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Abstract—The increasing concern for identity confidential-
ity in the Smart City scenario has fostered research on
privacy-preserving authentication based on pseudonymization.
Pseudonym systems enable citizens to generate pseudo-identities
and establish unlinkable anonymous accounts in cloud service
providers. The citizen’s identity is concealed, and his/her different
anonymous accounts cannot be linked to each other. Unfortu-
nately, current pseudonym systems require a trusted certification
authority (CA) to issue the cryptographic components (e.g.
credentials, secret keys, or pseudonyms) to citizens. This CA,
generally a Smart City governmental entity, has the capability to
grant or revoke privacy rights at will, hence posing a serious
threat in case of corruption. Additionally, if the pseudonym
system enables de-anonymization of misusers, a corrupted CA
can jeopardize the citizens’ privacy. This paper presents a novel
approach to construct a pseudonym system without a trusted
issuer. The CA is emulated by a set of Smart City service
providers by means of secure multi-party computation (MPC),
which circumvents the requirement of assuming an honest CA.
The paper provides a full description of the system, which
integrates an MPC protocol and a pseudonym-based signature
scheme. The system has been implemented and tested.

I. INTRODUCTION

The Smart City paradigm evolves from the digitization of
city management and governance processes. Urban subsystems
such as energy, water supply, lighting or traffic monitoring will
move to the cloud [1],[2],[3]. But in parallel, and supported
by the Smart City infrastructure, novel cloud-based citizen-
centric applications will also emerge, enabling the online
management of public and private services. Online applications
such as public parking management, intelligent transportation,
digital libraries, augmented reality, leisure events management
or location-based services [4],[5],[6],[7] will enrich the user
experience. Also, user-centric distributed sensing applications
[8] or eHealth [9] will be supported by the Smart City ecosys-
tem. However, citizen-centric applications will also entail a
privacy concern. Citizens are required to create user accounts
in different cloud service providers (CSPs), potentially linked
to their real identity. Thus, CSPs will be able to trace citizens’
accounts and perform user profiling, which can discourage
citizens from adopting these services [10].

In this framework, privacy-preserving authentication mech-
anisms have been proposed to support identity confiden-
tiality and prevent user profiling [11],[12],[13]. Specifically,
pseudonym systems enable users to create and maintain
long-lasting anonymous accounts by holding an unlikable

pseudo-identity (i.e. pseudonym) with each CSP [14],[15],[16].
Pseudonym systems do not pose a trade-off between users’
privacy and CSP security since it is possible to control the
users’ pseudonym generation capabilities to prevent sybil
attacks (i.e. users generating several accounts in the same
service) [17],[16],[15]. Also, some systems cater for revocation
mechanisms to enable de-anonymization of misusers [18],[19].
Unfortunately, current pseudonym systems have a common
limitation. They need a trusted certification authority (CA) to
issue the cryptographic components to users, e.g. credentials
or private keys. The CA is the only entity able to choose who
is granted privacy rights, and also responsible to enforce de-
anonymization of misusers. CSPs and citizens do not have
control over that. Thus, current systems require a leap of faith
in a CA, from both the CSPs and the users, which also adds
up to the operational cost and infrastructure complexity.

In this paper we propose a pseudonym system where the
CA is not required. The role of the CA is adopted by a
group of CSPs by means of secure multi-party computation
(MPC) [20],[21],[22],[23]. CSPs can securely generate creden-
tials for citizens and revoke misuers’ privileges in a distributive
fashion. All CSPs are required to grant credentials to users or
revoke privacy privileges, thus ensuring that no third party
can issue credentials to illegitimate users or de-anonymize
honest users. Only one CSP is required to be honest, to ensure
that no information about the users’ pseudonyms is leaked.
Additionally, a user (i.e. citizen) can self-generate an unlimited
number of unlinkable pseudonyms without contacting the dis-
tributed CA. Any CSP can individually verify the pseudonym
validity without linking pseudonyms to users’ identities. Thus,
citizens can generate long-lasting anonymous accounts using
pseudonyms, without relying on a trusted entity.

The paper is structured as follows: i) section II describes
related work; ii) section III provides the system model,
threat model and system protocols; iii) section IV contains
the preliminaries; iv) section V discusses the adaptations to
Overdrive [21], a well-known MPC protocol adopted in our
system; v) section VI details the pseudonym-based signature
scheme used in our system, a modification of our previous
scheme [15]; vi) section VII describes the distributive protocols
for credential management; vii) section VIII provides a proto-
col to expand the cloud service set; viii) section IX provides
the security analysis; ix) section X details the performance
evaluation; x) section XI caters for a detailed comparison with
similar approaches; and xi) section XII concludes this paper.



II. RELATED WORK

A. Pseudonym-based authentication systems

Pseudonym-based systems enable users to create long
lasting anonymous sessions with CSPs. A user can create an
account linked to a pseudonym and access that account at any
time by proving the possession of a secret value or credential
associated with the pseudonym. There are several primitives
that can be leveraged to implement a pseudonym-based system.
In some scenarios, some basic and practical techniques can
be applied [24], namely random number generators, counters,
authentication codes or symmetric key encryption. For more
complex scenarios, like the Smart City ecosystem previously
described, more advanced techniques are recommended, such
as: i) anonymous credential systems; ii) group/ring signature
schemes; and iii) public-key or identity-based cryptosystems.

1) public-key and identity-based cryptosystems: A Pubic
Key-based solution for pseudonymity has been proposed in
scenarios that require low latency, e.g. vehicular networks
(included in current standard for VANETs [25]). It is also
simpler when it comes to implementing revocation mecha-
nisms. Basically, it consists on granting users a batch of public
key certificates representing their pseudonyms [26],[27],[28].
Pseudonym traceability is avoided by refreshing public keys
periodically [29], [30]. However, this approach requires a CA
to generate and distribute, and periodically renew, a large
number of public key certificates. These certificates must also
be transmitted together with the signed messages. Identity-
based cryptography (IBC) [31] can be adopted following the
same approach as public key certificates. IBC considers the
user’s identity as the public key, hence users can sign mes-
sages, whose signature can be verified using the corresponding
identities. However, if the identity of the user is replaced
by a pseudonym, then the user can sign messages with that
pseudonym [32]. In this scenario, conditional privacy (i.e.
de-anonymization in case of misbehavior) is still possible
when the trusted CA issues both the secret keys and the
pseudonyms [33]. Similarly to the previous solutions, a trusted
CA is still a requirement since a corrupted CA can trace or
impersonate users.

2) anonymous credential systems: Anonymous credential
(AC) systems [34][35],[36] are normally composed of two
processes: an issuing process and a showing process. The
former consists of a blind signature from a Certification
Authority (CA) on a user’s committed value, which composes
the user’s credential. The latter is a mechanism enabling the
credential holder to prove, in zero-knowledge, the possession
of such a credential. ACs cater for constructions that enable
pseudonymity in different ways. Pseudonyms can represent
long-lasting relationships between the user and different or-
ganizations [37], or be constructed in the form of short-lived
tokens that can be optionally linkable (i.e. enabling both long
lasting or short anonymous sessions) [17],[19]. Also, revoca-
tion mechanisms can be implemented in AC systems [38],
but without de-anonymization; i.e., revoked pseudonyms get
rejected during the showing process without identifying the
user. Some systems adopt homomorphic encryption instead
of a blind signature scheme in the credential issuing pro-
cess [14],[15], and cater for constructions that enable anony-
mous, yet auditable, centralized pseudonym management (the

users can track how their pseudonyms are generated and linked
by service providers).

There are efficient implementations, such as IDEMIX [39]
or U-Prove [40] from IBM and Microsoft respectively. How-
ever, almost all systems based on digital anonymous creden-
tials require authorities, either centralized or federated (i.e. one
authority or several authorities issuing credential components
in the form of attributes). Revocation is also managed by
these authorities independently. Hence, even if credentials (or
attributes) are issued anonymously (thus credential holders’
identity is not jeopardized), the credential generation process
and the revocation can be triggered illicitly by dishonest
authorities. It is worth mentioning that there are constructions
with a fully decentralized credential generation [41]. This
approach leverages a distributed ledger. Users can directly
create their own credentials. The issuing process involves
the user including a commitment in an accumulated value
placed in the public ledger. Then, during the showing process
users can prove possession of a valid credential linked to
the accumulated value. This approach however cannot be
applied in the Smart City scenario since the citizens themselves
should create their own credentials and verify each credential
issuing process. Generally, the main advantage of ACs over
other techniques is the impossibility for corrupted CAs to de-
annonymize users. However, this is also their main limitation
in the Smart City scenario, since it impedes de-anonymization
of misusers.

