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Abstract— Over the past few years, the Internet of Things 

(IoT) is transforming the healthcare sector through the 

introduction of the Internet of Medical Things (IoMT) 

technology whose purpose is the improvement of the patient’s 

quality of life. Nevertheless, IoMT networks are still vulnerable 

to a wide range of threats because of their heterogeneity and 

resource-constrained characteristics. Thus, novel security 

mechanisms such as accurate and efficient intrusion detection 

systems (IDSs), taking into consideration the inherent 

limitations of the IoMT networks, are required to be developed 

before IoMT networks reach their full potential in the market. 

In our previous works, we presented the system architecture of 

a novel hybrid anomaly-based IDS (AIDS) for IoMT networks 

and the implementation of its prototype. The next step is the 

testing and evaluation of the performance of the proposed 

AIDS under different types of attacks. However, there is a lack 

of existing IoT testbeds that can be used to test and evaluate 

the performance of an AIDS as a whole system running on 

different IoT devices, networks and platforms, and being 

under different types of IoT attacks.  Therefore, in this paper, 

we present the development of a functional IoT/IoMT security 

testbed for testing and evaluating AIDSs. In addition, we 

intend this work to serve as a guidance for other researchers or 

engineers who aim to develop specific IoT/IoMT testbeds for 

evaluating their own AIDSs under different types of IoT 

attacks.  

Keywords—IoT/IoMT, IoT/IoMT Testbed, Intrusion 

Detection System (IDS), Eclipse Hono, Eclipse Ditto, Influxdb, 

Grafana, Suricata 

I. INTRODUCTION 

The Internet of Things (IoT) paradigm is transforming 
the healthcare sector with the introduction of the Internet of 
Medical Things (IoMT) technology which aims to improve 
the patient’s quality of life by enabling personalized e-health 
services without limitations on time and location [1]–[5]. 
However, the wide range of different communication 
technologies (e.g., WLANs, Bluetooth, Zigbee) and types of 
IoMT devices (e.g., medical sensors, actuators) incorporated 

in IoMT edge networks are vulnerable to various types of 
security threats, and this, in turn, raises many security and 
privacy challenges for such networks, as well as for the 
healthcare systems relying on these networks [6]–[9]. For 
instance, an adversary may compromise IoT-based 
healthcare systems through their IoMT networks in order to 
manipulate sensing data (e.g., by injecting fake data) and 
cause malfunctions to the compromised IoT-based healthcare 
systems that, in turn, will jeopardize the integrity or the 
availability of the healthcare services provided by these 
systems [2]. Consequently, security solutions protecting 
IoMT networks from attackers are essential for the 
acceptance and wide adoption of such networks in the 
coming next years. 

Nevertheless, the high resource requirements of complex 
and heavyweight conventional security mechanisms cannot 
be afforded by (a) the resource-constrained IoMT edge 
devices with limited processing power, storage capacity, and 
battery life, and/or (b) the constrained environment in which 
the IoMT devices are deployed and interconnected using 
lightweight communication protocols [10]. Therefore, novel 
security mechanisms are necessary to be developed in order 
to address the pressing security challenges of IoMT networks 
in an effective and efficient manner, considering their 
inherent limitations stemming from their resource-
constrained characteristics, before IoMT networks gain the 
trust of all involved stakeholders and reach their full 
potential in the market [8], [11].  

Toward this direction, the industry and research 
community currently foresee anomaly-based intrusion 
detection as a promising security solution that can play a 
significant role in protecting IoT/ΙοΜΤ networks, as long as 
novel lightweight anomaly-based intrusion detection systems 
(AIDSs) are developed [10], [12]–[15]. In our previous work 
in [16], we presented the system architecture for a novel 
hybrid AIDS for IoMT networks, and in [17], we described 
the details of the implementation process that led to a 
prototype of the proposed AIDS in [16]. The next step is the 
testing and evaluation of the performance of the proposed 
AIDS under different types of attacks. However, the existing 
IoT testbeds in the literature are focused on either (i) testing 
the functionality of the deployed IoT devices and/or involved 
protocols, algorithms and deployed services [18] or (ii) 
performing security analysis and vulnerability assessments of 
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IoT devices [19], [20]. Consequently, there is a lack of IoT 
security testbeds that can be used to test and evaluate the 
performance of an AIDS as a whole system running on 
different IoT devices, networks and platforms, and being 
under different types of IoT attacks.   

