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Abstract: The incidence of respiratory infections in the population is related to many factors, among
which environmental factors such as air quality, temperature, and humidity have attracted much
attention. In particular, air pollution has caused widespread discomfort and concern in developing
countries. Although the correlation between respiratory infections and air pollution is well known,
establishing causality between them remains elusive. In this study, by conducting theoretical analysis,
we updated the procedure of performing the extended convergent cross-mapping (CCM, a method
of causal inference) to infer the causality between periodic variables. Consistently, we validated this
new procedure on the synthetic data generated by a mathematical model. For real data in Shaanxi
province of China in the period of 1 January 2010 to 15 November 2016, we first confirmed that the
refined method is applicable by investigating the periodicity of influenza-like illness cases, an air
quality index, temperature, and humidity through wavelet analysis. We next illustrated that air
quality (quantified by AQI), temperature, and humidity affect the daily influenza-like illness cases,
and, in particular, the respiratory infection cases increased progressively with increased AQI with a
time delay of 11 days.

Keywords: environmental factors; respiratory infection; nonlinear system; causality

1. Introduction

Understanding the driving force of infectious disease spread is critical to designing ef-
fective interventions curbing the threat of diseases transmission to public health around the
world [1]. In tracking driving factors of infectious disease spread, examining the relation-
ship between environmental changes and disease transmission is one of the most important
topics [2–5]. Previous works have established that monsoon rains and temperature affect
the epidemiology of cholera [6] and the life cycles of vectors such as mosquitoes, and the
parasites that they transmit, so they are important environmental drivers of malaria [7],
dengue [8] and Ross River fever [9]. Moreover, regional temperature and humidity are also
related to influenza transmissibility [10,11]. Recently, there is an increasing recognition
that poorer air quality is synchronized with a higher incidence of infectious diseases [12].
For example, air pollution is associated with an increased risk of tuberculosis [13,14],
influenza [15–17], influenza-like illness [18,19] and COVID-19 [20,21]. Unlike the vector-
transmitted diseases [7–9] with clear biological evidence, however, the driving effect of
environments on respiratory infection is still controversial, at least partly because two
unlinked variables in complex systems may have significant correlations [22]. To design
interventions which can reduce infection risk effectively, it is of great importance to infer or
falsify causal links between environmental factors and respiratory infection.

Recent studies have revealed a broad correlation between respiratory infections and
environmental factors during climate change [23]. While correlation does not imply causal-
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ity [24], correlated variables may potentially share information in a complex system and
increase the complexity of this system. To address the issue that a system is too complex to
be parameterized, researchers have developed a nonparametric framework called empirical
dynamic modeling (EDM) that is designed to analyze complex systems using observed
time series [25–29]. In the EDM methods, convergent cross-mapping (CCM) is specifically
used to detect causal relationships in complex systems [28]. This approach is based on
the mathematical theory of reconstructing attractor manifolds [30,31], that is, in the home-
omorphic sense, the attractor of a dynamical system can be reconstructed from the time
series of a single observed variable of this system. Therefore, the reconstructed manifolds
of two bidirectionally coupled variables are homeomorphic [30]. For two unidirectionally
coupled variables, the reconstructed manifold of the response variable is homeomorphic
to the original attractor, while the reconstructed manifold of the driving variable is only a
subset of the original attractor and is therefore a subset of the reconstructed manifold of
the response variable [31]. Based on these consequences, Sugihara et al. [28] developed
convergent cross-mapping (CCM) to predict the points in one reconstructed manifold using
the points in another reconstructed manifold to then infer/falsify a causal relationship
between two variables through the accuracy of predictions (CCM skill). To date, CCM
has been used to analyze the causality involved in a prey–predator system [28], Earth
system [32], locust abundance [33], and deep-sea biodiversity [34].

