
An IoT/IoMT Security Testbed for Anomaly-based

Intrusion Detection Systems

Georgios Zachos

Instituto de Telecomunicacoes

Aveiro, Portugal

Faculty of Engineering and Science

University of Greenwich

Chatham Maritime, UK
g.zachos@av.it.pt

Kyriakos Porfyrakis

Faculty of Engineering and Science

University of Greenwich

Chatham Maritime, UK

k.porfyrakis@greenwich.ac.uk

Georgios Mantas

Instituto de Telecomunicacoes

Aveiro, Portugal

Faculty of Engineering and Science

University of Greenwich

Chatham Maritime, UK
gimantas@av.it.pt

Joaquim Manuel C.S. Bastos

Instituto de Telecomunicacoes

Aveiro, Portugal

jbastos@av.it.pt

Ismael Essop

Faculty of Engineering and Science

University of Greenwich

Chatham Maritime, UK
i.a.essop@greenwich.ac.uk

Jonathan Rodriguez

Instituto de Telecomunicacoes

Aveiro, Portugal

Faculty of Computing, Engineering and

Science, University of South Wales

Pontypridd, UK

jonathan@av.it.pt

Abstract— Over the past few years, the Internet of Things

(IoT) is transforming the healthcare sector through the

introduction of the Internet of Medical Things (IoMT)

technology whose purpose is the improvement of the patient’s

quality of life. Nevertheless, IoMT networks are still vulnerable

to a wide range of threats because of their heterogeneity and

resource-constrained characteristics. Thus, novel security

mechanisms such as accurate and efficient intrusion detection

systems (IDSs), taking into consideration the inherent

limitations of the IoMT networks, are required to be developed

before IoMT networks reach their full potential in the market.

In our previous works, we presented the system architecture of

a novel hybrid anomaly-based IDS (AIDS) for IoMT networks

and the implementation of its prototype. The next step is the

testing and evaluation of the performance of the proposed

AIDS under different types of attacks. However, there is a lack

of existing IoT testbeds that can be used to test and evaluate

the performance of an AIDS as a whole system running on

different IoT devices, networks and platforms, and being

under different types of IoT attacks. Therefore, in this paper,

we present the development of a functional IoT/IoMT security

testbed for testing and evaluating AIDSs. In addition, we

intend this work to serve as a guidance for other researchers or

engineers who aim to develop specific IoT/IoMT testbeds for

evaluating their own AIDSs under different types of IoT

attacks.

Keywords—IoT/IoMT, IoT/IoMT Testbed, Intrusion

Detection System (IDS), Eclipse Hono, Eclipse Ditto, Influxdb,

Grafana, Suricata

I. INTRODUCTION

The Internet of Things (IoT) paradigm is transforming
the healthcare sector with the introduction of the Internet of
Medical Things (IoMT) technology which aims to improve
the patient’s quality of life by enabling personalized e-health
services without limitations on time and location [1]–[5].
However, the wide range of different communication
technologies (e.g., WLANs, Bluetooth, Zigbee) and types of
IoMT devices (e.g., medical sensors, actuators) incorporated

in IoMT edge networks are vulnerable to various types of
security threats, and this, in turn, raises many security and
privacy challenges for such networks, as well as for the
healthcare systems relying on these networks [6]–[9]. For
instance, an adversary may compromise IoT-based
healthcare systems through their IoMT networks in order to
manipulate sensing data (e.g., by injecting fake data) and
cause malfunctions to the compromised IoT-based healthcare
systems that, in turn, will jeopardize the integrity or the
availability of the healthcare services provided by these
systems [2]. Consequently, security solutions protecting
IoMT networks from attackers are essential for the
acceptance and wide adoption of such networks in the
coming next years.

Nevertheless, the high resource requirements of complex
and heavyweight conventional security mechanisms cannot
be afforded by (a) the resource-constrained IoMT edge
devices with limited processing power, storage capacity, and
battery life, and/or (b) the constrained environment in which
the IoMT devices are deployed and interconnected using
lightweight communication protocols [10]. Therefore, novel
security mechanisms are necessary to be developed in order
to address the pressing security challenges of IoMT networks
in an effective and efficient manner, considering their
inherent limitations stemming from their resource-
constrained characteristics, before IoMT networks gain the
trust of all involved stakeholders and reach their full
potential in the market [8], [11].

