Inc., 2019.

[73] L. Guangjun, S. Nazir, H. U. Khan, and A. U. Haq, “Spam Detection Approach for Secure Mobile
Message Communication Using Machine Learning Algorithms,” Secur. Commun. Networks,
vol. 2020, 2020.

[74] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. C. M. Leung, “A survey on security threats and
defensive techniques of machine learning: A data driven view,” IEEE Access, vol. 6. Institute of
Electrical and Electronics Engineers Inc., pp. 12103–12117, 12-Feb-2018.

[75] L. Huraj, T. Horak, P. Strelec, and P. Tanuska, “Mitigation against DDoS Attacks on an IoT-
Based Production Line Using Machine Learning,” Appl. Sci., vol. 11, no. 4, p. 1847, Feb. 2021.

[76] J. S. Pan, F. Fan, S. C. Chu, H. Q. Zhao, and G. Y. Liu, “A Lightweight Intelligent Intrusion
Detection Model for Wireless Sensor Networks,” Secur. Commun. Networks, vol. 2021, 2021.

[77] F. Alam, R. Mehmood, I. Katib, and A. Albeshri, “Analysis of Eight Data Mining Algorithms for
Smarter Internet of Things (IoT),” in Procedia Computer Science, 2016, vol. 58, pp. 437–442.

[78] P. Illy, G. Kaddoum, C. M. Moreira, K. Kaur, and S. Garg, “Securing Fog-to-Things Environment
Using Intrusion Detection System Based On Ensemble Learning,” in IEEE Wireless
Communications and Networking Conference, WCNC, 2019, vol. 2019-April, pp. 1–7.

[79] M. Woźniak, M. Graña, and E. Corchado, “A survey of multiple classifier systems as hybrid
systems,” Inf. Fusion, vol. 16, no. 1, pp. 3–17, Mar. 2014.

[80] P. Domingos, “A few useful things to know about machine learning,” Commun. ACM, vol. 55,
no. 10, pp. 78–87, 2012.

[81] L. E. A. Santana, L. Silva, A. M. P. Canuto, F. Pintro, and K. O. Vale, “A comparative analysis of
genetic algorithm and ant colony optimization to select attributes for an heterogeneous
ensemble of classifiers,” in 2010 IEEE World Congress on Computational Intelligence, WCCI

134

2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010, 2010.

[82] B. A. Tama and S. Lim, “Ensemble learning for intrusion detection systems: A systematic
mapping study and cross-benchmark evaluation,” Computer Science Review, vol. 39. Elsevier
Ireland Ltd, p. 100357, 01-Feb-2021.

[83] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an efficient intrusion detection system
based on feature selection and ensemble classifier,” Comput. Networks, vol. 174, p. 107247,
Jun. 2020.

[84] M. S. Abirami, U. Yash, and S. Singh, “Building an Ensemble Learning Based Algorithm for
Improving Intrusion Detection System,” in Advances in Intelligent Systems and Computing,
2020, vol. 1056, pp. 635–649.

[85] H. H. W. J. Bosman, G. Iacca, A. Tejada, H. J. Wörtche, and A. Liotta, “Ensembles of
incremental learners to detect anomalies in ad hoc sensor networks,” Ad Hoc Networks, vol.
35, pp. 14–36, Dec. 2015.

[86] Z. Jin, J. Shang, Q. Zhu, C. Ling, W. Xie, and B. Qiang, “RFRSF: Employee Turnover Prediction
Based on Random Forests and Survival Analysis,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2020, vol. 12343 LNCS, pp. 503–515.

[87] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning DDoS detection for consumer
internet of things devices,” in Proceedings - 2018 IEEE Symposium on Security and Privacy
Workshops, SPW 2018, 2018, pp. 29–35.

[88] R. E. Schapire, “Explaining adaboost,” in Empirical Inference: Festschrift in Honor of Vladimir
N. Vapnik, Springer Berlin Heidelberg, 2013, pp. 37–52.

[89] A. Shahraki, M. Abbasi, and Ø. Haugen, “Boosting algorithms for network intrusion detection:
A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost,” Eng.
Appl. Artif. Intell., vol. 94, p. 103770, Sep. 2020.

[90] A. Yulianto, P. Sukarno, and N. A. Suwastika, “Improving AdaBoost-based Intrusion Detection
System (IDS) Performance on CIC IDS 2017 Dataset,” in Journal of Physics: Conference Series,
2019, vol. 1192, no. 1, p. 012018.

