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Abstract 

By 31 May 2022, original/Alpha, Delta and Omicron strains induced 101 outbreaks of COVID-19 in mainland China. 
Most outbreaks were cleared by combining non-pharmaceutical interventions (NPIs) with vaccines, but continuous 
virus variations challenged the dynamic zero-case policy (DZCP), posing questions of what are the prerequisites and 
threshold levels for success? And what are the independent effects of vaccination in each outbreak? Using a modified 
classic infectious disease dynamic model and an iterative relationship for new infections per day, the effectiveness 
of vaccines and NPIs was deduced, from which the independent effectiveness of vaccines was derived. There was a 
negative correlation between vaccination coverage rates and virus transmission. For the Delta strain, a 61.8% increase 
in the vaccination rate (VR) reduced the control reproduction number (CRN) by about 27%. For the Omicron strain, 
a 20.43% increase in VR, including booster shots, reduced the CRN by 42.16%. The implementation speed of NPIs 
against the original/Alpha strain was faster than the virus’s transmission speed, and vaccines significantly accelerated 
the DZCP against the Delta strain. The CRN ( Rc1 ) during the exponential growth phase and the peak time and intensity 
of NPIs were key factors affecting a comprehensive theoretical threshold condition for DZCP success, illustrated by 
contour diagrams for the CRN under different conditions. The DZCP maintained the Rc1 of 101 outbreaks below the 
safe threshold level, but the strength of NPIs was close to saturation especially for Omicron, and there was little room 
for improvement. Only by curbing the rise in the early stage and shortening the exponential growth period could 
clearing be achieved quickly. Strengthening China’s vaccine immune barrier can improve China’s ability to prevent 
and control epidemics and provide greater scope for the selection and adjustment of NPIs. Otherwise, there will be 
rapid rises in infection rates and an extremely high peak and huge pressure on the healthcare system, and a potential 
increase in excess mortality.
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Introduction
During past three years of the COVID-19 pandemic, 
prevention and control strategies in China have been 
changed from containment in the early stage to the 
dynamic zero-case policy (DZCP), and then to almost 
complete re-opening recently [1–3]. Before November 
2022, China’s epidemic prevention strategy was mainly 
to implement a rapid DZCP through locking down cities, 
large-scale and almost complete coverage of tests with 
nucleic acid screening, close contact tracking and isola-
tion, and improving vaccine coverage. By combining the 

above strong non-pharmaceutical interventions (NPIs) 
with vaccines, before 31 May 2022, 101 outbreaks of spa-
tially concentrated COVID-19 infections caused by the 
original/Alpha strain and Delta and Omicron mutant 
strains in China were quickly and dynamically cleared 
(Fig.  1a) [4]. Due to the sensitive monitoring system, 
each outbreak was detected in its early initial stage fol-
lowed by early isolation and treatment measures. Con-
sequently, outbreak areas were locked down or partially 
locked down quickly, and then continuous nucleic acid 
screening was carried out for all personnel until the goal 

Fig. 1 101 epidemic waves in mainland China and data analyses. a Time series of 101 epidemic waves (from 1 Jan 2020 to 31 May 2022) in 
mainland China caused by the original/Alpha, Delta and Omicron strains, with three large-scale outbreaks including those in Hubei, Shanghai 
and Jilin individually marked; b The mean peak values and durations of clearing times of 101 epidemic waves for different virus strains. When 
calculating the average value of the peak value, we excluded the data for five Provinces and cities exceeding 500 due to the peak values of these 
five provinces being significantly higher than those of other provinces, identified as outliers by Boxplot, namely 14,840 in Hubei (original/Alpha, 13 
February 2020), 27,605 in Shanghai (Omicron, 13 April 2022), 555 in Shandong (Omicron, 11 March 2022), 4427 in Jilin (Omicron, 2 April 2022) and 
555 in Hebei (Omicron, 19 March 2022). c Four stages of the epidemics including the free rising period with regular epidemic NPIs ( τ1 ), containment 
exponential growth period ( τ2 ), plateau period ( τ3 ) and exponential decline period ( τ4 ). The duration of clearing times ( Tc = τ1 + τ2 + τ3 + τ4 ) can 
be calculated from the real time series and the theoretical formula given in the Methods (Extended Data Online content)
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of zero clearance was achieved, resulting in nearly 100% 
close contact tracking, isolation and nucleic acid screen-
ing rates within a short period, otherwise the DZCP 
strategy could not have been realized so quickly for each 
outbreak.

However, due to the characteristics of the Omicron 
virus such as its high infectivity and low pathogenicity, 
China has adjusted its prevention and control measures 
after implementing the DZCP for nearly three years. 
Notably, “20 measures” were announced on 11 November 
2022 which included reduced isolation periods, the stop-
ping of mass testing except when a source of infection 
was known, relaxing travel restrictions and associated 
testing, boosting healthcare resources and stockpiling 
medicines, followed by a further “10 new measures” on 
7 December 2022 [5, 6]. These mainly allowed people 
with mild or asymptomatic infections to be quarantined 
at home and reduced the frequency of nucleic acid test-
ing, according to a statement issued by the State Coun-
cil’s Joint Prevention and Control Mechanism. Also, since 
8 January 2023 Covid-19 has been down-graded from a 
Category A to a Category B disease http:// www. nhc. gov. 
cn/ xcs/ zheng cwj/ 202301/ bdc1f f75fe b9493 4ae1d ade17 
6d309 36. shtml. Since then, Omicron infections have 
spread rapidly in major cities including Beijing, Shanghai, 
Chongqing and Chengdu where the Omicron epidemics 
have been putting severe pressure on the healthcare sys-
tem since late December 2022 [7, 8].

