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a b s t r a c t 

Federated Learning (FL) enables many clients to train a joint model without sharing the raw data. While 

many byzantine-robust FL methods have been proposed, FL remains vulnerable to security attacks such 

as poisoning attacks and evasion attacks due to its distributed adversarial environment. Additionally, real- 

world training data used in FL are usually Non-Independent and Identically Distributed (Non-IID), which 

further weakens the robustness of the existing FL methods (such as Krum, Median, Trimmed-Mean, etc.), 

thereby making it possible for a global model in FL to be broken in extreme Non-IID scenarios. In this 

work, we mitigate the aforementioned weaknesses of existing FL methods in Non-IID and adversarial 

scenarios by proposing a new FL framework called Mini-Federated Learning (Mini-FL). Mini-FL follows 

the general FL approach but considers the Non-IID sources of FL and aggregates the gradients by groups. 

Specifically, Mini-FL first performs unsupervised learning for the gradients received to define the group- 

ing policy. Then, the server divides the gradients received into different groups according to the group- 

ing policy defined and performs byzantine-robust aggregation. Finally, the server calculates the weighted 

mean of gradients from each group to update the global model. Owning the strong generality, Mini-FL can 

utilize the most existing byzantine-robust method. We demonstrate that Mini-FL effectively enhances FL 

robustness and achieves greater global accuracy than existing FL methods when against security attacks 

and in Non-IID settings. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Federated Learning (FL) is an emerging distributed learning 

aradigm that enables many clients to train a machine learning 

odel collaboratively while keeping the training data decentral- 

zed and users’ privacy protected ( Kairouz et al., 2021 ). Generally 

peaking, FL contains three steps: 1) a server broadcasts the cur- 

ent global model to selected clients; 2) each client locally trains 

he model (called local model) and sends back the local model up- 

ates; and 3) the server updates the global model by aggregating 

he local model updates received through a particular aggregation 

lgorithm (AGR). 

However, the distributed nature of training data makes FL vul- 

erable to various attacks (such as poisoning attacks) by malicious 
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ttackers and untrusted clients. Poisoning attack ( Jagielski et al., 

018; Jiang et al., 2019; Tomsett et al., 2019 ), which seeks to dam- 

ge the model and generate misbehaviour, draws the most impor- 

ant threats to FL security. Through poisoning in different train- 

ng stages, poisoning attacks can lead the global model to show 

n indiscriminate accuracy reduction (called untargeted attack) or 

ttacker-chosen behaviour on a minority of examples (called tar- 

eted attack) ( Sun et al., 2019; Tolpegin et al., 2020 ). One popu-

ar defence solution against the untargeted attack is introducing 

he byzantine-robust aggregation rule ( Blanchard et al., 2017; Cao 

t al., 2021; Guerraoui and Rouault, 2018; Yin et al., 2018 ) on the

erver to update the global model. By comparing the client’s model 

pdates, these aggregation rules can find and discard the statistical 

utliers and prevent the suspected model uploaded from poisoning 

he global model. Although most of the studies ( Blanchard et al., 

017; Sattler et al., 2020; Yin et al., 2018 ) are designed and eval-

ated in an Independent and Identically Distributed (IID) setting 

nd assume each client’s data follows the same probability distri- 

ution, the training data in real-world FL applications are usually 
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on-IID due to location, time, and user clusters reasons ( Briggs 

t al., 2020a; Li et al., 2022b; Ma et al., 2022b ), making the ex-

sting byzantine-robust FL methods show little effectiveness and 

ven fully break when facing the state-of-the-art attack ( Fang et al., 

020 ). 

The most common sources of Non-IID are a client corre- 

ponding to a particular location ( Baghbani et al., 2022; Hsieh 

t al., 2020; Kairouz et al., 2021; Ma et al., 2022a; Moreno-Torres 

t al., 2012 ), a particular time window ( Abildgren, 2022; Gupta 

nd Verma, 2022; Jiang et al., 2023; Pollak et al., 2022; Reshi 

t al., 2023 ), and/or a particular user cluster ( Ghosh et al., 2020;

airouz et al., 2021; Kushwah and Ranga, 2022; Pujahari and Siso- 

ia, 2022 ). In terms of location, various kinds of locations fac- 

ors drive the most impact on the Non-IID of a dataset. For in- 

tance, the mammal’s distributions are different due to the geo- 

raphic location ( Hsieh et al., 2020 ), customer profiles are differ- 

nt due to various city locations ( Moreno-Torres et al., 2012 ), and 

moji usage patterns are different due to the demographic loca- 

ions ( Kairouz et al., 2021 ). In terms of a time window, people’s

ehaviour and objects’ features can be very different at different 

imes. For instance, the images of the parked cars sometimes are 

now-covered due to the seasonal effects, and people’s shopping 

atterns are different due to the fashion and design trends. In 

erms of a particular user, different personal preferences can result 

n a dataset Non-IID. For instance, ( Collins and Stone, 2014 ) shows 

tudents from different disciplines have very different library usage 

atterns. 

In this paper, we first evaluate the effectiveness of the ex- 

sting Byzantine-robust FL methods in different level Non-IID 

ettings. We find these methods show degrading performance 

hen increasing the Non-IID degree and further design a new 

L framework, namely Mini-FL framework, to mitigate the re- 

earch gap. Mini-FL considers the main source of Non-IID and 

dentifies Geo-feature, Time-feature, and User-feature as the al- 

ernative grouping features. Based on the grouping feature se- 

ected, the server defines the grouping principle through perform- 

ng unsupervised learning. In each iteration, the server first as- 

igns the received gradients to different groups and then performs 

yzantine-robust aggregation, respectively. Finally, the server ag- 

regates the aggregation outcomes (called group gradient) from 

ach group to update the global model in each iteration. We 

se Krum ( Blanchard et al., 2017 ), Median ( Yin et al., 2018 ), and

rimmed-mean ( Yin et al., 2018 ) as the byzantine-robust aggre- 

ation rule to evaluate our Mini-FL on the various dataset from 

ifferent Non-IID levels. Our results show that Mini-FL effectively 

nhances the security of existing byzantine-robust aggregation 

ules and also reaches a high level of accuracy (without attack) 

n the extreme Non-IID setting. We also provide a case study 

o further demonstrate the effectiveness of Mini-FL in the real 

orld. 

To the best of our knowledge, this is the first work to enhance 

L robustness through Non-IID feature-based grouping algorithm. 

his paper is a significant extension of our prior conference paper 

 Li et al., 2022c ), our contributions are summarized as follows: 

• We comprehensively compare and evaluate the performance of 

existing FL methods in the Non-IID setting. Our results show 

these methods witness a degrading performance while increas- 

ing the Non-IID degree. 

• We propose the grouping aggregation method and identify 

three features (i.e., Geo-feature, Time-feature, and User-feature) 

as the based grouping principles. 

• We propose the Mini-FL framework to enhance the robustness 

of existing FL methods. Our results show these methods can 

achieve byzantine robustness through the Mini-FL framework 
even in an extreme Non-IID setting. n

2 
. Related work 

.1. Poisoning attacks on federated learning 

Poisoning attacks generally indicate the attack type that crafts 

nd injects the model during training time. These attacks include 

ata poisoning attacks ( Biggio et al., 2012 ) and model poisoning at- 

acks ( Damaskinos et al., 2019; El-Mhamdi et al., 2022; Fang et al., 

020; Hsieh et al., 2020; Moreno-Torres et al., 2012 ), which are 

erformed by poisoning the training data owned and gradients, re- 

pectively. The model poisoning attack directly manipulates gradi- 

nts, which can bring higher attack impacts to FL. 

Based on the adversary’s goals, the attacks can be further 

lassified into untargeted attacks ( Damaskinos et al., 2019; El- 

hamdi et al., 2022; Fang et al., 2020; Hsieh et al., 2020; Moreno- 

orres et al., 2012 ) (model downgrade attacks) and targeted at- 

acks ( Goodfellow et al., 2014; Lu et al., 2017 ) (backdoor attacks). 

n untargeted attacks, the adversary aims to reduce the global 

odel’s accuracy and entirely “break” the model by participat- 

ng in the learning task. In contrast, target attacks maintain the 

lobal model’s overall accuracy but insert “back door” in mi- 

ority examples. These back-doors can result in a wrong reac- 

ion when the attacker-chosen action event occurs. For instance, 

 Goodfellow et al., 2014 ) can force GoogLeNet ( Szegedy et al., 2015 )

o classify a panda as a gibbon by adding an imperceptibly small 

ector on the panda image; the Faster RCNN ( Ren et al., 2015 ) can

ot detect the “stop” sign that added small perturbations ( Lu et al., 

017 ). As the untargeted draws lead to security threats for FL, we 

onsider the setting of untargeted model poisoning attacks in 

his study which shows as follows: 

“Reverse attack” ( Damaskinos et al., 2019 ) and “Random at- 

tack” ( El-Mhamdi et al., 2022 ): “Reverse” and “random at- 

tack” poison the global model by uploading a reverse gradi- 

ent and a random gradient. 