[91] M. Mazini, B. Shirazi, and I. Mahdavi, “Anomaly network-based intrusion detection system
using a reliable hybrid artificial bee colony and AdaBoost algorithms,” J. King Saud Univ. -
Comput. Inf. Sci., vol. 31, no. 4, pp. 541–553, Oct. 2019.

[92] N. Moustafa, J. Hu, and J. Slay, “A holistic review of Network Anomaly Detection Systems: A
comprehensive survey,” J. Netw. Comput. Appl., vol. 128, pp. 33–55, Feb. 2019.

[93] A. Verma and V. Ranga, “Machine Learning Based Intrusion Detection Systems for IoT
Applications,” Wirel. Pers. Commun., vol. 111, no. 4, pp. 2287–2310, Apr. 2020.

[94] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly detection: Methods,
systems and tools,” IEEE Commun. Surv. Tutorials, vol. 16, no. 1, pp. 303–336, Mar. 2014.

[95] G. Zachos, I. Essop, G. Mantas, K. Porfyrakis, J. C. Ribeiro, and J. Rodriguez, “Generating IoT
Edge Network Datasets based on the TON_IoT Telemetry Dataset,” in 2021 IEEE 26th
International Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), 2021, pp. 1–6.

[96] “Node-RED.” [Online]. Available: https://nodered.org/. [Accessed: 10-Dec-2021].

135

[97] “ToN_IoT datasets | IEEE DataPort.” [Online]. Available: https://ieee-
dataport.org/documents/toniot-datasets. [Accessed: 10-Dec-2021].

[98] “What is VMware NSX? | Network Security Virtualization Platform.” [Online]. Available:
https://www.vmware.com/products/nsx.html. [Accessed: 10-Dec-2021].

[99] I. Stojmenovic and S. Wen, “The Fog computing paradigm: Scenarios and security issues,” in
2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014,
2014, pp. 1–8.

[100] “Kali Linux | Penetration Testing and Ethical Hacking Linux Distribution.” [Online]. Available:
https://www.kali.org/. [Accessed: 10-Dec-2021].

[101] “HiveMQ - Enterprise ready MQTT to move your IoT data.” [Online]. Available:
https://www.hivemq.com/. [Accessed: 10-Dec-2021].

[102] “Home of Acunetix Art.” [Online]. Available: http://testphp.vulnweb.com/. [Accessed: 10-
Dec-2021].

[103] “IoT Hub | Microsoft Azure.” [Online]. Available: https://azure.microsoft.com/en-
au/services/iot-hub/. [Accessed: 10-Dec-2021].

[104] “Serverless Computing - AWS Lambda - Amazon Web Services.” [Online]. Available:
https://aws.amazon.com/lambda/. [Accessed: 10-Dec-2021].

[105] Moteiv Corporation, “tmote sky - Ultra low power IEEE 802.15.4 compliant wireless sensor
module,” 2006. [Online]. Available: http://www.crew-project.eu/sites/default/files/tmote-
sky-datasheet.pdf [Accessed: 10-Dec-2021].

[106] “Wireshark · Go Deep.” [Online]. Available: https://www.wireshark.org/. [Accessed: 28-Nov-
2020].

[107] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace: Network-level Power Profiling
for Low-power Wireless Networks,” Kista, Sweden, 2011.

[108] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput. Electr.
Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014.

[109] M. Amirinasab Nasab, S. Shamshirband, A. Chronopoulos, A. Mosavi, and N. Nabipour,
“Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in
Internet of Things,” Electronics, vol. 9, no. 2, pp. 2–19, Feb. 2020.

[110] A. Bandekar and A. Y. Javaid, “Cyber-attack Mitigation and Impact Analysis for Low-power IoT
Devices,” in 2017 IEEE 7th Annual International Conference on CYBER Technology in
Automation, Control, and Intelligent Systems, CYBER 2017, 2018, pp. 1631–1636.

136

Full List of Publications

International Peer Reviewed Journal papers (4)

1. Zachos, Georgios, Essop, Ismael, Mantas, Georgios, Porfyrakis, Kyriakos, Ribeiro, Jose,

Rodriguez, Jonathan (2021), An anomaly-based intrusion detection system for internet of

medical things networks. Electronics, 10: 2562 (21) 2079-9292 (Online) (doi:

https://doi.org/10.3390/electronics10212562).