Compared with each outbreak wave before and after 
the policy adjustment, we found that before the adjust-
ment, the goal of DZCP could be achieved in a rela-
tively short time, the peak time of each wave was very 
short and the peak numbers of infections and final sizes 
of outbreaks were very small. After the adjustment, not 
only is it impossible to achieve the goal of the DZCP, but 
also the epidemic situation in various regions reaches a 
peak quickly with a huge peak value. Therefore, we can 
infer that there is a threshold for the intensity of NPIs to 
achieve the goal of dynamic zeroing. The key problem is 
how to determine this threshold and the extent that the 
independent effect of the vaccine has played in the pro-
cess of dynamic zeroing for each outbreak. Answering 
the above two questions can provide important deci-
sion-making guidance for the prevention and control of 
COVID-19 or the adjustment of prevention and control 
policies for new emerging infectious diseases.

Methods
Data collection and statistical analyses
We obtained data on laboratory-confirmed COVID-19 
cases in China from the National Health Commission of 
the People’s Republic of China (http:// www. nhc. gov. cn/ 
xcs/ xxgzbd/ gzbd_ index. shtml), as shown in Fig.  1a [4]. 

As of 31 May 2022, there had been 101 outbreaks of the 
COVID-19 epidemic in China, including 39 outbreaks of 
the original/Alpha strain, 19 outbreaks of the Delta strain 
and 43 outbreaks of the Omicron strain. If the number 
of newly reported cases was zero for three consecutive 
days, we considered that the epidemic had been dynami-
cally cleared, and small-scale epidemics with peak values 
of less than or equal to 10 were not counted in the 101 
epidemic waves (each wave had a peak with a peak value). 
Moreover, in the 101 outbreaks few or no COVID-related 
deaths were reported, except for during the first outbreak 
of the Wuhan epidemic induced by the original Alpha 
strain and during the Shanghai epidemic induced by the 
Omicron strain. Therefore, we did not collect the num-
bers of daily reported deaths for the 101 outbreaks in this 
study. Powerful and high-frequency nucleic acid detec-
tion in China made it impossible to accurately distin-
guish between symptomatic and asymptomatic patients 
because infected people were detected in time at an 
early stage, and consequently there was almost no under-
reporting of cases.

The outbreak of the Delta strain started on 21 May 2021 
in Guangdong, and the outbreak of the Omicron strain 
started on 8 January 2022 in Tianjin. We collected the 
numbers of daily reported cases for these 101 outbreaks 
from the National Health Commission. Using the maxi-
mum number of newly reported cases per day in each out-
break, the mean peak value during the epidemic period of 
each virus strain can be calculated (Fig. 1, Supplementary 
materials: Extended Data Fig.  1). In addition, no matter 
what kind of virus strain induced each wave, the dynamic 
zero-case policy (DZCP) [1–3]  could be achieved within 
about 40 days, and consequently we denote the duration of 
each outbreak as the clearing duration. The mean value of 
the clearing duration can be calculated directly by using the 
duration of each wave. As a result, the average peaks were 
44.34, 47.68 and 73.72 cases and the average durations were 
31.23, 22.52 and 45.25  days for outbreaks caused by the 
Alpha, Delta and Omicron strains, respectively, (Fig. 1b). It 
is noted that the data used to calculate the mean peak value 
do not include the five outbreaks with peaks greater than 
500, namely 14,840 (Alpha, 13 February 2020) in Hubei, 
27,605 (Omicron, 13 April 2022) in Shanghai, 555 (Omi-
cron, 11 March 2022) in Shandong, 4427 (Omicron, 2 April 
2022) in Jilin and 555 (Omicron, 19 March 2022) in Hebei. 
The peak values of these five provinces were significantly 
higher than those of other provinces and were identified 
as outliers by Boxplot. Besides, at the set research termina-
tion time, there were still 7 outbreaks of the Omicron strain 
that had not ended. What we are faced with here is right-
censored, for which the complete duration time has been 
cut off at the deadline. Therefore, we chose the Kaplan–
Meier approach to estimate a survivor function and further 

http://www.nhc.gov.cn/xcs/zhengcwj/202301/bdc1ff75feb94934ae1dade176d30936.shtml
http://www.nhc.gov.cn/xcs/zhengcwj/202301/bdc1ff75feb94934ae1dade176d30936.shtml
http://www.nhc.gov.cn/xcs/zhengcwj/202301/bdc1ff75feb94934ae1dade176d30936.shtml
http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index.shtml
http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index.shtml
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calculated the mean survival time, which refers to the mean 
duration time here. The result of the survival analysis was 
45.25, and its 95% confidence interval was (34.77, 55.73) 
(Fig. 1). The 7 outbreaks have now ended so we also cal-
culated the mean duration times for them as 44.30, based 
on the real data, which verified the reliability of the survival 
analysis results.

In addition to the numbers of daily reported cases, we 
also collected vaccination data, including the number of 
daily vaccination injections in some provinces of China 
from 15 December 2020 to 24 January 2022 (Supplemen-
tary materials: Extended Data Tables 1 and 2). Thus, the 
vaccination ratio is defined as the ratio of the total num-
ber of injections to the total population (Supplementary 
materials: Extended Data Table 1). Here, when calculat-
ing the corresponding vaccination ratio for the epidemic 
caused by the Delta variant, we used the data on the total 
number of injections at the start of the epidemic. How-
ever, due to the lack of later vaccination data (the vac-
cination data are as of 24 January 2022), the vaccination 
ratio of the epidemic induced by the Omicron variant 
was calculated using the vaccination data on 24 January 
2022 (Supplementary materials: Extended Data Table 2).

