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ABSTRACT
A stochastic mathematical model is proposed to study how envi-
ronmental heterogeneity and the augmentation of mosquitoes with
Wolbachia bacteria affect the outcomes of dengue disease. The exis-
tence and uniqueness of the positive solutions of the system are
studied. Then the V-geometrically ergodicity and stochastic ultimate
boundedness are investigated. Further, threshold conditions for suc-
cessful population replacement are derived and the existence of a
unique ergodic steady-state distribution of the system is explored.
The results show that the ratio of infected to uninfected mosquitoes
has a great influence onpopulation replacement.Moreover, environ-
mental noise plays a significant role in control of dengue fever.
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1. Introduction

Every year many people are infected with mosquito-borne diseases including dengue
fever and dengue haemorrhagic fever, caused by dengue viruses. Dengue infections are
one of the main reasons for illness in the tropics and subtropics [21]. Due to the lack
of licensed vaccines or drugs, the most effective way to treat dengue is to control its
mosquito vectors, but traditional insecticide spraying not only pollutes the environment
but also causes insecticide resistance [14]. Many studies have demonstrated that releases
of mosquitoes carrying the endosymbiotic bacteria Wolbachia provide a novel method to
control dengue [4, 19]. This succeeds because cytoplasmic incompatibility (CI) is induced
in the mosquitoes with Wolbachia, which causes early embryonic death when uninfected
females mate with infected males, but this does not affect infected females, resulting in
widespread distribution of the bacteria in nature [6, 16].

Based on the mechanisms of CI, two strategies including population suppression and
population replacement have been proposed to control mosquitoes [5], with population
suppression being realized by releasing Wolbachia-infected males inundatively and pop-
ulation replacement being achieved when Wolbachia-infected mosquitoes are released
inoculatively [22, 34]. Recently, researchers in many laboratories around the world are
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trying to control dengue virus by releasingWolbachia-infected mosquitoes with some suc-
cess [17, 33]. Many different types of mathematical models have been proposed to study
the transmission dynamics between wild and Wolbachia-infected mosquitoes, including
discrete time models [11, 13], continuous time models [10, 20] and impulsive differen-
tial equation models [37, 38]. For example, Haygood and Turelli established a discrete
model to analyse the impact of host population subdivision on the evolution of CI-causing
bacteria strains in specific host species, its results showed that in the subdivided host
population with local density regulation, the strain evolution tended to be stronger CI
[13]. Farkas and Hinow introduced and studied some differential equation models of
population dynamics of Wolbachia infection, and they found that under the condition
of mutual compatibility, strains with higher transmission efficiency or lower infection
mortality are superior to competitors [10]. Zhang et al. proposed the birth-pulse model
of Wolbachia transmission through mosquito population and reached the conclusion
that population eradication can be achieved only when the parameters lie in a specific
regions and the initial density of non-infection is low enough, regardless of the infection
ratio [37].

However, wild mosquitoes and the released Wolbachia-infected mosquitoes in nature
are inevitably influenced by environmental fluctuations including temperature, wind, rain-
fall, oxygen and so on [18, 32]. These environmental factors affect the breeding, growth and
development of mosquitoes: (1) the larval indices in the wet season is greater than that in
the dry season [7, 31], (2) higher temperature will hasten mosquitoes development [8].
Relevant research indicates that the synergistic effect of between temperature and precipi-
tation may have a significant impact on mosquitoes ecology and mosquito-borne diseases
[1]. Indeed, the population dynamics of dengue vector mosquitoes are strongly linked
with temperature and rainfall fluctuations [36]. The significant changes that this fluctua-
tion causes to the mosquito population, stochastic differential equations with white noises
provide a more realistic description.

Therefore, in this paper, we propose a mathematical model comprising a system of
stochastic differential equations, governing the evolution of mosquitoes with white noises,
then derive threshold conditions for population replacement and study the ergodic steady-
state distribution of the system.