Therefore, in this paper, the main objective is the design 
and development of a functional IoT/IoMT security testbed 
for evaluating AIDSs such as the one we proposed in [16] 
and [17]. Additionally, we intend this work to serve as a 
guidance for other researchers or engineers who aim to 
develop specific IoT/IoMT security testbeds for evaluating 
their own AIDSs under different types of IoT attacks.  

Following the introduction, this paper is organized as 
follows. Section II presents the details of our developed 
IoT/IoMT security testbed as well as of its different 
components. Section III describes the two types of tests that 
we performed to verify that the different components of our 
testbed are operating normally. Finally, Section IV concludes 
this paper and provides hints for future work. 

II. DEVELOPED IOT/IOMT SECURITY TESTBED 

The architecture of the developed IoT/IoMT security 
testbed consists of three different major components (i.e., 
IoT/IoMT Server, IoT/IoMT Gateway, and IoT/IoMT 
devices) as shown in Fig. 1. 

 

Fig. 1. Overview of the developed IoT/IoMT security testbed. 
 

A. IoT/IoMT Devices 

In general, the IoT/IoMT devices possess limited 
resources in regard to computation and storage. On the one 
hand, an IoT/IoMT device (e.g., an IoMT sensor device) may 
constitute a source of sensing data that can be related to 
patient’s environment or wellbeing. On the other hand, an 
IoT/IoMT device (e.g., an IoMT actuator device such as an 
insulin pump) may operate as a receiver of data. In this case, 
the received data may take the form of commands that the 
IoT/IoMT device is required to execute in order to realize an 
action (e.g., inject insulin into the body of a patient).  

In our testbed, we use a Raspberry Pi 4 Model B device 
as an IoT/IoMT device. In addition, we use Raspbian [21] as 
the operating system (OS) in the Raspberry Pi 4 IoT/IoMT 
device that simulates the functionality of a sensor. This is 
achieved by creating and running a python script that 
periodically sends randomly generated values (i.e., 
temperature and humidity) to the IoT/IoMT Gateway.  

In particular, the python script starts a daemon process 
that generates a separate thread (i.e., “send” thread) that 

periodically sends randomly generated sensing data to the 
IoT/IoMT Gateway. After creating the “send thread”, the 
main thread of the daemon process keeps monitoring a 
temporary “ctrlfile” file. When the stored value of the 
“ctrlfile” file changes from “1” to “0”, then the daemon 
process along with its threads terminate their operation. The 
pseudocode of our python script that randomly generates and 
sends sensing data in the form of a report is presented below. 

Algorithm: IoT/IoMT Device 

Input: devID, period, port, gateway IP, gateway port  

Action: Sending random sensing data to IoT/IoMT Gateway 

 1. store input parameters and initialize extra parameters  

 2. daemonize the current process 

 3. create a tmp ctrlfile to control the daemon process  

 4. operating ← 1 

 5. create and start a separate thread (send thread) that handles 

sending random data to the Gateway 

 6.      payload ← empty dictionary 

 7.      while operating == 1: 

 8.          payload[“temperature”] ← random(20,30) 

 9.          payload[“humidity”] ← random(5,15) 

10.          connect to Gateway using port, gateway IP and 

gateway port 

11.         create report including devID and payload        

12.         send created report to Gateway  

13.         close connection to Gateway 

14.         sleep for period secs  

15. while operating == 1: 

16.     sleep for 1 second 

17.     open tmp ctrlfile 

18.     read value from tmp ctrlfile  

19.     store the read value to the operating variable 

20.     close tmp ctrlfile 

21. deallocate resources and exit 

 

B. IoT/IoMT Gateway 

The main role of the IoT/IoMT Gateway is to act as a 
relay node. On the one hand, the IoT/IoMT Gateway 
receives the sensing data of the connected IoT/IoMT devices 
and in turn, sends the sensing data to the IoT/IoMT Server. 
On the other hand, the IoT/IoMT Gateway receives 
IoT/IoMT device commands from the IoT/IoMT Server and 
in turn, sends these commands to the connected IoT/IoMT 
devices to be executed. 

