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Abstract—The security guarantees of cryptographic primitives
are subject to the assumption that established keys are known
only by the legitimate users and no information about the key
bits is known by illegitimate users. Unfortunately, this assump-
tion may not be applicable in leakage-prone key establishment
schemes. Namely, information leakage about an established key
(defined as a bit inference rate of an adversary that is strictly
greater than 50%) reduces its computation effort required in an
exhaustive key search. In this paper, we present a methodology
and a polynomial-time algorithm that determines the exact
impact of information leakage on a generated bit sequence and
expressed these findings in terms of the achieved level of bit
security. Additional simulation results enable us to determine
the achieved level of bit security of a leakage-prone bit sequence
or, conversely, enable us to determine the length of a bit sequence
necessary to achieve a selected level of bit security.

Index Terms—Cryptography, Information Leakage, Key Gen-
eration, Physical Layer Security, Security Analysis

I. INTRODUCTION

KEY establishment covers a variety of techniques (e.g.,
key agreement, key distribution) which enable two hon-

est nodes, commonly named Alice and Bob, to gain possession
of a shared (i.e., symmetric) secret key [1]. For wireless
communication, the physical layer can be leveraged for on-
demand and low-complexity key establishment while indepen-
dent from a complex system architecture [2]. These benefits
make them attractive for resource constrained (e.g., Internet-
of-Things) networks, delay-sensitive (e.g., autonomous vehi-
cles) networks, and future 6G network [3]. From the literature,
we can distinguish between two classes for physical layer-
based key establishment:

The first class covers (information) theoretical schemes,
initiated by Wyner [4], Maurer [5], and Ahlswede and Csiszar
[6]. These schemes make abstractions about the channel
between the legitimate nodes, Alice and Bob (i.e., main
channel), and the channel towards an eavesdropper, Eve (i.e.,
eavesdropper channel). Unfortunately, the feasibility for key
establishment relies on an advantage in the quality of the
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main channel with respect to the eavesdropper channel (i.e., a
strictly positive secrecy capacity). This advantage can be either
natural or created artificially (e.g., by taking advantage of
supporting nodes which transmit signals simultaneously with
Alice and Bob to provide constructive interference in the main
channel and/or destructive interference in the eavesdropper
channel [7]). Despite formal security proofs, there is a lack of
experimental results which prove that the channel abstractions
capture the real-world setting [8].

The second class covers practice-oriented schemes, inspired
by works from Tope and McEachen [9], Aono et al. [10],
and Mathur et al. [11]. These schemes exploit the princi-
ples of channel reciprocity, implying that characteristics of
a shared wireless channel are reciprocal, and temporal and
spatial decorrelation, implying that the channel characteristics
decorrelate over time and in space, respectively. In these
schemes, Alice and Bob exchange probing signals to estimate a
channel characteristic (e.g., received signal strength) of which
their measurements are highly correlated. The aim is to sub-
sequently quantize these measurements into a corresponding
sequence of bits such that a bit disagreement rate (BDR) of
0 is achieved (a commonly used performance metric which
determines the fraction of bits that disagree in Alice and
Bob’s bit sequence). Many works (e.g., [11]–[14]) assume an
environment where channel characteristics rapidly decorrelate
in space and Eve to be sufficiently separated from Alice and
Bob (i.e., at least one-half or a few wavelengths) such that
Eve’s measurements are independent of those observed by
Alice and Bob [15], [16]. The BDR between Eve’s and Alice
and Bob’s bit sequence would therefore be approximately 0.5.
Alice and Bob can therefore generate an n-bit sequence that
achieves n bits of uncertainty at Eve. We omit details related
to information reconciliation and privacy amplification since
these are not relevant for the remainder of this paper.