Dynamic model
With strict follow-up quarantine, isolation and treatment 
measures related to China’s DZCP, we employed a general 
Susceptible-Infected-Recovered (SIR)-type epidemiological 
model with contact tracing developed by Keeling & Rohani 
[9], because all of the reported cases were treated in isola-
tion, and the powerful NPIs effectively avoided the impact 
of the incubation period of each virus strain on the detected 
cases. Considering the close tracking and isolation meas-
ures that were implemented in China, we divided the pop-
ulation into the following groups of people: susceptible ( S ), 
infected ( I ), quarantined (both susceptible and infected) 
( Iq ) and recovered/confirmed ( R ) [4]. Let N  be a constant 
to denote the total population, the transmission probabil-
ity be β , contact rate be a constant c , quarantined rate be 
q and the confirmation rate of the quarantined infected 
people be δq . 1/γ represents the transmission period with 
various NPIs being effective. Here, it is assumed that the 
quarantined susceptible population (Iq) will not return to 
the susceptible population before the dynamic zeroing of 
the epidemic due to strong NPIs and short epidemic dura-
tion. The model is as follows:

(1)

S
′

= −
(βc+cq(1−β))

N
SI ,

I
′

=
βc(1−q)

N
SI − γ I ,

S
′

q =
(1−β)cq

N
SI ,

I
′

q =
βcq
N

SI − δqIq ,

R
′

= δqIq + γ I .

Note that dynamic zeroing for each wave could 
be achieved in about 40  days, and that the closely 
tracked and quarantined susceptible population gener-
ally needs to be quarantined for two weeks in a cen-
tralized manner and one week at home, so that the 
quarantined susceptible population will not become 
susceptible again at the end of a wave. We emphasize 
here that a SEIR model rather than a SIR model based 
on the transmission mechanism of COVID-19 could 
be employed. However, due to the powerful high-fre-
quency nucleic acid testing, most infected people will 
not have experienced a complete process from infec-
tion to incubation period, and then to asymptomatic 
or symptomatic, i.e. every patient may be found at 
every stage after infection, and thus a SIR model (1) 
has been used here. Because of this, the epidemic data 
only include the number of newly reported confirmed 
cases. Of course, it would be possible to develop math-
ematical models incorporating more practical factors, 
including age structure, and conduct more in-depth 
research [10].

As mentioned in the data analyses, our study excluded 
several outbreaks with more than 500 newly reported 
cases in a single day, and all outbreaks can be dynami-
cally cleared in about 40 days. Therefore, compared with 
the total population size of each province or munici-
pality (at least tens of millions and at most hundreds of 
millions), the S/N ratio is basically 1 in the process of 
each outbreak under China’s powerful NPI strategy. For 
example, as of 31 May 2022, the largest proportion of the 
total number of infected cases to the total population of 
each province was Shanghai (2.52%), followed by Jilin 
(0.31%), and Hubei (0.12%), all of which were excluded 
from this study for the reasons explained above. The 
prevalence in the regions used in this study are shown 
in Extended Data Fig.  1. Therefore, it is reasonable to 
assume that  SN ≈ 1 always held during each outbreak in 
mainland China before the relaxation of control meas-
ures, which results in:

Let β1 = (βc + cq(1− β)) , β2 = βc(1− q) , β3 = βcq, 
the control reproduction number (CRN) Rc =

β2
γ

 , the 
basic reproduction number R0 =

βc
γ

 , then 
β3 = βcq =

γq
1−q Rc . Note that the  Rc is determined by 

the transmission probability β which is directly affected 
by the effectiveness of vaccines, contact rate c , quaran-
tined rate q and the transmission period 1/γ which are 
directly affected by the strength of NPIs. Solving the 
equation for I in (2) yields:

(2)

{

I
′

= βc(1− q)I − γ I = γ (Rc − 1)I ,

Iq
′

= βcqI − δqIq =
γq
1−q RcI − δqIq .
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Substituting Eq. (3) into the second equation of (2), we 
have

Taking the initial value as 0 and solving the above dif-
ferential equation gives:

It follows from Eq.  (2) that the number of newly 
reported cases in the controlled area is γq

1−q RcI and the 
number of newly reported cases in the uncontrolled area 
is γRcI . Note that due to very extensive and frequent 
nucleic acid testing, the total number of newly reported 
cases is exactly the total number of new infections. More-
over, the total number of daily reported cases at time t 
can be calculated as follows:

Furthermore, we have the following iteration formula 
for the number of daily reported cases:

The iteration relation shown in (4) contains only two 
parameters, namely, the transmission period 1

γ
 and the 

CRN Rc , which has involved the combined effect of NPIs 
and vaccine efficacy. This relationship is equivalent to the 
well-known one obtained for SIR models [11]. Further, 
we can consider γ(Rc − 1) as a whole in the iterative for-
mula (4) with the exponential growth rate as the only 
parameter, which can provide useful information on 
characterizing the transmissibility.

Estimation of the epidemic duration
Based on the epidemic data and times for implement-
ing NPIs for each outbreak, as shown in Fig.  1c, the 
dynamic zeroing process of each outbreak may experi-
ence four distinct phases: (1) a free rising period with 
regular epidemic prevention and control ( τ1 ); (2) a con-
tainment rising period ( τ2 ); (3) a plateau period ( τ3 ) and 
(4) an exponentially declining period ( τ4 ). Note that the 
exponential growth period can be calculated as τ1 + τ2 , 
and with strong NPIs some of the outbreaks considered 
in this work have no plateau period and/or no free ris-
ing period [1–3]. We used a linear regression model to 
describe the relationship between the logarithm of the 
number of daily reported cases ( y ) and the time t in the 

(3)I(t) = I0exp[γ(Rc − 1)t].