Although CCM has been widely applied to infer causality between variables with
weak to moderate coupling strengths [28,32–34], Sugihara et al. [28,35] found that it is very
easy to infer two variables with an unidirectionally strong coupling as having two-way
causality because of the phenomenon of “generalized synchrony” [36]. To resolve this
problem, Ye et al. [35] extended the CCM by considering the time delay between interacting
variables. In contrast to the CCM where the predicted values of one of two variables is
based on the values of another with the same time label, the extended CCM takes into
account that the value of the driving variable should be more suitable for predicting the
future values of the response variable and that the response variable is better at predicting
the past values of the driving variable [35]. The time delay with optimal prediction suggests
a causal relationship between two variables and gives an estimate of the interaction lag [35].
The biggest challenge for extended CCM is that the optimal time delay is not unique
when the observation data present periodicity [37]. For respiratory infections such as
influenza [38] and influenza-like illness (Figure 1a), an annual cycle is one of the most
obvious characteristics. Thus, extended CCM appears to be limited by its potential inability
to infer causality between respiratory infections and environmental factors.

Here, we theoretically demonstrated that while the time lags that make the CCM skill
locally optimal are not unique, they occur periodically, and the period has a lower bound.
This inspired the notion that the time delay with optimal prediction is unique in a narrow
testing window whose width does not exceed the lower bound. The numerical analysis on
a mathematical model is consistent with our theoretical analysis. For real data in Xi’an, our
analysis shows that air quality, temperature, and humidity are driving factors of respiratory
infection with different time delays, and suggests that the interventions such as improving
air quality and appropriately increasing temperature as well as humidity could reduce the
respiratory infection risk in the population.
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Figure 1: Dagramic representation of the mutual inactivation model and the ligand dimerization

model.

2
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Figure 1. The time series of influenza-like illness (ILI) cases and experimental factors in Xi’an. (a) The
influenza-like illness (ILI) cases collected from seven hospitals. (b) The real time air quality index
(AQI). (c) The lowest daily temperature. (d) The relative humidity.

2. Materials and Methods
2.1. The Data

The data of respiratory infections (Figure 1a) we used consist of reports of daily
cases who seek medical attention with influenza-like illness (ILI) (symptoms commonly
include fever, shivering, chills, malaise, dry cough, loss of appetite, body aches, and nausea)
in Xi’an from 1 January 2010 to 15 November 2016 [19]. Air pollution is a mixture of
multiple pollutants, so an air quality index (AQI) is used by government agencies to
communicate to the public the pollution levels of the air. [39]. The AQI in Xi’an (Figure 1b)
was collected from the website [40] which is an open platform for weather data. The time
series of temperature and relative humidity (Figure 1c,d) were downloaded from the shared
portal [41] of the China Meteorological Administration.

An alternative test for causality is the Granger test [42], but this method is inappropri-
ate for nonlinear dynamic systems [43], so the convergent cross-mapping was proposed
by Sugihara et al. [28]. One of the limitations of CCM is that CCM is sensitive to high
levels of process noise in the data [44]. In order to reduce the noise level, we split the time
series of collected data into low-frequency series and residuals (Figure A1a) using Kalman
filtering [45]. Since the standardized residuals follow the normal distribution (Figure A1b),
we assumed that the main information in real time series was included in the filtered
low-frequency series which is used in the following analysis.
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2.2. The Method

The general dynamical system actually corresponds to a complex causal network of
interlocking variables. We apply extended convergent cross-mapping (CCM) [28,35] to
examine the causality and interaction delay between two variables. We let x(t) and y(t) be
the observed time series corresponding to the variables x and y, respectively, and begin
by reconstructing the lagged-coordinate vectors X(t) = [x(t), x(t− s), . . . , x(t− (Π− 1)s)]
and Y(t) = [y(t), y(t − s), . . . , y(t − (Π − 1)s)] with dimension Π based on the Takens
embedding theorem [30,31]. We denote the reconstructed manifolds as Mx = {X(t)} and
My = {Y(t)}. For any point Y(t∗) in My, we mark the time label of its Π + 1 nearest
neighbors in My as t1, t2, . . . , tΠ+1, and the estimated point X(t∗ + τ) with some delay τ
on Mx is given by the simplex projection [25]:

X(t∗ + τ) =
Π+1

∑
i=1

χiX(ti + τ), (1)

where

χi =
exp(−‖(Y(ti)−Y(t∗)‖/‖Y(t1)−Y(t∗)‖)

∑Π+1
i=1 exp(−‖(Y(ti)−Y(t∗)‖/‖Y(t1)−Y(t∗)‖)

.

