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After the widespread prevalence of COVID-19 at the end of 2022
in Mainland China, a major concern is when will the second
major outbreak occur and with what prevalence and fatality
rates will it be associated with, as peoples’ immunity from
natural infection subsides. To address this, we established an
age-structured model considering vaccine and infection-derived
immunity, fitted an immunity-waning curve, and calibrated the
model using the epidemic and vaccination data from Hong
Kong in 2022. The model and the situation of the first major
epidemic in Mainland China were then used to predict the
prevalence rate, fatality rate and peak time of the second wave.
In addition, the controlling effects of different vaccination
strategies on the second major outbreak are discussed. Finally, a
characterization indicator for the level of population immunity
was provided. We conclude that if the prevalence of the first
major epidemic was 80%, the prevalence rate of the second
major outbreak would be about 37.64%, and the peak time
would have been July 2 2023. Strengthening vaccination can
effectively delay the peak of the second wave of the epidemic
and reduce the prevalence.
1. Introduction
So far, the global pandemic caused by the COVID-19 virus has lasted
for more than three years. Although infections with COVID-19 have
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engendered an unprecedented burden on the global health system and caused major public health problems,
effective methods have not been found to curb the spread of the epidemic. Due to the lack of effective
vaccines, in the early stages of the COVID-19 pandemic, most countries could only apply non-
pharmaceutical interventions (NPIs) to slow the spread of the virus. Such measures included wearing
masks, maintaining social distance, restricting people’s movements, closing public places or schools and
tracking and isolating confirmed cases [1,2]. Although these measures seem to be effective in the short
term, the implementation of these NPIs has not fundamentally curbed the spread of the virus. Once
control is relaxed or cancelled, a new wave of infections is inevitable [3,4]. The rapid spread and severe
outcomes of COVID-19 infections instigated an unprecedented pace of vaccine research and development.

Many past epidemics, such as those attributable to measles and smallpox (both caused by viruses),
cholera (caused by a vibrio), and tuberculosis (caused by bacteria), have been limited by vaccinations,
confirming that improving the immunity level of the population is an effective way to curb the spread
of such infective agents. This is not the case for malaria, caused by protozoa, for which an effective
vaccination is awaited. In view of the history of successful vaccination campaigns, research and
development on COVID-19 vaccines have become particularly important [5]. Vaccines authorized and
approved by the World Health Organization have been proved to have highly protective effects on
COVID-19 for short periods, especially in the prevention of severe disease and death [6]. However,
many studies have provided evidence supporting the conclusion that the vaccine’s protection against
infection will be weakened due to the decline of immunity after vaccination, which increases the
uncertainty after vaccination [7–12]. In addition, because of the rapid variation of strains, the
effectiveness of existing vaccines against mutant strains will be significantly reduced [13,14]. In
particular, the current (2023) vaccine will have lower protection against infection with the Delta virus
which appeared in 2021 and against the Omicron virus that arose in 2022 [15]. Taking the Omicron
variant as an example, if two doses of vaccine are inoculated, the protection against infection will
reach a peak efficacy of about 65% within 2–4 weeks, but its effectiveness will then decline
exponentially with an effectiveness after 25 weeks of only 8.8% [16,17]. At the same time, studies have
shown that even after vaccination with a booster vaccine, there is a phenomenon of immune waning
in the protection against infection. Within 2–4 weeks of vaccination, the peak effectiveness of the
booster vaccine reaches 67.2%, and then at about 10 weeks after vaccination, its effectiveness will
decrease to 45.7% [16,17]. This immune-waning effect has been confirmed in many countries [18].

Due to the significant impact of non-pharmaceutical intervention measures on the social economy and
people’s lives, and with the continuous mutations of the virus, leading to higher infectivity rates but
decreased pathogenicity, many countries have gradually relaxed NPIs [19]. However, because of
breakthrough infections caused by virus mutations, the immunity caused by vaccines and natural
infections will gradually wane, once the NPIs are relaxed, there will still be new multi-wave outbreaks
[20,21]. However, in order to protect people’s lives and health, China has, until recently, always
maintained very strict NPIs. Since the initial outbreak in Wuhan, no large-scale epidemic had occurred on
the Chinese Mainland before November 2022. Since November 2022, the vaccination coverage rate there is
high and severe disease and fatality rates have been low, so the Comprehensive Group of the Joint
Prevention and Control Mechanism of the State Council issued 20 measures and 10 new measures to
further optimize the prevention and control of the epidemic on 11 November and 7 December, 2022,
respectively (http://www.nhc.gov.cn). A notice on the implementation of the ‘B Class B Control’ overall
plan for COVID-19 infections was issued on 27 December, 2022 (http://www.nhc.gov.cn). Due to strong
control measures that have protected the vast majority of people from infection in the past three years,
and because the protective effect of vaccination against infection has faded, a large-scale infection is
inevitable after the above policy adjustments. According to the statistics of the COVID-19 nationwide
infection epidemic situation in December 2022 published by the China Center for Disease Control and
Prevention (CDC), both the number of positive COVID-19 cases and the positive rate from nucleic acid
tests among the reporting population in each province showed a trend of first increasing and then
decreasing since 9 December 2022. The positive number reached its peak (6.94 million) on 22 December
and then gradually decreased, and it fell to 15 000 on 23 January, 2023. Since then, China’s COVID-19
infection rate has been at a very low level because of the high population immunity level caused by large-
scale infection. However, due to the immunity waning making the prospect of achieving herd immunity
difficult, bringing more uncertainty to the prevention and control of the potential new round of outbreaks
of COVID-19, urgent questions that need to be addressed are when and at what scale will the next series
of epidemic waves arrive, and how best to adopt vaccination strategies to effectively control these infections?