2. Model formation and preliminaries

Throughout this paper, the total population of mosquitoes is denoted by N(t) and we
assume that the mosquito population is infected by a single strain ofWolbachia. The trans-
mission can only be passed from infected females to their offspring, but transmission is
imperfect with probability τ ∈ (0, 1]. N(t) can be subdivided into four subpopulations,
namely uninfected females, FU , infected females, FI , uninfected males, MU , and infected
males,MI . b and d are the density dependent birth rate and death rate for themosquito pop-
ulation, respectively. f is the proportion of females in the offspring.When an infectedmale
mates with an uninfected female, zygotic death of offspring caused by CI usually occurs
with a probability q ∈ [0, 1]. Although CI has a beneficial effect on infected females, a fit-
ness cost effect D of mosquitoes infected with Wolbachia is assumed to be non-zero with
D>0 being fitness cost and D<0 being fitness benefit, and the sign of D depends on the
mosquito species andWolbachia strains. Then themodel with overlapping generations can
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be described as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dFI(t)
dt

= f τbFI − (d + D)NFI ,
dFU(t)
dt

= fb(1 − τ)FI + fbFU
(
1 − qMI

MU + MI

)
− dNFU ,

dMI(t)
dt

= (1 − f )τbFI − (d + D)NMI ,
dMU(t)

dt
= (1 − f )b(1 − τ)FI + (1 − f )bFU

(
1 − qMI

MU + MI

)
− dNMU .

(1)

In reality, the proportion of infected males that mate with infected females is usually the
same as in uninfected populations, i.e. we haveMI/FI = MU/FU , so after one or two gen-
erations, the ratio of males to females is identical in both cases. However, modifications
may be considered if the sex ratios change [15]. Therefore, the entire infected (I(t)) and
uninfected (U(t)) populations are introduced to simplify system (1) [10, 20], with suitable
parameters the model is rescaled to

⎧⎪⎨
⎪⎩
dI
dt

= τbI − (d + D)(I + U)I,
dU
dt

= (1 − τ)bI + bU
(
1 − qI

U + I

)
− d(I + U)U.

(2)

Many studies have focused on the model (2) [10, 20, 39], not only providing threshold
conditions for the existence and stability of all possible equilibria but also discussing the
biological significance regardingmosquito population replacement. But the effects of envi-
ronmental heterogeneity on the dynamics of Wolbachia spread have been ignored. All
organisms in natural habitats are constrained by fluctuations of many environmental fac-
tors such as temperature, nutrition, oxygen, pH and so on [32], and mosquitoes are no
exception. Hu and co-authors constructed a mathematical model to study how random
switches in birth rates affect the dynamics ofWolbachia spread [18]. Hence, we introduce
white noise to study the influences of stochastic perturbations and assume that they are
directly proportional to the entire infected I(t) and uninfected U(t) populations. Some
authors (see [23, 24]) have pointed out that this assumption is reasonable and well justi-
fied biologically. Because the specific Wolbachia can not only be successfully transmitted
in mosquito populations but also act like a vaccine to stop mosquitoes from replicating
and spreading dengue virus, augmentation of mosquitoes with Wolbachia bacteria has
been used to realize the aims of population replacement, and to prevent the occurrence of
diseases, such as dengue disease [17, 34]. Therefore, we proposed a stochastic system (2)
with control to model the effects of environmental fluctuations and the augmentation of
mosquitoes, and system (2) is modified as

⎧⎪⎪⎨
⎪⎪⎩
dI(t) = (τbI(t) − (d + D)(I(t) + U(t))I(t) + θ) dt + α1I(t)dB1(t),
dU(t) =

(
(1 − τ)bI(t) + bU(t)

(
1 − qI(t)

U(t)+I(t)

)
− d(I(t) + U(t))U(t)

)
dt

+α2U(t)dB2(t),

(3)

where θ is the quantity ofmosquitoes infectedwithWolbachia being continuously released.
B1(t) and B2(t) denote independent Brownian motion defined in a complete probability
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space (�,F , {Ft}t≥0,P), α2
1 and α2

2 are the intensities of the noise on the entire infected
I(t) and uninfected U(t) populations, respectively.