Experimental studies have shown that Eve’s measurements
are at least weakly correlated such that a fraction strictly
greater than 0.5 would agree between Eve’s bit sequence
and Alice and Bob’s bit sequence. We can also phrase this
as the fraction of bits that Eve correctly infers from her
measurements and refer to this metric as the bit inference
rate (BIR), the converse of the BDR (i.e., BIR = 1 - BDR).
The experimental platforms of [17] and [18] simulated various
indoor and outdoor environments with Eve closely located to
Alice (one-half to seven wavelengths). Both platforms imple-
mented a quantization scheme and determined the fraction of
Eve’s bit sequence that disagrees (or conversely, agrees) with
Alice and Bob’s bit sequence. In [17], it was shown that Eve
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can achieve a BDR of approximately 0.38 when located at
one wavelength from Alice, corresponding to a BIR of 0.62.
In [18], it was shown that Eve can achieve a BIR of 0.55
when located at seven wavelengths of Alice, corresponding
to a BDR of 0.45. Although Eve has no way of knowing
which bits were incorrectly inferred, the leaked information
could improve her chances of uncovering Alice and Bob’s bit
sequence. Namely, the leaked information reduces the effort
required from Eve since its search space follows a non-uniform
probability distribution (i.e., certain bit sequences are more
likely than others). Furthermore, it is important to mention
that all nodes had the same hardware specifications in the
experimental platforms [17], [18]. We may therefore assume
that Eve’s ability to infer bits of Alice and Bob’s bit sequence
improves with better hardware.

A. Assumptions

Eve has complete knowledge of Alice and Bob’s key estab-
lishment and encryption scheme. Furthermore, the encryption
scheme is assumed not to be the one-time pad such that the
key is used to encrypt large amounts of plaintext data. The
encrypted (i.e., ciphertext) data produced by one key, which
can be eavesdropped on and stored by Eve, is assumed to be
sufficient such that Eve can conclusively determine that key.
Namely, Eve can trial all possible keys in the key space such
that the decryption algorithm will return a logical plaintext if
and only if the inputs of the decryption algorithm are the ci-
phertext data and Alice and Bob’s key. Based on these assump-
tions, it is necessary to evaluate the level of computational
security that Alice and Bob’s key achieve since unconditional
security (i.e., information-theoretic security) does not apply.

Computational security concerns with the computational
effort required to break a security system. The security system
is computationally secure if the best algorithm for breaking
it requires some very large number (N = 2n) of operations
[19], where n represents the measure of bit security. In the
context of this paper, we assume that the optimal exhaustive
key search attack (see section II-A) is the best algorithm to
break a leakage-prone key establishment system. Determining
the computational effort in launching the optimal exhaustive
key search attack was first attempted by Massey [20] and
followed-up by McEliece and Yu [21] although they merely
provided upper and lower bounds of N (i.e., the computational
effort required by the adversary). To the authors’ best knowl-
edge, a polynomial-time solution to determine the adversary’s
computational effort has never been published.

B. Contributions

This paper’s contributions can be summarized as follows:
• This paper presents a polynomial-time solution to deter-

mine the exact level of computational security (i.e., bit
security) achieved by an n-bit key against an optimal
exhaustive key search where Eve infers the value of secret
key bits at a rate strictly greater than 0.5 (i.e., BIR) or,
conversely, that Eve incorrectly infers the value of secret
key bits at a rate strictly smaller than 0.5 (i.e., BDR).

• The results provided in this paper, with respect to the
problem of information leakage in the generated bit
sequence of a physical layer-based key establishment
scheme following the channel reciprocity principle, en-
able us to determine the length of the n-bit sequence
(i.e., key) that Alice and Bob must generate in order for
this sequence to achieve m bits of security at Eve.

• The presented work is also applicable to other security
systems (e.g., resource constrained devices) that lack a
trusted platform module (TPM) due to their potential to
leak information about the bits of generated or derived
keys from side channel attacks (e.g., time and power
analysis).