2. Essop, Ismael, Ribeiro, José C., Papaioannou, Maria, Zachos, Georgios, Mantas, Georgios,

Rodriguez, Jonathan (2021), Generating datasets for anomaly-based intrusion detection

systems in IoT and industrial IoT networks. Sensors, 21: 1528 (4) 1424-8220 (Online) (doi:

https://doi.org/10.3390/s21041528).

3. Papaioannou, Maria, Karageorgou, Marine, Mantas, Georgios, Sucasas, Victor, Essop, Ismael,

Rodriguez, Jonathan, Lymberopoulos, Dimitrios (2020), A Survey on security threats and

countermeasures in Internet of Medical Things (IoMT). Transactions on Emerging

Telecommunications Technologies: e4049 ISSN: 2161-3915 (Print), (doi:

https://doi.org/10.1002/ett.4049).

4. Essop, Ismael A. , Evans, Richard D., Wan, Shan, Giddaluru, Muni P. , Gao, James X. , Baudry,

David , Mahdikhah, Sara , Messaadia, Mourad (2016), Investigation into current industrial

practices relating to product lifecycle management in a multi-national manufacturing

company. Computer-Aided Design and Applications, 13 (5) pp. 647-661 1686-4360 (Online)

(doi: http://dx.doi.org/10.1080/16864360.2016.1150711).

International Peer Reviewed Book Chapters (1)

1. Karageorgou, Marina, Mantas, Georgios, Essop, Ismael, Rodriguez, J , Lymberopoulos, D

(2020), Cybersecurity Attacks on Medical IoT Devices for Smart City Healthcare Services. In:

Fadi AI-Turjman, Muhammad Imran (eds.), IOT Technologies in Smart-Cities: From Sensors to

Big Data, Security and Trus. Institution of Engineering & Technology, pp. 171-187. ISBN:

9781785618697 (doi: https://doi.org/10.1049/PBCE128E).

International Peer Reviewed Conference papers (3)

1. Zachos, Georgios, Essop, Ismael, Mantas, Georgios, Kyriakos, Porfyrakis , Jose, Ribeiro ,

Jonathan, Rodriguez (2021), Generating IoT Edge Network Datasets based on the TON_IoT

telemetry dataset. (1st) . pp. 1-6 . ISBN: 9781665417792ISSN: 2378-4865 (Print), 2378-4873

(Online) (doi: https://doi.org/10.1109/CAMAD52502.2021.9617799).

2. Essop, Ismael A. , Evans, Richard D., Giddalaru, Muni P., Gao, James X. , Wan, Shan , Baudry,

David , Mahdikhah, Sara , Messaadia, Mourad (2015), Investigation into current industrial

practices relating to product lifecycle management in a multi-national manufacturing

company. . pp. 437-442 (doi: http://dx.doi.org/10.14733/cadconfP.2015.437-442).

http://gala.gre.ac.uk/id/eprint/34265
http://gala.gre.ac.uk/id/eprint/34265
https://doi.org/10.3390/electronics10212562
http://gala.gre.ac.uk/id/eprint/31390
http://gala.gre.ac.uk/id/eprint/31390
https://doi.org/10.3390/s21041528
http://gala.gre.ac.uk/id/eprint/31645
http://gala.gre.ac.uk/id/eprint/31645
https://doi.org/10.1002/ett.4049
http://gala.gre.ac.uk/id/eprint/26517
https://doi.org/10.1049/PBCE128E
http://gala.gre.ac.uk/id/eprint/34598
http://gala.gre.ac.uk/id/eprint/34598
https://doi.org/10.1109/CAMAD52502.2021.9617799
http://gala.gre.ac.uk/id/eprint/13633
http://gala.gre.ac.uk/id/eprint/13633
http://gala.gre.ac.uk/id/eprint/13633
http://dx.doi.org/10.14733/cadconfP.2015.437-442

137

3. Essop, Ismael and Gao, Xiaoyu (2015) Opportunities and challenges in using Big Data for

product maintenance in the power generation industry. In: Proceedings of the International

Conference on Manufacturing Research. ICMR 2015, 13th International Conference on

Manufacturing Research. ISBN 1857901878.