“Partial drop attack” ( El-Mhamdi et al., 2022 ): “Partial drop at- 

tack” replaces the gradient parameter as a 0 with a given 

probability and subsequently uploads the crafted gradient to 

poison the global model. 

“Little is enough attack” ( Baruch et al., 2019 ) and “Fall of em- 

pires attack” ( Xie et al., 2020 ): “Little is enough attack” and 

“Fall of empires attack” leverage the dimension curse of ma- 

chine learning and upload the crafted gradient by adding 

perturbation on the mean of the gradient owned (based on 

the capability). 

“Local model poisoning attack” ( Fang et al., 2020 ): “Local 

model poisoning attack” is a state of art attack. It infers 

the convergence direction of the gradients and uploads the 

scaled, reverse gradient to poison the global model. 

.2. Byzantine-robust aggregation rules for federated learning 

The FL server can effectively average and aggregate the local 

odels received in non-adversarial settings ( McMahan et al., 2017; 

guyen et al., 2020; Wu and Wang, 2021 ). However, linear com- 

ination rules, including averaging, are not byzantine resilient. In 

articular, a single malicious worker can corrupt the global model 

nd even prevent global model convergence ( Blanchard et al., 

017 ). Therefore, the existing byzantine-robust aggregation rules 

ave been designed to replace the averaging aggregation and ad- 

ress byzantine failures. Next, we discuss the popular byzantine- 

obust aggregation rules. 

Krum ( Blanchard et al., 2017 ) Krum discards the gradients that 

re too far away from benign gradients. In particular, for each gra- 

ient received, Krum calculates the sum Euclidean distance of a 

umber of the closest neighbours as the score. The gradient with 
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Table 1 

Illustration of the robustness of the existing FL/Mini-FL methods against different attacks under the IID/Non-IID setting. 

“Reverse” ( Damaskinos et al., 2019 ), 

“Random” ( El-Mhamdi et al., 2022 ) 

“Partial” ( El-Mhamdi et al., 

2022 ) 

“Little” ( Baruch et al., 2019 ), 

“Fall” ( Xie et al., 2020 ) 

“Local” ( Fang et al., 2020 ) 

IID Non IID Non IID Non IID Non 

Vanilla ( McMahan et al., 2017 ) × × × × × × × ×
Krum ( Blanchard et al., 2017 ) × × O × × ×
Tri-mean ( Yin et al., 2018 ) O × × × O × O O 

Median ( Yin et al., 2018 ) O O O O ×
Mini Krum 

Mini Median 

Mini Tri-Mean O × ×

Non:Non-IID, : effective, O: partially effective, ×: ineffective. 
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3

he lowest score is the aggregation outcome and becomes the new 

lobal model in this iteration. As the number of the closest neigh- 

ors selected influences the score, Krum requires the number of 

ttackers. 

Trimmed-mean and median ( Yin et al., 2018 ) Trimmed-mean is a 

oordinate-wise aggregation rule which aggregates each model pa- 

ameter, respectively. Specifically, for a given parameter, the server 

rstly sorts the parameter from all gradients received. Then, the 

erver discards a part of the largest and smallest values and finally 

verages the remaining gradients as the corresponding parameter 

f the new global model in this iteration. The Median method is 

nother coordinate-wise aggregation rule. In the Median method, 

he server firstly sorts the parameter from all gradients received 

nd selects the median as the corresponding parameter of the new 

lobal model in this iteration. 

Bulyan ( Guerraoui et al., 2018 ) Bulyan can be regarded as a com-

ination of Krum and Trimmed-mean. Specifically, Bulyan first se- 

ects a number of gradients by performing Krum (the gradient is 

hen removed from the candidate pool once selected). Then Bulyan 

erforms Trimmed-mean in the gradients selected to update the 

lobal model. 

FLTrust ( Cao et al., 2021 ) and Sageflow ( Park et al., 2021 ) FLTrust

onsiders both the directions and magnitudes of the gradients. 

articularly, the server collects a clean dataset and owns a cor- 

esponding model; in each iteration, FLTrust first calculates the 

osine similarity between the gradient received and owned. The 

igher cosine similarity gradient gains a higher trust score and 

onsequently participates in the weighted average with a higher 

roportion. Instead of directly participating in the aggregation, 

ach gradient is normalized by the gradient server owned before 

he weighted average. Similarly, Sageflow also considers keeping a 

lean validation set at the server. In each round, the client’s gradi- 

nts are evaluated through the public validation set, the gradients 

eceived small loss value are consequently assigned a heavyweight 

n aggregation. 

ShieldFL ( Ma et al., 2022c ) ShieFL enhances the robustness of 

ederated learning from the privacy-preserving perspective. Specif- 

cally, ShieFL first measures the distance between two encrypted 

radients based on a presented secure cosine similarity method. 

hen, ShieFL generates the confidence parameters for each gradi- 

nt based on its cosine similarity and determines its weight in ag- 

regation. 

We compares the robustness of several FL methods and their 

orresponding Mini-FL methods against different attacks under the 

ID/Non-IID settings in Table 1 . We use the accuracy of the Vanilla 

Standard) FL method in non-adversarial as the baseline to com- 

are with; “ (effective)” denotes the global model can maintain 

 similar accuracy, “× (ineffective)” denotes the global model has 

een fully broken. “O (partially effective)” denotes the target FL 

ethod can maintain robustness only in some particular, moder- 

te Non-IID scenarios but drops the global accuracy when facing 
r

3 
tate-of-art attacks or high Non-IID degrees. We note our Mini- 

L framework can collect the information of each clients cluster 

nd effectively enhance the robustness in Non-IID settings, the full 

valuation information of different FL/Mini-FL methods against ad- 

ersary are shown in Section 5 . 

.3. Clustering federated learning 

In the federated learning task, the training data is considered 

istributed in a Non-IID fashion because clients may behave het- 

rogeneously across different IPs, time windows, and client clus- 

ers. To identify these clusters and further benefit FL, clustering 

ethods have been widely introduced in recent FL research ( Briggs 

t al., 2020b; Ghosh et al., 2020; Kim et al., 2021; Li et al., 2022a;

attler et al., 2020 ). Here, we discuss several popular clustering 

ederated learning algorithms; we note that most of these studies 

ave considered different scenarios from our work. For instance, 

 Briggs et al., 2020b; Ghosh et al., 2020; Li et al., 2022a ) consider

 benign learning environment, ( Sattler et al., 2020 ) consider an 

ID scenario, while our work setup in the Non-IID and adversarial 

cenario. 

Federated learning + hierarchical clustering (FL + HC) ( Briggs et al., 

020b ) FL + HC introduces a hierarchical clustering step in the 

tandard FL algorithm to enable a more significant percentage of 

lients can reach the target accuracy compared to standard FL. 

pecifically, the clustering step (HC) is introduced at a preset round 

o merge the most similar clusters of clients based on their local 

odel updates. Then, the clients in each determined cluster are 

rained independently but simultaneously with the initialization of 

he current joint model. 

Federated learning with soft clustering (FLSC) ( Li et al., 2022a ) 

onsidering the client may belong to multiple clusters in real- 

orld scenarios, FLSC introduces a soft clustering method to cap- 

ure the complex nature of real-world data. Within FLSC, clients 

re assigned into overlapping clusters, and the information of each 

articipant can be utilized by multiple clusters concurrently with 

ach iteration. 

Clustered federated learning (CFL) ( Sattler et al., 2020 ) Our work 

ost closely resembles that of ( Sattler et al., 2020 ), which presents 

FL algorithm to enhance the robustness of FL in IID settings. CFL 

rst calculates the cosine similarity between each client’s gradient 

nd merges them if under a preset threshold. The gradients within 

he largest cluster are regarded as benign and consequently partic- 

pate in the aggregation, all other gradients are discarded. 