In our testbed, we use another Raspberry Pi 4 Model B 
device as the IoT/IoMT Gateway. We use Ubuntu 20.04 [22] 
as the operating system (OS) in the Raspberry Pi 4 IoT/IoMT 
Gateway device that simulates the functionality of a 
Gateway. This functionality has been achieved by creating 
and running a python script that receives the data sent 
periodically from the connected IoT/IoMT devices. 
Afterward, the script formats the received data and sends 
them properly to the IoT/IoMT Server.  



In particular, the python script starts a daemon process 
that generates a separate thread (i.e., “acc” thread) that 
accepts connections from the IoT/IoMT devices. For each 
accepted connection, the “acc thread” creates separate thread 
(i.e., “rcv thread”) that handles the receiving of data from the 
connected IoT/IoMT device and then the received data are 
formatted properly into JSON and sent to the IoT/IoMT 
Server. After creating the “acc” thread, the main thread of 
the daemon process keeps monitoring a temporary “ctrlfile” 
file. When the stored value of the “ctrlfile” file changes from 
“1” to “0”, then the daemon process along with its threads 
terminate their operation. The pseudocode of our python 
script is presented below. 

Algorithm: IoT/IoMT Gateway 

Input: port, server IP, server port  

Action: Receiving and sending IoT/IoMT device data to the 

IoT/IoMT Server 

 1. store input parameters and initialize extra parameters  

 2. daemonize the current process 

 3. create a tmp ctrlfile to control the daemon process  

 4. operating ← 1 

 5. create a separate thread (acc thread) that handles accepting 

connections from IoT/IoMT devices 

 6.      while operating == 1: 

 7.          (clientsock, ip addr) ← accept() 

 8.          create and start a separate thread (rcv thread) that 

receives the data from connected IoT/IoMT device, formats them 

and sends them to IoT/IoMT Server 

 9.              data ← rcvdata(clientsock) 

10.             create a json payload based on received data 

11.             send the json payload to the IoT/IoMT paltform 

12. while operating == 1: 

13.     sleep for 1 second 

14.     open tmp ctrlfile 

15.     read value from tmp ctrlfile  

16.     store the read value to the operating variable 

17.     close tmp ctrlfile 

18. deallocate resources and exit 

 

C. IoT/IoMT Server  

The main roles of the IoT/IoMT Server are to (i) receive 
the data from the IoT/IoMT devices through the Gateway, 
(ii) visualize the received data, and (iii) send appropriate 
commands back to the IoT/IoMT devices through the 
Gateway. In the proposed testbed, the IoT/IoMT Server 
consists of multiple different components as shown in Fig. 2 
and explained below. 

1) Eclipse Hono 
Initially, the Eclipse Hono [23] component is deployed in 

Kubernetes [24] in the IoT/IoMT Server to provide the IoT 
messaging layer. It enables several IoT/IoMT devices to 
connect to the IoT/IoMT server using various protocols (e.g., 
MQTT). Besides, Eclipse Hono allows communicating, 
through the Gateway, with the connected IoT devices in a 
uniform way regardless of the device communication 
protocol. The advantages of Eclipse Hono are the following 
[23]: 

 IoT Protocols support: IoT devices can 
communicate with Eclipse Hono and vice-versa using 
different common IoT protocols such as HTTP, 
MQTT, AMQP and CoAP which are supported by 
Eclipse Hono out of the box. Moreover, through a 
simple mechanism available in Eclipse Hono, new 
custom protocol adapters can be added in order to 
connect and interact with devices that employ 
different communication protocols. 

 Scalability: Eclipse Hono is designed so that several 
IoT devices can be connected to it. The scalability is 
achieved using a micro service-based architecture and 
a reactive programming model. 

 Uniform API: Regardless of the device protocol, 
Eclipse Hono utilizes a simple and uniform API in 

 

Fig. 2. Internal components of the deployed IoT/IoMT Server of the proposed IoT/IoMT security testbed. 
 



order to (i) allow the connection of different types of 
devices to a (cloud) back end, and (ii) communicate 
with all the connected devices. 

 Secure by default: Eclipse Hono is designed for 
security by default. Both common authentication 
mechanisms such as username/password and X.509 
client certificates are supported in order that the 
identity of a device can be verified. In addition, 
transport layer security (TLS) is used by Eclipse 
Hono when it communicates with devices. 