We denote x̄(t | τ), the first coordinate of X(t), as the estimated value of time series x(t)
using this method. We use the Pearson correlation coefficient ρ(τ) = Corr(x̄(t | τ), x(t))
between estimated values and observed values to quantify CCM skill. From the perspective
of the extended CCM [35], the CCM skill ρ(τ) reaching its maximum at a negative τ means
that there is a driving force from x to y with time delay |τ|.

Given a T-periodic observed time series x(t), the reconstructed manifold Mx is a
closed orbit in the Π-dimensional space. According to the Whitney embedding theo-
rem [46], Π = 3 is sufficient to ensure that all information of the original complex system is
represented in the periodic orbit Mx. During any small period [t, t + ∆t], the length ∆l(t)
of the corresponding small arc on Mx can be approximated by

∆l(t) =
√

x′(t)2 + x′(t− s)2 + x′(t− 2s)2∆t. (2)

The prediction using simplex projection (1) mainly depends on the local distance between
points [25] on the reconstructed manifold Mx. Therefore, the characters of ∆l(t) affect
the evaluation accuracy of extended CCM. If s is very small (i.e., the data are collected
densely), then ∆l(t) ≈

√
3‖x′(t)‖∆t. To investigate the mathematical characters of ∆l(t)

(i.e., ‖x′(t)‖), as the first step, we give the following proposition.

Proposition 1. A continuous, periodic, and nonconstant function x(t) has a smallest (positive)
period T. For any other period T̃ of x(t), there is an integer n such that T̃ = nT.

Proof. Suppose there is no smallest (positive) period, then there is a decreasing (positive)
sequence T1, T2, . . . , Tn, . . . of periods such that limn→∞ Tn = 0. For any given t0 and t1
(t0 < t1), we define a sequence of integers:

z1 = [
t1 − t0

T1
], z2 = [

t1 − t0

T2
], . . . , zn = [

t1 − t0

Tn
], . . .

then the sequence t1, tn+1 = tn − znTn (n = 1, 2, . . . ) such that

x(tn) = x(tn+1) and lim
n→∞

tn = t0.

By continuity of x(t), x(t1) = limn→∞ x(tn) = x(t0), which contradicts that x(t) is a non-
constant function. Consequently, there is a smallest (positive) period T of x(t).
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For any other period T̃ of x(t), there always is an integer k such that kT < T̃ ≤ (k + 1)T.
Consequently,

0 < T̃ − kT ≤ T.

If T̃ 6= (k + 1)T, then T̃ − kT is a new smallest (positive) period of x(t) because

x(t + T̃ − kT) = x(t).

Therefore, there is an integer n = k + 1 such that T̃ = nT for any other period T̃ of x(t).

Based on the result of Proposition 1, we further draw the following proposition about
the derivative of a nonconstant periodic function.

Proposition 2. For any smooth periodic function x(t), the derivative x′(t) is a periodic function
and minimum period of x′(t) is the minimum period T of the original function.

Proof. On the one hand,

x′(t) = lim
4t→0

x(t +4t)− x(t)
4t

= lim
4t→0

x(t + T +4t)− x(t + T)
4t

= x′(t + T).

Therefore, x′(t) is a periodic function. Suppose the minimum period of derivative x′(t)
is T̄, and then Proposition 1 implies that there is a positive integer k1 such that T = k1T̄.
On the other hand,

x′(t) = x′(t + T̄)

gives ∫
t

x′(s)ds =
∫

t
x′(s + T̄)ds =

∫
t+T̄

x′(s)ds.