. Problem setup 

.1. Threat model 

We consider the adversary controls some clients and aims to 

educe the model’s global accuracy through untargeted model poi- 
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Table 2 

Illustration the upper bound of different FL/Mini-FL methods. 

Aggregation rule Mini/Krum 

( Blanchard et al., 

2017 ) 

Mini/T-mean 

( Yin et al., 2018 ) 

Mini/Median 

( Yin et al., 2018 ) 

Attacker upper bound 2 f + 2 < n 2 f < n 2 f < n 

f : the amount of attackers, n : the amount of all clients. 

s

e

t

d

c

t

d

n

5

t

e

o

T

t

w

a

t  

t

b

t

0

g

d

t

t

i

n

3

b

m

c

3

i

I

t

(  

b

t

4

4

i

a

b

G

i

F

b

t

t

d

g

m

t

t

s

b

e

a

f

r

4

a

g

s

w

a

f

boundaries could be defined. 
oning attacks ( Goodfellow et al., 2014; Kairouz et al., 2021; Lu 

t al., 2017 ). The attackers can access the dataset on the con- 

rolled device which is owned by the original client, and utilize the 

ataset to generate the crafted gradient. We assume the attackers 

an collude in each iteration and know the aggregation rules. Al- 

hough these assumptions maximize the attack performance, we 

emonstrate our Mini-FL framework can achieve byzantine robust- 

ess even against attackers with strong capability in Sections 4 and 

 . Specifically, the attacking processes are shown as follows: Af- 

er receiving the current global model from the server in each it- 

ration, the attacker generates the crafted model updates based 

n the data recourse owned and the poisoning strategy selected. 

hen, the crafted gradients are sent back to the server to poison 

he global model. 

As our Mini-FL framework works based on an existing FL frame- 

ork, we keep the setting of the adversary amount’s upper bound- 

ry of each existing FL method. For example, the mini-Krum keeps 

he attacker upper bound as f < (n − 2) / 2 which is the same as

he original Krum method. Table 2 illustrates the attacker upper 

ound of the FL methods introduced in the mini-FL framework in 

his paper; as the Fed-avg is not robust (attacker upper bound is 

), it has not been utilized and listed in the table. 

In Mini-FL, the grouping principle used to partition the clients’ 

radients is fully defined by the server and could be updated on 

emand (full information is given in Section 4 part B). We note 

hat the adversary can know the grouping principle ONLY if the at- 

acker keeps controlling the server during the learning task, which 

s not practical. Hence, in this study, we assume the adversary does 

ot know the grouping principle. 

.2. Defense objective 

We aim to develop the FL framework to achieve byzantine ro- 

ustness against untargeted attacks and embody the data mini- 

ization principle. Specifically, the new framework does not need 

lients to upload further information beyond local model updates. 

.3. Defender’s knowledge and capability 

The server plays the defender’s role and has access to the 

nformation naturally brought with the gradients uploaded (e.g., 

P, Timestamp, etc.). We notice some byzantine-robust aggrega- 

ion rules need to know the upper bound of the malicious clients 

 Blanchard et al., 2017 ) ( Yin et al., 2018 ); we follow these settings

ut don’t leak further information of malicious clients; specifically, 

he defender does not know the distribution of malicious clients. 

. Mini-FL design and analysis 

.1. Overview of mini-FL 

In our Mini-FL, the server assigns the model updates received 

nto different groups and executes byzantine-robust aggregation 

ccordingly. Specifically, Mini-FL follows the general FL framework 

ut adds a new step (i.e., Grouped model aggregation) before the 

lobal model update. Furthermore, a prepossessing step: Group- 
4 
ng principle definition is introduced before the training task starts. 

ig. 1 illustrates the Mini-FL framework. 

To craft the malicious gradient and avoid being excluded by 

yzantine-robust aggregation rules, the adversary commonly sta- 

istically analyzes the gradient owned and calculates (or infers) 

he range of the benign gradients. By restricting the crafted gra- 

ient under this range, the attackers can effectively hide their 

radients in benign gradients and subsequently attack the global 

odel. However, because most federated learning models are 

rained through Non-IID data, the gradients uploaded naturally 

end to be clustered due to location, time and user clusters rea- 

on. Thus, Mini-FL firstly defined the groups and then execute 

yzantine-robust aggregation accordingly. The similar behaviour of 

ach group brings a smaller gradient range and therefore results in 

 smaller attack space. Finally, the server aggregates the outcome 

rom each group and updates the global model to finish the cur- 

ent iteration. 

.2. Mini-FL framework 

Our Mini-FL considers leveraging the Non-IID nature of feder- 

ted learning to define groups and execute byzantine-robust aggre- 

ation accordingly. Fig. 2 illustrates the Mini-FL aggregation rule. 

Grouping principle definition Before the learning task starts, the 

erver defines the grouping principle (i.e., prepossessing step), 

hich includes “grouping feature definition” and “grouping bound- 

ries definition”; the grouping principle could only be defined be- 

ore the learning task starts or is required to be updated. 

• Grouping feature definition : The existing research 

( Kairouz et al., 2021 ) believes the major sources of Non-IID 

are due to each client corresponding to a particular geographic 

location, a particular time window, and/or a particular user. 

For instance, ( Hsieh et al., 2020 ) demonstrates the real-world 

example of skewed label partitions: geographical distribution of 

mammal pictures on Flickr, ( Kairouz et al., 2021 ) illustrates the 

same label can also look very different at different times(e.g., 

seasonal effects, fashion trends, etc.). 

Considering the major source of Non-IID and the features nat- 

urally carried in server-client communication, we identify Geo- 

feature (e.g., IP address), Time-feature (e.g., Timestamp), and 

User-feature (e.g., User ID) of the local model update as the 

based grouping feature to maintain the principle of focused col- 

lection and guarantee the effectiveness of clustering. 

When defining the grouping feature, the server firstly regroups 

the gradient collection C by Geo-feature; the collection C should 

accumulate the gradients received in a few iterations to main- 

tain the generality. Then, we execute the “elbow method”

( Kodinariya and Makwana, 2013 ) to detect the number for clus- 

tering and subsequently get the SSE (i.e., Sum of the Squared 

Errors, which reflected the grouping effectiveness). By repeat- 

ing the first two steps through replacing the Geo-feature with 

Time-feature and User-feature, we can find the feature F with 

the lowest SSE. Finally, we select that feature F acts as the 

grouping feature and the corresponding elbow point as the 

number of groups. 

• Grouping boundaries definition : Once the grouping feature 

has been defined, we cluster the collection regrouped through 

unsupervised learning. In this research, we use the K -means 

( Cheng, 1995 ) algorithm to execute the unsupervised learning, 

and we use the “elbow” point under the selected feature F 

(which is generated in the Grouping feature definition step) 

as the number of groups (i.e., K) for clustering. By analyzing 

the gradient’s feature value in different groups, the grouping 
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Fig. 1. Illustration of the Mini-FL framework. 

Fig. 2. Illustration of the Mini-FL aggregation rule. 
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Table 3 

local model updates received with relevant information. 

Update ID Geo-feature Time-feature User-feature Updates 

U1 IP2 Time1 C1 G1 

U2 IP1 Time1 C2 G2 

U3 IP3 Time2 C3 G3 

U4 IP2 Time1 C2 G4 

U5 IP3 Time3 C4 G5 

... 

Um IP4 Time3 C4 Gm 

Table 4 

Illustration of the records regrouped. 

(a) Regroup by Geo-feature 

IP address IP1 IP2 IP3 IP4 ... 

Local model updates G2 G1,G4 G3,G5 Gm ... 

(b) Regroup by Time-feature 

Time Stamp Time1 Time2 Time3 Time4 ... 

Local model updates G1,G2,G4 G3 G5,Gm ... ... 

(c) Regroup by User-feature 

Client ID C1 C2 C3 C4 ... 