3) group signature schemes: Group signature (GS)
schemes, similar to digital anonymous credentials, allow users
to remain unidentifiable under the anonymity set formed by the
group members. Users are granted a private key that allows
them to generate signatures on the group’s behalf [42],[34].
The main advantage of GS schemes over AC systems is the
possibility to de-anonymize misusers (i.e., dishonest users).
AC systems can revoke credentials (e.g. by including them in
a revocation list) but cannot de-anonymize misusers. However,
this also poses a higher requirement of trust in the CA side.
Anonymity revocation can come in two flavours. Some systems
include the user’s identity encrypted in the signature, which
can be decrypted by the authority in case of misbehaviour.
Others require the CA to check membership of a signature
with respect to all stored credentials. The first approach caters
for fast revocation but requires longer signatures, whereas
the second approach enables shorter signatures at the cost of
increasing the complexity of the revocation mechanism.

GS-based systems can integrate pseudonyms, they are
embedded as part of the signature verification key [43],[44].
Although frequently these schemes only allow one pseudonym
at a time, and the pseudonym change happens in a time-slot
basis, some schemes allow unlimited number of pseudonyms
per user [16]. Unlimited pseudonymity improves the system
scalability since users need only one credential to access
numerous services with different pseudo-identities. However,
unlimited pseudonymity also allows a user to access the
same service with different pseudo-identities, which may be
deleterious in some scenarios, i.e. a sybil attack. Other works
propose pseudonym-based signature schemes with indexed
pseudonyms as a manner to control the users’ pseudonym self-
generation capabilities [15],[45]. In this paper, we adopt our
proposed solution in [15], since it supports de-anonymization



of misusers by the CA and pseudonym self-generation con-
trolled by verifiers (i.e. the CSPs), hence it is accountable,
scalable and prevents sybil attacks. This solution still requires
a trusted CA, but we eliminate this requirement by means of
MPC.

4) Distributed GS and ACs: Extending previous literature
on ACs and GS, it is worth highlighting the latest research
on distributed versions of group signatures DGS [46][47]
and anonymous credentials DACs [48]. These are the most
similar works to our proposed system in terms of functionality,
since they cater for distributed credential issuance, and in
the case of [46][47] also distributed anonymity revocation.
Although these works do not aim at providing pseudonym-
based authentication, they could be potentially extended to
fulfil that aim. Hence, we dedicate a specific section (Sec.
XI) to describe the differences with respect to our proposed
system.

B. Privacy-preserving authentication in Smart Cities

Privacy-preserving authentication (PPA) constitutes a
promising approach to provide authentication, enhanced with
privacy preservation features [49],[10]. However, the majority
of existing PPA protocols for Smart Cities in literature focus
on anonymity against external adversaries, i.e. they cater for
solutions that protect the user identity from eavesdroppers
while ensuring identification from service providers.

The authors, in [50], presented a biometrics-based authen-
tication scheme for multi-server environment, using elliptic
curve cryptography (ECC), to address the weaknesses in [51]
and [52] at the cost of increasing communication and compu-
tational cost slightly. However, the authors in [53] analyzed
the authentication scheme proposed in [50] and demonstrated
that it is vulnerable to a known session-specific temporary
information attack and impersonation attack. Nevertheless,
both schemes in [50] and [53] cannot be considered as
suitable for mobile services as they require a Registration
Center to be constantly online to execute mutual authentication
[49]. Therefore, the authors in [12] presented a PPA scheme
for distributed mobile cloud computing services, without the
need for an online Registration Center. Specifically, their
scheme requires only a single private key. Nonetheless, in
[13] authors showed that it cannot resist the service provider
impersonation attack and thus, an adversary can impersonate
the service provider to the user, i.e. it presents flaws for
mutual-authentication. To solve these issues, and also to reduce
communication costs, authors in [13] proposed a new privacy-
aware authentication scheme using an identity-based signature
scheme. Finally, Wu et al., in [54], proposed a new identity-
based anonymous authentication protocol, based on two party
computation, designed to provide both secure key agreement
and key protection for mobile authentication, which yields
better security and efficiency for mobile Internet environment.

As previously mentioned, previous schemes support user
anonymity and user untraceability against external adver-
saries, but the user gets fully identified and authenticated
towards the service provider. Similarly, our previous works that
embed pseudonymity into OAuth2.0 protocol flow [55],[56]
aim at providing identity privacy against eavesdroppers and
not against service providers. Real implementations enabling

privacy against service providers, in the context of smart
cities, could be constructed with the technologies described in
previous section (sec. II-A), such as [57] and [15]. However,
these solutions require trust anchors, i.e. the presence of a CA.

In this context, it is worth highlighting recent efforts on
decentralized identification [58],[59], which aim to provide an
ecosystem where users can obtain credentials from a decen-
tralized community of issuers without relying on trust anchors.
Some works propose MPC to prevent key escrows [60] or to
enable distributive credential issuance [61]. The system in [61]
supports privacy-preserving authentication, it provides a rich
set of features including sybil-resistance (pseudonym genera-
tion is controlled by the committee), accountability (enables re-
vocation of credentials and de-anonymization of misusers), and
privacy (credential and pseudonym issuance is anonymous).
Also, it supports authentication of user attributes. However,
the system does not provide pseudonym unlinkability since
any member of the issuing committee can link pseudonyms
to the same credential holder. This is because the system is
designed for a scenario where the committee members are
assumed honest. Also, each pseudonym is generated by the
committee through an MPC protocol. This is not suitable for
the Smart City scenario described, since: i) CSPs acting as
issuers are also verifiers, hence CSPs can link pseudonyms
to the same credential and effectively trace anonymous users;
and ii) each pseudonym must be generated through a complex
MPC protocol (involving fuzzy matching [62],[63]), hence it
is not scalable in a Smart City scenario where users require
many pseudonyms or periodic pseudonym switching.

III. SYSTEM MODEL AND THREAT MODEL

This section defines the different entities present in the
system, the trust model and the algorithms and protocols
executed by the different entities.

A. Entities and Functionalities

The proposed privacy-preserving authentication system,
depicted in Fig. 1, considers the following Smart City entities
with their respective functionality:

• User: a citizen provided with a valid credential that
allows himself to: i) self-generate unlimited number
of unlinkable pseudonyms. Each pseudonym is linked
to a public index value and is unique for that index;
ii) sign any number of arbitrary messages using the
credential and any valid pseudonym. The user can gen-
erate or access an anonymous account by presenting
a valid signature and pseudonym.

• Verifier: an Authentication Server (AS) on the CSP
side. It is responsible for checking the validity of
signatures and pseudonyms.

• Emulated CA (ECA): a CA emulated by a set of
CSPs by means of MPC. It is in charge of: i) gen-
erating the verification keys of the signature scheme
ii) issuing credentials to registered users (one creden-
tial per user); and ii) revoking the privacy rights of
misusers, this involves: a) retrieving the real identity;
b) including one or several pseudonyms of a revoked
user in a revocation list.



Fig. 1. System model for the proposed distributed credential management scenario. The CSP in the verifier side can also be part of the Smart City Cloud
Service Committee, it has been located outside intentionally for the sake of clarify.

• CSP: Is a cloud service provider for a specific smart
city service. It is equipped with a verifier and it can
be part of the ECA. Users with valid pseudonyms can
create anonymous accounts in the CSP. The CSP must
publish a unique service index which is a numerical
value used to construct the pseudonyms. If the ser-
vice allows pseudonym switching, then the CSP can
publish several indexes (e.g. crowdsensing [15]).

ECA brings significant benefits to Smart Cities as it is
the key component for a more scalable privacy-preserving
authentication approach by integrating a set of different CSPs,
under the Smart City governance, to provide different Smart
City services to registered citizens. Therefore, ECA addresses
the scalability challenge of having one independent privacy-
preserving authentication system for each Smart City service
in order to enable identity confidentiality for citizens.

B. Threat Model

The Users, are considered dishonest and can perform
several misbehaving actions. They may try to:

• Generate more than one pseudonym per specific ser-
vice, i.e., the user may try to access services anony-
mously pretending to be several citizens, i.e. perform
a sybil attack (USER 3 in Fig. 2).

• Use their anonymous state to misbehave and break
the terms and conditions of the service. This is only
effective if the anonymous state cannot be revoked by
the service provider.

The CSPs, acting as verifiers and also participating in the
ECA, are considered dishonest. CSPs may try to:

• Link pseudonyms to users’ identities to effectively de-
anonymize honest users (attack on USER 1 by CSPs
1 to 5 in Fig. 2).

• Link several pseudonyms to the same credential, i.e.
to link pseudonyms of the same anonymous user in
different services (attack on USER 1 by CSPs 1 to 5
in Fig. 2). This can be used to profile user activities
and infer his/her identity.

• Extract the credential of the user. This will enable the
CSP to trace or impersonate the user (attack on USER
1 by CSPs 1 to 5 in Fig. 2).

• Generate credentials for illegitimate users. This will
enable a CSP to collude with rogue users to ille-
gitimately grant them access to other cloud services
(USER 2 in collusion with CSPs 1 to 5 in Fig. 2).