To address these questions, we first developed a mathematical model describing the immunity waning
and the transmission mechanisms of COVID-19 by incorporating the vaccination age, by which we mean

http://www.nhc.gov.cn
http://www.nhc.gov.cn
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Figure 1. The model diagram.
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the time since vaccination events. As Hong Kong also adjusted its prevention and control policies in 2022
and experienced multiple waves of infection, we used the epidemic data of Hong Kong in 2022 for model
fitting to determine some key parameters and then predict the next wave of COVID-19 in China. Next, we
explored the impact of immunity waning on the transmission trends and how to design an effective
vaccination programme to maximize the herd immunity to suppress and delay the next major outbreak.

2. Methods
2.1. Model
In this paper, based on the transmission and vaccination process of COVID-19, and according to
references [22–24], we established an age-structured infectious disease compartment model
incorporating immunity waning and vaccination boosting. In the established model, susceptible
individuals are divided into a non-vaccinated population (S), a basic immunized population (V1), and
people receiving enhanced immunization (or natural infection) (V2), according to different vaccination
statuses. In order to characterize the impact of different vaccination states on the severity rate, we
divided the incubation compartment into three categories, the exposed population without having
had any vaccination (E1), the exposed population who had received a basic vaccination (E2) and the
exposed population who had received a basic vaccination and a booster vaccination (E3), respectively.
According to the severity of infection, the infected individuals are divided into patients with mild
symptoms (I1) and patients with severe symptoms (I2). R represents the population that will not be
infected in the short term after recovery. The model diagram is shown in figure 1 and the equations
are as follows:

dS
dt

¼ �p1(t)S(t)� b1S(t)I1(t)
N

� b2S(t)I2(t)
N

@V1(t,a)
@t

þ @V1(t,a)
@a

¼ �p2(a)V1(t,a)� b3(a)V1(t,a)I1(t)
N

� b4(a)V1(t,a)I2(t)
N

@V2(t,a)
@t

þ @V2(t,a)
@a

¼ �b5(a)V2(t,a)I1(t)
N

� b6(a)V2(t,a)I2(t)
N

dE1(t)
dt

¼ b1S(t)I1(t)
N

þ b2S(t)I2(t)
N

� kE1(t)

dE2(t)
dt

¼ I1(t)
Ð1
0 b3(a)V1(t,a)da

N
þ I2(t)

Ð1
0 b4(a)V1(t,a)da

N
� kE2(t)

dE3(t)
dt

¼ I1(t)
Ð1
0 b5(a)V2(t,a)da

N
þ I2(t)

Ð1
0 b6(a)V2(t,a)da

N
� kE3(t)

dI1(t)
dt

¼ (1� r1)kE1(t)þ (1� r2)kE2(t)þ (1� r3)kE3(t)� g1I1(t)

dI2(t)
dt

¼ r1kE1(t)þ r2kE2(t)þ r3kE3(t)� g2I2(t)� mI2(t)

dR(t)
dt

¼ g1I1(t)þ g2I2(t)� wR(t)

V1(t,0) ¼ p1(t)S(t)

V2(t,0) ¼ Ð1
0
p2(a)V1(t,a)daþ wR(t)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2:1Þ



Table 1. Definitions and values of parameters and variables. Figures in square brackets are confidence intervals.

parameters description value reference

β1 the transmission rate between S and I1 0.6913[0.4294–0.8162] estimation

β2 the transmission rate between S andI2 0.9947[0.8501–1.1783] estimation

ρ1 severity rate without vaccination 0.3271[0.2719–0.4427] estimation

ρ2 severity rate with basic vaccination 0.0913[0.0763–0.1416] estimation

ρ3 severity rate with enhanced vaccination 0.0572[0.0307–0.0691] estimation

γ1 recovery rate of I1 0.3481[0.1628–0.5074] estimation

γ2 recovery rate ofI2 0.1108[0.0627–0.2413] estimation

μ disease induced death rate 0.0315[0.0094–0.0517] estimation

w transition rate from R to S 0.0307[0.0082–0.0384] estimation

k transition rate of exposed to infected individuals

individualsinfected class

1/3 [25]

variables description initial value reference

S the susceptible population 4.082 × 106 [4 019 819−
4 116 700]