Toward this direction, the industry and research
community currently foresee anomaly-based intrusion
detection as a promising security solution that can play a
significant role in protecting IoT/ΙοΜΤ networks, as long as
novel lightweight anomaly-based intrusion detection systems
(AIDSs) are developed [10], [12]–[15]. In our previous work
in [16], we presented the system architecture for a novel
hybrid AIDS for IoMT networks, and in [17], we described
the details of the implementation process that led to a
prototype of the proposed AIDS in [16]. The next step is the
testing and evaluation of the performance of the proposed
AIDS under different types of attacks. However, the existing
IoT testbeds in the literature are focused on either (i) testing
the functionality of the deployed IoT devices and/or involved
protocols, algorithms and deployed services [18] or (ii)
performing security analysis and vulnerability assessments of

This work is supported by the European Regional Development Fund

(FEDER), through the Regional Operational Programme of Lisbon (POR
LISBOA 2020) and the Competitiveness and Internationalization

Operational Programme (COMPETE 2020) of the Portugal 2020

framework [Project Augmanity with Nr. 046103 (POCI-01-0247-FEDER-

046103)].

IoT devices [19], [20]. Consequently, there is a lack of IoT
security testbeds that can be used to test and evaluate the
performance of an AIDS as a whole system running on
different IoT devices, networks and platforms, and being
under different types of IoT attacks.

Therefore, in this paper, the main objective is the design
and development of a functional IoT/IoMT security testbed
for evaluating AIDSs such as the one we proposed in [16]
and [17]. Additionally, we intend this work to serve as a
guidance for other researchers or engineers who aim to
develop specific IoT/IoMT security testbeds for evaluating
their own AIDSs under different types of IoT attacks.

Following the introduction, this paper is organized as
follows. Section II presents the details of our developed
IoT/IoMT security testbed as well as of its different
components. Section III describes the two types of tests that
we performed to verify that the different components of our
testbed are operating normally. Finally, Section IV concludes
this paper and provides hints for future work.

II. DEVELOPED IOT/IOMT SECURITY TESTBED

The architecture of the developed IoT/IoMT security
testbed consists of three different major components (i.e.,
IoT/IoMT Server, IoT/IoMT Gateway, and IoT/IoMT
devices) as shown in Fig. 1.

Fig. 1. Overview of the developed IoT/IoMT security testbed.

A. IoT/IoMT Devices

In general, the IoT/IoMT devices possess limited
resources in regard to computation and storage. On the one
hand, an IoT/IoMT device (e.g., an IoMT sensor device) may
constitute a source of sensing data that can be related to
patient’s environment or wellbeing. On the other hand, an
IoT/IoMT device (e.g., an IoMT actuator device such as an
insulin pump) may operate as a receiver of data. In this case,
the received data may take the form of commands that the
IoT/IoMT device is required to execute in order to realize an
action (e.g., inject insulin into the body of a patient).

In our testbed, we use a Raspberry Pi 4 Model B device
as an IoT/IoMT device. In addition, we use Raspbian [21] as
the operating system (OS) in the Raspberry Pi 4 IoT/IoMT
device that simulates the functionality of a sensor. This is
achieved by creating and running a python script that
periodically sends randomly generated values (i.e.,
temperature and humidity) to the IoT/IoMT Gateway.

In particular, the python script starts a daemon process
that generates a separate thread (i.e., “send” thread) that

periodically sends randomly generated sensing data to the
IoT/IoMT Gateway. After creating the “send thread”, the
main thread of the daemon process keeps monitoring a
temporary “ctrlfile” file. When the stored value of the
“ctrlfile” file changes from “1” to “0”, then the daemon
process along with its threads terminate their operation. The
pseudocode of our python script that randomly generates and
sends sensing data in the form of a report is presented below.