Iq
′

= β3I0exp[γ(Rc − 1)t] − δqIq .

Iq(t) =

[

�3I0exp[(Rcγ + �q − γ)t] − �3I0

Rcγ + �q − γ

]

exp
(

−�qt
)

.

New(t) =
γq

1 − q
RcI + γRcI =

γ

1 − q
RcI =

γRcI0

1 − q
exp[γ(Rc − 1)t].

(4)New(t + 1) = f (New(t)) = New(t)exp[�(Rc − 1)].

exponential growth period and the exponential declining 
period, as follows:

where r1(orr2) is the exponential growth (or decline) rate, 
b1(b2) is the intercept term. As is well known, the first 
confirmed case is often reported later than the onset of 
an epidemic. If the exponential growth rate of the num-
ber of daily reported cases at the beginning of the epi-
demic is assumed to be r1 , the onset time of the epidemic 
can be calculated by y = 0 , namely t0 =-b/r1 . Suppose 
the reporting time of the first confirmed case is t1 = 1, 
then the free rising period can be determined to be

This simple formula can deal well with the problem of 
reporting delay, and the free rising period for 6 epidem-
ics induced by Omicron and for 4 epidemics induced by 
Delta strains based on Eq. (6) as shown in Extended Data 
Table 4.

The estimation of changing points
The four distinct phases of each outbreak are deter-
mined by three key switching points, and here an analyti-
cal method to estimate these three switching points was 
employed [12, 13], to further identify the time nodes of 
each stage, determined on the basis of the actual data 
and adjustment of the prevention and control strategies. 
We used Bayes’s method to capture the transition time 
from the free rising stage to the containment stage, and 
the transition time from the containment stage to the 
plateau stage. Since the linear regression model (5) can 
well describe the change of the logarithmic value of the 
number of new cases, we introduced change points into 
the model and then estimated the change points based on 
the data. A posterior distribution expression of a single 
change point for a general switching linear model is avail-
able [11, 12]. By giving the prior information about the 
parameters, the times when the three phases switch can 
be obtained by sampling using the posterior distribution. 
The estimated switching points of the first three phases 
by sampling using the posterior distribution are given in 
the first three columns of Extended Data Table 4.

Calculation of the CRN
With the strengthening of NPI measures, especially 
the improvement of detection, the infection period of 
undiagnosed patients was shortened. Therefore, for 
an infected individual, his/her transmission period is 
assumed to be 1/γ 1 (or 1/γ 2 ) during the exponential 

(5)y = rit + bi, i = 1, 2

(6)τ1 = t1 − t0 =
b

r1
+ 1.
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growth (or declining) period of the outbreak, and the 
corresponding CRN is Rc1 (or Rc2 ). According to the iter-
ative formula for the number of daily reported cases (4), 
we can obtain the relationship between the exponential 
growth (or decline) rate and the CRN as follows:

Thus, the CRN can be calculated from

According to (7), the value of the CRN depends on the 
value of ri and γi . Here, considering that the value of the 
transmission period may affect the value of the CRN, 
we calculated Rc1 when the transmission period is 5 and 
6 days, and Rc2 when the infection period is 1 and 2 days 
(Supplementary materials: Extended Data Table  3). In 
addition, the epidemic situation in Shanghai experienced 
three adjustments to its exponential growth rate (0.39, 
0.24, 0.18) before reaching the plateau period. The val-
ues of the CRN calculated by using the three exponential 
growth rates are, respectively, 3.34, 2.44 and 2.08 (or 2.95, 
2.20, 1.90) when γ1 = 1/6(orγ 1 = 1/5 ), and the values 
given in Extended Data Tables 1 and 3 are the values for 
the first exponential growth stage.

Estimation of epidemic duration
Considering the four (or three) stages of each wave of the 
101 epidemics, the role of all NPI measures is embodied 
in gradually reducing the exponential growth rate of the 
number of daily reported cases, and finally to less than 0, 
that is, from exponential growth to exponential decline. 
In other words, the CRN is reduced from Rc1 to Rc2 due 
to the continuous strengthening of NPIs, so we can define 
the relatively strengthened NPIs in this process as Sc , i.e.

Thus, the threshold condition for disease control is 
Rc2 < 1 , namely

Let Tc be the clearing duration. Obviously, 
Tc = τ1 + τ2 + τ3 + τ4 . Given the value of the NPI 
strength Sc , we can get the influence of the exponential 
growth time τ1 + τ2 and the CRN Rc1 on the clearing 
duration Tc . Specifically, assume that one infected indi-
vidual is introduced into the population at time 0, then 
the number of newly reported cases at time τ1 + τ2 gives:

ri = γi(Rci − 1), i = 1, 2.

(7)Rci =
ri

γi
+ 1, i = 1, 2

Sc =
Rc1 − Rc2

Rc1
.

(8)Sc >
Rc1 − 1

Rc1
.

New(τ1 + τ2) = exp[γ1(Rc1 − 1)(τ1 + τ2)].

Because τ3 is the duration of the plateau phase, the 
numbers of daily reported cases remain unchanged. 
Thus, we have

It follows from 
New

(

Tc

)

= New
(

�1 + �2 + �3
)

exp[�2(Rc2 − 1)(Tc − (�1 + �2 + �3))] = 1  that

Therefore, if condition (8) holds, the epidemic can then 
be eliminated, consequently the goal of dynamic zero-
ing can be achieved. Thus, given the CRN (Rc1), we can 
estimate the clearing duration Tc according to Eq.  (9) 
under different exponential growth durations τ1 + τ2 
and the relatively strengthened NPIs Sc . Here, the dura-
tion of the plateau phase is usually unpredictable, so we 
assume that τ3 = 0 when calculating the epidemic dura-
tion theoretically.