Local model updates G1 G2,G4 G3 G5,Gm ... 

i

o

 

In the Grouping Principle Definition step, all operations (i.e., 

lbow method and K -means method) are performed based on 

he gradients send from clients. Compared with the standard FL, 

he only additional information the Mini-FL used is/are the Geo- 

eature, Time-feature, or/and User-feature. We select these three 

eatures as they are the main source of Non-IID in FL, and the 

radients naturally carry them during the most general server- 

lient communication process. In other words, these features can 

e available to be collected even if they are not recorded in the 

lient’s data (consider the communication process when sending 

radient to the server, the IP address of the message source, the 

esponse time, and the device ID are naturally carried by the mes- 

age (gradient)), which does not break the client’s privacy. 

Grouped model aggregation According to the grouping princi- 

le, the server divides the gradients received into different groups 

nd executes byzantine-robust aggregation respectively. The mini- 

L framework has strong generality and can utilize most existing 

yzantine-robust aggregation rules. In this research, we use Krum, 

rimmed-mean, and Median for aggregation in this research, and 

he detail of the experiments are studied in Section 5 . Global model 

pdate The server calculates the weighted mean of grouped gradi- 

nts (i.e., the outcome from each group) base on the volume of 

ach group to generate the global gradient and updates the global 

odel to finish this iteration. 

.3. Toy example 

We provide a toy example to illustrate how Mini-FL works. Sup- 

ose a learning task upgrades the existing FL framework to the 

ini-FL framework, and the server receives m local model updates. 

Processing step Server records m local model updates with na- 

ure information carried by the updates. Each update item is as- 

igned an ID with its Geo-feature (IP address), Time-feature (send- 
5 
ng time), and User-feature (Client ID); Table 3 illustrates the detail 

f the records. 

• Grouping feature definition : The server uses Geo-feature (IP 

address) as the index and regroups the local model updates; 

Table 4 illustrates the regrouped records. The server performs 

the “elbow method” for regrouped records and subsequently 

gets the SSE_Geo. Then, the server replaces the Geo-feature (IP 

address) as Time-feature (Time) and User-feature (Client ID) 

and generates the corresponding SSE_Time and SSE_User, re- 

spectively. Suppose SSE_Geo < SSE_User < SSE_Time; then the 

Geo-feature becomes the grouping feature. 

• Grouping boundaries definition : The server performs the K - 

means algorithm for the regrouped records; suppose the results 

are generated as Table 5 . 

So far, the grouping principle has been determinedthe updates 

that IP belongs to IP 1 range is assigned to Group1, IP belongs 

to IP 2 or IP 4 range is assigned to Group2, and IP belongs to IP

3 range assigned to Group3. 
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Table 5 

Illustration of the K -means result. 

(a) Geo-feature acts as the grouping feature 

Group Group1 Group2 Group3 / 

Geo-feature IP1 IP2, IP4 IP3 / 

(b) Time-feature acts as the grouping feature 

Group Group1 Group2 Group3 Group4 

Time-feature Time1 Time2 Time3 Time4 

(c) User-feature acts as the grouping feature 

Group Group1 Group2 Group3 / 

User-feature C1,C2 C3 C4 / 
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In this proposed example, the Geo-feature achieves the low- 

est SSE and consequently acts as the grouping feature; the cor- 

responding IP addresses clustered define the grouping bound- 

aries ( Table 5 (a)). We also list the grouping boundaries if 

Time-feature and User-feature act as the grouping feature in 

Table 5 (b) and (c); we note that there are different amounts 

of groups defined under different features. 

Global model aggregation In each further iteration, the server as- 

igns the updates to Group1, Group2, and Group3 based on its IP 

ddress and the grouping principle defined. Suppose we use Krum 

 Blanchard et al., 2017 ) as the aggregation rule, Group1, Group2, 

nd Group3 performs Krum aggregation respectively and subse- 

uently generate the grouped gradients: G_Group1, G_Group2, and 

_Group3. 

Global model update The server proportionally averages 

_Group1, G_Group2, and G_Group3, suppose 1 
4 gradients re- 

eived are assigned to Group1 and Group3, 1 
2 gradients received 

re assigned to Group2; the global aggregation result G _ aggre is: 

 _ aggre = 

1 

4 

G _ (Group1) + 

1 

2 

G _ (Group2) + 

1 

4 

G _ (Group3) 

hen, the server uses G _ aggre to update the global model and fin- 

sh this iteration. 

.4. Security enhancement analysis 

In this section, we analyze the security enhancement of Mini-FL 

rom ’information asymmetry’ and ’attack surface.’ 

Information asymmetry As discussed in Section 2 , most existing 

yzantine-robust aggregation rules can effectively detect and dis- 

ard the malicious gradient if it is far (based on Euclidean distance) 

rom benign gradients. To guarantee the attack effectiveness and 

void being excluded by the byzantine-robust aggregation rules, a 

ommon perturbation strategy is determining the attack direction 

nd then scaling the crafted gradient to stay close with benign gra- 

ients. Depending on different knowledge, the adversary can pre- 

isely or generally infer the statistics (e.g., max, min, mean, and 

td (Standard Deviation)) of the benign gradients and subsequently 

cale the crafted gradient; Table 6 illustrates the scalier of gradient 

rafted in different attacks. 
Table 6 

Illustration of the crafted gradients range under different poisoning attacks. 

Poisoning attack Crafted gradients range 

“Little is enough” ( Baruch et al., 2019 ) (μ − zσ, μ + zσ ) 

μ:mean, z:scalar (set 0 ∼ 1.5 in re

“Fall of empires” ( Xie et al., 2020 ) (−zμ, −zμ) 

μ:mean, z:scalar (set 0 ∼ 10 in res

“Local model poisoning” ( Fang et al., 2020 ) (μ + 3 σ, μ + 4 σ ) when the adversa

or ( μ - 4 σ , μ - 3 σ ) depends on th

(W max , z ∗ W max ) when the adversary

μ:mean, z:scalar (set 2 in research

6 
However, Mini-FL defines the grouping principles and clusters 

he gradients received only on the server-side. The information 

symmetry makes the adversary hardly infer the members of dif- 

erent groups, much less calculate the relevant statistical parame- 

ers to scale the crafted gradients and bypass the defense of Mini- 

L. 

Attack surface reduction Most existing byzantine-robust aggrega- 

ion rules organize the attack surface by evaluating the Euclidean 

istances of the benign gradients, the attacker can craft its gradient 

o stay close to the boundary of attack surface to perform attack. 

n other words, as any gradient that beyond the boundary would 

e discarded, the attack surface limits the max of the perturbation. 

We use Krum ( Blanchard et al., 2017 ) and Local model attack 

 Fang et al., 2020 ) as example to formally derive the reduction of 

ttack surface. Similar derivation can be applied to other defence 

nd attack models. We first show that the attack surface is only 

imited by the benign models and then demonstrate the reduction 

f the attack surface by Mini-FL. 

Suppose A krum 

is the Krum aggregation rule, w i is the local 

odel that the i th worker device intends to send to the master 

evice when there are no attacks. Without loss of generality, we 

ssume the first c worker devices are compromised. Besides, w i is 

he model before-attack, and w 

′ 
i 

is after-attack. Capital W refers to 

he global model. Thus, we have: 

efore attack: W = A krum 

(w 1 , . . . w c , w c+1 , . . . , w m 

) 

fter attack: W 

′ 
1 = A krum 

(w 

′ 
1 , . . . w 

′ 
c , w c+1 , . . . , w m 

) 

We denote by �a 
w 

the set of local models among the crafted c

ompromised local models and m − c benign local models that are 

he closest to the local model w with respect to Euclidean distance. 

oreover, we denote by ˜ �a 
w 

the set of benign local models that are 

he closest to w with respect to Euclidean distance. If w 

′ 
1 is chosen 

y Krum, we have the following: 
∑ 

∈ �m −c−2 

w ′ 
1 

D (w l , w 

′ 
1 ) ≤ min 

∑ 

l∈ �m −c−2 
w i 

D (w l , w i ) (1) 

onsider each malicious node could send the same w 

′ 
1 to max the 

ttack effect, we have 
∑ 

∈ �m −2 c−2 

w ′ 
1 

D (w l , w 

′ 
1 ) ≤ min [ 

∑ 

l∈ �m −c−2 
w i 

D (w l , w i ) + CD (w 

′ 
1 , w i )] (2)

nequality (2) could approximately transfer to (3) 
∑ 

∈ �m −2 c−2 

w ′ 
1 

D (w l , w 

′ 
1 ) − min [ 

∑ 

l∈ �m −c−2 
w i 

D (w l , w i )] ≤ CD (w 

′ 
1 , w i )] (3)

In Eq. (3) , as the subtrahend and c are fixed (i.e., the attack- 

rs cannot manipulate), the attack upper bound is only limited 

y D (w 

′ 
1 
, w i ) However, because any D ∈ max C 

∑ 

l∈ �m −c−2 
w i 

D (w l , w i )

ill be discarded; the upper bound should be: 

ax C 
∑ 

l∈ ̃ �m −c−2 
w i 

D (w l , w i ) 
search), σ :Std. 

earch), σ :Std. 

ry has partial knowledge. 

e gradient direction. 

 has full knowledge. or (z ∗ W min , W min ) depends on the gradient direction. 