Algorithm: IoT/IoMT Device

Input: devID, period, port, gateway IP, gateway port

Action: Sending random sensing data to IoT/IoMT Gateway

 1. store input parameters and initialize extra parameters

 2. daemonize the current process

 3. create a tmp ctrlfile to control the daemon process

 4. operating ← 1

 5. create and start a separate thread (send thread) that handles

sending random data to the Gateway

 6. payload ← empty dictionary

 7. while operating == 1:

 8. payload[“temperature”] ← random(20,30)

 9. payload[“humidity”] ← random(5,15)

10. connect to Gateway using port, gateway IP and

gateway port

11. create report including devID and payload

12. send created report to Gateway

13. close connection to Gateway

14. sleep for period secs

15. while operating == 1:

16. sleep for 1 second

17. open tmp ctrlfile

18. read value from tmp ctrlfile

19. store the read value to the operating variable

20. close tmp ctrlfile

21. deallocate resources and exit

B. IoT/IoMT Gateway

The main role of the IoT/IoMT Gateway is to act as a
relay node. On the one hand, the IoT/IoMT Gateway
receives the sensing data of the connected IoT/IoMT devices
and in turn, sends the sensing data to the IoT/IoMT Server.
On the other hand, the IoT/IoMT Gateway receives
IoT/IoMT device commands from the IoT/IoMT Server and
in turn, sends these commands to the connected IoT/IoMT
devices to be executed.

In our testbed, we use another Raspberry Pi 4 Model B
device as the IoT/IoMT Gateway. We use Ubuntu 20.04 [22]
as the operating system (OS) in the Raspberry Pi 4 IoT/IoMT
Gateway device that simulates the functionality of a
Gateway. This functionality has been achieved by creating
and running a python script that receives the data sent
periodically from the connected IoT/IoMT devices.
Afterward, the script formats the received data and sends
them properly to the IoT/IoMT Server.

In particular, the python script starts a daemon process
that generates a separate thread (i.e., “acc” thread) that
accepts connections from the IoT/IoMT devices. For each
accepted connection, the “acc thread” creates separate thread
(i.e., “rcv thread”) that handles the receiving of data from the
connected IoT/IoMT device and then the received data are
formatted properly into JSON and sent to the IoT/IoMT
Server. After creating the “acc” thread, the main thread of
the daemon process keeps monitoring a temporary “ctrlfile”
file. When the stored value of the “ctrlfile” file changes from
“1” to “0”, then the daemon process along with its threads
terminate their operation. The pseudocode of our python
script is presented below.

Algorithm: IoT/IoMT Gateway

Input: port, server IP, server port

Action: Receiving and sending IoT/IoMT device data to the

IoT/IoMT Server

 1. store input parameters and initialize extra parameters

 2. daemonize the current process

 3. create a tmp ctrlfile to control the daemon process

 4. operating ← 1

 5. create a separate thread (acc thread) that handles accepting

connections from IoT/IoMT devices

 6. while operating == 1:

 7. (clientsock, ip addr) ← accept()

 8. create and start a separate thread (rcv thread) that

receives the data from connected IoT/IoMT device, formats them

and sends them to IoT/IoMT Server

 9. data ← rcvdata(clientsock)

10. create a json payload based on received data

11. send the json payload to the IoT/IoMT paltform

12. while operating == 1:

13. sleep for 1 second

14. open tmp ctrlfile

15. read value from tmp ctrlfile

16. store the read value to the operating variable

17. close tmp ctrlfile

18. deallocate resources and exit

C. IoT/IoMT Server

The main roles of the IoT/IoMT Server are to (i) receive
the data from the IoT/IoMT devices through the Gateway,
(ii) visualize the received data, and (iii) send appropriate
commands back to the IoT/IoMT devices through the
Gateway. In the proposed testbed, the IoT/IoMT Server
consists of multiple different components as shown in Fig. 2
and explained below.

1) Eclipse Hono
Initially, the Eclipse Hono [23] component is deployed in

Kubernetes [24] in the IoT/IoMT Server to provide the IoT
messaging layer. It enables several IoT/IoMT devices to
connect to the IoT/IoMT server using various protocols (e.g.,
MQTT). Besides, Eclipse Hono allows communicating,
through the Gateway, with the connected IoT devices in a
uniform way regardless of the device communication
protocol. The advantages of Eclipse Hono are the following
[23]:

 IoT Protocols support: IoT devices can
communicate with Eclipse Hono and vice-versa using
different common IoT protocols such as HTTP,
MQTT, AMQP and CoAP which are supported by
Eclipse Hono out of the box. Moreover, through a
simple mechanism available in Eclipse Hono, new
custom protocol adapters can be added in order to
connect and interact with devices that employ
different communication protocols.