II. MATHEMATICAL MODEL

A. Exhaustive Key Search

We consider a discrete random variable K, which consists
of the key space K = Zn

2 containing all possible n-bit keys.
The discrete random variable K takes on the value k, where
k represents the n-bit key selected at random by an honest
node and unknown to an adversary. We denote the probability
that the discrete random variable K takes on the value of key
ki ∈ K as follows:

Pr[K = ki | 1 ≤ i ≤ 2n] = pi (1)

Without loss of generality, we suppose that the probability
distribution PK = (p1, p2, · · · , p2n) satisfies p1 ≥ p2 ≥
· · · ≥ p2n . Following this notation, the optimal strategy of
the adversary is to trial keys ki for increasing values of
i. This can be interpreted as the adversary executing the
decryption algorithm (with the eavesdropped ciphertext data
and the trialed key ki as inputs) and determine whether the
trialed key ki was correct based on whether the decryption
algorithm returned a logical plaintext.

B. Definition of Guesswork

The guesswork (also referred to as “guessing entropy”) of
a discrete random variable estimates the expected number of
guesses (i.e., the N operations) required by an adversary to
determine its value while following an optimal strategy [22],
[23]:

N =

2n∑
i=1

i pi (2)

Massey [20] and McEliece and Yu [21] were the first to
study this problem and showed that the guesswork is under
bounded and upper bounded, respectively, in terms of the
entropy function H(K) as follows:

2H(K)−2 + 1 ≤ N ≤ 2n − 1

2n
H(K) + 1 (3)

H(K) = −
∑

ki∈K

pi log2(pi) (4)

We will show that these bounds become, unfortunately,
inaccurate for determining the level of computational security
(i.e., bit security) achieved for increasing levels of information
leakage (see Section IV-A).
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III. BIT SECURITY ESTIMATION FOR LEAKAGE-PRONE
KEY ESTABLISHMENT SCHEMES

In this section, we provide a polynomial-time solution for
estimating the guesswork of an adversary under the assumption
that information leakage allows the adversary to infer bits of
the n-bit secret key k with a BIR denoted by α. The optimal
exhaustive key search consists of trialing keys ki in order of
non-increasing probability. We denote the n-bit secret key as
k = [b1, · · · , bn] and the adversary’s estimate of each key bit
bi as b̂i such that Pr[bi = b̂i] = α.

The adversary starts its key search with the most probable
key k1 = [b̂1, · · · , b̂n] such that Pr[K = k1] = αn. If the
adversary finds that K 6= k1, it will assume that one of the
estimated bits b̂i was incorrectly inferred and proceeds to trial
the second-most probable keys {k2, · · · , kn+1} where one of
the n inferred bits b̂i is flipped such that Pr[K = ki | 2 ≤
i ≤ n + 1] = αn−1(1 − α). This process continues until the
adversary finds secret key k.

We can generalize this process as an exhaustive key search
that consists of n + 1 iterations. Initially, no mismatches
between the inferred bits b̂i and the key bits bi are assumed,
whereas subsequent iterations consider one additional mis-
match. We denote the set of keys to be trialed during iteration
k by Ωk (for 0 ≤ k ≤ n) such that the probability of each key
ki ∈ Ωk trialed during iteration k equals:

Pr[K = ki | ki ∈ Ωk] = αn−k(1− α)k (5)

We must also determine the ordinalities at which the keys
are being trialed. First, we determine the number of keys
that are trialed during iteration k (i.e., the cardinality of Ωk),
denoted as |Ωk|, using the binomial formula:

|Ωk| =
(
n

k

)
(6)

Based on these cardinalities, we can determine the ordi-
nalities of the keys trialed during iteration k. Namely, the
ordinality of the first and last key trialed during iteration k
can be estimated by the cardinalities of the previous iterations
and the current iteration. The sum of ordinalities for iteration
k, given key length n, can be described as a function s(n, k):

s(n, k) =

b∑
i=a

i for

{
a =

∑k
j=0 |Ωj−1 mod n+1|

b =
∑k

j=0 |Ωj |
(7)

For algorithmic purposes, we can utilize the sum of con-
secutive integers (i.e.,

∑b
i=a i = (a+b)(b−a+1)