Throughout the paper, (�,F , {Ft}t≥0,P) is denoted as a complete probability space
with filtration {Ft}t≥0 and satisfies: (a) right continuous and (b) {F0} involves all P-null
sets. The independent Brownian motion Bi(t) is defined on this probability space. Assume
that X(t0) = X0(0 ≤ t0 < T < ∞) is an {F0}-measurable R2-valued random variable,
whereR2+ = {x ∈ R2 : xi > 0 for any1 ≤ i ≤ 2}. Define functions f : R2 × [t0,T] → R2

and g : R2 × [t0,T] → R2×2 such that they are Borel measurable. Consider the following
Itô-type stochastic differential equation

dX(t) = f (X(t), t)dt + g(X(t), t)dB(t), X(0) = X0, (4)

and the equivalent system of (4) is

X(t) = X0 +
∫ t

t0
f (X(s), s)ds +

∫ t

t0
g(X(s), s)dB(s) on t0 ≤ t ≤ T. (5)

Let pt(X0,A) be the transition probability, and pt(X0,A) = P(X(t) ∈ A | X(0) = X0) for
any t ∈ R+, X0 ∈ R2+ and A ∈ B(R2+).

Then we give some important definitions as follows [12, 25, 26, 35].

Definition 2.1 ([26]): Let X(t) = (I(t),U(t))T be a solution of (3) provided

(a) X(t) is continuous and {Ft}-adapted;
(b) f (X(t), t) ∈ L1([t0,T];R2) and g(X(t), t) ∈ L2([t0,T];R2×2);
(c) for any t ∈ [t0,T] (4) holds with probability 1.

Definition 2.2 ([12, 25]): Let X(t) = (I(t),U(t))T be a solution of SDE (3):

(1) if limt→+∞ U(t) = 0, then U(t) becomes extinctive;
(2) if lim supt→+∞ U(t) > 0, then U(t) becomes weakly persistent;
(3) if for any ε ∈ (0, 1), there are two constants β > 0 and δ > 0 such that

lim inf
t→+∞ P{U(t) ≥ β} ≥ 1 − ε, lim inf

t→+∞ P{U(t) ≤ δ} ≥ 1 − ε,

then U(t) is called stochastically persistent.

Lemma 2.1 ([35]): Let f (t) ∈ C(� × [0,+∞),R+), if there are constants ζ0, t1 and ζ ≥
0 such that f (t) satisfies ln f (t) ≤ ζ t − ζ0

∫ t
0 f (s)ds + ∑n

i=1 βiBi(t) for any t ≥ t1, βi is
also a constant, then limt→+∞ sup 1

t
∫ t
0 f (s)ds ≤ ζ

ζ0
; if there are constants ζ0, t1 and ζ ≥

0 such that f (t) satisfies ln f (t) ≥ ζ t − ζ0
∫ t
0 f (s)ds + ∑n

i=1 βiBi(t) for any t ≥ t1, then
limt→+∞ sup 1

t
∫ t
0 f (s)ds ≥ ζ

ζ0
.



JOURNAL OF BIOLOGICAL DYNAMICS 5

3. Main results

3.1. Properties of the solutions

For any given initial conditions, a unique global solution of system (3) exists if its coef-
ficients satisfy the linear growth condition and local Lipschitz condition [26]. Now, we
show that the solution of system (3) is positive and global by using methods of Lyapunov
analysis [9].

Theorem 3.1: Let X(t) = (I(t),U(t)) be a solution of SDE (3) with initial condition
(I(0),U(0)) ∈ R2+, then X(t) is unique for any t ≥ 0 and it further remains in R2+ with
probability 1, namely (I(t),U(t)) ∈ R2+ for any t ≥ 0 almost surely.

Proof: Let x = ln I and y = lnU, applying Itô’s formula to system (3) yields⎧⎪⎪⎨
⎪⎪⎩
dx(t) = (

τb − (d + D)(ex + ey) + θ
ex − 1

2α
2
1
)
dt + α1dB1(t),

dy(t) =
(
(1 − τ)bex

ey + b
(
1 − qex

ey+ex

)
− d(ex + ey) − 1

2α
2
2

)
dt

+α2dB2(t),

(6)

where initial conditions are x0 = ln I0 and y0 = lnU0. Note that the coefficients of sys-
tem (6) are locally Lipschitz continuous, there is a blow up time τe such that system (6)
exists with a unique local solution (x(t), y(t)) on [0, τe). It follows from Itô’s formula that
(I(t),U(t)) = (ex(t), ey(t)) is just the unique local solution of system (3) on [0, τe). To show
the solution (I(t),U(t)) is global we only need to prove τe = ∞. Let n0 > 0 big enough
for I0 andU0 lying within the interval [ 1

n0 , n0]. For any integer n ≥ n0, define the stopping
time as

τn = inf
{
t ∈ [0, τe) : min{I(t),U(t)} ≤ 1

n
or max{I(t),U(t)} ≥ n

}
.