 Scalability: Eclipse Hono is designed so that several
IoT devices can be connected to it. The scalability is
achieved using a micro service-based architecture and
a reactive programming model.

 Uniform API: Regardless of the device protocol,
Eclipse Hono utilizes a simple and uniform API in

Fig. 2. Internal components of the deployed IoT/IoMT Server of the proposed IoT/IoMT security testbed.

order to (i) allow the connection of different types of
devices to a (cloud) back end, and (ii) communicate
with all the connected devices.

 Secure by default: Eclipse Hono is designed for
security by default. Both common authentication
mechanisms such as username/password and X.509
client certificates are supported in order that the
identity of a device can be verified. In addition,
transport layer security (TLS) is used by Eclipse
Hono when it communicates with devices.

 Messaging Patterns: APIs for important IoT
communication patterns are provided. On the one
hand, sensor readings can be reported through
Telemetry and Event messages. On the other hand,
operations on devices can be invoked by applications
through the Command & Control messages.

2) Eclipse Ditto
To complement the Eclipse Hono component, we added

the Eclipse Ditto [25] component by deploying it in
Kubernetes [24] in the IoT/IoMT Server. Eclipse Ditto
implements a software pattern called “digital twin”. A
“digital twin” is defined as a virtual representation of its real
world counterpart (e.g., real world device).

More specifically, in our case, Eclipse Ditto is deployed
in order to receive the data coming from Eclipse Hono and
the IoT/IoMT devices via the AMQP 1.0 API of Eclipse
Hono. Based on the received data from Eclipse Hono, Ditto
updates the digital twins of the IoT/IoMT devices. In
addition, Eclipse Ditto provides fully-fledged, authorization
aware APIs (i.e., REST, WebSocket) so that consumer
applications can easily interact with the physical IoT/IoMT
devices and all aspects around them via their digital twins in
Eclipse Ditto. The advantages of Eclipse Ditto are the
following [25]:

 Device as a Service: Ditto allows to handle a “thing”
as another web service via its digital twin. In
essence, an IoT device is abstracted into a digital
twin and the interaction with the physical IoT device
is performed through the digital twin API.

 Access control enforcement: It is possible to
authorize each API call on a digital twin. Thus, an
appropriate resource-based access check can be
applied and this, in turn, can ensure that specific
users are able to only see/modify specific parts of a
digital twin.

3) InfluxDB
After setting up Hono and Ditto, we added the InfluxDB

component to the IoT/IoMT server in order to store the
information of the digital twins in Ditto. InfluxDB [26] is a
component implementing a time-series database and an
InfluxDB instance is deployed in Kubernetes [24] in the
IoT/IoMT Server. By utilizing Eclispe Ditto’s API, a custom
container called “bridge” is deployed to collect the data
related to the digital twins from Eclipse Ditto and store them
properly in the InfluxDB instance.

4) Grafana
The next step was to add Grafana [27] to the IoT/IoMT

Server. Grafana is a multi-platform open source analytics and
interactive visualization web application and is capable of
enhancing the IoT/IoMT Server with visualization and

dashboarding capabilities. The deployed Grafana instance
was configured so that data of the InfluxDB instance can be
visualized.

D. Kali Linux Server

Kali Linux is a penetration testing tool that is available
from the website in [28] and is considered as a standard tool
used in the industry for penetration testing purposes. In
particular, Kali Linux is an open-source, Debian-based Linux
distribution aimed at advanced Penetration Testing and
Security Auditing, and it contains several hundred tools
targeted towards various information security tasks, such as
Penetration Testing, Security Research, Computer Forensics
and Reverse Engineering, Vulnerability Management and
Red Team Testing [29]. Besides, Kali Linux is a solution
capable of targeting multiple different platforms, and is
accessible and freely available to information security
professionals and hobbyists [29].