2 ) to compute
the value of the function s(n, k). Combining the results from
(5) and (7) enables us to rewrite (2) such that the guesswork
of an adversary can be expressed in terms of the key length
(n) and the BIR of the adversary (α):

N =

n∑
k=0

s(n, k)αn−k(1− α)k (8)

Finally, we convert the guesswork N , required by an adver-
sary to uncover an n-bit secret key, into the achieved level of
bit security m as follows:

m = log2(2N − 1) (9)

The legitimacy of the conversion formula can be verified by
showing that it satisfies the following two properties:

1) The bit security level m should equal the key length
n when no information is leaked to the adversary (i.e.,
m = n for α = 0.5).

Proof. We prove that the above property is satisfied
through algebraic derivation.

N =

n∑
k=0

s(n, k) 2−(n−k) 2−k (10a)

= 2−n
n∑

k=0

s(n, k) (10b)

= 2−n
2n (2n + 1)

2
(10c)

=
2n + 1

2
(10d)

Combining (9) and (10d) yields:

m = log2(2 (
2n + 1

2
)− 1) = n (11)

�

2) The bit security level m should equal zero when all
information about the bits are leaked to the adversary
(i.e., m = 0 for α = 1).

Proof. We prove that the above property is satisfied
through algebraic derivation (where 00 = 1).

N =

n∑
k=0

s(n, k) 1n−k (1− 1)
k (12a)

= s(n, 0) +

n∑
k=1

s(n, k) 1n−k 0k (12b)

= 1 + 0 (12c)

Combining (9) and (12c) yields:

m = log2(2− 1) = 0 (13)

�

Based on the above described methodology which allowed
us to formulate (8), we designed a polynomial-time algorithm1

(see Algorithm 1). It inputs a key length (n) and adversarial
BIR (α) to estimate the guesswork for each of the n + 1
iterations (represented as a for-loop), sums these estimations to
obtain the total guesswork, and converts this into the output bit
security (m). The computational complexity of the algorithm
is determined by this for-loop and therefore equals O(n).

IV. SIMULATION RESULTS

This section present our three main results: (i) the confirma-
tion that earlier bounds on an adversary’s guesswork can be
inaccurate, (ii) the impact of information leakage in terms of
(relative) bit security achieved, and (iii) the key length required
to achieve 128- and 256-bit security against computational
adversaries under varying information leakage assumptions.

1Available online as a Python script at https://github.com/mderee/Public-
Scripts/blob/main/Security-vs-Leakage for reproducibility purposes.
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Algorithm 1: Bit Security Estimation from Guesswork
Input : Key length n ∈ Z+, adversarial BIR

α ∈ [0.5, 1].
Output: Bit security m.
begin

b← 0
N ← 0
for k = 0 to n do

a← b+ 1
|Ω| ←

(
n
k

)
b← b+ |Ω|
s(n, k)← (a+b)(b−a+1)

2

N ← N + s(n, k)αn−k(1− α)
k

end
m← log2(2N − 1)
return m

end

Fig. 1. The accuracy of the lower and upper bounds on guesswork are shown
as a relative offset compared to the baseline (N = 1). The lower and upper
bounds are shown below and above the baseline, respectively.

A. Evaluation of the Guesswork Bounds

Massey [20] and McEliece and Yu [21] proposed a lower
bound and upper bound, respectively, on the guesswork re-
quired by an adversary. To determine the accuracy of these
bounds, we considered varying levels of information leakage
(such as α ∈ {0.6, 0.7, 0.8, 0.9}) and key lengths (10 ≤
n ≤ 100). For each combination, we computed the lower and
upper bounds on the adversary’s guesswork using (3) and we
determined the actual guesswork using Alg. 1 (excluding the
step that converts the guesswork to bit security). These results
were subsequently normalized such that the lower and upper
bounds become a value relative to the guesswork baseline.
These results are graphed and shown in Fig. 1.