Let ∅ = be empty set, and set inf ∅ = ∞. τn increases as n → ∞. Let τ∞ =
lim supn→∞ τn, clearly, τ∞ ≤ τe. For any t ≥ 0, if τ∞ = ∞ a.s., then we have τe = ∞ and
(I(t),U(t)) ∈ R2+. Therefore, what we only need to do is to show τ∞ = ∞. Otherwise,
there exists with two constantsT>0 and ε ∈ (0, 1) so thatP{τ∞ ≤ T} > ε. Consequently,
there is an integer n1 ≥ n0 such that

P{τn ≤ T} > ε, n ≥ n1. (7)

Define a C2-function V(I,U) : R+ × R+ → R as

V(I,U) = (I − 1 − ln I) + (U − 1 − lnU),

and V(I,U) is positive for I ≥ 0,U ≥ 0. Making use of Itô’s formula, then

dV =
{(

1 − 1
I

)
(τbI − (d + D)(I + U)I + θ) + α2

1
2

}
dt + α1(I − 1)dB1(t)

+
{(

1 − 1
U

) (
(1 − τ)bI + bU

(
1 − qI

U + I

)
− d(I + U)U

)
+ α2

2
2

}
dt

+ α2(U − 1)dB2(t)
.= LVdt + α1(I − 1)dB1(t) + α2(U − 1)dB2(t),
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where

LV =
(
1 − 1

I

)
(τbI − (d + D)(I + U)I + θ)

+
(
1 − 1

U

) (
(1 − τ)bI + bU

(
1 − qI

U + I

)
− d(I + U)U

)
+ α2

1 + α2
2

2

≤ −(d + D)I2 + (2d + D + b)I − dU2 + (2d + D + b)U

− (d + D)UI − bqUI
U + I

− dIU − (1 − τ)bI
U

− θ

I
− b + α2

1 + α2
2

2
+ bq + θ

≤ (2d + D + b)2

4(d + D)
+ (2d + D + b)2

4d
+ α2

1 + α2
2

2
+ bq + θ

.= C,

where C is a positive constant and independent of I, U and t. Thus

dV(I,U) ≤ Cdt + α1(I − 1)dB1(t) + α2(U − 1)dB2(t).

Set τn ∧ T = min{τn,T}, then we obtain
∫ τn∧T

0
dV(I(t),U(t)) ≤

∫ τn∧T

0
Cdt +

∫ τn∧T

0
α1(I − 1)dB1(t)

+
∫ τn∧T

0
α2(U − 1)dB2(t),

calculating the mathematical expectation of the above inequality yields

EV(I(τn ∧ T),U(τn ∧ T)) ≤ V(I(0),U(0)) + E
∫ τn∧T

0
Cdt

≤ V(I(0),U(0)) + CT. (8)

For any n ≤ n1, let ϒn = τn ≤ T. From (7) we have P(ϒn) > ε. For any t∗ ∈ ϒn, there is
at least one I(τn, t∗) or U(τn, t∗) equalling n or 1

n , thereby,

V(I(τn, t∗),U(τn, t∗)) ≥ (n − 1 − ln n) ∧
(
1
n

− 1 − ln
1
n

)
.

Combinations of (7) and (8) lead to

V(I(0),U(0)) + CT ≥ E
{Lϒn(t∗)V(I(τn),U(τn))

}

≥ ε

{
(n − 1 − ln n) ∧

(
1
n

− 1 − ln
1
n

)}
,

with Lϒn(t∗) denoting as the indicator function of ϒn. Once n → ∞, we obtain

∞ = V(I(0),U(0)) + CT < ∞,

which is a contradiction. Therefore, τ∞ = ∞. This completes the proof. �
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Theorem 3.1 indicates that any solutions of SDE (3) will finally remain in a compact set
of R2+. In the following, we prove that the solutions of SDE (3) satisfy another important
property, i.e. the Markov process X(t) = (I(t),U(t)) is V-geometrically ergodic.