Consequently, x(t + T̄) = x(t) + C for some constant C. Because function x(t) is periodic,
we must have C = 0. Therefore, there is a positive integer k2 such that T̄ = k2T. Collectively,
k1 = k2 = 1.

Finally, we give a proposition which presents the mathematical characters of the length
∆l(t) (i.e., ‖x′(t)‖) of the corresponding small arc on the reconstructed manifold Mx from
time series x(t).

Proposition 3. Given a smooth function x(t) with minimum period T, suppose that the function
has at most k extreme points in a single period, then the function ‖x′(t)‖ is periodic and the
minimum period of ‖x′(t)‖ is not less than T/k.

Proof. The result of Proposition 2 yields that

‖x′(t + T)‖ = ‖x′(t)‖.

This shows that the function ‖x′(t)‖ is periodic. Suppose the minimum period of function
‖x′(t)‖ is T̈, and then by Proposition 1 that there is a positive integer n such that T = nT̈.
For any period [t, t + T], we have∫ t+T

t
x′(s)ds = x(t + T)− x(t) = 0.

Therefore, there is a t0 ∈ [t, t + T] such that x′(t0) = 0, and then ‖x′(t0)‖ = 0. Without loss
of generality, we assume that t0 − t < T̈. Consequently, we have t0, t0 + T̈, t0 + 2T̈, . . . ,
t0 + (n− 1)T̈ ∈ [t, t + T] such that

‖x′(t0)‖ = ‖x′(t0 + T̈)‖ = ‖x′(t0 + 2T̈)‖ = · · · = ‖x′(t0 + (n− 1)T̈)‖ = 0.
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Thus, n ≤ k, which means that T̈ = T/n ≥ T/k.

Simplex projection (1) means that the higher-density data points (i.e., smaller arc
length ∆l(t)) on manifold Mx corresponds to lower uncertainty of estimates [25], which
is consistent with the tests on simulated data and real data [37]. The proposition 3 links
the period of arc length ∆l(t) (2) to the period of time series x(t) via the function ‖x′(t)‖.
For the time series x(t) of common environmental infectious disease with period T, based
on Proposition 3, the minimum positive period of ‖x′(t)‖ is the heuristic T/2. In addi-
tion, an infectious disease such as hand–foot and mouth disease (HFMD) with multiple
peaks [47], wavelet analysis [48] of corresponding time series estimates the periodicity of
peaks. Collectively, for environmental infectious disease with estimated minimal period
T, if the Pearson’s correlation coefficient ρ(τ) reaches a local maximal at τ∗, ρ(τ) will
not peak again in (τ∗ − T/2, τ∗ + T/2). Thus, we provide a boundary B = (−T/4, T/4)
with width T/2 as the empirical testing window so that the extended CCM can be used
to infer causality between periodic variables such as seasonal infectious diseases and
environmental factors.

We next present the procedure to infer causality between variables x and y. For ob-
served time series x(t) and y(t) with significant period T, the response time delay of
variable x to variable y can be estimated by the following formula:

τ̄xy = arg maxτ∈BCorr(ȳ(t | τ), y(t)), (3)

where ȳ(t | τ) are the estimated values of time series y(t). Similarly, we can also obtain the
estimated response time delay of variable y to variable x using the formula

τ̄yx = arg maxτ∈BCorr(x̄(t | τ), x(t)). (4)

We consider the sign of τ̄xy and τ̄yx comprehensively to infer the causality between the
variables x and y. If τ̄xy ≥ 0 and τ̄yx < 0, then variable x affects future values of y
unidirectionally with time delay −τ̄yx. If τ̄xy < 0 and τ̄yx ≥ 0, then variable y affects future
values of x unidirectionally with time delay −τ̄xy. If τ̄xy < 0 and τ̄yx < 0, then x and y
have two-way cause and effect, and the action time delay is −τ̄yx and −τ̄xy, respectively.
If τ̄xy ≥ 0 and τ̄yx ≥ 0, then we conclude that there is no causal evidence between variables
x and y. We choose the negative optimal cross-lag as the estimated time delay because CCM
is a historical information-dominated method [28], which is also consistent with previous
extension [35].