), σ :Std, W max / W min :the max/min gradient value at that iteration. 
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Fig. 3. attack surface comparison between the existing FL and Mini-FL. 
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n other words, the attack surface is only organized by benign 

odel updates and limits the max of the perturbation. 

However, because of the Non-IID character of federated learn- 

ng, even benign gradients can still introduce a high Std and big 

ttack surface. This brings difficulty to the existing FL methods for 

dentifying, discarding malicious gradient, and reducing attack sur- 

ace when the attackers stay close to the benign gradient boundary 

i.e., G 0 and G m 

in Fig. 3 ). On the contrary, in our Mini-FL, similar

radients are aggregated in the same group; the high inter-group 

imilarity can lower Std and hence smaller attack surfaces. Sup- 

ose G 0 , G 1 ... G m 

are m gradients uploaded from benign clients, 

ig. 3 illustrates the attack surface of the existing FL framework 

i.e., S) and Mini-FL framework (i.e., S ′ ). The following derivation 

emonstrates how our Mini-FL reduces the attack surface and de- 

ense against a state of art attack ( Fang et al., 2020 ). 

To achieve the attack goal and to avoid being discarded by the 

yzantine-robust aggregation rule, Fang et al. (2020) sets the opti- 

ization problem as (4) . 

 

′ 
1 = w Re − λs (4) 

 is a column vector of the changing directions of all global 

odel parameters (i.e., s = 1 or − 1 ); w Re presents the model re-

eived from sever this interaction and can be regarded as the ini- 

iation of crafting. Because of the training process, w Re unavoid- 

ble to be broadcasted to all clients. Recall, Mini-FL method divides 

radients received into different groups to generate the w 

sub 
g , g = 

 , 2 , 3 . . . ( g indicates the different group), and subsequently cal- 

ulates the weighted mean of w 

sub 
g , g = 1 , 2 , 3 . . . as w Re . Thus, in

ini-FL, the attackers should use w 

sub 
g , g = 1 , 2 , 3 . . . to replace w Re 

n each group g and transfers the optimization problem as (5) to 

ttack different group g to achieve the same attack effectiveness in 

ang et al. (2020) : 

 

sub ′ 
g = w 

re 
g − λs, g = 1 , 2 , 3 . . . (5) 

owever, because all group defining and gradients dividing work 

re only performed at the server side, all clients (including attack- 

rs) can only access w Re instead of w 

re 
g , g = 1 , 2 , 3 . . . , attackers can-

ot access the initiation of crafting in Mini-FL. 

On the other hand, λ is the key to executing the attack 

 Fang et al., 2020 ). In the proof proposed, λ is generated by solving

he following inequality (6) 

∑ 

∈ �m −c−2 

w ′ 
1 

D (w l , w 

′ 
1 ) ≤ min 

c+1 ≤i ≤m 

∑ 

l∈ �m −c−2 
w i 

D (w l , w i ) (6) 

Then (6) transforms to (7) in Fang et al. (2020) 

∑ 

∈ ̃ �m −2 c−1 

w ′ 
1 

D (w l , w 

′ 
1 ) ≤ min 

c+1 ≤i ≤m 

∑ 

l∈ �m −c−2 
w i 

D (w l , w i ) (7) 
7 
We can find that the only difference is the research replaces the 

ange of l from (8) , (9) 

 ∈ �m −c−2 
w 

′ 
1 

(8) 

 ∈ 

˜ �m −2 c−1 
w 

′ 
1 

(9) 

he necessary and sufficient condition of this replacement is the 

esearch assumes the other c − 1 malicious models can stay closely 

ith w 

′ 
1 

even same (i.e., The distance between w 

′ 
1 

and the other 

 − 1 compromised local models is 0). However, the malicious 

odes are sent to different groups and cannot stay the same be- 

ause of grouping. Hence the result of the (7) will be represented 

s (10) under the Mini-FL framework: 

≤ 1 √ 

d 
[ min 

c+1 ≤i ≤m 

D (w l , w i ) + max 
c+1 ≤i ≤m 

D (w l , w Re )] (10) 

Recall λ in research ( Fang et al., 2020 ) has been limited as (11) 

≤ 1 

(m −2 c−1) 
√ 

d 
min 

c+1 ≤i ≤m 

( 
∑ 

l∈ ̃ �m −c−2 
w i 

D (w l , w i )) 

 

1 √ 

d 
max 

c+1 ≤i ≤m 

D (w i , w Re ) 
(11) 

s the upper bound of (10) is smaller than (11) , λ’s upper bound 

as been reduced by Mini-FL. 

Because the initiation of crafting w Re can not be assessed by 

alicious nodes and the upper bound of λ has been reduced, Mini- 

L effectively relieves the attack ( Fang et al., 2020 ) Furthermore, 

he Mini-FL method collects the information in each heterogeneous 

lusters which guarantee the information of different classes can 

e evenly learned by the global model even in extreme Non-IID 

ettings. 

. Evaluation 

.1. Experimental setup 

Dataset We use different datasets to evaluate our Mini-FL 

ramework which include MNIST ( Deng, 2012 ) and Fashion-MNIST 

 Xiao et al., 2017 ). Different from the IID settings, under Non-IID 

ettings, the data from each client are drawn from the different 

abel distributions. In this paper, we consider the most common 

on-IID setting that the data volume of each client biases across 

ifferent labels. Specifically, clients’ data may be mainly occupied 

y different labels because of the interest heterogeneity. To sim- 

late the dataset pattern mentioned, we set different Non-IID de- 

rees when distributing training data. Suppose U is the universe 

f the data labels in the learning task, we set the training data 

ize of each client as s and assign p ∗ s training examples with la- 
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Table 7 

Illustration of the setting (Client & Data) for the MNIST and Fashion-MNIST (Non-IID 

degree = 1.0). 

Group1 Group2 Group3 Group4 Group5 

Training Labels 1,2 3,4 5,6 7,8 9,0 

Client ID C1,C6 C2,C7 C3,C8 C4,C9 C5,C10 

C11,C16 C12,C17 C13,C18 C14 C15 

C19 C20 

Attackers C1,C11 C2,C12 C3 None None 
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g

el L 1 ( L ∈ U) to the client i to simulate the data of client i bi-

ses on the label L , where p is the probability. Then, we fill up the

est s − (p ∗ s ) training data to this client evenly with other classes’ 

ata in � U L . We note that the data of client i will evenly consist of

ll classes (not biased) if p = 

1 
| U| , and only include class L if p = 1 . 0

s the possibility parameter p controls the distribution of training 

ata on clients, we call p as the Non-IID degree. To further em- 

ody the source of each Non-IID distribution, we assign a feature 

i.e., Geo, Time, or User feature) for each item of local model up- 

ates. 

MNIST-1.0 : The MNIST ( Deng, 2012 ) (Modified National Insti- 

tute of Standards and Technology) database is an exten- 

sive database of handwritten digits that includes 60,0 0 0 

training images and 10,0 0 0 testing images. To simulate 

people’s different handwriting habits in different countries 

( Kairouz et al., 2021 ), we divide clients into five groups; 

each group owns one unique IP range (reflect different coun- 

tries) and training examples with two different labels (re- 

flect different handwriting habits). We use MNIST-1.0 ( p = 

1 . 0 ) to simulate the extreme Non-IID situation (Non-IID 

degree = 1.0). In other words, each group only has two dif- 

ferent unique labels of training examples in MNIST-1.0. 

MNIST-0.75 and MNIST-0.5 : We use MNIST-0.75 and MNIST-0.5 

to evaluate the effectiveness of Mini-FL in different Non-IID 

degrees. MNIST-0.75 and MNIST-0.5 have similar settings as 

MNIST-1.0, but the Non-IID degree p is 0.75 and 0.5, respec- 

tively. 