Theorem 3.2: Let initial condition X0 ∈ R2+, if α1 > 0 and α2 > 0, then Markov process
X(t) = (I(t),U(t)) is V-geometrically ergodic.

Proof: Note that N = I +U, define a function V(X(t)) such that V(X(t)) → ∞ as
| X(t) |→ ∞ for X(t) ∈ R2+, where

V(X(t)) = N + 1
N
. (9)

Applying Itô’s formula yields

LV(X(t)) = τbI − (d + D)NI + θ + (1 − τ)bI + bU
(
1 − qI

N

)
− dNU

−
τbI − (d + D)NI + θ + (1 − τ)bI + bU

(
1 − qI

N

)
− dNU

N2

+ α2
1I

2 + α2
2U

2

N3

≤ −dN2 − DNI + θ + bN − bqUI
N

+ (d + D)NI
N2 − θ

N2 − b
N

+ bqUI
N3 + dU

N
+ α2

1I
2 + α2

2U
2

N3

≤ −bV(X) + (2d + D + θ) − dN2 + 2bN − θ

N2 + bq + α2
1 + α2

2
N

≤ 2d + D + θ + b2

d
+ (bq + α2

1 + α2
2)

2

4θ
− bV(X)

= C∗ − bV(X), (10)

where

C∗ = 2d + D + θ + b2

d
+ (bq + α2

1 + α2
2)

2

4θ
.

Hence the Lyapunov condition holds, for details, see [28].
Note that when α1 > 0 and α2 > 0, then SDE (3) is uniformly elliptic [3]. Athreya et al.

pointed out that there is a jointly continuous function defined as p : R+ × R2+ × R2+ →
(0,∞). For all (t,X0,Y), pt(X0,Y) is strictly positive so that for allmeasure setsAwe obtain

pt(X0,A) =
∫
A
pt(X0,Y)dY .

For anyw>0, there is a positive constant c = c(w, t) > 0 such that inf{pt(X0,Y) : X0,Y ∈
R2+, | X0 |, | Y |≤ w} ≥ c. Thus for any measurable set A, we have

pt(X,A) =
∫
A
pt(X0,Y)dY ≥ cLeb(A ∩ Bw(0)) = cLeb(Bw(0))υ(A),
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where Leb is Lebesgue measure and υ(A) = Leb(A ∩ Bw(0))/Leb(Bw(0)). So the Mini-
rization condition holds. This completes the proof. �

Theorem 3.3: For any initial value X0 ∈ R2+, the solution X(t) = (I(t),U(t)) of system (3)
is stochastically ultimately bounded and permanent.

Proof: Clearly, N = I +U, define a Lyapunov function V(t) = N + 1/N and choose a
small enough ξ such that 0 < ξ ≤ b. Making use of Itô’s formula, it follows from (10) that
we obtain

d expξ t V(t) = ξ expξ t V(t)dt + expξ t dV(t) = ξ expξ t V(t)dt

+ expξ t
{
(C∗ − bV(t))dt +

(
1 − 1

N2

)
(α1IdB1(t) + α2UdB2(t))

}
.

Integrating the above equation from 0 to t and taking mathematical expectation, then

E[expξ t V(t)] = E[V(0)] + E
[∫ t

0
expξ s(ξdV(s) + LV(s))ds

]

≤ E[V(0)] + C∗E
[∫ t

0
expξ s ds

]

= E[V(0)] + C∗

ξ

(
expξ t −1

)
.

Thus

E[V(t)] ≤ exp−ξ t E[V(0)] + C∗

ξ

(
1 − exp−ξ t)

≤ E[V(0)] + C∗

ξ

.= �.

FromMarkov inequality, choose a positive constant �∗ large enough so that �/�∗ < 1,

P
{
N + 1

N
> �∗

}
≤ 1

�∗E
[
N + 1

N

]
≤ �

�∗
.= ε.