 Messaging Patterns: APIs for important IoT 
communication patterns are provided. On the one 
hand, sensor readings can be reported through 
Telemetry and Event messages. On the other hand, 
operations on devices can be invoked by applications 
through the Command & Control messages. 

2) Eclipse Ditto 
To complement the Eclipse Hono component, we added 

the Eclipse Ditto [25] component by deploying it in 
Kubernetes [24] in the IoT/IoMT Server. Eclipse Ditto 
implements a software pattern called “digital twin”. A 
“digital twin” is defined as a virtual representation of its real 
world counterpart (e.g., real world device).  

More specifically, in our case, Eclipse Ditto is deployed 
in order to receive the data coming from Eclipse Hono and 
the IoT/IoMT devices via the AMQP 1.0 API of Eclipse 
Hono. Based on the received data from Eclipse Hono, Ditto 
updates the digital twins of the IoT/IoMT devices. In 
addition, Eclipse Ditto provides fully-fledged, authorization 
aware APIs (i.e., REST, WebSocket) so that consumer 
applications can easily interact with the physical IoT/IoMT 
devices and all aspects around them via their digital twins in 
Eclipse Ditto. The advantages of Eclipse Ditto are the 
following [25]:  

 Device as a Service: Ditto allows to handle a “thing” 
as another web service via its digital twin. In 
essence, an IoT device is abstracted into a digital 
twin and the interaction with the physical IoT device 
is performed through the digital twin API. 

 Access control enforcement: It is possible to 
authorize each API call on a digital twin. Thus, an 
appropriate resource-based access check can be 
applied and this, in turn, can ensure that specific 
users are able to only see/modify specific parts of a 
digital twin. 

3) InfluxDB 
After setting up Hono and Ditto, we added the InfluxDB 

component to the IoT/IoMT server in order to store the 
information of the digital twins in Ditto. InfluxDB [26] is a 
component implementing a time-series database and an 
InfluxDB instance is deployed in Kubernetes [24] in the 
IoT/IoMT Server. By utilizing Eclispe Ditto’s API, a custom 
container called “bridge” is deployed to collect the data 
related to the digital twins from Eclipse Ditto and store them 
properly in the InfluxDB instance. 

4) Grafana 
The next step was to add Grafana [27] to the IoT/IoMT 

Server. Grafana is a multi-platform open source analytics and 
interactive visualization web application and is capable of 
enhancing the IoT/IoMT Server with visualization and 

dashboarding capabilities. The deployed Grafana instance 
was configured so that data of the InfluxDB instance can be 
visualized. 

D. Kali Linux Server 

Kali Linux is a penetration testing tool that is available 
from the website in [28] and is considered as a standard tool 
used in the industry for penetration testing purposes. In 
particular, Kali Linux is an open-source, Debian-based Linux 
distribution aimed at advanced Penetration Testing and 
Security Auditing, and it contains several hundred tools 
targeted towards various information security tasks, such as 
Penetration Testing, Security Research, Computer Forensics 
and Reverse Engineering, Vulnerability Management and 
Red Team Testing [29]. Besides, Kali Linux is a solution 
capable of targeting multiple different platforms, and is 
accessible and freely available to information security 
professionals and hobbyists [29]. 

Furthermore, Kali Linux provides support for several 
wireless devices, and is capable of running properly on 
different hardware. In addition, to achieve its purposes, Kali 
Linux utilizes a custom kernel that is always kept updated for 
injection vulnerabilities. In our testbed, Kali Linux is set up 
on the Kali Linux Server, as shown in Fig. 1, whose purpose 
is to launch specific attacks (i.e., scanning attack and Denial 
of Service attack) on the different components of the 
IoT/IoMT security testbed (i.e., IoT/IoMT Server, Gateway, 
and devices). Based on the launched attacks, it will be 
possible to evaluate the performance of AIDSs deployed in 
the future.  