The results show that the lower and upper bounds are
relative close approximations of the guesswork when there
is limited information leakage. For example, for α = 0.6
and n = 72, the lower bound is approximately half (2−1)
and the upper bound is approximately quadruple (22) the
actual guesswork. These bounds could therefore recommend
a key length (aiming to achieve a specified level of bit
security) that will only be one bit longer than necessary.
However, these bounds become very inaccurate when we make

Fig. 2. The level of bit security (m) achieved as a function of the adversarial
bit inference rate (α) for varying key lengths.

more conservative assumptions on the level of information
leakage. Namely, these bounds would recommend key lengths
approximately 20% larger than necessary when we assume
α = 0.9.

B. Bit Security Loss from Information Leakage

In this subsection, we determine the level of bit security m
that a key of length n achieves despite an adversarial BIR of
α. For a given key length n and adversarial BIR α, we utilized
Alg. 1 to determine its bit security m. For a given key length
(such as n ∈ {64, 128, 192, 256}), we plotted the achieved
level of bit security m as a function of the adversarial BIR α
as shown in Fig. 2.

From Fig. 2, we can see that even a moderate amount of
information leakage (α ≈ 0.7) has a relatively low impact on
the achieved level of bit security. This indicates that relatively
few additional bits are necessary in a leakage-prone key
establishment scheme to establish keys that achieve a specified
level of bit security. However, when considering a very high
amount of information leakage (α ≈ 0.95) the key size has to
be doubled to achieve a specified level of bit security.

From these results, we can determine a relative level of
achieved bit security (m/n) as shown in Fig. 3. It can be
observed that the relative level of achieved bit security is
nearly identical for key lengths varying between 64 and
256. For these key lengths, the relative level of achieved bit
security is approximately 97.5%, 90%, 75%, and 50% for low
(α ≈ 0.6), moderate (α ≈ 0.7), high (α ≈ 0.85), and very
high (α ≈ 0.95) amounts of information leakage, respectively.

C. Key Length to Achieve Security

In this subsection, we determine the key lengths neces-
sary to achieve an arbitrary level of bit security under the
assumption of information leakage. To obtain these results, we
considered varying levels of information leakage (such as α ∈
{0.60, 0.70, 0.80, 0.90, 0.95}) and key lengths (0 ≤ n ≤ 500)
after which we computed the achieved level of bit security for
each combination utilizing Alg. 1. The resulting data is shown
in Fig. 4.

The required key length can be determined through intersec-
tion. For example, given a low amount of information leakage
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Fig. 3. The relative level of bit security (m/n) achieved as a function of the
adversarial bit inference rate (α) for varying key lengths.

Fig. 4. The level of bit security achieved (m) as a function of the key length
(n) under varying information leakage assumptions. The key length required
to achieve 128- or 256-bit security based on the adversarial bit inference rate
α can be determined from the intersection with lines m = 128 and m = 256,
respectively.

(α = 0.6) then a 132-bit key is sufficient to achieve 128 bits of
security (262-bit key to achieve 256 bits of security). However,
if we assume a very high amount of information leakage
(α = 0.95) then a 253-bit key is required to achieve 128
bits of security (499-bit key to achieve 256 bits of security).
In practice, this can be applied by having the leakage-prone
key establishment scheme generate a 253 (499)-bit sequence
that is subsequently fed into a secure hashing algorithm which
returns a 128 (256)-bit key providing the estimated 128 (256)
bits of security.

V. CONCLUSION

This paper tackled the problem of measuring the impact
of information leakage in leakage-prone key establishment
schemes. The paper presents a polynomial-time solution that
enables the user to estimate the key length necessary to achieve
a specified level of bit security under particular information
leakage assumptions. Furthermore, it was shown that con-
servative assumptions on information leakage can be made
without having to cause a severe bit security loss (0-10%).
A reader can utilize the presented solution to determine how
long the bit sequence should be, generated by a leakage-
prone key establishment scheme (achieving a pre-selected level
of bit security), such that it can subsequently hash this bit
sequence to determine a key where the length of the key and
the achieved level of bit security correspond.
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