estimation

V1 the basic immunized population 2.254 × 106 data

V2 the booster immunized population 1.036 × 106 data

E1 the exposed population without vaccination 1.884 × 104 [18 331− 39

720]

estimation

E2 the exposed population with basic vaccination 734[497− 1814] estimation

E3 the exposed population with booster vaccination 305[196− 865] estimation

I1 the infected people with mild symptoms 648[422–1640] estimation

I2 the infected people with severe symptoms 163[73–362] estimation

R the recovered population 2.01 × 103[603–3016] estimation
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β1 (or β2) represents the transmission rate between I1 (or I2) and S. β3(a) (or β4(a)) represents the
transmission rate between I1 (or I2) and V1(t, a). β5(a) (or β6(a)) represents the transmission rate
between I1 (or I2) and V2(t, a). According to previous studies, the vaccination effectiveness against
infection will reach its peak within 2–4 weeks, and then decline exponentially with the passage of
vaccination time [16,17], so we assume that the effectiveness of vaccination (δi, i = 1, 2) against
infection varies as the age of vaccination increases and β3(a) = β1(1− δ1(a)), β4(a) = β2(1− δ1(a)), β5(a) =
β1(1− δ2(a)), β6(a) = β2(1− δ2(a)). p1(t) is the vaccination rate for the basic vaccination at time t, and
p2(a) is the enhanced vaccination rate for individuals with basic vaccination age a. 1/k is the
incubation period. γ1 and γ2 represent the recovery rates for I1 and I2. Here, we assume that an
infected person will enter the recovered compartment (R) after recovery, and then enter V2 at a rate δ
due to the loss of immunity. Parameter definitions are shown in table 1.

It is worth noting that according to the monthly proportion of virus strains in Hong Kong and
Mainland China from January to November 2022 collected from the website of ‘Our World in Data’
(as shown in electronic supplementary material, figure S3), it can be found that the main strains
circulating during this period were Omicron BA.2 and BA.5, with an average proportion of more than
89% for Omicron compared to other strains. Therefore, we neglected the evolution of toxicity
differences between strains of the virus.
2.2. Data
The epidemiological data and vaccination data of COVID-19 in Hong Kong were collected from the
official website of the Government of the Hong Kong Special Administrative Region (https://www.
coronavirus.gov.hk/chi/5th-wave-statistics.html) and Our World In Data (https://ourworldindata.

https://www.coronavirus.gov.hk/chi/5th-wave-statistics.html
https://www.coronavirus.gov.hk/chi/5th-wave-statistics.html
https://ourworldindata.org/covid-vaccinations
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Figure 2. Results of model fitting. (a) The vaccine effectiveness versus the age of vaccination. (b) The vaccination rates p1(t) and
p2(a). (c,d) The distribution of the population that has received basic vaccines and booster vaccines with vaccination age a at the
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org/covid-vaccinations), from February 2022 to November 2022. The epidemiological data include the
daily number of newly confirmed cases, the number of currently hospitalized cases, and the daily
number of new deaths, as shown in figure 2e–g. The vaccination data include the number of people
who received basic and enhanced vaccinations per day, as shown in figure 2c,d. Besides, we also
collected the relevant data on the national epidemic situation of COVID-19 infection released by the
Chinese CDC on 25 January 2023 (https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/), including the
numbers of positive nucleic acid tests, the positive nucleic acid tests rate, the numbers of positive
antigen tests and the positive antigen tests rate from 9 December 2022 to 23 January 2023, and the
data on COVID-19 infected and hospitalized persons, COVID-19 positive severe patients and COVID-
19 induced deaths during the period from 9 December 2022 to 23 January 2023. In addition, data on
COVID-19 vaccinations in the national COVID-19 infection epidemic situation released by the Chinese
CDC on 4 March 2023 were collected, including the cumulative number of monthly vaccinations

https://ourworldindata.org/covid-vaccinations
https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/
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against COVID-19 from December 2022 to February 2023, and the monthly coverage of the whole
population’s basic immunization process from December 2022 to February 2023.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230655
2.3. Model calibration and parameter estimation
Multi-source data were used to calibrate the model by employing a genetic algorithm and the least-
squares method. The time series data that we used included the daily number of newly confirmed
cases, the number of currently hospitalized cases, the daily number of new deaths and the number of
people who received basic and enhanced vaccinations per day during February 2022 to November 2022.