III. DEMONSTRATIONS OF THE IOT/IOMT SECURITY TESTBED 

After setting up of the proposed testbed, we performed 
two tests in order to verify: a) the proper operation of the 
different components of the testbed related to the sensor data 
flow, as well as b) the proper operation of the Kali Linux 
server by implementing two types of attacks (i.e., scanning 
attack and Denial of Service attack) against the IoT/ΙοΜΤ 
server. The implemented attacks will also allow the 
evaluation of future proposed AIDSs when they are deployed 
on the testbed.  

A. Demonstration of the Sensor Data Flow 

The first test relates to the verification of the normal 
operation of the testbed components (i.e., IoT/IoMT Server, 
IoT/IoMT Gateway, and IoT/IoMT devices). A demo 
IoT/IoMT Sensor was registered in Eclipse Hono and a 
corresponding digital twin was setup in Eclipse Ditto. 
Furthermore, we executed our python scripts in the 
IoT/IoMT device (i.e., Raspberry Pi 4 device) and the 
IoT/IoMT Gateway (i.e., another Raspberry Pi 4 device). 
Thus, telemetry data regarding two measurements (i.e., 
temperature, humidity) were randomly generated in the 
IoT/IoMT device every 1 second for 10 minutes, and through 
the IoT/IoMT Gateway, these data were sent to Eclipse 
Hono’s HTTP adapter. The generated temperature values 
were set to be in the [20, 30] range, while the generated 
humidity values were set to be in the [5, 15] range. 
Afterwards, the sensor data were collected from the digital 
twin in Eclipse Ditto, stored in the InfluxDB instance and 
then visualized in Grafana as shown in Fig. 3. 

 



B. Demonstration of Attacks on the IoT/IoMT Server 

The second test relates to the verification of the proper 
operation of the Kali Linux server [28] to launch attacks 
against the IoT/ΙοΜΤ server. This was achieved by i) 
implementing a Scanning attack and a Denial of Service 
(DoS) attack against the IoT/ΙοΜΤ server, as shown in Fig. 
4, with the use of the Kali Linux server, and ii) detecting 
both attacks with the use of the Suricata IDS [30] that was 
set up on the IoT/ΙοΜΤ server.  

The Suricata IDS is an open source and publicly 
available signature-based IDS that was installed and 
configured to monitor the API endpoints of Hono and Ditto. 
In addition, we used a custom container called “suri_bridge” 
that was deployed to collect the alert logs of Suricata IDS 
and store them properly in the InfluxDB instance. By storing 
the alert logs in the InfluxDB instance, we were able to use 
Grafana in order to visualize the alert logs. 

Fig. 5 and Fig. 6 depict the command used in Kali Linux 
to perform the Scanning attack and the corresponding alert 
logs of Suricata in Grafana, respectively. Moreover, Fig. 7 
and Fig. 8 depict the command used in Kali Linux to perform 
the DoS attack and the corresponding alert logs of Suricata in 
Grafana, respectively. 

 

Fig. 4. Usage of Kali Linux on the Adversary VM to launch attacks against 

the IoT/ΙοΜΤ Server. 

 

 

Fig. 5. Kali command to perform the scanning attack on the IoT/IoMT 

Server. 
 

 

Fig. 6. Suricata alert logs visualized in Grafana during the Scanning attack 

on the IoT/IoMT Server. 
 

 

Fig. 7. Kali command to perform the DoS attack on the IoT/IoMT Server. 

 

 

Fig. 8. Suricata alert logs visualized in Grafana during the DoS attack on 

the IoT/IoMT Server. 

 

IV. CONCLUSION 

In this paper, we presented the development process of a 
functional IoT/IoMT security testbed for evaluating AIDSs 
such as the one we proposed in [16] and [17]. In particular, 
we described the different components of the developed 
testbed as well as the role and functionality of each 
component. Besides, we intend this work to serve as a 
guidance for other researchers or engineers who aim to 
develop specific IoT/IoMT security testbeds for evaluating 
their own AIDSs under different types of IoT attacks. As 

 

Fig. 3. Randomly generated temperature and humidity values from IoT/IoMT device visualized in Grafana. 



future work, we plan to use the developed IoT/IoMT security 
testbed in order to test and evaluate our proposed AIDS in 
[16]. In addition, we aim to integrate more resources-
constrained IoT devices, such as Tmote Sky devices [31], on 
the testbed in order to evaluate the energy efficiency of our 
proposed AIDS [16]. 
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