Collectively, we have made an adjustment on the basis of CCM, and this update
makes up for the limitation of the extended CCM in inferring causality between periodic
time series.

3. Results
3.1. Testing on an Infectious Disease Model

As the first step, we test the causal inference methods on an air quality index (AQI)–
embedded susceptible–infectious–susceptible (SIS) epidemic model (Figure 2a). In this
model, the total population (N) consists of classes of individuals that are susceptible (S)
and infectious (I), yielding

S(t + 1) = f (N(t)) + σφ( I(t)
N(t) , αF(t))S(t) + γσI(t),

I(t + 1) = σ(1− φ( I(t)
N(t) , αF(t)))S(t) + (1− γ)σI(t).

(5)

where t is time, f (N(t)) is the density-dependent birth rate or recruitment according to
the formula f (N(t)) = N(t)exp(r− N(t)), σ is the probability of survival, α is a modified
parameter for the effect of air pollution on incidence, and γ is the recovery rate. We
assume that the proportion of susceptible individuals that do not become infected at time
t is φ(z(t), w(t)) = e−βz(t)e−βw(t) given the disease prevalence z(t) = I(t)/N(t) and air
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pollution effect w(t) = αF(t), that is, encounters leading to infection are modeled via a
Poisson process with the transmission constant β. The environmental driver F(t) (i.e., air
quality index) varies according to the following formula, which is a discrete time form of a
continuous time system [49].

F(t + 1) = λ(t)F(t) + C (6)

where λ(t) = a− b ∗ sin(t/ω) is the remaining proportion of mixed pollutants in the air
from time step t to t + 1; C is the constant rate of inflow of pollutants into the air, mainly
depending on the persistent release of various air pollutants. We simulated the system
with parameters setting in (Appendix A.1) and generated time series of the environmental
factor and infectious individuals.

We first test CCM [28] using these simulated data, and we find that the CCM skill
in both direction becomes better as the length of time series increases (Figure 2b), which
implies a bidirectional causality between environmental factor and disease incidence [28]
instead of the true unidirectional causality in our simulated system (Figure 2a). Thus,
CCM is not suitable for inferring causality in the strongly coupled systems, because the
strong coupling strength leads to a synchrony between response variable and driving
variable, resulting in the dynamics of a response variable becoming dominated by those
of the driving variable [35]. We next apply extended CCM [35] to identify the optimal
cross-map lags between environmental factor and disease. In our numerical simulations,
λ(t) is a 4π-period function (Appendix A.1), so the period of time series F(t) and I(t) are
approximately 12. The results of extended CCM show that the optimal time lag is not
unique (Figure 2c), and the difference between two adjacent local optimal delays is around
6, which is consistent with Proposition 3 and the period of time series F(t) and I(t).
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a b c

Figure 2. Numerical validation of theoretical results. (a) An environmental factor (F)−embedded
susceptible−infectious−susceptible (SIS) epidemic model, in which the dynamics of environmental
factor is periodic. The effect of environmental factor on disease incidence has a time delay 1. (b) The
performance of CCM and the CCM skill as a function of the length of time series used to reconstruct the
high−dimensional manifold. (c) The performance of extended CCM and the CCM skill as a function
of the tested time delay. Here, the length of time series used to reconstruct the high−dimensional
manifold is fixed.

In addition, by setting B = (−3, 3) as shown by the vertical dashed lines in Figure 2c,
we estimated that τ̄Dis,Env = −1 and τ̄Env,Dis = 2 using the Formulas (3) and (4). Therefore,
our inference is that the environmental factor affects disease incidence with a time delay
1, which is consistent with the modeling (Figure 2a). Collectively, we showed the limita-
tions of CCM and extended CCM in inferring the causality between periodic time series
(Figure 2b,c), which are overcome by adding an estimation interval for the extended CCM
(Formulas (3) and (4)).