To calibrate the model, we firstly provide information on initial values of the variables and some
parameter values by analysing the data and reviewing literature and the database, as listed in table 1.
Based on the fact that there were no large-scale outbreaks in Hong Kong before 2022, and the
epidemic began to rise in February 2022, we chose 2 February 2022 as the starting date of the model
fitting. Considering that the booster vaccination will be administered 6 months after the basic
vaccination, we push forward 6 months from the initial time, and find that the basic vaccination data
increased exponentially with the vaccination time (figure 2c). So, we use an exponential function to fit
the basic vaccination data to obtain the initial function of V1. In addition, it is found from the data
that when the initial time is pushed forward for 6 months, the data on booster vaccinations are
already very low. From the data, there is an exponentially decreasing relationship between booster
vaccinations and the vaccination time (figure 2d ). Therefore, an exponential function is also used to fit
the booster vaccination data six months before the initial time to obtain the initial function of V2. The
functions are as follows:

V1(0,a) ¼ w1ez1a þ w2ez2a, V2(0,a) ¼ w3ez3a,

where wi and zi, i = 1, 2, 3 are parameters to be estimated. The total population of Hong Kong is assumed
to be 7 397 400 (https://www.coronavirus.gov.hk/chi/5th-wave-statistics.html) and other initial values
are estimated.

Note that according to references [16,17], the effectiveness of vaccinations against infection with the
Omicron variant (B.1.1.529) after receiving the basic vaccine injection reaches the maximum,
approximately 65.5%, 2–4 weeks after vaccination, and then decreases with exponential trends to 8.8%
by the 25th week. The protection efficiency of avoiding infection against the Omicron variant
(B.1.1.529) by receiving the booster injection reaches a maximum, approximately 67.2%, 2–4 weeks
after vaccination, and then decreases with exponential trends to 45.7% after 10 weeks. Thus, it is
reasonable to assume that the vaccine’s effectiveness peaks (δi, i = 1,2) within three weeks of being
given, and then decreases exponentially as the age of vaccination (i.e. the time since the vaccination)
increases,

di(a) ¼ hi, a , ai
hie

�ri(a�ai), a � ai

�

where a is the vaccination age, ηi is the peak efficiency, ri represents the decay rate of the vaccine efficiency
and ai is the time when the peak efficiency is reached and obviously ai = 21. Thus, the vaccination age-
varying effectiveness δi(a) of the basic vaccination and enhanced vaccination against infection could be
given by estimating the values of ηi and ri easily.

Furthermore, according to the data trend of the basic vaccinations, we assume that the time-varying
vaccination rates p1(t) are describable with an exponential function as follows,

p1(t) ¼ m1en1t:

Besides, we assume that the vaccination rate p2(a) of receiving booster shots is related to the age at
which the basic injection is administered. We assume that the booster injection is not administered
within 6 months of receiving the basic injection and that it follows a gamma distribution after 6
months. Therefore, p2(a) were assumed to be

p2(a) ¼
0 a � 180

ba

G(a)
aa�1e�ab a . 180

8<
: :

Here, m1, n1, α and β are parameters to be estimated.

https://www.coronavirus.gov.hk/chi/5th-wave-statistics.html
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2.4. Initial values for prediction
According to the nationwide statistics of the COVID-19 infection epidemic situation in December
(https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/), since 9 December 2022, the positive number
and positive rate of COVID-19 nucleic acid tests among the reporting population in each province
showed a trend of first increasing and then decreasing. The positive number reached its peak on 22
December and then gradually decreased, and it fell to 15 000 on 23 January 2023. According to the
data of COVID-19 antigen detection results of the national reporting population, the number of
positive antigen detections and the positive rate rose rapidly from 9 December, 2022, peaked on 22
December, then fluctuated and declined, and fell to its lowest on 23 January 2023 (https://www.
chinacdc.cn/jkzt/crb/zl/szkb_11803/). Based on the above facts, the last epidemic wave in China
reached its peak on December 22 2022, and basically ended on 23 January 2023 (https://www.
chinacdc.cn/jkzt/crb/zl/szkb_11803/). Assuming that (a) the immunization obtained by natural
infection is the same as that obtained by enhanced vaccine immunization, that (b) the total infection
rate is either 70%, 80% or 90%, and (c) that the curve of daily new cases is a symmetric curve with a
single peak, we use the normal distribution density function to fit the peak time and total infection
rate to obtain the initial value function of V2 (see electronic supplementary material, appendix). Here,
we assume that the total population in Mainland China (N ) is 1.43 × 109. So, the total population
infected in the first wave was pIN , when assuming the prevalence rate to be pI.

According to the CDC’s statistics on vaccination data, the coverage rate of basic vaccination by the
end of November 2022 was 90.3%, and as of 2 March 2023, the coverage rate of basic vaccination was
90.6%. Assuming that the cumulative number of vaccinations per day remained the same from
December 2022 to February 2023, the initial value of V1 can be obtained. Besides, according to the
data reported by the China CDC, the number of COVID-19 infected persons was 248 000 on 23
January, 2023, of which 36 000 were severe cases, namely, the initial value I1(0) is 212 000, and the
initial value I2(0) is 36 000. Moreover, according to the recovery rate estimated by model fitting, the
initial value R(0) is assumed to be 74 200. Therefore, the initial number of susceptible and exposed
people is (1− pI)N− I1(0)− I2(0)−R(0). Further, according to the recovery rate and death rate of I1 and
I2, we can get the average durations in the compartments of I1 and I2, respectively. So, the average
number of new cases per day can be calculated to be I1(0)/γ1 and I2(0)/(γ2 + μ). Assuming that the
number of new cases per day remains the same during a very short period, then

k[E1(0)þ E2(0)þ E3(0)] ¼ I1(0)
g1

þ I2(0)
(g2 þ m)