FMNIST-1.0 : The FMNIST (Fashion-MNIST) ( Xiao et al., 2017 ) 

dataset includes 60,0 0 0 gray-scale images of 10 fashion cat- 

egories and a test set of 10,0 0 0 images. To simulate the 

changing trend of the fashion dress, we divide clients into 

five groups; each group belongs to a time window (i.e., 

Years, months) and has training examples with two different 

labels (reflect the popular dress). Similar to MNIST-1.0, we 

set p = 1 . 0 for Fashion-MNIST-1.0 to simulate the extreme 

Non-IID setting. 

FMNIST-0.75 and FMNIST-0.5 : FMNIST-0.75 and FMNIST-0.5 re- 

flect the different Non-IID degrees of the Fashion-MNIST 

dataset. We set p = . 75 and p = . 5 for Fashion-MNIST-0.75

and Fashion-MNIST-0.5, respectively. 

Evaluated poisoning attacks Mini-FL provides a new framework to 

nhance the security of FL and the excellent generalization enables 

ini-FL can introduce most existing byzantine-robust aggregation 

ules. We introduce Krum ( Blanchard et al., 2017 ), Trimmed-mean 

 Yin et al., 2018 ), and Median ( Yin et al., 2018 ) in experiments, re-

pectively, and select the following poisoning attacks to evaluate 

he effectiveness of Mini-FL; we have not introduced FL-Trust in 

ini-FL as FL-Trust does not fit extreme Non-IID scenarios Krum 

ttacks can achieve 90% attack success rate when the root dataset’s 

ias probability is over 0.6 ( Cao et al., 2021 ). We follow the threat

odel formed in Section 3 that assumes some clients have been 

ontrolled by the adversary and participant in the learning task 

ach iteration. These malicious clients can craft the poisoned gradi- 

nt based on the data owned by the original benign client through 

ne of the following attack strategies. The data distribution and 

roup information of the malicious client are shown in Table 7 . 

“Reverse attack” ( Damaskinos et al., 2019 ): “Reverse attack”

poisons the global model through uploading the reverse gra- 

dient. We follow the setting in Damaskinos et al. (2019) and 

set the attack multiple as 100. 
1 The L could be a single element or a set; in other words, the data could bias on 

ne label or several labels. 

m

a

8

“Random attack” ( El-Mhamdi et al., 2022 ): “Random attack”

poisons the global model through uploading a random gra- 

dient. 

“Partial drop attack” ( El-Mhamdi et al., 2022 ): “Partial drop at- 

tack” masks the gradient parameter as 0 with probability p. 

As the parameter naturally carries a few 0 in our training 

tasks, we enhance the attack strength by replacing the mask 

0 as -1 and setting p as 0.8 in experiments. 

“Little is enough attack” ( Baruch et al., 2019 ): “Little is enough 

attack” leverages the dimension curse of ML and uploads the 

crafted gradient where gradient = μ + z ∗ σ ; here, μ and 

σ are the mean and standard deviation of the gradients re- 

spectively. z is the attack multiple, and we set z as 1.035 and 

2.035. 

“Fall of empires attack” ( Xie et al., 2020 ): “Fall of empires at- 

tack” uploads the crafted gradient where gradient = −z ∗ μ. 

Here, μ is the mean of gradients and z is the attack multi- 

ple; we set z as 1 and 10. 

“Local model poisoning attack” ( Fang et al., 2020 ): “Local 

model poisoning attack” is a state of art attack. It infers 

the convergence direction of the gradients and uploads the 

scaled, reverse gradient to poison the global model. We fol- 

low the default setting in Fang et al. (2020) for the local 

model poisoning attack. 

Evaluation metrics Since these attacks (i.e., untargeted attacks) 

im to reduce the model’s global accuracy indiscriminately, we use 

he testing accuracy to evaluate the effectiveness of our Mini-FL. 

n particular, we use a part of the data owned as testing examples 

nd test the model’s global accuracy each iteration. The testing ac- 

uracy reflects the model’s robustness against byzantine attacks; 

n other words, it is more robust if the model has a higher testing 

ccuracy.We further use the existing FL methods with the original 

ramework as the baseline to compare against. 

FL system setting Without other specific notifications, we use the 

etting as follows. 

Global model setting: As this study does not aim to improve 

he model accuracy through crafting the model, we use a general 

odel for training MNIST and Fashion-MNIST. This model consists 

f a dense layer ( 28 × 28 ) and a softmax layer (10). 

Learning parameters: We set the learning rate as 0.01, the batch 

ize as 128, and the epoch as 50. We set the global iterations as 

00 for MNIST and 500 for Fashion-MNIST. As some byzantine- 

obust methods (Krum in this study) require the parameter M for 

he upper bound of the number of malicious clients, we follow 

he setting in Blanchard et al., 2017 that the server knows the 

xact number of all malicious clients. However, since Mini-FL de- 

nes groups and performs aggregation accordingly, Mini-FL further 

equires the malicious clients m of each group when introducing 

rum. To maintain the generality, We set m to belong with the 

roup size: 

 = 

n group 

N global 

M 

Here, n group is the client number of the group (i.e., group size) 

nd N global is the total amount of clients. In other words, we do 



Y. Li, D. Yuan, A.S. Sani et al. Computers & Security 132 (2023) 103319 

Fig. 4. The robustness comparison between Krum and Mini-Krum. 

Fig. 5. The robustness comparison between Median and Mini-Median. 

Fig. 6. The robustness comparison between Trimmed Mean and Mini-Trimmed Mean. 
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Table 8 

The global accuracy of different FL/Mini-FL methods under different Non-IID de- 

grees and non-attack setting. 

M-1.0 M-0.75 M-0.5 FM-1.0 FM-0.75 FM-0.5 

Avg 88.89% 90.04% 90.38% 79.39% 77.33% 78.48% 

Krum 88.25% 77.27% 87.47% 61.25% 65.80% 75.39% 

Mini Krum 89.51% 90.03% 90.09% 76.51% 77.51% 78.49% 

Median 53.60% 80.45% 86.30% 43.88% 65.87% 71.19% 

Mini Med 90.34% 90.26% 90.47% 76.54% 77.74% 78.56% 

Tri-Mean 86.88% 88.29% 89.24% 72.89% 74.92% 77.56% 

Mini Tri-M 90.38% 90.47% 90.51% 76.53% 77.50% 78.47% 

m

M

e
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ot give any privilege to Mini-FL, and Mini-FL can only use the 

roportion to infer the number of malicious clients in each group. 

Clients & data setting: We assume 20 clients participate in 

he learning task in each iteration, and 25% of clients are ma- 

icious. In Mini-FL, gradients are assigned in different groups as 

hey carry different f eatures. To simulate the Non-IID setting in 

he real world, we assign different numbers of clients to different 

roups; subsequently, the larger group has more malicious clients. 

able 7 illustrates the setting detail for the MNIST and Fashion- 

NIST (Non-IID degree = 1.0). 

.2. Experimental results 

The results show the existing FL methods can not effectively 

ggregate the information of different classes in Non-IID scenar- 

os; besides, the Mini-FL achieves better robustness than the ex- 

sting FL methods. Figures 4 , 5 , and 6 illustrate the global accu-

acy of the existing FL methods/ Mini-FL methods under different 

on-IID degrees. When increasing the Non-IID degree, the results 

how that most Mini-FL methods can maintain a similar global ac- 

uracy under the same attack, while the existing FL methods wit- 

ess decreasing global accuracy. For instance, Mini-median stably 

aintains around 90% global accuracy against various attacks and 

on-IID settings. In contrast, Median achieves around 85% global 

ccuracy against various attacks in MNIST-0.5 but drops global ac- 

uracy to 64.62%, 26.51%, 55.79%, and 53.68% in MNIST-1.0 under 

little attack”, “fall attack”, “random attack”, and “drop attack”, re- 

pectively. 

Mini-FL achieves the defense objectives Recall that the defense 

bjectives include two parts (see Section 3 ): achieving byzantine 

obustness against untargeted attacks and maintaining the data 
9

inimization principle of FL. The experimental results show our 

ini-FL framework achieves these goals. 