Estimation of the relatively strengthened NPIs ( Sc)
Define c0 to be the average number of contacts before 
the outbreak which was 14 (or 20) [14]. It is assumed that 
the number of contacts has been reduced by 1/3, 1/2 or 
2/3 in the exponential growth stage ( c1 ), that is, the aver-
age numbers of contacts were 9.3, 7, 4.7 (or 13.3, 10, 6.7). 
It is assumed that the infection period in the exponen-
tial growth stage is 6  days, and that in the exponential 
decline stage it is 2 days (effects of these two parameters 
on the CRN are shown in Extended Data Table 3). Then 
the infection period is reduced from 6 to 2, and the CRN 
is reduced to 1/3 of its original value (Rc1 ). If the contact 
number is further reduced by another 1/3, 1/2 or 2/3, then 
the CRN is constrained to be 2/9, 1/6 or 1/9 of its original 
value (Rc1 ). Thus, increasing the detection strength and 
controlling social distancing reduced the CRN by 78%, 
83% or 89%. The average contacts under different circum-
stances are shown in Extended Data Table 6. Obviously, 
the average contacts in bold are smaller than the average 
number of people in a Chinese family, which is impos-
sible. In addition, the infection period of 2 days already 
limits the effect of NPI measures. Therefore, a reason-
able setting is that the maximum mean of the relatively 
strengthened NPI Sc is 0.89. In Extended Data Table  7, 
the sensitivity analyses of the CRNs and the relatively 
strengthened NPIs Sc in the exponential decline stage for 
different 1/γ 2 (here we fixed γ 1 = 1/7) are listed.

Results
The classic infectious disease dynamic model was used 
after modification and an iterative relationship for 
new infections per day was derived [9], and then the 

New(τ1 + τ2 + τ3) = exp[γ1(Rc1 − 1)(τ1 + τ2)]

(9)Tc =
(

�1 + �2
)

(

1 +
�1(Rc1 − 1)

�2(1 − Rc2)

)

+ �3 ≜ g
(

Rc1, �1 + �2, Sc
)

.
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effectiveness of vaccines and NPIs was deduced. Initially, 
we simulated the new infections with R0 = 3 to calcu-
late a theoretical simulation curve (TSC, blue in Fig. 2a). 
Curve fitting (red in Fig.  2a) for the real data (from 10 
to 29 January 2020) resulted in R0 = 3.82 for the origi-
nal strain in Wuhan city, which is clearly higher than the 
blue curve [1–3]. It is known that the very limited abil-
ity to detect the new coronavirus in early 2020 led to 
incomplete and late diagnoses of the initial cases which 
contributed to a serious underestimation of the transmis-
sion risk of the original strain involved in the Wuhan epi-
demic [15–17].

In 2021, the numbers of newly reported cases caused 
by the Delta mutant in Shaanxi (mainly in Xi’an city), 
Liaoning, Inner Mongolia, Fujian, Heilongjiang and 

Jiangsu Provinces (Yanghzou city in Jiangsu) were lower 
than their respective TSCs when R0 = 6 (Fig.  2b) [16]. 
This shows that the combination of vaccinations and 
NPIs effectively curbed the exponential growth of the 
Delta mutant epidemic for the above six regions with 
Rc1 = 2.92, 2.56, 2.68, 3.46, 3.40, 2.56 (4.0 for Yangzhou 
city) respectively, and the vaccination ratios corre-
sponding to each outbreak time (number of doses / total 
population) were 1.73, 1.62, 1.60, 1.49, 1.48 and 1.07, 
respectively (Supplementary materials: Extended Data 
Table 1). A comparison between the epidemic caused by 
the Delta strain in Xi’an city with that in Yangzhou city 
in 2021 indicates that the 61.8% increase in the vaccina-
tion coverage rate in Shaanxi induced the 27% reduction 
in the CRN, conditional upon a similar intensity of NPIs, 

Fig. 2 Analysis of synergistic and independent effects of vaccine and NPIs. a Comparison between the exponential growth curve obtained 
when the R0 of the original variant is 3 (blue curve) and the exponential growth curve during the free rising period of the epidemic (red curve) in 
Wuhan, in 2020. b Early relevant information on 6 outbreaks caused by the Delta mutant in Shaanxi, Liaoning and other places in China in 2021 
(for comparative purposes, data for Yangzhou City in Jiangsu Province are also provided), including vaccination rate (proportion of total doses to 
total population) and the control reproduction number (CRN) Rc1 . c The early relevant information on 9 outbreaks caused by the Omicron mutant 
in Hebei, Guangdong, Tianjin and other places in China in 2022, including the vaccination rate (by 28 January 2022) and the values of the CRN 
Rc1 . d Comparison of two outbreaks in Shaanxi and Liaoning caused by Delta and Omicron mutants in 2021 and 2022 indicates that even under 
stronger NPIs and higher vaccine coverage rate, the Omicron strain is more infectious in China. e Correlation analysis and linear regression between 
vaccination rate and Rc1 for 6 outbreaks caused by the Delta mutant. Corp and Cors represent the Pearson and Spearman correlation ceoficents, 
respectively. f Correlation analysis and linear regression between vaccination rate and Rc1 for 9 outbreaks caused by the Omicron mutant. Corp and 
Cors represent the Pearson and Spearman correlation ceoficents, respectively
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that is, the independent protective effect of the vaccine 
is obvious given the consistent intensity of NPIs [18, 19].