:

Thus, E1(0) + E2(0) + E3(0) = (I1(0)/γ1 + I2(0)/(γ2 + μ))/k.
Then, the initial number of the susceptible compartment can be calculated from

S(0) ¼ (1� pI)N � I1(0)� I2(0)� R(0)� E1(0)� E2(0)� E3(0):

Due to the removal rates of E1, E2 and E3 being the same as the proportions of people in the
compartments E1, E2 and E3 at time t, and these are the same as the proportions of people entering
the three compartments per unit time,

E1(0):E2(0):E3(0) ¼ [b1I1(0)þ b2I2(0)]S(0)
N

:
[b1I1(0)þ b2I2(0)]

Ð1
0 (1� d1(a))V1(0,a)da
N

:
[b1I1(0)þ b2I2(0)]

Ð1
0 (1� d2(a))V2(0,a)da
N

¼ S(0):
ð1

0

(1� d1(a))V1(0,a)da:
ð1

0

(1� d2(a))V2(0,a)da

Thus, the initial values of the model can be given (as shown in electronic supplementary material,
table S1).

https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/
https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/
https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/
https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/
https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/


Table 2. Predicted results without vaccination

prevalence rate in the
first wave 70% 80% 90%

mild prevalence rate 39.81% [37.72%–

43.09%]

36.36% [34.91%–

42.43%]

31.59% [30.54%–

37.22%]

severe prevalence rate 1.39% [1.37%–2.24%] 1.27% [1.14%–2.05%] 1.06% [1.02%–1.77%]

overall prevalence rate 41.20% [39.09%–

45.33%]

37.63% [36.05%–

44.48%]

32.65% [31.56%–

38.99%]

fatality rate 0.21% [0.209%–0.346%] 0.19% [0.183%–0.271%] 0.16% [0.148%–0.293%]

mild peak 8.08 × 106 [7 490 000–8

941 000]

6.67 × 106 [4 940 000–6

841 000]

5.04 × 106 [5 017 296–5

750 239]

peak severity 3.06 × 105 [302 598–401

980]

2.39 × 105 [225 352–351

226]

1.78 × 105 [142 106–264

034]

peak total number of

infections

8.39 × 106 [7 792 598–9

342 980]

6.91 × 106 [5 165 352–7

192 226]

5.22 × 106 [5 159 402–6

014 274]

peak number of deaths 4.32 × 104 [41 986–53

310]

3.51 × 104 [32 964–48

890]

2.53 × 104 [23 481–39

015]

peak time 09/06/2023 [17/05/2023–

22/06/2023]

02/07/2023 [03/06/2023–

16/07/2023]

15/08/2023 [19/07/2023–

26/08/2023]
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3. Results
3.1. Fitting results
The vaccination age-varying effectiveness functions (δi(a), i = 1, 2) of the basic vaccination and enhanced
vaccination against infection, obtained by fitting these two variables against the age of vaccination, are
shown in figure 2a. The effectiveness of the basic vaccination lasts about 200 days, and the effectiveness
of the enhanced vaccination decays a little slower than that of the basic vaccination and lasts longer.
Figure 2b shows the time-varying vaccination rates p1(t) and the age-dependent vaccination probability
p2(a). It follows from this figure that the peak of p2(a) is around 190 days after the basic injection.