It is worth highlighting that CSPs can have both roles
simultaneously: i) be part of the ECA; and ii) adopt the role
of verifier. For completeness, in our threat model and security
analysis (sec. IX) we consider a CSP with both roles. However,
in a Smart City scenario a reduced number of CSPs could
conform the ECA. This would imply that any specific CSP
should trust at least one CSP conforming the ECA. The threat
model is summarized in Fig. 2.

C. Protocols and Algorithms

This section describes the algorithms and protocols of the
proposed pseudonym-based system with distributed credential
management. The Client algorithms enable users to generate
pseudonyms and pseudonym-based signatures, which can be
used to generate anonymous accounts in CSPs. The Verifier
algorithms enable CSPs to validate pseudonyms and signatures
sent by users. The CA protocols enable the CSPs to generate
credentials to users and de-anonymize misusers. The values are
tagged as public value (meaning the value can be disclosed)
and private value (the value must be kept secret by its holder).
Values that are secret shared, i.e. represented with [[]] are
inherently private.



Fig. 2. Threat model. Note that CSPs can adopt both roles: i) verifier and ii) committee member. The figure separates both roles for the sake of clarity. The
threat model considers that all committee members can be dishonest except one.

Client Algorithms:

• PseuGen: It takes as input the credential cred (private
value) and an index idx (public value). The idx is
published by a CSP. The output is a pseudonym pseu
(public value) and a secret µ′ (private value).

• Sign: It takes as input an arbitrary message m (public
value), a pseudonym pseu, the credential cred, the
secret value µ′ (private value), and the idx value as
input. The output is the signature σ (public value),
which can be sent to a CSP to create an anonymous
account or access an account previously created.

Verifier Algorithms:

• SignCheck: It takes as input the signature σ, the mes-
sage m, the pseudonym pseu and the index idx. The
output is ”valid” if the pseudonym and the signature
were generated with a valid credential and with the
correct index idx.

Emulated CA Protocols:

The following protocols are performed distributively by a
set of CSPs to emulate the behaviour of the CA. The prefix
”MPC” denotes that the protocol is performed by means of
MPC by a set of CSPs in a distributive fashion:

• MPC KeyGen: All CSPs take as input a security
parameter k and a set of public parameters PP . The
output is a public key W . Each party gets a secret
share of the master secret key s, denoted as [[s]].

• MPC CreGen: It takes as input the secret shares
of [[s]] from all parties. The user gets a credential
cred composed of two values (µ, Su). All CSPs get
shares of a random mask [[r]], shares of the credential
value µ, i.e. [[µ]]. All CSPs also get the unique tag
value tag (public value) identifying the credential
generation process. Additionally, the CSPs will also
learn the identity of the user, ID, which is stored
in a database together with the computed values, i.e.
(ID,tag,[[µ]],[[r]]).

• MPC Revoke: It is an iterative protocol. Each itera-
tion takes as input the revoked pseudonym pseu, and a

tuple (ID,tag,[[µ]],[[r]]). The output in each iteration
is a negative or positive match. In each iteration, the
protocol takes a different tuple as input, but keeps the
same pseudonym. It executes until a positive match
is found. Optionally, the MPC Revoke protocol can
also output pseudonyms, different from the revoked
pseudonym pseu, but associated to the same tuple
(ID,tag,[[µ]],[[r]]) and hence to the same user.

IV. PRELIMINARIES

A. Bilinear Maps

Let G1, G2 and GT be three cyclic groups of prime order r,
where the elliptic curve discrete logarithm problem (ECDLP)
is hard. Let κ be a security parameter that defines the number
of bits of r. Then, e is a bilinear map [31] in the groups
(G1,G2,GT ), e : G1 ×G2 → GT , if it satisfies:

• Bilinearity: ∀α,β ∈ Zr, G ∈ G1 and H ∈ G2, it
holds that e(αG,βH) = e(G,H)αβ

• No-degeneracy: There is at least two elements G, H
such that e(G,H) ∕= 1GT

• Complexity: It is possible to compute efficiently the
bilinear map e

B. k-CAA and (n,k)-CAA Problems

Let G be a cyclic group of prime order, the k-traitors
Collusion Attack Algorithm (k-CAA) [64], is defined as: given
the set

󰀓
Sa1 = 1

x+a1
P, . . . , Sak = 1

x+ak
P
󰀔

compute a value
Sau = 1

x+au
P different from the previous set of values. It

is proven [64] that the k-CAA is only solvable if the k-weak
Diffie-Hellman Algorithm (k-wDHA) exists. The k-wDHA is
an algorithm that is able to compute 1

xP from k+1 values of the
form P, xP, x2P, . . . , xkP . It is also known that 1−wDHA is
equivalent to DHA, and that 1−wDHA implies k−wDHA
for any value k > 1 [64].

In [16],[15] the k-CAA problem is extended to con-
sider n examples (n, k) − CAA. This implies that, given
a symmetric pairing e : G × G → GT , the set󰀓
Sa1 = 1

x+a1
P, . . . , Sak = 1

x+ak
P
󰀔

, and n values Wi =



xPi for some public Pi i ∈ [1, n], and the set󰀓
Sa1 = 1

x+a1
P, . . . , Sak = 1

x+ak
P
󰀔

, a value Sau = 1
x+au

P

is computed that is different from the previous set of values
such that e(P, P ) = e(aPi + Wi, Sau). In our proposed
signature scheme, we limit n to 1, i.e. (1, k) − CAA, and
consider an asymmetric pairing. Note that the only difference
is that there is only one W = sP ∈ G1, whereas Sau ∈ G2.
This does not invalidate the security considerations proposed
in [64],[16],[15].

C. Commitment Schemes

A commitment scheme, Πcommit, allows an entity to
commit to a value while keeping it secret. After publishing the
commitment, the entity can prove that it has the secret value.
Two properties must be fulfilled: the hiding property and the
binding property. The former denotes that the commitment
must reveal no information about the committed value. The
latter must reveal that it is impossible for the committer to
open the commitment with a different value than the one used
to obtain the commitment. In this system, we require a bit
commitment scheme:

• Bit commitment Πcommit,b(x): given a hash function
H() and a secret value x, generate random bit string
R and compute Πcommit,b(x) = H(x|R).

D. MPC-Overdrive Protocol

An MPC protocol allows a set of entities to calculate any
function over private inputs, i.e. no information about the
inputs is disclosed except for what can be inferred from the
output. Overdrive [21],[65] is a full-threshold MPC protocol,
where all parties are required to participate in all secure
computations. If only one party is honest, information leaks
are prevented. Any party can input a value x, which is secret
shared among all participants and denoted as [[x]]. Secret
shared values can be linearly combined and multiplied. For
each secret shared value [[x]], each party Pi holds a tuple
(x(i),m(x)(i)), where x(i) is the secret share and m(x)(i)

is the MAC share. The relations x =
󰁓n

i=1 x
(i) and x∆ =󰁓n

i=1 m(x)(i) hold, where n is the number of parties and ∆
is the MAC key. The key ∆ is not known by any party, but all
parties have a MAC key share δ(i) such that

󰁓n
i=1 δ

(i) = ∆.
The set of Overdrive’s subprotocols is depicted below:

• Πinput(x): called by a party Pj and accepted by all
other parties Pi, i ∕= j, the value x is secret shared
amongst all parties, i.e. [[x]]

• Πlcomb([[x1]],. . . ,[[xl]], c1,. . . , cl,cl+1): called by all
parties, and all parties obtain a secret shared value
[[x]] s.t. x =

󰁓l
i=1 cixi + cl+1

• Πmult([[x1]],[[x2]]): called by all parties, and all par-
ties obtain a secret shared value [[x]] s.t. x = x1·x2

• Πopen([[x]]): called by all parties, where each party
reveals its secret share x(i) to all other parties. Hence,
the secret can be reconstructed as x =

󰁓n
i=1 x

(i). The
validity of the opened value can be verified.

All secret shared values are in a prime field Fp. No
information is leaked about the secret shared values during

the execution of any subprotocol Πinput, Πlcomb or Πmult.
Only the Πopen([[x]]) discloses information, since it is used to
reveal the value x. It is worth detailing how the Πopen([[x]])
protocol is implemented, since in this paper we need to extend
this protocol with new functionalities to work over elliptic
curve points. Precisely, to work over elliptic curve points, our
construction requires that the prime field Fp is Zr, where r is
the prime order of the cyclic groups defined in sec. IV-A. The
Πopen protocol is described in Fig. 3.

Πopen([[x]]): given a secret shared value [[x]], reveal x
and verify its correctness. The n parties, with value shares
(x(1), m(x)(1)). . . (x(n), m(x)(n)), and MAC key shares
δ1 . . . δn perform:

- each party Pi reveals x(i)

- all parties get x =
󰁓n

i=1 x
(i)

- each party Pi gets ψi = m(x)(i) − δ(i)x
- each party Pi commits Πcommit,b(ψi)
- each party Pi opens the commitment to reveal ψi

- all parties verify that
󰁓n

i=1 ψi = 0

Output: If the last verification does not hold, the parties
abort. Otherwise the value x is adopted as a valid opening
of the secret shared [[x]].