Since the Omicron mutant entered China in 2022, it 
has caused small-scale epidemics in 7 provinces and cit-
ies including Tianjin, Hebei and Guangdong, as well as 
large-scale epidemics in Jilin and Shanghai. The number 
of early infections increased exponentially, but at rates 
that were all far below the TSC for the Omicron strain 
with  R0 = 8, as their Rc1 values were in the 2.14–3.70 
range (Fig.  2c, Supplementary materials: Extended Data 
Table 2) [20]. Similarly, comparing the epidemics caused 
by the Omicron strain in Guangdong Province with 
those in Jilin Province in 2022 indicates that the 42.16% 
increase in vaccination coverage rate in Guangdong 
induced the 34.05% reduction in CRN, which, together 
with vaccination coverage rates, implies that the booster 
shot for COVID-19 is more effective to protect against 
the Omicron variant than against the Alpha or Delta 

variants. There is a strong negative correlation between 
the vaccination level and the CRN of COVID-19 [21–24]. 
The higher the vaccination level, the lower the CRN of 
the epidemic (Fig. 2d-f ).

By taking the COVID-19 epidemics caused by the 
Alpha strain in Beijing, Hebei, Heilongjiang and Jilin as 
examples, we carried out a logarithmic analysis of the 
data in each region by using linear regression equations 
of different stages in each region to examine the inter-
action between epidemic evolutions and the dynamic 
clearing process. During the Alpha epidemic period, the 
early exponential growth rates were very high (the lin-
ear growth slopes of the four regions were 1.3, 1.02, 1.23 
and 0.49, respectively; Fig.  3a). Moreover, the exponen-
tial growth trends of the four regions were cut off within 
five days. This shows that China’s quarantining of close 
contacts, rapid nucleic acid screening, locking down of 
residential communities with active transmissions and 

Fig. 3 Different stages of epidemic evolutions and the dynamic zeroing processes. Using linear regression lines to fit logarithmic data and growth 
curves to fit original data caused by the Alpha, Delta and Omicron variants, we analyzed the impact of NPI strategies on dynamic zeroing in four 
periods. The slope of the rising straight line reflects the severity and risk of the epidemic and the timeliness of the NPIs, and the slope of the falling 
straight line reflects the strength of the NPI measures. Subplots a, b and d represent the linear regression lines and logarithms of data on epidemics 
caused by the Alpha, Delta and Omicron variants. Subplots c and e represent fitting the original data caused by the Delta and Omicron variants, 
calculated from the linear regression results shown in subplots b and d (Guangdong and Hebei provinces had slight rebounds during their decline 
periods, so there are two linear regression fitting curves for these declines)
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imposing travel restrictions can effectively curb epidem-
ics caused by virus strains with long incubation periods 
and low infectivity in a relatively short time. It also indi-
cates that the speed of implementation of NPIs was faster 
than the transmission speed of the Alpha strain [3, 25].

 The early linear growth slopes of the Delta mutant 
causing COVID-19 in Shaanxi, Jiangsu, Liaoning and 
Heilongjiang Provinces were 0.32, 0.26, 0.26 and 0.4, 
respectively (Fig.  3b). The epidemic data in Heilongji-
ang Province grew the fastest in the early stage, but its 
free rising and containment rising periods were relatively 
short. In the later stage, the slopes of the linear declines 
were -0.26, -0.27, -0.18, -0.29, respectively (Fig.  3b-c). 
The epidemic situation decreased rapidly, and the val-
ues of RC2 (the estimated Sc ) were 0.48 (0.84), 0.46 (0.82), 
0.64 (0.75) and 0.42 (0.88), respectively (Supplementary 
materials: Extended Data Table  3). These results show 
that Heilongjiang had the smallest RC2 , the largest NPI 
efforts, and consequently the minimum clearing time 
(Extended Data Table 4). Thus, the strength of NPIs for 
the Delta virus-induced epidemic was very strong [26], 
compared with the mean upper limit Sc = 0.89.

In Jilin, Beijing, Shaanxi, Shanghai, Guangdong and 
Hebei, the early linear growth slopes of the epidemic 
induced by the Omicron strain were 0.45, 0.34, 0.4, 0.39, 
0.19 and 0.36, respectively (Fig. 3d, Supplementary mate-
rials: Extended Data Table 2), among which Jilin was the 
fastest, while Guangdong was the slowest. According to 
the linear regression fitting results, the free rising period 
in Shanghai was 0 days, in Beijing and Hebei it was 2 days 
[27, 28], and in Guangdong and Shaanxi 3  days (Sup-
plementary materials: Extended Data Table  4), indicat-
ing that the epidemic situation in most areas was found 
earlier during Omicron epidemics than in those caused 
by other variants. Comparing Beijing and Jilin, Jilin was 
found relatively late, the initial growth rate of Beijing was 
slightly lower than that of Jilin, and the time to reach the 
plateau period was 3 days earlier than that for Jilin. Bei-
jing quickly ended the containment period and entered 
the plateau period, resulting in a huge difference in the 
development of the epidemic between Beijing and Jilin 
in the later period (Fig.  3e, Supplementary materials: 
Extended Data Table 4).