Consequently,

1 − ε ≤ P
{
N + 1

N
≤ �∗

}
≤ P

{
1

�∗ ≤ N ≤ �∗
}
.

In view of N2 ≤ 3 | X |2≤ 3N2, so

P
{

1√
3�∗ ≤ N√

3
≤| X |≤ N ≤ �∗

}
≥ 1 − ε.

It follows from the definitions that system (3) is stochastically ultimately bounded and
permanent. This ends the proof. �
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3.2. Population replacement

One of the feasible measures to prevent dengue diseases from spreading is to achieve pop-
ulation replacement, by means of releasing mosquitoes with Wolbachia. This section will
focus on the conditions for population replacement. To this end, for simplicity we denote

g∗(t) = lim
t→+∞ inf

1
t

∫ t

0
g(s)ds and g∗(t) = lim

t→+∞ sup
1
t

∫ t

0
g(s)ds.

Note thatMI/FI = MU/FU , then we have FI/FU = MI/MU = k, whichmeans that I/U =
(MI + FI)/(MU + FU) = MI/FI = k. Based on this fact, we have the following main
results.

Theorem 3.4: Theorem 3.4 If b − 1
2α

2
2 + (1 − τ)bk − bqk

1+k < 0, then the total uninfected
mosquitoes become extinct.

Proof: According to system (3), defining a Lyapunov function V(t) = lnU(t), applying
Itô’s formula to the second equation of system (3) and integrating the above equation from
0 to t we obtain

1
t
ln

U(t)
U(0)

= b − 1
2
α2
2 + (1 − τ)bk − bqk

1 + k
− d

1
t

∫ t

0
(I(s) + U(s))ds + M2(t)

t
. (11)

whereM2(t) = ∫ t
0 α2dB2(t). Because of < M2(t),M2(t) >= ∫ t

0 δ22ds and the strong law of
large numbers for local martingales we obtain

lim
t→+∞

M2(t)
t

= 0. (12)

When t → +∞, taking the superior limit of equation (11) and by using L’Hospital’s rule
we have

lim
t→+∞ sup

lnU(t)
t

≤ b − 1
2
α2
2 + (1 − τ)bk − bqk

1 + k
< 0.

So limt→+∞ U(t) = 0, which indicates that the total uninfected mosquitoes become
extinct. This completes the proof. �

Remark 3.1: Notice that the threshold conditions of Theorem 4 determine the outcomes
of population replacement, it implies that the ratio of infected to uninfected mosquitoes
and environmental noise play significant roles in control of dengue fever.

For simplicity, denote

R0 = b − 1
2
α2
2 + (1 − τ)bk − bqk

1 + k
.

It can be seen from Figure 1(a) and (b) that the larger the random fluctuation, the ear-
lier U(t) tends to zero, i.e. the faster the uninfected mosquitoes die out. The larger θ , the
fasterU(t) tends to zero, whichmeans that increasing the number of continuously released
Wolbachia-infectedmosquitoes will contribute to the extinction of uninfectedmosquitoes.
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Figure 1. Extinction of the uninfected mosquitoes. (a) θ = 0.2; (b) θ = 1. All other parameter values
were fixed as: q = 0.2, τ = 1, b = 0.02, d = 0.02, D = 0.01, θ = 0.2 and initial value (I(0),U(0)) =
(0.5, 0.5).

Since R0 is very sensitive to key parameters, it is critical to conduct sensitivity analysis.
In Figure 2, two cases for α2 and k are discussed respectively. If fixing parameter values as
shown in Figure 2(a), it can be found that R0 increases with the increase of k. For α2 = 0.5,
a small value of k can ensure that R0 < 0, which indicates that uninfected mosquitoes are
extinct. For α2 = 0.01, it can be observed that R0 > 0, implying uninfected mosquitoes
continue to exist. If fixing parameter values as shown in Figure 2(b), it is noted that R0
decreases from R0 > 0 to R0 < 0 when α2 increases. Obviously, for k = 0.1, R0 reaches
R0 < 0 faster. In general, the smaller k and the larger α2 will hasten to the extinction of
uninfected mosquitoes.