Fig. 3. Protocol Πopen

E. MPC-Overdrive Overhead

Given the interactive nature of MPC protocols, it has been
observed that communications are the dominant factor i.e.,
Araki et al, refer to it as their bottleneck [66]. Indeed, the
authors show how in even highly optimized protocols targeting
the reduction of the communication cost, network latency can
be up to 40% of the overall cost in high throughput networks.
We note that in the case of SPDZ (online phase), the CPU
and associated costs are negligible when compared to the
communication latency [67]. Therefore, the overhead can be
mainly measured in terms of communication rounds and the
volume of data exchanged.

• Rounds: the number of times parties (i.e. CSPs) need
to send information to each other. Rounds are bound
by the ping time and the volume of data exchanged.

• Volume: is defined by the number of elements ex-
changed in a single round.

In multiparty protocols, such as the members of the SPDZ
family, both items are affected by non-linearities. This is, any
addition or subtraction does not add communication rounds,
but multiplications and openings do. Hence, we detail the
complexity of our protocols in these terms in section X-A.

Various authors have compared adversarial setups, con-
structions and frameworks for MPC, including SPDZ and
SCALE - MAMBA [68], [69]. To the best of our knowledge,
protocols on the SPDZ family are the fastest protocols to
offer active security and dishonest majorities for arithmetic
and arbitrary circuits. Table IV-E compares the protocols that
have an open source implementation and are actively secure.



Protocol Full Threshold Arithmetic Circ. Aribitrary Circ.
SPDZ [21] 󰃀 󰃀 󰃀
KRSW18 [70] - 󰃀 󰃀
HSS17 [71] 󰃀 - 󰃀
KRSW18 [70] - 󰃀 󰃀
TurboSPDZ [72] 󰃀 󰃀 -

TABLE I. ACTIVELY SECURE MPC PROTOCOLS WITH OPEN SOURCE

V. EXTENSION ON OVERDRIVE

As described in sec. IV-D, Overdrive caters for an Πopen

subprotocol to reveal any secret shared value. However, our
system requires the opening of a secret shared value as the
logarithm of an elliptic curve point in a cyclic group G.
Hence, we extend the Overdrive protocol with the ΠopenEC

subprotocol, described in Fig. 4. In such subprotocol, for a
secret share [[x]], the parties disclose a point W = xH where
H is a public generator in a subgroup of EC points G, with
prime order r. Note that this is possible since x ∈ Zr. This
protocol follows a similar flow as Πopen, and its security is
proven in sec. IX-C.

ΠopenEC([[x]], H): given a secret shared value [[x]]
and a generator H , reveal the EC point xH and ver-
ify its correctness. The n parties, with value shares
(x(1),m(x)(1)). . . (x(n),m(x)(n)), and MAC key shares
δ1 . . . δn, perform:

- each party Pi reveals Q(i) = x(i)H
- all parties get Q =

󰁓n
i=1 Q

(i)

- each party Pi gets Ψi = m(x)(i)H − δ(i)Q
- each party Pi commits Πcommit,b(Ψi)
- each party Pi opens the commitment to reveal Ψi

- all parties verify that
󰁓n

i=1 Ψi = 0

Output: If the last verification does not hold, the parties
abort. Otherwise the value Q is adopted as a valid opening
of the secret shared [[x]]. The value x is not revealed.

Fig. 4. Protocol ΠopenEC

VI. PSEUDONYM-BASED SIGNATURE SCHEME

This section describes the pseudonym-based signature
scheme, composed of the KeyGen, CredGen, and Revoke
algorithms. The scheme described in this section is a version of
our previous work in [15], but adopting an asymmetric setting
(specifically a BLS12-381 curve). Later sec. VII-B describes
how to perform some of these algorithms in a cooperative
fashion by means of MPC. The correctness and security of
this asymmetric version is proven in sec. VI-G and sec. IX.

A. KeyGen

Let G1, G2, GT and Zr be cyclic groups of prime order
r as defined in sec. IV-B, and let e be a pairing s.t. e() :
G1 × G2 → GT . Also, let H() : {0, 1}n → Zr be a hash
function. The elements G, H and g are generators such that
G1 = 〈G〉, G2 = 〈H〉 and GT = 〈g〉, where g = e(G,H).
Also, select another generator h, s.t. h = gz for an unknown
z. Then select s R←−− Zr as the secret master key, and publish
W = sG as a public key. Section VII-A describes how to
perform the KeyGen protocol distributively by means of an
MPC protocol.

B. CredGen

An entity provided with the secret master key s can
generate credentials by performing:

• select random µ
R←−− Zr

• get Su = 1
s+µH

The credential is the tuple (µ, Su) which is given to
the user through a secure channel and must be kept secret.
Several works have previously proposed credentials of this
form for pseudonym generation [73],[14],[16],[15], and we
refer interested readers to those works for a detailed description
of pseudonym generation and signing algorithms. We adopt
the approach of [15] since it enables pseudonym generation
linked to index values, and also due to its simplicity when
integrated with a MPC protocol. Section VII-B describes how
this integration is performed.

C. PseuGen

To obtain a pseudonym for an index idx, any user with a
valid credential (also to referred as credential holder) (µ, Su =

1
(µ+s)H) performs the following:

• get d = H(idx)

• set the secret value µ′ = (d−µ)
2

• obtain P̃ u = µ′Su

• obtain Pu = (µ′ + µ)G

The pseudonym is the tuple (Pu, P̃u) and the associated
secret value is µ′. The credential holder can generate unlimited
unlinkable pseudonyms by selecting other values for idx.
Two different pseudonyms cannot be generated with the same
credential for the same idx value. The index value is a public
value normally associated with the service that the user is
accessing. Hence, it can be assumed public knowledge. We
denote a pseudonym for a given index idx as (Pu, P̃u)[idx]1.

D. Sign

A credential holder can use a pseudonym (Pu, P̂u)[idx],
and the secret values Su, µ and µ′, to sign a message. Given
a message m of arbitrary length the signing algorithm is
performed as follows:

• select random factors r1, r2, r3, r4, r5, γ, δ R←−− Z∗
r

• compute TG1 = r1G

• compute t2 = [e(G,H + P̂ u)]r2

• compute auxiliary public keys ỹ1 = hγgµ+µ′
and ỹ2 =

hδgµ
′

• compute t3 = hr3g−r1 , t4 = hr4g−r2 and t5 = hr5

• compute the challenge2

c = H2(m||idx||ỹ1||ỹ2||TG1
||t2||t3||t4||t5||Pu||P̂ u)

1In the rest of this paper we omit the index and simply refer a pseudonym
as (Pu, P̃u) when the value of the index is not relevant

2where the operator || represents concatenation.



• compute responses s1 = c(µ+µ′)+r1, s2 = cµ′+r2,
s3 = −cγ + r3, s4 = −cδ + r4, s5 = −c(δ + γ) + r5

• The signature constitutes the auxiliary keys, the
challenge and the responses, i.e the tuple σ =
(c, s1, s2, s3, s4, s5, ỹ1, ỹ2)

E. SignCheck

The algorithm runs at the verifier side, and checks the
validity of a signature for a message m, with a pseudonym
(Pu, P̃u)[idx]. The verifier, provided with the public key W
(published during KeyGen, sec. VI-A), performs the following
operations:

• compute d = H(idx)

• compute T̄G1 = s1G− cPu

• compute t̄2 = [e(G,H + P̂ u)]s2/e(Pu+W, P̂u)c

• compute t̄3 = hs3g−s1 ỹc1

• compute t̄4 = hs4g−s2 ỹc2

• compute t̄5 = hs5( ỹ1ỹ2

gd )c

• check whether the equality c′ = c holds, where:
c′ = H(m||idx||ỹ1||ỹ2||T̄G1

||t̄2||t̄3||t̄4||t̄5||Pu||P̂ u)

• the algorithm outputs ”valid” if c = c′

F. Revoke

The Revoke algorithm revokes the privacy rights of a
credential holder by linking a pseudonym to its owner. Ide-
ally, a trusted authority should hold all users credentials and
iteratively perform eq. 1 until a positive match is found. Specif-
ically, a pseudonym (Pu, P̃u) can be linked to a credential
(µ, Su) by evaluating the following expression:

e(Pu+W,Su) = e(G,H + P̃ u) (1)

G. Correctness

The signature scheme is correct, if and only if, for all
signatures σ of a message m, generated by a Sign algorithm,
using a valid pseudonym and valid credential, the output of
SignCheck algorithm is always ”valid”. Although the correct-
ness for this signature construction is already given in [15],
this section caters for the correctness analysis for the case of
an asymmetric pairing.