3.2. Correlation Analysis and Wavelet Analysis of Real Data

As a comparison, before inferring the causality among respiratory infection, air pol-
lution, temperature, and humidity using the real data in Xi’an (Figure 1), we analyzed
the correlation between these data and provided statistic significance of the correlation
(Figure 3a). Based on the result, we constructed a correlation network which is undirected
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(Figure 3b). Edges in this network simply indicate that the variations in two connected
variables are positively or negatively correlated, but do not distinguish between a driving
variable and a response variable. In addition, we found that there is no significant correla-
tion between air quality index (AQI) and relative humidity (Rhu) in Xi’an. According to
the theoretical analysis (Proposition 3) and numerical analysis (Figure 2), the periodicity of
observed time series affects the performance of extended CCM. Moreover, the minimum
positive period of the time series also determines the setting of the estimation interval for
the optimal time delay between two variables. Here, we investigated the periodicity of
influenza-like illness (ILI) cases, air quality index (AQI), daily temperature, and relative
humidity in Xi’an using the wavelet analysis ([48]; Figure 3c). The results of wavelet
analysis [48] show that all time series have only a significant annual cycle (see Figure 3c),
so we can detect the optimal time lag in a narrow window B with the width of no more
than 180 days using extended CCM (Formulas (3) and (4)). In the following analysis, we
detect the optimal lag in the estimation interval (−50, 50).
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Figure 3. Correlation analysis and wavelet analysis of real data in Xi’an. (a) The correlation and
statistical significance among the observed time series of influenza−like illness (ILI) cases, air quality
index (AQI), lowest daily temperature, and relative humidity in Xi’an. p−values are < 0.01 (**).
(b) The correlation network among the four variables we studied. (c) Wavelet analysis for time series
of influenza−like illness (ILI) cases, air quality index (AQI), lowest daily temperature, and relative
humidity. Wavelet power spectra are depicted on the left, and the right−hand panels show the mean
spectra (vertical solid black line) with their significant threshold value of 0.05 (blue dashed line).

3.3. Causality Analysis of Real Data

In Figures 4a–c and 5a–c, we present the CCM skills using extended CCM in a narrow
testing window. The cross-mapping skills between influenza-like illness and AQI time
series indicate that there is a driving force from air pollution to respiratory infections with
time delay of 11 days (τ̄ILI,AQI = −11 and τ̄AQI,ILI = 9; Figure 4a). The cross-mapping skills
between influenza-like illness and temperature time series indicate that there is a driving
force from temperature to respiratory infections with a delay of 14 days (τ̄ILI,Tem = −14
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and τ̄Tem,ILI = 11; Figure 4b). Figure 4c shows the cross-mapping skills between influenza-
like illness and relative humidity time series, which indicate that there is a driving force
from relative humidity to respiratory infections with time delay of 4 days (τ̄ILI,Rhu = −4
and τ̄Rhu,ILI = 7). We further analyzed the causality between environmental factors (see
Figure 5a–c) and obtained a causal network among the four variables studied (see Figure 4d).
The sign on each side comes from the correlation analysis (Figure 3a). In contrast to the
correlation network (Figure 3b), the causality network is a directed network where the edge
distinguishes the driving variable and response variable (Figure 4d). From this directed
network, we predict that increasing temperature increases relative humidity and decreases
the air pollution degree as well as respiratory infections risk. More serious air pollution
decreases relative humidity and increases respiratory infections risk, but higher relative
humidity decreases respiratory infections risk. This indicates that in order to reduce the
risk of respiratory infections, the indoor temperature and humidity can be improved by
using air conditioners and air humidifiers.