138

Appendix 1
A1.1 Datasets for Benign Motes

A1.1.1- Benign “mote1.csv”
The generated benign “mote1.csv” file, related to the UDP-server mote1, consists of 1,799

records and its first 25 records (i.e., 1–25) are depicted in Figure A1.

Figure A1 Benign “mote1.csv”—1 to 25 records.

A1.1.2 Benign “mote3.csv”
The generated benign “mote3.csv” file, related to the UDP-client mote3, consists of 1,799

records and its first 25 records (i.e., 1–25) are depicted in Figure .

Figure A2 Benign “mote3.csv”—1 to 25 records.

139

A1.2 - Datasets for UDP Flood Attacks

A1.2.1 - “udp-flood-mote1.csv”
The generated “udp-flood-mote1.csv” file, related to the benign UDP-server mote1, consists of 1,799

records and its first 25 records (i.e., 1–25) are depicted below in Error! Reference source not found..

Figure A3 Malicious “udp-flood-mote1.csv” — 1 to 25 records.

A1.2.2 - “udp-flood-mote2.csv”
The generated “udp-flood-mote2.csv” file, related to the benign UDP-client mote2, consists of 1,799

records and its first 25 records (i.e., 1–25) are depicted below in Figure .

Figure A4 Malicious “udp-flood-mote2.csv” — 1 to 25 records.

140

A1.2.3 - “udp-flood-mote6.csv”
The generated “udp-flood-mote6.csv” file, related to the malicious UDP-client mote6, consists of

1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure .

Figure A5 Malicious “udp-flood-mote6.csv” — 1 to 25 records.

A1.3 - Datasets for Blackhole Attacks

A1.3.1 - “blackhole-mote1.csv”
The generated malicious “blackhole-mote1.csv” file, related to the benign UDP-server mote1,

consists of 1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure .

Figure A6 Malicious “blackhole-mote1.csv”—1 to 25 records.

141

A1.3.2 - “blackhole-mote4.csv”
The generated malicious “blackhole-mote4.csv” file, related to the benign UDP-client mote4,

consists of 1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure .

Figure A7 Malicious “blackhole-mote4.csv”—1 to 25 records.

A1.3.3 - “blackhole-mote10.csv”
The generated “blackhole-mote10.csv” file, related to the malicious UDP-client mote10, consists of

1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure .

Figure A8 Malicious “blackhole-mote10.csv”—1 to 25 records.

142

A1.4 - Datasets for Sinkhole Attacks

 A1.4.1 - “sinkhole-mote1.csv”
The generated “sinkhole-mote1.csv” file, related to the benign UDP-server mote1, consists of 1,799

records and its first 25 records (i.e., 1–25) are depicted in Figure .

Figure A9 Malicious “sinkhole-mote1.csv”—1 to 25 records.

 A1.4.2 - “sinkhole-mote5.csv”
The generated “sinkhole-mote5.csv” file, related to the benign UDP-client mote5, consists of 1,799

records and its first 25 records (i.e., 1–25) are depicted in Figure .

Figure A10 Malicious “sinkhole-mote5.csv”—1 to 25 records.

143

 A1.4.3 - “sinkhole-mote10.csv”
The generated “sinkkhole-mote10.csv” file, related to the malicious UDP-server mote10, consists of

1,199 records and its first 25 records (i.e., 1–25) are depicted in Figure .

Figure A11 Malicious “sinkhole-mote10.csv”—1 to 25 records.

A1.5 - Datasets for Sleep Deprivation Attacks

 A1.5.1 - “sleep_depr-mote1.csv”
The generated “sleep_depr-mote1.csv” file, related to the benign UDP-server mote1, consists of

1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure .

Figure A12 Malicious “sleep_depr-mote1.csv”—1 to 25 records.

144

A1.5.2 - “sleep_depr-mote6.csv”
The generated “sleep_depr-mote6.csv” file, related to the benign UDP-client mote6, consists of

1,799 records and its first 25 records (i.e., 1–25) are depicted below in Figure .

Figure A13 Malicious “sleep_depr-mote6.csv”—1 to 25 records.

 A1.5.3 - “sleep_depr-mote10.csv”
The generated “sleep_depr-mote10.csv” file, related to the malicious UDP-client mote10, consists of

1,049 records and its first 25 records (i.e., 1–25) are depicted below in Figure .

Figure A14 Malicious “sleep_depr-mote10.csv”—1 to 25 records.