The fitting results of the model to the epidemic and vaccination data are given in figure 2, in which
the red circles represent the true data and the black curves represent the fitted results. The estimated
values of unknown parameters are listed in table 1. It follows from the following figures that the
fitted curves capture the data information well. The estimation results show that the probability of
developing severe symptoms without vaccination or with basic vaccination, with booster vaccination
are ρ1 = 0.3271⍰ ρ2 = 0.0913, ρ3 = 0.0572, respectively, revealing the effectiveness of vaccines against
severe symptoms. Specifically, basic vaccination can reduce the severity rate by 72.09%, while
enhanced vaccination can reduce the severity rate by 82.51%.
3.2. Prediction of the next major outbreak in Mainland China
Based on the epidemic data (including epidemiological data and vaccination data) of Hong Kong, from
March to December 2022, the parameters obtained from the model fitting were used to predict the
epidemic trend of the COVID-19 infection in Mainland China after the implementation of ‘B class B
control’. Based on the settings of the parameters and initial values shown in the methods section, we
predict the COVID-19 transmission trends during the 800 days after 23 January 2023, by focusing on the
daily number of new infections with mild symptoms, the daily number of new infections with severe
symptoms and the daily number of new deaths. Here, we do not consider the vaccination dynamics, i.e.
p1 = 0 and p2 = 0. In the following, unless otherwise stated, the starting date is 23 January 2023, and the
simulation period is 800 days. Here, the prevalence of the first wave is assumed to be either 70%, 80%
or 90%. The predicted results for these three scenarios are shown in table 2 and figure 3a–c.
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Figure 3. The predicted outcomes when the prevalence of the first wave is 70%, 80% and 90% are shown in (a), (b) and (c),
respectively. The predicted results of vaccination started in mid-March, mid-April and mid-May are shown in (d ), (e) and ( f ),
respectively (assuming the prevalence of the first wave is 80%). The solid red curves represent the number of new mild cases
per day, the solid blue curves represent the total number of new cases per day, the dotted green curves represent the number
of new severe cases per day, and the dotted pink curves represent the number of new deaths per day. The solid curves
correspond to the left axis, the dotted curves correspond to the right axis.
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It follows from figure 3a–c that the infection peak of the next outbreak wave would occur on about 9
June, 2 July and 15 August 2023 depending on the initial prevalence, and the total infection rate of the
next wave would be 41.20%, 37.63% or 32.65% under these three hypothetical scenarios (70%, 80% and
90% population had been infected during the first epidemic wave). The lower the prevalence of the first
wave of the epidemic, the earlier the next wave of the epidemic arrives, and the higher the infection rate
of the next wave. There are similar results for fatality rates, with the higher the prevalence in the first
wave of the epidemic, the lower the fatality rate in the next wave. If the prevalence of the first wave is
70%, the fatality rate of the next wave is 0.21%, while if the prevalence of the first wave is 90%, the
fatality rate of the next wave is 0.16% (reduced by 23.81%). Specifically, if the prevalence of the first
wave is 80%, 37.63% of the whole population would be infected with 36.36% mild infections and
1.27% severe infections, and the fatality rate is 0.19%, in the next wave. Note that the prevalence rate
in the second wave is much lower than that in the first wave (80% of the population were infected),
and the mild infection is dominant in the second outbreak wave, accounting for 96.63% of the total
infections. Furthermore, for the people who had been infected in the first wave, 31.46% of them
would be infected in the second wave, while for the people who had not been infected in the first
wave, 63.53% of them would be infected in the second wave. This implies that a large proportion of
the population was effectively protected from the superinfection by obtaining immunity through
natural infection in the first outbreak wave. Hence, although there will be subsequent outbreaks in the
future, most of the infections are symptomatically mild and there would be fewer COVID-induced
deaths. In addition, in the absence of further boosting injections, gaining immunity through natural
infection could effectively reduce the superinfection risk to an extent, avoiding the large outbreak at
the population level.



Table 3. Predicted results with vaccination when the vaccination rate is 80%.

the infection rate was 80% in the vaccination situation

vaccination time mid-March mid-April mid-May

mild prevalence rate 32.49% 28.53% 23.11%

severe prevalence rate 1.05% 0.89% 0.68%

overall prevalence rate 33.54% 29.42% 23.79%

fatality rate 0.16% 0.13% 0.08%

mild peak 4.38 × 106 3.51 × 106 2.15 × 106

peak severity 1.56 × 105 1.19 × 105 6.76 × 104

peak total number of infections 4.54 × 106 3.63 × 106 2.22 × 106

peak number of deaths 2.19 × 104 1.70 × 104 9.92 × 103

peak time 30/09/2023 23/11/2023 29/03/2024
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3.3. Vaccination strategy
From the above prediction results, it can be seen that the natural immunity obtained from the large-scale
infections in the first wave of the epidemic has played an important role in the coming months, so that
there would be no large-scale infections before May 2023. However, due to the immunity waning, a
second wave of the epidemic may occur in June-August. If no extra NPIs are taken, the most direct
and effective way to delay the occurrence and control the scale of the second wave of infection is to
improve the level of population immunity through vaccination. Therefore, the optimized boosting
programme needs to be studied further. In the following, we investigate how the mass vaccination
boosting programme would affect the peak time and epidemic size of the second outbreak. In this
study, we assume that vaccines are sufficient and the vaccination coverage reaches 80% in one month.
To explore the critical time for activating the mass vaccination boosting programme to achieve the
maximum postponement of the peak time of the second wave and minimization of the epidemic size,
different activating times are chosen to investigate their impact on the peak time and the epidemic
size. Due to the predicted peak time being in June to August, the activating times are chosen as mid-
March, mid-April and mid-May and the simulation results are shown in figure 3d–f and electronic
supplementary material, figure S1.