Given a valid signature σ = (c, s1, s2, s3, s4, s5, ỹ1, ỹ2) of
a message m, with a pseudonym (Pu, P̂u), obtained from a
credential (µ, Su), with associated secret value µ′, and with a
set of public parameters (G1,GT , G,H, g, h,W ), then c = c′

holds, i.e. the following relations must hold: i) T ′
G1

= TG1 ;
ii) t2 = t′2; iii) t3 = t′3; iv) t4 = t′4; and v) t5 = t′5. These
relations always hold if the credential and pseudonyms are well
constructed:

T̄G1 = s1G− cPu =

(c(µ+ µ′) + r1)G− c(µ+ µ′)G = r1G = TG1

(2)

t̄2 =
[e(G,H + P̂ u)]s2

e(Pu+W, P̂u)c
=

[e(G,H)e(G, P̂u)]s2

e((µ+ µ′ + s)G, µ′

µ+sH)c
=

[e(G,H)e(G, P̂u)]s2

[e((µ+ s)G, µ′

µ+sH)e(µ′G, µ′

µ+sH)]c
=

[e(G,H)e(G, P̂u)]s2

[e(G,H)e(G, P̂u)]µ′c
= t2

(3)

t̄3 = hs3gs1 ỹc1 = h−cγ+r3g−c(µ+µ′)+r1(hγg(µ+µ′))c =

hr3g−r1 = t3
(4)

t̄4 = hs4gs2 ỹc2 = h−cδ+r4g−c(µ′)+r2(hδg(µ
′))c =

hr4g−r2 = t4
(5)

t̄5 = hs5 [
ỹ1ỹ2
gd

]c = h−c(δ+γ)+r5 [
hγg(µ+µ′)hδg(µ

′)

gd
]c =

hr5g(µ+2µ′−d) = hr5 = t5

(6)

Fig. 5. MPC KeyGen protocol.

VII. DISTRIBUTED CREDENTIAL MANAGEMENT

This section describes the distributive protocols
MPC KeyGen, MPC CredGen and MPC Revoke using
Overdrive (sec. IV-D) with the extensions described in sec. V.
These distributive protocols emulate their centralized version
KeyGen, CredGen, and Revoke described in sec. VI. The
following subsections detail the construction of the protocols
and also give an intuition of how they work.

A. MPC KeyGen

In the MPC KeyGen protocol, depicted in Fig. 5, n parties
P = {P1, . . . , Pn} obtain a secret shared master secret key
[[s]] and a public key W = sG. To obtain [[s]] the parties
input random values s′i. Then, with the authenticated shares
of [[s]], the parties can use the openEC extension to obtain
W = sG. Each party Pi in the set {P1, . . . , Pn} performs the
following steps:

- each party Pi selects a random s′i
$←− Zr



Fig. 6. MPC CredGen protocol.

- each party Pi calls Πinput(s
′
i)

- all parties call Πlcomb([[s
′
1]], . . . , [[s

′
n]], 1, . . . , 1) to

obtain [[s]] s.t. s =
󰁓n

i=1 s
′
i

- all parties call ΠopenEC([[s]], G) to reveal W = sG

B. MPC CredGen

In the MPC CredGen protocol, depicted in Fig. 6, n parties
P = {P1, . . . , Pn} input their share of the master secret key
[[s]], and output shares of a credential (µ, 1

(s+µ)G), for some
random µ. To give some intuition, the parties provide random
inputs to select [[µ]] and combine it with [[s]], to obtain [[µ+s]].
This value is blinded with a random mask [[r]], and revealed
with the Πopen subprotocol to obtain r(µ + s) (learnt by the
user and all parties). Then the parties disclose the shares µ(i)

and r(i)H to the user only. The user inverts r(µ + s) and
multiplies by rH to obtain the second factor of the credential.
In the whole process, the user cannot learn the master key s
because the blinding mask r is never revealed. Similarly, the
parties do not learn the credential because the values µ and
rH are revealed to the user only. It is worth noting that the
Πopen and ΠopenEC subprotocols are not called to reveal µ and
rH because their correctness is checked with eq. 7, hence the
parties can directly send their shares to the credential holder.

Each party Pi performs steps the below:

- each party Pi selects a random mask ri
$←− Zp and

random value µi
$←− Zp

- each party Pi calls Πinput(ri) and Πinput(µi)

- all parties call Πlcomb([[r1]], . . . , [[rn]], 1, . . . , 1) to get
[[r]] s.t. r =

󰁓n
i=1 ri

- all parties call Πlcomb([[µ1]], . . . , [[µn]], 1, . . . , 1) to
get [[µ]] s.t. µ =

󰁓n
i=1 µi

- all parties call Πlcomb([[µ]], [[s]], 1, 1) to get [[µ+ s]]

- all parties call Πmult([[µ+s]], [[r]]) to get [[(µ+s)· r]]
- all parties reveal their shares µ(i) to the user. The user

gets µ =
󰁓n

i=1 µ
(i)

- all parties use their share of [[r]] to obtain r(i)H ,
and send this value to the user. The user gets rH =󰁓n

i=1 r
(i)H

- all parties call Πopen([[(µ+ s)· r]]) to obtain r(µ+ s)
as the tag of the credential generation process. The
value tag = r(µ+ s) is sent to the user.

Finally, the user inverts r(µ+s) to get 1
r(µ+s) , and obtains

Su = 1
r(µ+s)rH . The credential is the tuple (µ, Su), and its

validity can be verified by evaluating whether the following
equation holds:

e(µG+W,Su) = g (7)

Before executing MPC CredGen, the user should authen-
ticate towards the CSPs and provide a real identity. Thus,
the CSP can generate a tuple (ID,tag,[[r]],[[µ]]). This tuple
is required for revocation and credential re-issuing.

C. MPC Revoke

The MPC Revoke links a pseudonym to a credential
issuing process (MPC CredGen) without disclosing the cre-
dential. Specifically, a pseudonym (Pu, P̃u) is linked to a
credential generation tuple (ID,tag,[[r]],[[µ]]). MPC Revoke
is an iterative protocol. In each iteration the parties input the
same pseudonym to be revoked (Pu, P̃u) and a different tuple
(ID,tag,[[r]],[[µ]]). The result of each iteration is a negative or
positive match. When a positive match is found, the protocol
halts and outputs the value the identity of the user (i.e. the



Fig. 7. A single iteration of the MPC Revoke protocol.

value ID in the tuple). To give some intuition, this subprotocol
performs the revocation check in eq. 1 in a blinded manner.
The parties cannot open the value rH because the tag r(µ+s)
is known by the parties, hence part of credential would be
leaked. Instead, the parties obtain a new blinding mask r′ and
output r′rH . Additionally, they also output r′(H + P̃ u) in
order to evaluate eq. 8 (blinded version of eq. 8).

Figure 7 depicts this protocol, which is also explained in
what follows:

- each party Pi selects random value r′i
$←− Zr

- each party Pi calls Πinput(r
′
i)

- all parties call Πlcomb(r
′
1, . . . , r

′
n, 1, . . . , 1) to get [[r′]]

s.t. r′ =
󰁓n

i=1 r
′
i

- all parties call Πmult([[r]], [[r
′]]) to get [[rr′]]

- all parties call ΠopenEC([[rr
′]], H) to get R′ = rr′H

- all parties call ΠopenEC([[r
′]], H + P̃ u) to get Y =

r′(H + P̃ u)

Finally, all parties can use values R′ and Y to indepen-
dently check whether a pseudonym (Pu, P̃u) was generated
with a credential associated with the tuple (ID,tag,[[r]],[[µ]])
by evaluating the following expression:

e(Pu+W,
1

(µ+ s)r
R′) = e(G, Y ) (8)

Where W is the public key obtained during MPC KeyGen.
Note that:

e(Pu+W,
1

(s+ µ)r
R′) = e

󰀕
Pu+W,

r′r

(s+ µ)r
H

󰀖
=

e((s+ µ)G,
1

(s+ µ)
H)r

′
e(G,Su)µ

′r′ =

e(G, r′H)e(G, r′P̃ u) = e(G, Y )
(9)

At the end of the revoke protocol, all parties learn the
identity of the user, i.e. the ID value, but the credential is not
disclosed. It is worth highlighting that values [[r′]] and R′ can
be obtained before the Revoke protocol is called. Hence, this
process can be pre-computed already during credential gener-
ation (MPC CredGen). Only the protocol ΠopenEC([[r

′]], H+
P̃ u) and the check in eq. 8 should be executed when revocation
is triggered, since it requires the revoked pseudonym as input.
Namely, in Fig. 7, the Overdrive execution (phase 1) and the
first OpenEC protocol in phase 2 are executed during credential
generation after completion of MPC CredGen.