Through the above discussion, it is not difficult to find that increasing θ (i.e. the release
of Wolbachia-infected mosquitoes) can increase k (i.e. the ratio of Wolbachia-infected
mosquitoes and uninfectedmosquitoes). Because a small k can ensure the rapid extinction
of mosquitoes, it suggests that when using the ‘mosquito control’ strategy, it is necessary
to choose an appropriate threshold for the release ofWolbachia-infected mosquitoes.

3.3. Stationary distribution and ergodicity for the system

In this section, we explore the existence of a unique ergodic steady-state distribution of
the system (6). If f is a bounded function on R+, defining f u = supt∈R+ f (t), then we only
need to show that the following two properties hold true [27, 40],

(i) there exists a bounded domain E ∈ IntR2+ with regular boundary � such that its
closure Ē ⊂ IntR2+, and a non-negative C2− function V(x) exists such that for any
x ∈ IntR2+ \ E, LV is negative;
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Figure 2. These plots show that sensitivity of k,α2 on R0. (a) We set α2 = 0.5 and α2 = 0.01 ; (b) We set
k = 0.1 and k = 0.8, and all other parameter values were fixed as: τ = 0.3, b = 0.1, q = 0.2.

(ii) for any bounded domain Ê ∈ IntR2+, there is a positive constant ζ such that the
diffusion matrix for system (3) given by

b(Z) =
(

α2
1I

2 0
0 α2

2U
2

)

satisfies
∑2

i,j=1 bij(Z)ξiξj > ζ‖ξ‖2 for all Z = (I,U) ∈ Ê, and ξ = (ξ1, ξ2) ∈ R2.

Theorem 3.5: If

τb − 1
2
α2
1 > 0, b − 1

2
α2
2 > 0 and d + D > 0, (13)

then system (3) has a unique ergodic stationary distribution.

Proof: Let

V(I,U) = Ip + Up + 1
Iσ

+ 1
Uσ

, 0 < p, σ < 1,

where σ > 0 is a sufficiently small constant. Take σ ∈ (0, 1) such that

τb − σ + 1
2

α2
1 > 0, b − σ + 1

2
α2
2 > 0,

then by use of Itô’s formula on V yields

dV = LVdt + (pIp − σ I−σ )α1dB1(t) + (pUp − σU−σ )α2dB2(t),
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where

LV(I,U) = pIp[τb − (d + D)I − (d + D)U + θ

I
+ p − 1

2
α2
1]

+ pUp[
(1 − τ)bI

U
+ b − qbI

U + I
− dI − dU + p − 1

2
α2
2]

− σ I−σ [τb − (d + D)I − (d + D)U + θ

I
− σ + 1

2
α2
1]

− σU−σ [
(1 − τ)bI

U
+ b − qbI

U + I
− dI − dU − σ + 1

2
α2
2]

≤ −p(d + D)Ip+1 + p(τb + p − 1
2

α2
1)I

p + pθIp−1

− dUp+1 + (b + p − 1
2

α2
2)U

p + p(1 − τ)bIUp−1

− σ I−σ [τb − σ + 1
2

α2
1] + σ(d + D)I1−σ + σ I−σ (d + D)U

− σU−σ [b − σ + 1
2

α2
2] + σqbIU−σ + σdU1−σ + σU−σdI

≤ −p(d + D)Ip+1 + p(τb + p − 1
2

α2
1)I

p + pθIp−1

− σ I−σ [τb − σ + 1
2

α2
1] + σ(d + D)I1−σ + σqbI + σdI

− dUp+1 + (b + p − 1
2

α2
2)U

p + pbMp

− σU−σ [b − σ + 1
2

α2
2] + σ I−σ (d + D)U + σdU1−σ ,

whereM is an upper bound which satisfiesM ≥ I andM ≥ U due to the solution X(t) =
(I(t),U(t)) of system (3) being stochastically ultimately bounded.

It is easy to obtain that

LV(I,U) ≤ ϕ1(I) + ϕ2(U),

where

ϕ1(I) = −p(d + D)Ip+1 + p(τb + p − 1
2

α2
1)I

p + pθIp−1

− σ I−σ [τb − σ + 1
2

α2
1] + σ(d + D)I1−σ + σqbI + σdI,

ϕ2(U) = −dUp+1 + (b + p − 1
2

α2
2)U

p + pbMp

− σU−σ [b − σ + 1
2

α2
2] + σ I−σ (d + D)U + σdU1−σ .