Figure 3d and table 3 show that when the prevalence of the first wave is 80%, if the boosting
vaccination programme is activated in mid-March, the number of new infections reaches its maximum
on 30 September 2023. The total number of infections will be 33.54% with 32.49% (accounting for
96.87%) mild infections and 1.05% severe infections (accounting for 3.13%), and the fatality rate is
0.16%. Compared with the baseline situation, the peak time is postponed for 88 days and the
prevalence rate is reduced by 10.88%. Figure 3e shows that if the boosting vaccination programme is
activated in mid-April, the number of new infections reaches a maximum on the 300th day, which
corresponds to 23 November 2023. The total infection rate will be 29.42% with 28.53% mild infection
rate and 0.89% severe infection rate, and the fatality rate is 0.13%. The peak infection time is further
postponed over 1 month and the prevalence rate would be further reduced by 12.28%, compared with
the case when boosting vaccination starts in mid-March. If the boosting vaccination programme is
activated in mid-May, the infection peak of the second wave occurs on 29 March 2024. The prevalence
rate is 23.79% with 23.11% mild infections and 0.68% severe infections, and the fatality rate is 0.08%
(shown in figure 3f ). The peak infection time is further postponed by four months and the prevalence
rate decreases significantly.

Comparing the differences in the effects of vaccination in mid-March, mid-April and mid-May on
controlling the prevalence rate of the next wave of the epidemic when the prevalences of the first wave
were different (table 3, electronic supplementary material, table S2 and electronic supplementary
material, figure S1), we found that for all three scenarios, vaccination in mid-May was better than
vaccination in mid-March and mid-April, and the prevalence and fatality rates of the next wave were
the lowest. At this point, the higher the prevalence of the first wave, the lower the prevalence of the
next wave. However, in the scenario where prevalence of the first wave is 70%, we find that the best
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Figure 4. The population immunity level over time when the prevalence of the first wave is 70% (a), 80% (b) and 90% (c).
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vaccination implementation time is only over 20 days earlier than the peak time (9 June) of the next wave of
the epidemic. In order to investigate the results of implementing vaccination later, we simulated the
situation of vaccination starting on 1 June (shown in electronic supplementary material, table S2). The
results showed that if the vaccination started on 1 June, the prevalence of the next wave is 38.2%, which
is higher than the prevalence rate when the vaccination is implemented in mid-March. This indicates
that it will be too late to implement vaccination, if the epidemic has already erupted.

In order to better describe the changes of the population immunity level over time and further explore
the impact of the large-scale immunization implementation time on the subsequent development of the
epidemic, we propose an indicator L(t) that characterizes the population immunity level. Here, we
assume that the immunity level of S(t) is 0, the immunity level of Vi(t, a) is δi(a) (i = 1, 2), and the
immunity levels of R(t), Ei(t) and Ii(t) (i = 1, 2) are 1. Then, the population immunity level at time t
can be described as

L(t) ¼
Ð1
0 d1(a)V1(t,a)daþ Ð1

0 d2(a)V2(t,a)daþ R(t)þ E1(t)þ E2(t)þ E3(t)þ I1(t)þ I2(t)
S(t)þ Ð1

0 V1(t,a)daþ Ð1
0 V2(t,a)daþ R(t)þ E1(t)þ E2(t)þ E3(t)þ I1(t)þ I2(t)

:

According to the above formula, the population immunity level without vaccination and with
different vaccination times for these three scenarios are shown in figure 4. It follows from this figure
that the population immunity level fluctuates over time. If vaccination is no longer carried out, the
higher group immunity levels established by the previous wave of the epidemic gradually decrease
over time, reaching their lowest point, and then gradually increase with the next wave of infection.
Comparing three different prevalence rates (70%, 80%, 90%), the larger the prevalence of the first
wave, the later the group’s immune level reaches its lowest value. Specifically, if the prevalence of the
first wave is 80%, L(t) will reach the lowest point on 30 May and reach the next peak on 4 July
without vaccination. However, if the mass vaccination boosting programme is activated in mid-March
(mid-April or mid-May), which is earlier than 30 May, L(t) will rapidly increase after the start of
vaccination and reach its peak on 17 May (15 June or 14 July). As shown in figure 4, the peaks in the
three cases are almost consistent, but the earlier the vaccination starts, the earlier the L(t) decreases.
Similar results are observed when the prevalence of the first wave is 70% and 90%. It is worth noting
that when vaccination starts in mid-May, if the first wave of infection rate is 80% or 90%, the time
when vaccination starts is earlier than the time when the population’s immune level reaches its lowest
value. However, if the first wave of infection rate is 70% and vaccination starts in mid-May, the
vaccination will start later than the time when the population’s immune level reaches its minimum.
So, we also calculated the situation with vaccination starting on 6 May (the lowest point of the blue
line), and found that the prevalence rate was 25.87%, which is lower than the situation of vaccination
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starting in mid-May. The results show that with the vaccination time close to near the minimum
population immunity level is most effective.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230655
4. Discussion and conclusion
In order to study the impact of immunization brought by natural infection and vaccination on the
transmission of COVID-19, we consider the protective effect of natural infection and vaccines on the
infection and severity of the disease, and the immunity fading over time, and establish an infectious
disease compartment model with vaccination age structure. The functional relationship between
vaccine effectiveness and vaccination age was given, based on the effectiveness data of vaccines against
infection provided in references [16,17,26]. We first used epidemic data and vaccination data from Hong
Kong, China, from February to November 2022 to calibrate the model. Furthermore, based on the
parameters obtained from the model calibration and combined with the initial values determined by
relevant data from the China CDC, the epidemic situation in China after implementing ‘B Class B
Control’ and the first large wave of infection was predicted. Finally, future vaccination strategies were
discussed.