First, Mini-FL achieves similar global accuracy as FedAvg (av- 

rage aggregation rule) in the non-attack setting, but most exist- 

ng byzantine robust FL methods have a decreased accuracy. We 

onsider the reason includes the existing FL methods can not ef- 

ectively aggregate the information of different clients (with cor- 

esponding classes) and defend against the adversary in Non-IID 

ettings. For instance, FedAvg and all Mini-FL methods (i.e., Mini- 

rum, Mini-Median, Mini-Trimmed mean) achieve over 90% global 

ccuracy on MNIST-0.75 while Krum, Median, Trimmed mean get 

7.27%, 80.45%, 88.29%, respectively; On FMNIST-1.0 (i.e., Fashion 

NIST-1.0), FedAvg and all Mini-FL methods achieve the global ac- 

uracy around 77%, while 61.25%, 43.88%, and 72.89% for Krum, 

edian, and Trimmed mean, respectively. Table 8 illustrates the 

lobal accuracy of different FL / Mini-FL methods under differ- 

nt Non-IID degrees and non-attack settings. The result shows the 

ini-FL framework increases the accuracy for existing FL meth- 

ds in the non-attack scenario. This may because benign gradi- 
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Table 9 

The global accuracy of FL/Mini-FL methods under different Non-IID degrees. 

Average Krum 

( Blanchard et al., 

2017 ) 

Mini 

Krum 

Median 

( Yin et al., 

2018 ) 

Mini 

Median 

Trimmed-Mean 

( Yin et al., 

2018 ) 

Mini 

Trimmed-Mean 

(a) MNIST-1.0 

“Little is enough” attack ( Baruch et al., 2019 ), 

z = 2.035 

74.71% 74.92% 89.62% 53.76% 90.37% 52.83% 89.76% 

“Little is enough” attack ( Baruch et al., 2019 ), 

z = 1.035 

84.42% 57.78% 89.70% 64.62% 90.34% 71.95% 90.40% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 10 23.73% 77.34% 88.38% 54.98% 90.10% 61.54% 90.18% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 1 78.23% 48.97% 87.61% 26.51% 89.95% 85.41% 89.41% 

“Random” attack ( El-Mhamdi et al., 2022 ) 80.19% 88.03% 89.68% 55.79% 90.37% 76.80% 79.04% 

“Partial Drop” attack ( El-Mhamdi et al., 2022 ) 61.65% 88.05% 87.33% 53.68% 90.42% 61.47% 62.33% 

“Local model poisoning” attack ( Fang et al., 2020 ) 78.62% n/d n/d 2.85% 89.77% 64.51% 87.32% 

(b) FMNIST-1.0 

“Little is enough” attack ( Baruch et al., 2019 ), 

z = 2.035’ 

64.75% 74.15% 76.35% 43.79% 76.76% 29.66% 58.82% 

“Little is enough” attack ( Baruch et al., 2019 ), 

z = 1.035’ 

70.51% 47.76% 76.36% 39.56% 76.43% 40.72% 73.98% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 10 35.57% 74.35% 76.22% 44.18% 76.21% 38.48% 76.60% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 1 48.67% 48.97% 76.28% 26.91% 76.44% 64.10% 75.43% 

“Random” attack ( El-Mhamdi et al., 2022 ) 66.95% 74.04% 76.44% 56.26% 76.47% 35.12% 47.64% 

“Partial Drop” attack ( El-Mhamdi et al., 2022 ) 19.78% 74.33% 76.46% 57.84% 76.58% 12.69% 16.88% 

“Local model poisoning” attack ( Fang et al., 2020 ) 45.88% n/d n/d 2.82% 76.26% 45.97% 60.51% 

(c) MNIST-0.75 

“Little is enough” attack ( Baruch et al., 2019 ), 

z = 2.035 

66.89% 83.84% 89.74% 81.25% 90.22% 61.05% 89.94% 

“Little is enough” attack ( Baruch et al., 2019 ), 

z = 1.035 

89.49% 59.55% 89.81% 80.65% 90.34% 87.33% 90.41% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 10 85.33% 77.27% 89.77% 79.15% 89.98% 64.09% 90.23% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 1 89.63% 52.43% 89.74% 77.59% 90.10% 87.51% 89.95% 

“Random” attack ( El-Mhamdi et al., 2022 ) 74.85% 88.93% 89.74% 81.28% 90.24% 80.85% 81.28% 

“Partial drop” attack 69.99% 88.83% 89.77% 81.87% 90.31% 49.36% 72.53% 

“Local model poisoning” attack ( Fang et al., 2020 ) 85.16% n/d n/d 62.31% 90.00% 75.90% 88.78% 

(d) FMNIST-0.75 

“Little is enough” attack ( Baruch et al., 2019 ), 

z = 2.035 

31.07% 76.48% 77.52% 65.26% 77.84% 36.18% 71.30% 

“Little is enough” attack ( Baruch et al., 2019 ), 

z = 1.035 

61.64% 72.59% 77.68% 65.81% 77.62% 44.84% 77.10% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 10 64.79% 76.32% 77.64% 64.11% 77.69% 42.56% 77.71% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 10 75.72% 56.33% 77.55% 53.35% 77.63% 70.54% 76.95% 

“Random” attack ( El-Mhamdi et al., 2022 ) 28.77% 76.72% 77.44% 65.87% 77.66% 44.50% 48.56% 

“Partial drop” attack ( El-Mhamdi et al., 2022 ) 22.18% 76.65% 77.62% 68.47% 77.56% 15.88% 25.05% 

“Local model poisoning” attack ( Fang et al., 2020 ) 61.03% n/d n/d 31.84% 77.51% 51.57% 63.58% 

(e) MNIST-0.5 

“Little is enough” attack ( Baruch et al., 2019 ) 

z = 2.035 

79.15% 88.71% 90.02% 86.56% 90.36% 80.83% 90.34% 

“Little is enough” attack ( Baruch et al., 2019 ) 

z = 1.035 

89.88% 68.06% 90.01% 86.51% 90.35% 88.80% 90.41% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 10 88.38% 89.66% 90.03% 85.88% 90.38% 71.64% 90.35% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 1 90.11% 84.03% 89.99% 85.48% 90.41% 88.77% 90.30% 

“Random” attack ( El-Mhamdi et al., 2022 ) 78.43% 89.67% 90.02% 86.60% 90.36% 80.92% 83.08% 

“Partial drop” attack ( El-Mhamdi et al., 2022 ) 72.06% 89.66% 90.00% 86.86% 90.43% 57.11% 73.48% 

“Local model poisoning” attack ( Fang et al., 2020 ) 86.37% n/d n/d 80.68% 90.28% 76.48% 89.81% 

(f) FMNIST-0.5 

“Little is enough” attack ( Baruch et al., 2019 ) 

z = 2.035 

37.92% 77.80% 78.48% 73.12% 78.57% 42.14% 74.07% 

“Little is enough” attack ( Baruch et al., 2019 ) 

z = 1.035 

73.56% 74.80% 78.48% 71.89% 78.46% 63.63% 78.46% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 10 70.55% 77.97% 78.46% 71.56% 78.51% 52.36% 78.47% 

“Fall of empires” attack ( Xie et al., 2020 ), eps = 1 77.17% 61.85% 78.45% 68.52% 78.47% 74.23% 78.04% 

“Random” attack ( El-Mhamdi et al., 2022 ) 33.06% 77.96% 78.47% 73.36% 78.54% 48.00% 53.02% 

“Partial drop” attack ( El-Mhamdi et al., 2022 ) 29.65% 77.96% 78.52% 74.35% 78.51% 23.08% 34.90% 

“Local model poisoning” attack ( Fang et al., 2020 ) 29.65% n/d n/d 63.93% 78.33% 70.18% 76.01% 
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nts could be very different in the Non-IID setting, which may be 

egarded as malicious gradients and discarded by the existing FL 

ethod. As Mini-FL performs the aggregation by groups, it could 

omprehensively collect features from different groups and guar- 

ntee global accuracy. 

Second, our Mini-FL shows better robustness and stability than 

ost existing FL methods against different attacks and under dif- 

erent Non-IID settings. Specifically, most Mini-FLs can maintain 

he unattacked global accuracy even facing a state of art attack 
10 
nd under an extreme Non-IID setting; on the contrary, existing 

L methods immensely decrease global accuracy and even be fully 

roken. For instance, Mini-median achieves 89.77% global accuracy 

n MNIST-1.0 under ’local attack,’ while Median drops global accu- 

acy from 53.60% to 2.85%. Table 9 illustrates the global accuracy 

f FL / Mini-FL methods under different Non-IID degrees and dif- 

erent attacks. 