Once a pseudonym has been revoked, it is possible to
revoke more pseudonyms of the same misuser without dis-
closing the credential. This enables a fine-grained revocation
capability since a misuser can be selectively excluded from
some services, while keeping privacy in the rest. Let’s assume
that a pseudonym for an index idx has been revoked, i.e. the
parties have obtained the tuple (ID,tag,[[r]],[[µ]]) associated
with a pseudonym (Pu, P̃u)[idx]. To obtain another pseudnym
(Pu, P̃u)[idx′] for which idx ∕= idx′ the parties perform the
following steps:

• all parties get d = H(idx′)

• all parties perform Πlcomb([[µ]], d,− 1
2 ,

1
2 ) to get

[[ν]] = [[d−µ
2 ]]

• all parties perform Πmult([[ν]], [[r]]) to get [[ρ]] =
[[d−µ

2 r]]



• all parties call ΠopenEC([[ρ]], H) to obtain d−µ
2 rH

• the parties invert r(s + µ) and obtain P̃ u[idx′] =
d−µ
2 r

r(s+µ)H

At the end of the execution, the parties obtain P̃ u[idx′],
which uniquely identifies the pseudonym (Pu, P̃u)[idx′], and
learns that such pseudonym belongs to the same credential
holder as (Pu, P̃u)[idx]. The misusers’ credential is not
disclosed.

VIII. MPC SET EXPANSION PROTOCOL

Let us consider an scenario where the number of parties
performing the computation needs to be increased. Let P ′ be
the expanded set of parties of size m = n + δ, such that
P ⊂ P ′. Parties in (the subset) P should be able to convert
their additive shares of a secret shared value [[x]] in P , to valid
authenticated shares in P ′ under a new secret shared MAC key
∆′. We can achieve this, without loss of generality, by means
of the protocol Πinput,exp described in this section.

Naive algorithmic solutions for this scenario, such as
resharing [[x]] (i.e. resharing both x and mac(x)) from P to
P ′, keeping the same MAC key ∆, violates our current security
model. This is because a coalition of |P ′| − δ parties could
reconstruct the value ∆ and tamper future computations (e.g.
generation of new credentials). Protocol Πinput,exp prevents
this situation by translating secret values shared by parties in
P , to values secret shared by parties in P ′ authenticated with
a new ∆′. It is worth highlighting that after expanding the set,
the parties in P would still be able to generate new credentials
or revoke credentials generated before the expansion. This
is because P has a qualified set of shares of the master
key and previously issued credentials. However, the protocol
Πinput,exp ensures that all further computations occurring after
the expansion to P ′ cannot be tampered by parties in P (e.g.
revoking credentials issued by the new set).

To give some insights, we follow the principles introduced
by [74], whereby P ′ is capable to provide some authenticated
secret randomness r to P , a ephimeral MAC key r′ and a
public MAC v = r·r′. Parties in P can then simply incorporate
(and authenticate) the shares they receive as inputs, check
the validity and correctness of r, via the MAC key r′, and
proceed to mask x, such that y = x − r. The protocol ends
by broadcasting y to P ′, allowing its m parties to remove r,
and hence obtaining authenticated shares of x. The protocol
Πinput,exp is defined below:

Parties in P ′: the expanded set of parties P ′, of size m,
act as dealer and performs the following:

- sample authenticated random inputs [[r]], [[r′]] where
r, r′ ∈ Fp

- obtain [[v]] = Πmult([[r]], [[r
′]])

- open the validation tag v = Πopen([[v]])

- every party i on P receives the reshares of [[r]] as [ri]
and the reshares of [[r′]] as [r′i] from the m parties in

P ′, such that:

[ri] =(ri1, . . . , r
i
m),

[r′i] =(r′i1 , . . . , r
′i
m).

- parties in P ′ also send v to parties in P .

Parties in P : the set of parties P compute inputs as
indicated below:

- every party i in P reconstructs a share of r and r′ as
indicated below:

ri =

m󰁛

j

rij ,

r′i =

m󰁛

j

r′ij .

such that r =
󰁓n

i ri and r′ =
󰁓n

i r
′
i

- every party i in P calls Πinput(ri) and Πinput(r
′
i)

- all parties get

[[r]] = Πlcomb([[r0]], . . . , [[rn]], 1 . . . , 1)

[[r′]] = Πlcomb([[r
′
0]], . . . , [[r

′
n]], 1 . . . , 1)

- obtain [[v]] = Πmult([[r]], [[r
′]])

- obtain [[σ]] = Πlcomp([[v]],−v)

- validates [[r]] if Πopen([[σ]]) is 0, and abort otherwise

- mask [[x]] by substracting [[r]]:

[[y]] = Πlcomb([[x]], [[r]], 1,−1)

- call Πopen([[y]]) to open and validate the masked value
y

- parties in P send y to parties in P ′.

Parties in P ′: perform the last step to obtain [[x]] under
the new MAC key ∆′:

- Parties in P ′ obtain [[x]]] by unmasking (note that
y = x− r):

[[x]] = Πlcomb([[r]], y)

If no party aborted during the protocol, then each party P ′
i

holds an authenticated share of x, now secret shared among
m participants with a new MAC key ∆′. Transferring the state
between MPC clouds presents a series of challenges when
preserving authentication, i.e. crossed authentication and state
tampering. This is the motivation behind sharing authenticated
randomness from P ′ to P . Note that there is no means through
which P can prove the correctness of r without ∆′, else parties
in P ′ could cheat, dealing invalid shares of r. Using a second
random value r′ as stated allows P to early abort, as well as,
prevents any attempt of tampering x. Once masked, y can be
validated and made public with the open subprotocol of the
Overdrive protocol.

It is worth commenting that our protocol is capable of
supporting cloud migration. Let P ′′ be the powerset (set of all



subsets) of P , then the protocol Πinput,exp, allows to transfer
shares to any P ′ regardless P ′′

i ⊂ P ′, for any i in P ′′; allowing
implementers to expand their use cases beyond what we have
described in this section. On the other hand, the adoption
of Overdrive as MPC protocol does not allow the reduction
of parties in the set, since the protocol is full threshold (i.e.
all parties are required to reconstruct secrets). However, such
feature a would be possible if we adopt an MPC protocol
based on a threshold secret sharing scheme [75],[76],[77], and
adapt our sub-protocols (MPC KeyGen, MPC CredGen, and
MPC Revoke) and extensions (ΠopenEC) accordingly.

IX. SECURITY ANALYSIS

This section provides the security analysis for the pro-
posed system. First we provide a system security analysis
addressing the potential attacks described in the threat model
(sec. III-B). Then we describe the security proofs for the
signature scheme and the ΠopenEC extension. The security
proof for the pseudonym-based signature scheme can be found
in [15]. However, we have modified the signature scheme to
be constructed over an asymmetric pairing, hence, we find
relevant to present the proof in the asymmetric setting in
sec. IX-B. The security of the MPC protocol (Overdrive) is
detailed in [21]. In that paper, the security proof (actually a
proof sketch) is in part based on the whole proof described
in [78] for the Mascot protocol (previous version of the SPDZ
protocol based on oblivious transfer). We have extended the
protocol with a new ΠopenEC subprotocol. In sec. IX-C, we
prove that using elliptic curve points in the opening does not
provide additional capabilities to a dishonest party, and hence
its security still relies on the same assumptions as the open
subprotocol from Overdrive and Mascot.

A. System Security Analysis

As described in sec III-B a rogue user may try to perform
sybil attacks (pretend to be several citizens) or use a valid
pseudonym that cannot be de-anonymized. For a sybil attack
to be possible, the user should be able to generate two different
valid pseudonyms for the same CSP index. This is proven
impossible for this signature scheme in [15]. The adoption of
an asymmetric paring does not invalidate the proof presented in
[15]. Alternatively, the user could try to obtain more than one
credential. This is avoided by performing a user authentication
process during the credential issuing. Note that for each
credential issued, the parties store the tuple (ID,tag,[[r]],[[µ]]).
The ID of the user is stored in the clear, hence a double
credential request from the same user would be detected.
Finally, to prevent de-anonymization, a misuser may try to use
a valid credential to forge a new credential not registered by the
parties. This is not possible since the scheme is unforgeable,
as proven in sec. IX-B.

Rogue CSPs can try to link pseudonyms to the same
credential, but this is only possible if the credential is known
[15]. The security of the MPC protocol ensures that no
information leaks are possible if at least one party is honest.
The MPC protocol is proven secure in [21] and the proposed
protocol extension is proven secure in sec. IX-C. Thus, rogue
CSPs with credential shares cannot reconstruct credentials or
obtain any valuable information about them. This also prevents
impersonation attacks. Similarly, the master key cannot be

extracted if only one CSP is honest. Thus new credentials
cannot be generated by a subset of rogue CSPs holding
master key shares. Following the same reasoning, the de-
anonymization process cannot be triggered by a subset of rogue
CSPs.

B. Pseudonym-based Signature Security Analysis

The extended version of this proof for a symmetric setting
can be found in [15]. In this section, we present a brief version
for the asymmetric setting. Due to space constraints, we omit
the details of the game description involving the queries from
the adversary A (representing a user) to the challenger C
(representing the credential issuer provided with a master key)
described in [15]. This proof shows that if a user is able to
forge a signature, then it is also able to solve the K-CAA
problem, which is considered intractable.