Furthermore, Kali Linux provides support for several
wireless devices, and is capable of running properly on
different hardware. In addition, to achieve its purposes, Kali
Linux utilizes a custom kernel that is always kept updated for
injection vulnerabilities. In our testbed, Kali Linux is set up
on the Kali Linux Server, as shown in Fig. 1, whose purpose
is to launch specific attacks (i.e., scanning attack and Denial
of Service attack) on the different components of the
IoT/IoMT security testbed (i.e., IoT/IoMT Server, Gateway,
and devices). Based on the launched attacks, it will be
possible to evaluate the performance of AIDSs deployed in
the future.

III. DEMONSTRATIONS OF THE IOT/IOMT SECURITY TESTBED

After setting up of the proposed testbed, we performed
two tests in order to verify: a) the proper operation of the
different components of the testbed related to the sensor data
flow, as well as b) the proper operation of the Kali Linux
server by implementing two types of attacks (i.e., scanning
attack and Denial of Service attack) against the IoT/ΙοΜΤ
server. The implemented attacks will also allow the
evaluation of future proposed AIDSs when they are deployed
on the testbed.

A. Demonstration of the Sensor Data Flow

The first test relates to the verification of the normal
operation of the testbed components (i.e., IoT/IoMT Server,
IoT/IoMT Gateway, and IoT/IoMT devices). A demo
IoT/IoMT Sensor was registered in Eclipse Hono and a
corresponding digital twin was setup in Eclipse Ditto.
Furthermore, we executed our python scripts in the
IoT/IoMT device (i.e., Raspberry Pi 4 device) and the
IoT/IoMT Gateway (i.e., another Raspberry Pi 4 device).
Thus, telemetry data regarding two measurements (i.e.,
temperature, humidity) were randomly generated in the
IoT/IoMT device every 1 second for 10 minutes, and through
the IoT/IoMT Gateway, these data were sent to Eclipse
Hono’s HTTP adapter. The generated temperature values
were set to be in the [20, 30] range, while the generated
humidity values were set to be in the [5, 15] range.
Afterwards, the sensor data were collected from the digital
twin in Eclipse Ditto, stored in the InfluxDB instance and
then visualized in Grafana as shown in Fig. 3.

B. Demonstration of Attacks on the IoT/IoMT Server

The second test relates to the verification of the proper
operation of the Kali Linux server [28] to launch attacks
against the IoT/ΙοΜΤ server. This was achieved by i)
implementing a Scanning attack and a Denial of Service
(DoS) attack against the IoT/ΙοΜΤ server, as shown in Fig.
4, with the use of the Kali Linux server, and ii) detecting
both attacks with the use of the Suricata IDS [30] that was
set up on the IoT/ΙοΜΤ server.

The Suricata IDS is an open source and publicly
available signature-based IDS that was installed and
configured to monitor the API endpoints of Hono and Ditto.
In addition, we used a custom container called “suri_bridge”
that was deployed to collect the alert logs of Suricata IDS
and store them properly in the InfluxDB instance. By storing
the alert logs in the InfluxDB instance, we were able to use
Grafana in order to visualize the alert logs.

Fig. 5 and Fig. 6 depict the command used in Kali Linux
to perform the Scanning attack and the corresponding alert
logs of Suricata in Grafana, respectively. Moreover, Fig. 7
and Fig. 8 depict the command used in Kali Linux to perform
the DoS attack and the corresponding alert logs of Suricata in
Grafana, respectively.

Fig. 4. Usage of Kali Linux on the Adversary VM to launch attacks against

the IoT/ΙοΜΤ Server.

Fig. 5. Kali command to perform the scanning attack on the IoT/IoMT

Server.

Fig. 6. Suricata alert logs visualized in Grafana during the Scanning attack

on the IoT/IoMT Server.

Fig. 7. Kali command to perform the DoS attack on the IoT/IoMT Server.

Fig. 8. Suricata alert logs visualized in Grafana during the DoS attack on

the IoT/IoMT Server.

IV. CONCLUSION

In this paper, we presented the development process of a
functional IoT/IoMT security testbed for evaluating AIDSs
such as the one we proposed in [16] and [17]. In particular,
we described the different components of the developed
testbed as well as the role and functionality of each
component. Besides, we intend this work to serve as a
guidance for other researchers or engineers who aim to
develop specific IoT/IoMT security testbeds for evaluating
their own AIDSs under different types of IoT attacks. As

Fig. 3. Randomly generated temperature and humidity values from IoT/IoMT device visualized in Grafana.

future work, we plan to use the developed IoT/IoMT security
testbed in order to test and evaluate our proposed AIDS in
[16]. In addition, we aim to integrate more resources-
constrained IoT devices, such as Tmote Sky devices [31], on
the testbed in order to evaluate the energy efficiency of our
proposed AIDS [16].