During the exponential decreasing stage, the val-
ues of RC2 ( Sc ) were 0.62 (0.83), 0.68 (0.78), 0.56 (0.83), 
0.76(0.77), 0.36 (0.83), 0.48 (0.85) in the above six regions, 
respectively (Fig. 3d, Supplementary materials: Extended 
Data Table 3), with Shanghai having the largest RC2 and 
the smallest Sc . Note that the slopes of the late linear 
decline phases of the epidemics induced by the Omicron 
strain were -0.19, -0.16, -0.22, -0.12, -0.24 (-0.32), -0.16 
(-0.26). Two slopes are provided for both Guangdong and 
Hebei provinces due to slight rebounds that occurred 

during their decline periods (Fig. 3d). Notice that Shang-
hai had the slowest decline while Guangdong had the 
fastest decline. The biggest difference between these two 
is that Guangdong crossed the plateau period during a 
short containment of the rise, which rapidly declined. 
Thus, the scale of this round of the epidemic in Guang-
dong was far smaller than that in Shanghai, and the clear-
ing time after the decline was significantly faster than 
that in Shanghai, a difference of 65 days (Supplementary 
materials: Extended Data Table 4). The linear regression 
fitting completely reproduces the dynamic adjustment 
process of NPIs in Shanghai with five time points shown 
as red dots in Fig. 3d, making the slope of the straight line 
( orRc1) drop from 0.39 (or 3.34) at the earliest to 0.18 (or 
2.08) in the rising containment period. It took 44  days 
to cut off the exponential growth and enter the plateau 
period with four step-by-step increments in the strength 
of NPIs, resulting in difficulties in dynamic zeroing in the 
later period. This emphasizes the importance of quick 
and intense responses, effectively shortening the expo-
nential growth period.

By comparing values of RC2 for the epidemics induced 
by the Delta and Omicron strains we found that, with the 
same mean Sc , the Rc2 for the epidemic associated with 
the Delta strain is relatively small, leading to dynamic 
zeroing being achieved fast [28, 29]. Moreover, most 
Omicron-induced epidemics were cleared within rela-
tively short times (before 1 June 2022, shown in Fig. 1a, 
Supplementary materials: Extended Data Table  2), but 
took far longer to clear than epidemics induced by the 
Alpha and Delta strains. Therefore, all these results con-
firm that China’s high vaccination rate and strong NPIs 
can effectively avoid various waves of epidemics induced 
by existing strains and achieve dynamic zeroing, but 
there are still great risks and uncertainties with small 
outbreaks during the declining stage due to prerequisites 
and threshold levels associated with dynamic zeroing 
(Fig. 3d-e).

In addition, the epidemic durations (including the pla-
teau phases) for 6 epidemics induced by Omicron and 
for 4 epidemics induced by Delta strains based on Eq. (9) 
are shown in Extended Data Table 4, while the real epi-
demic durations for these 10 epidemics are shown in 
Extended Data Tables  1 and 2. It should be noted here 
that when estimating the duration of an epidemic, 
we consider that the free rising period due to the first 
reported case for each epidemic inevitably has a certain 
lag. Thus, the general estimation result is slightly longer 
than the time series of real data. For example, for the 
epidemic situation in Liaoning (Heilongjiang) induced 
by the Delta strain, the estimated epidemic period was 
36  days (23  days, Supplementary materials: Extended 
Data Table  4). If the estimated free rising period of 
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8 days (3 days) is subtracted, it would have been 28 days 
(20 days), which is consistent with the reported duration 
of 24 days (20 days, Supplementary materials: Extended 
Data Table 1). In addition, the epidemics in Guangdong 
and Hebei Provinces induced by the Omicron strain 
showed small fluctuations in the declining stage. In 
general, the reported durations of the epidemics were 
97 and 76  days, respectively (Supplementary materi-
als: Extended Data Table  2), with three peaks (Fig.  3d-
e). Specifically, the number of daily reported cases in 
Guangdong (Hebei) reached 0 on the 75th (47th) day, 
and then increased when a third small peak appeared. 
When estimating the duration of an epidemic, we used 
the exponential decline rate of the second declining 
stage, namely -0.32 (Guangdong) and -0.26 (Hebei). The 
estimated durations of the epidemics were 75  days and 
56  days, respectively, which were consistent with the 
actual data.

To reveal complex relations between the clearing time 
Tc with respect to the Rc1 during the early exponen-
tial growth stage (EGS), the peak time τ and the rela-
tively strengthened NPI Sc , we derived the contour plots 
shown in Fig. 4. These indicate the threshold conditions 
for clearing or not clearing epidemics induced by the 
Delta and Omicron strains with different values of Sc . 
In particular, when Sc = 0.6 (or 0.7, or 0.8), it is impos-
sible to clear epidemics caused by the Delta or Omicron 
strains once Rc1 exceeds 2.4 (or 3.3, or 5.1). Fortunately, 
the estimated Rc1 values for all epidemics caused by the 
Delta and Omicron strains in China were less than these 
thresholds (Supplementary materials: Extended Data 
Tables  1 and 2), indicating that the dynamic zero-case 
policy was being successful.

Moreover, when Sc = 0.7, if the Rc1 reaches 2.5 (or 3) 
in the EGS, the epidemic could be cleared within one 
month, provided that the EGS could be cut off within 
11 days (5 days). When Sc = 0.8, if the Rc1 reaches 3 in the 
EGS, the epidemic could be cleared within one month 
provided that the EGS could be cut off within 12  days, 
otherwise the epidemic cannot be cleared within two 
(three) months if the exponential growth trends cannot 
cut be off within 23 (34) days. In addition, compared with 
Hebei, the Rc1 in Shaanxi was slightly higher than that 
in Hebei, but the exponential growth period of Shaanxi 
was 8 days shorter than that in Hebei, which resulted in 
the clearing time in Shaanxi being nearly 1  month ear-
lier than that in Hebei. This illustrates that the exponen-
tial growth period played an essential role in realizing 
the dynamic zero-case policy. It is worth noting that the 
estimated exponential growth periods for Jilin (Shang-
hai) were 18  days (45  days) (Supplementary materials: 
Extended Data Tables  3 and  4), so the estimated clear-
ing time of the epidemic in Jilin was nearly 3  months, 
while the epidemic in Shanghai could be cleared within 
3 months, agreeing well with the real scenarios.