The prediction results show that, according to current control measures, the next infection peak on the
Chinese Mainland is likely to occur around June-August 2023, with a prevalence rate of about 33%–41%.
If the prevalence of the first wave is higher, the peak of the next wave arrives later and the prevalence and
fatality rates are lower. In detail, if the prevalence of the first wave increased from 70% to 80% (or 80% to
90%), the prevalence of the next wave in Mainland China may be reduced by 8.67% (or 13.23%), and the
fatality rate may be reduced by 9.52% (or 15.79%). Besides, the occurrence of the peak of the next wave
may also be delayed by 25 (or 43) days. In addition, the study of the impact of large-scale vaccination on
the control of the second wave indicates that activating the boosting vaccination programme could
effectively delay the occurrence of the second outbreak and reduce the outbreak size. However, the
effect is limited if the vaccination programme starts too early (for example, in mid-March or mid-
April), since the immunity level obtained by natural infection is still high and although vaccinating
would boost the immunity again, the population immunity level will decay soon. However, activating
the mass booster vaccination programme in mid-May would successfully delay the next outbreak
wave by about 8 months, significantly reduce the fatality rate and an extra about 10%–15% of the
population could be protected from infection, whether the first wave of infection rate is 70%, 80% or 90%.

It is worth noting that we also provided characterization indicators for the level of population
immunity in this study. From the perspective of population immunity level, after the first wave of
infection in Mainland China, the population immunity level has dropped to about 0.23 on 23 January
2023, and continues to decline, reaching the lowest value in May. As the immune level of the
population decreases, natural infections gradually increase, and the immune level caused by natural
infections also increases, reaching its peak in July. The results indicate that if the population immunity
level can be strengthened through vaccination near the lowest point and the total vaccination ratio reach
a relatively very high level (80%), it can effectively reduce the prevalence of the next wave. However,
strengthening vaccination too early or too late cannot achieve good control effects on the control of the
prevalence rate in the next wave. If strengthening vaccination occurs too late, the epidemic has already
erupted. If strengthening vaccination takes place too early, namely when the population’s immune level
is still relatively high and reinforces it again, even if the vaccination ratio reaches 50% (shown in
electronic supplementary material, table S3, in the case of the prevalence of the first wave it is 80%), it
can only reduce the infection rate by about 1% or 3% (mid-March or mid-April), delaying the peak of
the epidemic by about half a month or nearly two months (mid-March or mid-April). Besides, even if
the vaccination time is in mid-May, if the total vaccination ratio is not high enough, the control effect is
still very limited (electronic supplementary material, tables S3 and S4). Therefore, considering that large-
scale vaccination requires plenty of money and resources, the timing of vaccination needs to be very
accurate, and the total vaccination ratio should be very high to achieve good control effects, the
implementation of large-scale vaccination plans need to be very cautious.

In this paper, we use the epidemic data and vaccination data of Hong Kong in 2022 to estimate
model parameters and use the epidemic data and estimated parameters of Mainland China to
predict the next epidemic wave. Compared with previous studies on age-structured models [27–32],
our model considers age structure more comprehensively since immunity caused by both natural
infection and vaccination, the protective effect of vaccination against infection, and its protective
effect against severe illness are considered. Besides, immune waning is substituted into the model
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through exponential functions [16,17] and, by fitting functions to the actual data, the functional
expressions of an immune-waning rate that conforms to the reality are included. Compared to most
studies where it is directly taken as a constant [33–38], the setting in this paper is more realistic. In
addition, other function forms involved in this paper, such as the vaccine coverage rate function and
the initial value function of vaccination, are fitted with the actual data to obtain the corresponding
function expression, which is the highlight of this paper that is different from other similar studies
[27–32]. Finally, in the vaccination strategy part, this paper also gives indicators that can represent
the level of Herd immunity. This indicator can capture the change of Herd immunity level over
time after vaccination, and has important reference value for the formulation of vaccination
strategies and the prediction of epidemic development trends.

The models and methods established in this paper can be used for further research on the COVID-19
virus epidemic, and the characterization of population immunity level can provide a good method to
support future epidemic prediction and assessment. However, due to the lack of data, some
assumptions were made during the modelling process, and there are some shortcomings and areas for
improvement. For example, when considering the waning mode of immunity obtained by vaccination
in the article, only two data points were used to determine the immune waning function, which may
cause uncertainty. When considering the immune waning mode of natural infections, it is assumed
that the waning mode is consistent with the enhanced immune waning mode. Besides, the evolution
of the virus and any ensuing transmissibility and virulence variations were not considered in the
prediction section. These assumptions will have an impact on the results of the model, which could
be improved in future research as knowledge of the immune effects caused by vaccines and natural
infections continues to increase.
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