Let’s assume that the user (A) presents a signature
(c, s1, s2, s3, s4, s5, ỹ1, ỹ2) that is valid for a pseudonym
(Pu, P̂u) obtained with a credential that was never generated
by the credential issuer (C). Note that the challenger C
can verify whether the presented pseudonym is linked to
a previously generated credential by evaluating the relation
e(Pu+W,Su) = e(G,H + P̂ u) (i.e. the Revoke algorithm).
If the signature is valid, then for the Forking Lemma [79]3

the adversary can output another valid signature with the same
commitments but different challenge c ∕= c′, [16]. Hence, there
is another valid signature σ′ with commitments TG1

= T ′
G1

,
t2 = t′2, t3 = t′3, t4 = t′4, t5 = t′5 and keys (ỹ1, ỹ2), but with
different challenge c ∕= c′ and responses s1 ∕= s′1, s2 ∕= s′2,
s3 ∕= s′3, s4 ∕= s′4, s5 ∕= s′5.

If this is true, then A can solve the K-CAA problem:

TG1 = T ′
G1

⇒ s1G− cPu = s′1G− c′Pu ⇒
(s1 − s′1)G = (c− c′)Pu ⇒ Pu =

(s1−s′1)
(c−c′) G

(8)

t2 = t′2 ⇒ [e(G,H)e(G,P̂u)]
s2

e(Pu+G,P̂u)
c =

[e(G,H)e(G,P̂u)]
s′2

e(Pu+W,P̂u)
c′ ⇒

e(G,H)(s2−s′2)/(c−c′) = e
󰀓
Pu− s2−s′2

c−c′ G+W, P̂u
󰀔
⇒

e
󰀓

(s1−s′1)−(s2−s′2)
c−c′ G+ sG, c−c′

s2−s2
P̂ u

󰀔
= e(G,H)

(9)

The adversary A can find a solution (a, 1
s+aH) of the

asymmetric (1,K)-CAA problem where a =
(s1−s′1)−(s2−s′2)

c−c′

and 1
s+aH = c−c′

s2−s2
P̂ u. Hence, forging a signature is equally

hard as solving the K-CAA problem in G2.

Moreover, the adversary A provided with a valid credential
should not be able to output two valid pseudonyms with the
same index. This feature is proven in [15]. We do not include
it here since the asymmetric pairing does not modify the steps
of this proof. Also, it is left to be proven that pseudonyms and
signatures are unlinkable, but such claim is straight-forward to
prove since all elements in the signature are randomized [15].

3According to the Forking lemma, if an algorithm can yield an output,
from some inputs obtained from a given distribution, and this output has
some property with non-negligible probability, then the adversary has a non
negligible probability of producing another output with the same property
provided that the inputs are chosen from the same distribution.



C. OpenEC Subpprotocol Security Analysis

In the Overdrive’s open subprotocol Πopen([[x]]), each
party Pi in a set {P1, . . . , Pn} discloses its share x(i) such that
all parties obtain x =

󰁓n
i x

(i). At this step, any dishonest party
can lie. In a second step, each party first commits the value
ψi = m(x)(i)−xδ(i), where δ(i) is the share of party Pi of an
unknown key ∆, i.e.

󰁓N
i δ(i) = ∆, and

󰁓N
i m(x)(i) = ∆x

(see sec. IV-D). Then, all parties open the commitments to
reveal ψi. The value x is accepted as a valid opening of [[x]] if
the MAC check holds, this is if

󰁓n
i ψi = 0. It is proven in [78]

that breaking the security of this check is equally hard as
extracting the key ∆ from the encrypted δ(i) shares. Although
our proof follows different steps, in this section we prove that
breaking the security of the proposed ΠopenEC subprotocol
also implies extracting ∆.

In the proposed ΠopenEC([[x]], G) subprotocol, the parties
reveal their shares as logarithms of a common generator G.
Without loss of generality and for simplicity of notation let’s
assume that only one party Pj is dishonest. All honest parties
Pi for i ∕= j reveal x(i)G whereas Pj reveals another point X ′

for which it knows the logarithm with respect to G, i.e. X ′ =
x′G. All parties obtain as the opened point

󰁓
i ∕=j x

(i)G+X ′.
Then, in the MAC check, honest parties send the value:

Ψi = m(x)(i)G− (
󰁛

i ∕=j

x(i)G+X ′)δ(i)

To succeed the MAC check, the dishonest party has to
submit a value Ψj such that

󰁓
i ∕=j(Ψi) + Ψj = 0. However,

if the dishonest party Pj is successful, then Pj can extract the
key ∆. Note that:

󰁛

i ∕=j

(Ψi) +Ψj =
󰁛

i ∕=j

󰀵

󰀷m(x)(i)G− (
󰁛

i ∕=j

(x(i)) + x′)δiG

󰀶

󰀸+Ψj

= G

󰀵

󰀷
󰁛

i ∕=j

m(x)(i) −
󰁛

i ∕=j

(x+ x̃)δi + ω

󰀶

󰀸

(10)

In eq. 10, x̃ is the shift from the correct opened value
introduced by party Pj and ω is logarithm of Ψj w.r.t. to G,
i.e. Ψj = ωG. Both vales can be considered known by Pj and
chosen at will. With some mathematical manipulation eq. 10
can be expressed as:

G

󰀵

󰀷
󰁛

i ∕=j

󰀓
m(x)(i) − xδi

󰀔
+ x̃

󰁛

i ∕=j

δi + ω

󰀶

󰀸 =

G

󰀵

󰀷
󰁛

i ∕=j

ψi +

󰀳

󰁃x̃
󰁛

i ∕=j

δ(i) + ω

󰀴

󰁄

󰀶

󰀸

(11)

It is straight forward to see that for
󰁓

i ∕=j(Ψi) + Ψj = 0

to hold, then
󰁓

i ∕=j ψi +
󰀓
x̃
󰁓

i ∕=j δ
(i)i+ ω

󰀔
= 0 must hold

as well. Also note, that for the last relation to hold then we

have that
󰀓
x̃
󰁓

i ∕=j δ
(i) + ω

󰀔
= ψj = m(x)(j)−xδ(j). We also

know, for the Forking Lemma, that if the party Pj is successful
in the MAC check then it will be also successful in another
opening with the same input x and different EC point G ∕=
G′, i.e. ΠOpenEC([[x]], G

′). Following a similar reasoning, the
dishonest party Pj could select different values x̃2 and ω2 such
that

󰀓
x̃2

󰁓
i ∕=j δ

(i) + ω2

󰀔
= ψj = m(x)(j) − xδ(j). However,

this implies that Pj can obtain ∆:

󰀳

󰁃x̃
󰁛

i ∕=j

δ(i) + ω

󰀴

󰁄 =

󰀳

󰁃x̃2

󰁛

i ∕=j

δ(i) + ω2

󰀴

󰁄 =⇒

󰁛

i ∕=j

δ(i) =
ω2 − ω

x̃− x̃2
=⇒ ∆ =

ω2 − ω

x̃− x̃2
+ δ(j)

(12)

Therefore, succeeding the MAC check subprotocol for the
adversary is equally hard as extracting ∆, thus breaking the
ΠopenEC protocol is equally hard as breaking the original
Πopen in [78].

X. PERFORMANCE EVALUATION

The distributive protocols for credential management
MPC KeyGen, MPC CredGen and MPC Revoke (sec. VII)
were implemented with Scale-Mamba framework [80], except
for the proposed extension to the Overdrive protocol (sec. V)
that was implemented with the C version of the MIRACL
Core library [81]. The signature scheme (sec. VI) was also
implemented with MIRACL Core. Specifically, we adopted the
BLS12-381 curve. In this curve, G1, G2 and GT are cyclic
groups of prime order with elements of 48, 97 and 576 bytes
respectively.

The distributive system for the emulated CA was deployed
in 5 virtualized servers connected under VLANs. Each one
has a static fixed memory allocation of 64 GB of RAM
memory and 4 cores from an Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GH chipset. In the user side, an Android application
has been developed and tested in a Xiaomi Redmi Note 9
Pro. Also, a cloud service that acts as verifier and performs
signature verifications has been implemented in a virtualized
server with 4GB of RAM and an Intel(R) Xeon(R) CPU E5-
2620 v4 @ 2.10GHz. Figure 8 shows the user interface in the
CSP acting as verifier and the Android application in the user
side.

Figure 9 shows the performance results in the user and
verifier side. The user receives the credential components and
performs: i) credential reconstruction; ii) credential validity
check; iii) pseudonym generation; and iv) message signing.
The CSP acting as verifier only performs the signature veri-
fication algorithm. The results are presented together with an
execution of the same algorithms in a 2.3 GHz 8-Core Intel
Core i9 with 16GB of RAM to provide a unified platform to
compare the complexity of the different algorithms. The results
show that the shift from a centralized credential generation
approach in [15] to the distributive version proposed in this
paper does not impact the performance in the user side. This
is reflected by the low delay of the credential reconstruction
step, which is the only step required in the user side due to



Fig. 8. Android app in the user side and user interface for pseudonym-based accounts in the verifier side.