In order to compare the epidemic situation without 
vaccines and control measures with existing vaccine 
regimes and very strong control measures, we assumed 
that the basic reproduction number of the Omicron vari-
ant was 8 (baseline value), and calculated the cumula-
tive number of infected people within 9  days ( N 9

I  ) and 
the percentage decrease in the cumulative number of 
infected people compared to the baseline value ( Pd ) 
under different CRNs and the baseline value. As shown 
in Extended Data Table 5, we found that the total num-
ber of infected persons in the nine waves of the Omicron 

Fig. 4 Determination of epidemic duration and threshold level of the NPIs’ strength. Based on the strength of NPIs (Sc) and the formula for Tc 
without considering the plateau period ( τ3 ), the maximum value of Rc1 during the exponential growth stage that can be dynamically cleared in 
the later decline stage under different intensities of NPIs can be obtained. The contour diagram of the clearing time Tc with respect to the CRN Rc1 
during the early EGS, the peak time τ and the intensity of NPI measures Sc . Numbers marked on lines of the figure represent values of Tc , and dots 
represent the values of Rc1 and τ of these regions. The horizontal line RT

c1
 represents the threshold value of whether the epidemic can be dynamically 

cleared or not, which indicates that the epidemic cannot be cleared once Rc1 exceeds RT
c1
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epidemic in China has been reduced by more than 99% 
compared with its benchmark  R0. In addition, we also 
calculated the time required for the number of infected 
people to reach 10,000. In the case of the Omicron base-
line R0 , it takes 10 days to reach 10,000 infections, while 
in the nine waves of the Omicron epidemic in China, it 
takes 41 days when the Rc1 value is the minimum of 2.14 
(Guangdong) and 20 days when the Rc1 value is very large 
(3.7, Jilin). Therefore, China’s comprehensive capacity in 
vaccine and health prevention and control could have 
delayed the rapid growth of the epidemic for at least 
11–32 days, thereby winning some precious time for the 
comprehensive deployment and strengthening of preven-
tion and control measures.

Discussion
 Our study found that the real Rc1 values of the Omi-
cron variant in the epidemic of 9 regions in China was 
only 2.14–3.70 (Supplementary materials: Extended 
Data Table  2), which was not only far lower than those 
of South Africa, the United States of America and Hong 
Kong (6–7.75) [15, 17, 20], but also lower than the value 
of 3.82 for the original strain in Wuhan. By comparing the 
real data with simulated infections under the benchmark 
 R0 value for Omicron in the 7 regions where the Omi-
cron epidemic had ended as of 1 June 2022, we found that 
more than 99% of the cases of COVID-19 were prevented 
(Supplementary materials: Extended Data Table  5). 
Under the combined effect of vaccines and NPIs, the 
DZCP maintained the Rc1 of the 101 outbreaks studied in 
this paper below the safe threshold level, but the strength 
of NPIs was close to saturation (0.89), and there was little 
room for improvement. However, the high infectivity and 
occult nature of mutant strains inevitably leads to diffi-
culties in early detection [30–32], which makes the early 
exponential growth exceed the threshold for successful 
dynamic zeroing, leading to increasing uncertainty about 
the outbreak of new, larger scale, aggregated outbreaks, 
and even to epidemics becoming out of control due to 
waning immunity [30–32]. After the “new 10 measures” 
announced on 7 December 2022 [5, 6], many large cities, 
including Beijing, Shanghai, Chongqing and Chengdu, 
have experienced shocking first waves with the num-
ber of infected people approaching 70%, which has had 
huge impacts on the healthcare system. The above results 
confirm that there exists a critical threshold for the NPI 
strategy of the DZCP, but when the intensity of NPIs is 
lower than this threshold, a major outbreak is inevitable. 
Therefore, further consolidating and strengthening of 
China’s vaccine immune barrier can effectively improve 
China’s ability to prevent and control epidemics and pro-
vide greater scope for the selection and adjustment of 
NPIs.

The models and analysis methods established in this 
study are not only applicable to the study of small-scale 
clustering COVID-19 epidemics in China, but are also 
applicable to the study of epidemic development trends 
and their durations in other regions or for other diseases. 
However, due to the assumption that the number of sus-
ceptible individuals is approximately equal to the total 
population, the model can only be applied to small-scale 
outbreak research caused by a virus with a low trans-
mission rate or with strict control measures, as well as 
research on the development of epidemic trends during 
the early stages of an outbreak.

Conclusions
The main conclusions are that the durations of each 
outbreak and their dynamic zeroing processes mainly 
depended on their early exponential growth rates, peak 
times and peak values, as well as their late exponential 
decline rates. Moreover, the early or late discovery of 
each outbreak and the timing when NPIs were started 
are two key factors that determine the early exponential 
growth rate and peak value, which naturally affect the 
duration of each outbreak. The synergistic effect of the 
above factors affecting the duration of epidemics and 
the DZCP is an important subject for further in-depth 
study. Moreover, we did not take into account the impact 
of factors such as vaccination time and immune wan-
ing on the independent effect of the vaccine, which may 
affect the accuracy of estimates [33, 34]. How to inte-
grate immune dynamic waning and develop more realis-
tic models including age structure and symptomatic and 
asymptomatic classes is an important aspect for future 
research [33, 34].
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