REFERENCES

[1] J. J. P. C. Rodrigues et al., “Enabling Technologies for the Internet of
Health Things,” IEEE Access, vol. 6, pp. 13129–13141, 2018, doi:
10.1109/ACCESS.2017.2789329.

[2] M. Papaioannou et al., “A Survey on Security Threats and
Countermeasures in Internet of Medical Things (IoMT),” Trans.
Emerg. Telecommun. Technol., p. e4049, 2020, doi: 10.1002/ett.4049.

[3] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak,
“The internet of things for health care: A comprehensive survey,”
IEEE Access, vol. 3, pp. 678–708, 2015, doi:
10.1109/ACCESS.2015.2437951.

[4] E. Karavatselou, M.-A. Fengou, G. Mantas, and D. Lymberopoulos,
“Profile Management System in Ubiquitous Healthcare Cloud
Computing Environment,” in Broadband Communications, Networks,
and Systems, 2019, pp. 105–114.

[5] M.-A. Fengou, G. Mantas, D. Lymberopoulos, N. Komninos, S.
Fengos, and N. Lazarou, “A New Framework Architecture for Next
Generation e-Health Services,” IEEE J. Biomed. Heal. Informatics,
vol. 17, no. 1, pp. 9–18, 2013, doi: 10.1109/TITB.2012.2224876.

[6] F. Pelekoudas-Oikonomou et al., “Blockchain-Based Security
Mechanisms for IoMT Edge Networks in IoMT-Based Healthcare
Monitoring Systems,” Sensors 2022, Vol. 22, Page 2449, vol. 22, no.
7, p. 2449, Mar. 2022, doi: 10.3390/S22072449.

[7] I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu, and W. Ni,
“Anatomy of Threats to the Internet of Things,” IEEE Commun. Surv.
Tutorials, vol. 21, no. 2, pp. 1636–1675, 2019, doi:
10.1109/COMST.2018.2874978.

[8] M. Zhang, A. Raghunathan, and N. K. Jha, “Trustworthiness of
medical devices and body area networks,” Proc. IEEE, vol. 102, no.
8, pp. 1174–1188, 2014, doi: 10.1109/JPROC.2014.2322103.

[9] M. Karageorgou, G. Mantas, I. Essop, J. Rodriguez, and D.
Lymberopoulos, “Cybersecurity attacks on medical IoT devices for
smart city healthcare services,” in IoT Technologies in Smart Cities:
From sensors to big data, security and trust, Institution of
Engineering and Technology, 2020, pp. 171–187.

[10] I. Essop, J. C. Ribeiro, M. Papaioannou, G. Zachos, G. Mantas, and J.
Rodriguez, “Generating datasets for anomaly-based intrusion
detection systems in iot and industrial iot networks,” Sensors, vol. 21,
no. 4, pp. 1–31, 2021, doi: 10.3390/s21041528.

[11] F. Alsubaei, A. Abuhussein, and S. Shiva, “Security and Privacy in
the Internet of Medical Things: Taxonomy and Risk Assessment,” in
Proceedings - 2017 IEEE 42nd Conference on Local Computer
Networks Workshops, LCN Workshops 2017, 2017, pp. 112–120, doi:
10.1109/LCN.Workshops.2017.72.

[12] J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and A.
Wahab, “A review of intrusion detection systems using machine and
deep learning in internet of things: Challenges, solutions and future
directions,” Electronics (Switzerland), vol. 9, no. 7. MDPI AG, p.
1177, 2020, doi: 10.3390/electronics9071177.

[13] J. Ribeiro, F. B. Saghezchi, G. Mantas, J. Rodriguez, and R. A. Abd-
Alhameed, “HIDROID: Prototyping a Behavioral Host-Based
Intrusion Detection and Prevention System for Android,” IEEE
Access, vol. 8, pp. 23154–23168, 2020, doi:
10.1109/ACCESS.2020.2969626.