Fig. 9. Performance (ms) for the user and verifier algorithms.

the adoption of MPC for distributed credential issuance. It is
also worth commenting that the user performs a credential
validity check, so the user can detect dishonest parties sending
wrong credential shares. The rest of the values in Figure 9
(i.e. pseudonym generation, message signing and signature
verification) are faster than the previous scheme in [15]. This
is because the distributed design does not affect the user
side algorithms. Also, the new scheme adopts an asymmetric
pairing instead of the symmetric version adopted in [15], hence
this new version is more efficient45.

The emualted CA perfoms credential generation and revo-
cation protocols by means of MPC, specifically using Over-
drive (sec IV-D) and our proposed extension (sec V). Overdrive
is an MPC protocol in the pre-processing model, thus it con-

4comparison with real values was not presented since both schemes were
implemented with different libraries MIRACL-Core (C++) and JPBC (Java )

5the scheme in [15] caters for a batch verification algorithm. Although
it is not detailed in this paper, batch verification could be adopted in this
asymmetric version

Fig. 10. Performance (s) for revocation of a credential depending on its
position in the database.

sists of two phases: i) pre-processing phase where the parties’
inputs are not yet defined and some cryptographic values are
obtained; and ii) an online phase where the parties’ inputs
are defined and the private function is evaluated. The time
complexity is mainly dominated by the pre-processing phase.
The operations performed during the online phase, which are
detailed in secs. VII-B and VII-C, are faster. Specifically,
for credential generation our setup considers batches of 5000
credentials, and it takes 2h and 21min per batch considering
pre-processing (1h and 42min) and online phase (39min)
altogether. Additionally, the database update in each CSP takes
27min (timings of pre-processing, online phase and database
update present a standard deviation of 31, 36 and 2018 seconds
respectively).

Our implementation of the revocation protocol adopts the
optimization described in sec. VII-C, i.e. the credential gen-
eration protocol precomputes some values required for revo-
cation. Thus, during revocation only an OpenEC subprotocol



ΠopenEC([[r
′]], H+P̃ u) and the check in eq. 8 are required per

iteration. MPC Revoke iterates over the stored tuples of secret-
shared credentials until a match is found. It is worth noting
that revocation time depends on the the number of users. This
dependency is shown in the the performance evaluation results
presented in Figure 10. Approximately, each credential check
takes 160ms, hence for a database with 30K users revocation
takes an average of 2500 sec6. It is worth clarifying that the
complexity of the revocation process in the centralized version
of the adopted signature scheme [15] also grows linearly
with the number of credentials. This is a common case in
previous pseudonym systems based on similar constructions
[16][82][83] and other short group signature schemes [47].

A. Complexity Analysis

Let us consider the complexity of our 3 emulated CA Pro-
tocols that require MPC. From a theoretical perspective, SPDZ
protocols require to send 2 elements to each party participating
in the computation [67]. That implies a linear growth on the
size of the CSPs. Non-sequential non-linearities can be then
grouped in single rounds. Under those considerations we say
that the number of elements exchanged is rounds · 2|CSP |.
We consider elements of up 128 bits.

• MPC KeyGen:The protocol requires 1 round to share
secret inputs [[x]], [[x′]] and 1 non-linearity. The pro-
tocol does not contain further non-linearites. A total
of one round, thus round complexity O(1).

• MPC CreGen: The protocol uses 1 round to secret
share inputs and requires 2 non-linearities that are
sequential. The round complexity of the protocol is
also constant O(1), effective 3 rounds per credential
(n).

• MPC Revoke: As before, the protocol requires 1
round to secret share inputs, but it contains only 2
non-linearity. The total number of rounds is 3, raising
again its complexity to O(1).

We refer the reader to Section X for a detailed performance
revision. As previously mentioned, communication latency
(ping time) has an important impact on overall performance
of the underlying MPC Protocol. In the case of SPDZ, and
given the limited number of rounds, ping time becomes the
dominating factor. Indeed, regardless the setup, LAN 2-3
ms. or WAN 10+ ms, the CPU operations in our protocols
remain constant [67], and the overall computation cost can be
calculated as ping time·rounds. This way we could trivially
estimate computation times on different network setups.

XI. COMPARISON WITH DACS AND DGS

Coconut [48] is the first AC system with fully distributive
credential issuance that preserves all the properties of pre-
vious centralized attribute-based AC systems, and it counts
with real implementations [84][85]. As an AC system, the
credential is composed of a blind signature of a user’s chosen
secret value. The innovative contribution in Coconut is the
blind signature generation is distributed. The authors adopt

6the performance evaluation test measures this value by placing the revoked
credential in the middle of the stored list

Pointcheval-Sanders signatures [86], but use a hash function
on a user’s committed value to ensure that all parties in the
issuing federation generate compatible signature pieces, which
can be later reconstructed into a valid credential in the user
side. To use this credential the user proves, in zero-knowledge,
that she has a signature on a secret value. The secret value
is not revealed, but the signature has to be randomized to
avoid linkability in multiple authentications. Coconut does not
consider pseudonymity. Indexed pseudonyms as implemented
in our system could be achieved with some manipulation in
the scheme construction. Namely, a verifiable pseudorandom
function, including the user’s secret and the CSP index as
inputs, could be used to generate indexed pseudonyms. The
correct construction of such pseudonym should be included in
the zero-knowledge proof used for authentication. However
this would increase the signature size. Additionally, as an
AC system, Coconut is not designed to support anonymity
revocation.

The work of Gennaro et al [46] caters for a distributed
group signature that provides both, distributed issuance and
distributed anonymity revocation. However, their proposed
scheme is based on a different paradigm than our work
that yields longer signatures. To obtain a credential the user
first publishes a value linked to her real identity, which
is distributively signed by the credential issuing federation.
During authentication, the user proves in zero knowledge
the validity of that signature. To enable revocation, the user
must attach a field with an encryption of the public value
linked to her identity, and prove in zero-knowledge the validity
of such encryption. Anonymity revocation can be triggered
by decrypting that field. The scheme adopts a distributive
decryption algorithm, hence it achieves distributive anonymity
revocation. When compared with our proposed system, the
scheme in [46] offers faster revocation, but at the cost of longer
and more complex signatures. Also, the distributive credential
issuance process involves a share conversion protocol that re-
quires several pairwise communication rounds between parties.
Hence, the communication complexity increases significantly
for large federations. Additionally, the scheme does not include
pseudonymity. Similar to Coconut, adding this feature would
increase complexity.

Unlike [46], the work in [47] achieves both distributed
credential issuance and anonymity revocation while keeping
a short signature size. The penalty with respect to [46] is
that revocation is more expensive. It requires iterating over
the transcripts of all issued credentials until finding a positive
match, which is similar to our proposed system. This is
acceptable in scenarios where revocation does not happen
often, and having short signatures is desirable. The scheme
in [47] requires a public ledger to store the transcripts of
credential issuances. Those transcripts must be included by
users that want to be issued a credential, and require a zero-
knowledge proof to be computed by the user per each party in
anonymity revocation federation. This scheme does not support
pseudonymity, but it could be included with some manipulation
in the scheme construction at the cost of increasing complexity
and signature size.

A main advantage of our proposed scheme with respect to
[47], and that also applies to [48] and [46], is that computations
can be pre-processed. In our system a credential issuance can



be performed before the user requests a credential. In the
previous systems described in this section credential issuance
requires the user’s input, hence pre-processing is not feasible.
Similarly, anonymity revocation in our system can be pre-
processed except for one communication round and two pair-
ing operations per credential, which is less expensive than the
revocation protocol in [47]. Additionally, the research works
detailed in this section do not include indexed pseudonyms in
their original constructions. Adding this feature would increase
complexity and yield longer signatures. Another significant
difference between our system and [46][47] is that our system
not only enables anonymity revocation, it also allows revoking
several specific pseudonyms of a given user with only one
signature (see sec. VII-C). Thus, our proposed system supports
fine-grained revocation, which is desirable in scenarios where
users may get banned from specific services while preserving
access and privacy rights in others.

XII. CONCLUSIONS

This paper caters for a pseudonym-based privacy-
preserving authentication system that eliminates the require-
ment for a trusted authority. By adopting MPC, a set of
Smart City cloud services can grant credentials to users and
de-anonymize misusers securely (without leaking credentials).
Credential leaks, illicit credential generation and dishonest
de-anonymization are prevented if only one cloud service is
honest. When compared with previous solutions, the proposed
system can provide both privacy and accountability without
relying on a trusted CA. In terms of efficiency, the user is not
impacted by the adoption of a distributive approach. On the
cloud service side, credential generation is more complex when
adopting MPC, but all the operations can be pre-computed
prior to the the credential issuing process. The complexity
of credential revocation and de-anonymization process grows
linearly with the number of issued credentials. However,
centralized counterparts also presents linear complexity for
revocation. The whole system has been implemented and
tested extensively using Scale-Mamba and MIRACL Core, and
integrated into an Android application.
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