Moreover, the result shows that although the Mini-trimmed 

ean improves the robustness for the trimmed mean method, it 
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Table 10 

Illustration of the data deviation. 

Whole range → Range1 Range2 . . . Range9 Range10 

DIS Range 3 . 5 ∼ −1 . 5 → 3 . 5 ∼ 3 . 0 3 . 0 ∼ 2 . 5 . . . −0 . 5 ∼ −1 −1 ∼ −1 . 5 
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Fig. 7. Illustration of the “elbow method” outcome. 
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chieves lower global accuracy than other Mini-Fl methods. For 

nstance, Mini-trimmed mean achieves 62.33% and 16.88% global 

ccuracy under drop attack in MNIST1.0 and Fashion MNIST-1.0 

hile other Mini-FL methods get around 90% and 76.5%, respec- 

ively. This is because the original FL method (Trimmed mean 

 β = 20 %)) draws a larger attack surface than Krum and Median 

s Trimmed mean ( β = 20 %) accept and aggregates 80% gradients 

eceived while Krum and Median accept only one gradient. 

Third, Mini-FL maintains the principles of focused collection 

nd data minimization of FL. All of the information used for group- 

ng (i.e., IP address, response time, and client ID) are naturally car- 

ied by the gradients when uploading. Mini-FL neither asks clients 

o upload their information further nor digs their features through 

everse engineering, which provides the same privacy protection as 

he existing FL methods. 

.3. Case study 

In this section, we provide a case study of “Boston House Price 

orecast” to further demonstrate the Mini-FL work process and 

valuate the effectiveness of Mini-FL in the real world. Case study 

etup Dataset and Data Deviation : Boston house price dataset 

 Harrison and Rubinfeld, 1978 ) records 13 features (e.g., crime rate, 

upil-teacher ratio, etc.) of 506 sample houses in Boston. Although 

oston house price ( Harrison and Rubinfeld, 1978 ) has not di- 

ectly recorded the address of each property, the feature DIS (i.e., 

eighted distances to Boston employment centers) could be al- 

ernatively regarded as the address of each house. To simulate 

he federated learning scenario that different clients participating 

n the learning task at different addresses, we equally divide the 

hole DIS range into ten sub-ranges; according to the DIS sub- 

ange, all data are assigned into these ten groups subsequently, 

able 10 illustrates the data deviation. 

Model architecture and FL system settings : We train a deep 

eural network to predict the Boston house price; this model con- 

ists of three dense layers with two Relu activations: Dense + Relu 

 13 × 32 ), Dense + Relu ( 32 × 16 ), Dense ( 16 × 1 ). 

We set 0.01, 10, and 10 as the learning rate, batch size, and 

poch, respectively, and train the global model 300 iterations. We 

ssume that 12 clients (from different addresses) participate in the 

earning task, and 25% are malicious. 

Adversary, FL/Mini-FL methods, and evaluation metric : We 

se Median ( Yin et al., 2018 ) and Mini-Median as the control group

nd select Reverse attack ( Biggio et al., 2012 ) ( t = 10 ) and a state of

rt attack Fall attack ( Moreno-Torres et al., 2012 ) ( eps = 10 ) to eval-

ate the robustness of each method. We use the loss value of the 

lobal model as the evaluation metric; specifically, the FL method 

s more robust if its global model achieves a lower loss under at- 

acks. 

Mini-FL We follow the Mini-FL proposed in Section 4 . As only 

he Geo-feature (DIS) is available in this case, we set Geo-feature 

DIS) as the grouping feature and perform the “elbow method”

or all gradients received to detect the cluster. The ’elbow method’ 

hows the gradients received can be divided into 6 clusters; Fig. 7 

llustrates the “elbow method” outcome. Based on the result, we 

urther divide the clients into 6 groups and generate the grouping 

olicy; Table 11 illustrates the grouping policy. 

In further iterations, we follow the grouping policy to distribute 

he gradients received in different groups and perform the Median 
11
ethod to generate the grouped model, respectively. Then, we uti- 

ize the weighted mean proposed in Section 4 to update the global 

odel and finish each iteration. 

Experimental results The experimental results show our Mini-FL 

ethod is more robust and achieves a lower loss. Specifically, the 

edian achieves 31 and 47 global loss under the reverse and Fall 

ttacks; but Mini-Median decreases the global loss to 26 and 24, 

espectively. Fig. 8 illustrates the global loss of the Median/Mini- 

edian method against Reverse and Fall attacks. 

. Discussion and future work 

Mini-FL and CFL: We note that the CFL ( Sattler et al., 2020 )

lgorithm has been designed based on a strong assumption that 

only the largest cluster is benign and all other clusters are adver- 

arial”, which is valid only under the perfect IID settings. Once the 

enign clients behave heterogeneously, the expected large cluster 

ill separate into several sub-clusters, putting CFL in the dilemma 

f selecting. Instead of identifying and separating the adversary, 

ur Mini-FL introduces clustering methods to reduce the attack 

urface. Furthermore, Mini-FL considers a more practical Non-IID 

cenario; we demonstrate that Mini-FL can effectively enhance the 

obustness of FL even though several (more than one) benign clus- 

ers exist. 

Mini-Krum and Bulyan: Mini-Krum and Bulyan 

 Guerraoui et al., 2018 ) are different, although both of them rely 

n performing Krum and trimmed-mean methods. Specifically, 

ini-Krum performs Krum by group and generates the weighted 

verage as the global model. In contrast, Bulyan ( Guerraoui et al., 

018 ) globally performs Krum n times to select n gradients and 

erforms Trimmed-mean to generate the global model. As Bulyan 

 Guerraoui et al., 2018 ) does not consider the Non-IID setting of 

L, it faces a similar degraded performance as other FL methods in 

on-IID scenarios. 

Non-IID sources: In this research, we select Geo-feature, Time- 

eature, and User-feature as the grouping feature candidates as 

hey are the most common source of Non-IID in the real world 

nd available to be collected in most scenarios without breaking 

articipant’s privacy. Except for the scenarios aforementioned in 

ection 1 , the Geo-feature derived scenarios may further include: 

atural disaster exploration ( Baghbani et al., 2022 ), customer 

aste analyzing ( Ma et al., 2022a ), etc. The Time-feature derived 

cenarios may include: pandemic pattern evaluation ( Abildgren, 

022; Jiang et al., 2023 ), consumer behavior preferences ( Pollak 
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Table 11 

Illustration of the grouping policy. 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

Client ID C1, C2, C3 C4 C5 C6 C7, C8, C9, C10, C11 C12 

Fig. 8. The robustness comparison between Median and Mini-Median. 
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t al., 2022; Reshi et al., 2023 ), road monitoring ( Gupta and 

erma, 2022 ), etc. The User-feature derived scenarios may include 

network) user profile generation ( Kushwah and Ranga, 2022; Pu- 

ahari and Sisodia, 2022 ), etc. However, we note that the Non-IID 

ource could be more complicated in some particular settings and 

ven be a combination in some cases ( Kairouz et al., 2021; Zhu 

t al., 2021; 2014 ). We leave investigating further to explore other 

on-IID sources and combination possibilities and further improve 

he Mini-FL method. 

Evaluation dataset: The effectiveness of our proposed Mini-FL 

ramework is dependent on the grouping principle used to classify 

he received gradients, i.e., the definitions of Non-IID features and 

heir boundaries, rather than the gradients themselves. To emulate 

he real-world Federated Learning process, we assign each gradi- 

nt in our experiments with identified Non-IID features, namely IP 

ddress, Time Window, and User ID. We note that employing the 

ame distribution strategy for Non-IID features will yield similar 

xperimental results across different evaluation datasets. 

. Conclusion 

We evaluated the robustness of existing FL methods in different 

on-IID settings and proposed a new framework called Mini-FL to 

nhance Federated Learning robustness. The main difference be- 

ween Mini-FL and existing FL methods is that Mini-FL considers 

L’s Non-IID nature and performs the byzantine tolerant aggrega- 

ion in different groups. Our evaluation shows that Mini-FL effec- 

ively enhances existing FL methods’ robustness and maintains a 

table performance against untargeted model attacks and different 

on-IID settings. 
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