Case 1. If I → 0+, then
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LV = ϕ1(I) + ϕ2(U) ≤ ϕ(I) + ϕu
2 → −∞.

If U → 0+, then

LV = ϕ1(I) + ϕ2(U) ≤ ϕu
1 + ϕ(U) → −∞.

Case 2. If I → +∞, then

LV = ϕ1(I) + ϕ2(U) ≤ ϕ(I) + ϕu
2 → −∞.

If U → +∞, then

LV = ϕ1(I) + ϕ2(U) ≤ ϕu
1 + ϕ(U) → −∞.

In conclusion, when I → 0+ or U → 0+ or I → +∞ or U → +∞, we can get LV →
−∞. Hence, choose κ > 0 sufficiently small and let E := [κ , 1

κ
] × [κ , 1

κ
], then

LV(I,U) ≤ −1 for all (I,U) ∈ IntR2
+ \ E,

which means that the condition (1) holds true. Furthermore,

2∑
i,j=1

bij(I,U)ξiξj = α2
1I

2ξ 21 + α2
2U

2ξ 22

≥ min
(I,U)∈E

{α2
1I

2,α2
2U

2}‖ξ‖2

for all (I,U) ∈ E, (ξ1, ξ2) ∈ R2,

Figure 3. Stationary distribution of deterministicmodel and stochasticmodel: (a)we set initial values as
(I(0),U(0) = (0.5, 0.5); (b) we set initial values as (I(0),U(0) = (1, 1). The initial values of the solution
illustrated by the black line were fixed as (X1(0), X2(0), Y(0)) = (10, 10, 0.5), and all other parameters
were fixed as: τ = 0.3, b = 0.1, d = 0.1, D = 0.01, θ = 0.2, q = 0.2, q = 0.3.
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and thus condition (2) has also been satisfied. Therefore, the system (3) has a unique
ergodic stationary distribution (Figure 3). This completes the proof. �

4. Conclusion

Many researchers are designing programmes to releaseWolbachia-infected mosquitoes to
control dengue virus, a promising strategy that has attracted the attention of many math-
ematical researchers. Given that mosquitoes in natural habitats are inevitably affected by
environmental fluctuations [18, 32, 36], we developed a mathematical model comprising
a system of stochastic differential equations, governing the evolution of mosquitoes with
white noise.

We first prove the existence and uniqueness of the positive solutions of the proposed
system. Then we study the V-geometrical ergodicity and stochastic ultimately bounded-
ness of the system. Further, threshold conditions for successful population replacement
are derived, and it is shown that the system has a unique ergodic steady-state distribution.
The results show that the ratio of infected to uninfectedmosquitoes has a great influence on
population replacement. Moreover, environmental noise plays a significant role in control
of dengue fever.

The highlights are listed as follows: (1) the proposed model considers not only the
influence of white noise but also introduces the continuously releasedWolbachia-infected
mosquitoes; (2) the threshold conditions for the extinction of uninfected mosquitoes and
the system’s stationary distribution are obtained; (3) biologically, by increasing the release
of Wolbachia-infected mosquitoes, resulting in an increase in the ratio of Wolbachia-
infected mosquitoes and uninfected mosquitoes, and then reaching a suitable value, which
can promote the rapid extinction of uninfected mosquitoes.

In fact, some studies have shown that differentWolbachia strains have different biologi-
cal characteristics, which are different in reducing the incidence rate of dengue fever [2, 29,
30]. For example, the wAu strain has a high virus blocking rate, while the wMel strain has
only a moderate level, but both strains have high maternal transmission rates. In addition,
the loss of Wolbachia infection is lower in the wAu strain and higher in the wMel strain.
Finally, the wAu strain does not exhibit cytoplasmic incompatibility, while wMel exhibits
cytoplasmic incompatibility. Therefore, further research on the impact of environmental
factors on the effectiveness of differentWolbachia strains may add new perspectives, which
will also become our future research direction.
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