[14] J. Ribeiro, F. B. Saghezchi, G. Mantas, J. Rodriguez, S. J. Shepherd,
and R. A. Abd-Alhameed, “Towards an Autonomous Host-based
Intrusion Detection System for Android Mobile Devices,” in 9th EAI
International Conference on Broadband Communications, Networks,
and Systems (BROADNETS2018), 2018, pp. 139–148.

[15] J. Ribeiro, F. B. Saghezchi, G. Mantas, J. Rodriguez, S. J. Shepherd,
and R. A. Abd-Alhameed, “An Autonomous Host-Based Intrusion
Detection System for Android Mobile Devices,” Mob. Networks
Appl., vol. 25, no. 1, pp. 164–172, 2020, doi: 10.1007/s11036-019-
01220-y.

[16] G. Zachos, I. Essop, G. Mantas, K. Porfyrakis, J. C. Ribeiro, and J.
Rodriguez, “An Anomaly-Based Intrusion Detection System for
Internet of Medical Things Networks,” Electron. 2021, Vol. 10, Page
2562, vol. 10, no. 21, p. 2562, Oct. 2021, doi:
10.3390/ELECTRONICS10212562.

[17] G. Zachos, G. Mantas, I. Essop, K. Porfyrakis, J. C. Ribeiro, and J.
Rodriguez, “Prototyping an Anomaly-Based Intrusion Detection
System for Internet of Medical Things Networks,” in IEEE
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks, CAMAD, 2022, vol. 2022-
Novem, pp. 179–183, doi: 10.1109/CAMAD55695.2022.9966912.

[18] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things
(IoT): Research, simulators, and testbeds,” IEEE Internet Things J.,
vol. 5, no. 3, pp. 1637–1647, Jun. 2018, doi:
10.1109/JIOT.2017.2786639.

[19] S. Siboni et al., “Security Testbed for Internet-of-Things Devices,”
IEEE Trans. Reliab., vol. 68, no. 1, pp. 23–44, Mar. 2019, doi:
10.1109/TR.2018.2864536.

[20] O. Abu Waraga, M. Bettayeb, Q. Nasir, and M. Abu Talib, “Design
and implementation of automated IoT security testbed,” Comput.
Secur., vol. 88, p. 101648, Jan. 2020, doi:
10.1016/J.COSE.2019.101648.

[21] “FrontPage - Raspbian.” https://www.raspbian.org/ (accessed Mar.
20, 2023).

[22] “Ubuntu 20.04.5 LTS (Focal Fossa).”
https://releases.ubuntu.com/focal/ (accessed Mar. 20, 2023).

[23] “Connect, Command & Control IoT devices :: Eclipse HonoTM.”
https://www.eclipse.org/hono/ (accessed Dec. 07, 2022).

[24] “Kubernetes Documentation | Kubernetes.”
https://kubernetes.io/docs/home/ (accessed Dec. 07, 2022).

[25] “Eclipse DittoTM • open source framework for digital twins in the
IoT.” https://www.eclipse.org/ditto/ (accessed Dec. 07, 2022).

[26] “Learn about InfluxDB OSS | InfluxDB OSS 1.8 Documentation.”
https://docs.influxdata.com/influxdb/v1.8/introduction/ (accessed Feb.
27, 2023).

[27] “Grafana documentation | Grafana documentation.”
https://grafana.com/docs/grafana/latest/ (accessed Feb. 27, 2023).

[28] “Kali Linux | Penetration Testing and Ethical Hacking Linux
Distribution.” https://www.kali.org/ (accessed Aug. 13, 2021).

[29] “What is Kali Linux? | Kali Linux Documentation.”
https://www.kali.org/docs/introduction/what-is-kali-linux/ (accessed
Mar. 20, 2023).

[30] “Home - Suricata.” https://suricata.io/ (accessed May 12, 2022).

[31] “Moteiv Corporation Tmote Sky—Ultra Low Power IEEE 802.15.4
Compliant Wireless Sensor Module.” http://www.crew-
project.eu/sites/default/files/tmote-sky-datasheet.pdf (accessed Sep.
06, 2021).