Collectively, we inferred the causality between respiratory infections and environmen-
tal factors in Xi’an using the extended CCM by limiting the width of testing window for
searching for the optimal time delay. The results enrich the studies on health effects of
environmental factors.
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Figure 4. Causal evidence among four variables (ILI−influenza like illness, AQI−air quality index,
Tem.−temperature and Rhu.−relative humidity). (a–c) The CCM skills between involved variables
as a function of tested cross-map lag. The negative optimal cross-map lag is the estimated interaction
delay between them, e.g., the estimated delay for air pollution to drive influenza−like illness cases
is 11 days. (d) Estimated causal network. The signs associated with arrows represent positive or
negative correlation between two nodes. A negative sign means that increasing the drive variable
would inhibit the response variable, and a positive sign means that higher drive variable would
promote the response variable.
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Figure 5. (a–c) Causal evidence between environmental factors. (d) Reconstructed manifold using the
time series of temperature. Consistent with the theoretical analysis, the variations of points density in
the reconstructed manifold is periodic (the blue points and red points are the 6 nearest neighbors of
some points).

4. Discussion

In this study, we presented evidence (Figures 4 and 5) for a causal relationship between
respiratory infection and several environmental factors such as air quality, temperature,
and humidity by adopting and refining a published method, CCM (convergent cross-
mapping [28]). Related to this, we first performed theoretical analysis, centered chiefly on
the extended CCM [35], which supports the result that the estimated optimal time delay
between driving variable and response variable is not unique as long as these variables
show synchrony and periodicity [37]. In addition, our theoretical result also suggests
an idea to overcome the limitation of the extended CCM in inferring causality between
synchronized periodic variables, which is estimating the optimal time delay in a bounded
testing window (Formulas (3) and (4)). Consistently, we illustrated the limitations of
the CCM as well as the extended CCM in inferring a causal relationship, and visualized
the theoretical results (Proposition 3) using the data generated from an epidemic model
(Figure 2) and the real data (Figure 5d). To illustrate that the characteristics of the real
data (Figure 1) are consistent with the assumptions in our theoretical result and fall within
the scope of our refined approach, we evaluated the periodicity of the data using wavelet
analysis (Figure 3c). The minimal period of real data determines the width of testing
window for estimating the time delay between the driving variable and response variable
(Formulas (3) and (4)). By performing causal analysis for the real data, we suggested that
all of air quality, temperature, and humidity have an effect on the incidence of respiratory
infections. In particular, taking the reporting delay into account, air pollution promotes the
respiratory infections risk with a time delay of 11 days.

In China, air pollution has been a public issue for a long time [50]. In recent years,
the number of respiratory infections has highly synchronized with the variations of air
quality index in China [19]. Through analyzing the time series of influenza-like illness
and some environmental factors in Xi’an from 1 January 2010 to 15 November 2016, one
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important result of our research is that air pollution fuels the risk of respiratory infections.
Different from the significant correlation confirmed in previous studies [19], our study gives
the causality between air pollution and respiratory infection, and identifies the detailed time
delay. In addition, we found that lower temperature and humidity also fuel the respiratory
infections risk. According to our estimated causal network (Figure 4d), temperature is
located at the most upstream of the entire causal network and affects respiratory infections,
air quality, and relative humidity. Because the temperature in the Northern Hemisphere is
mainly affected by the relative position of the Earth and the sun, the variables we studied
may come from a larger and more complex system.

In addition to respiratory diseases [51], air pollution also leads to 3.3 million premature
deaths per year worldwide [52] and has a substantial role in many noncommunicable
diseases [53] such as cancer [54], stroke [55], cardiovascular disease [56,57], and Alzheimer’s
disease [58,59]. Furthermore, available evidence suggests that air pollution can prevent
the beneficial cardiopulmonary effects of walking in people with heart or chronic lung
disease [60,61] and results in poor lung function in children [62,63]. Therefore, our results
complement previous research on the health effects of air pollution, which strengthens the
importance of improving air quality.

It is well known that the variables being correlated does not imply that they are causal.
Comparing the causal analysis with correlation analysis (see Figures 3b and 4d), we find
that the causality does not imply significant correlation either. The possible reason is that
standard correlation analysis mainly captures the linear relationships between variables,
while real data may arise from complex nonlinear systems in which ephemeral correlations
are common [64,65]. By broadening the scope of application and improving the accuracy
as we did in this study, CCM can help us understand the relationship between variables in
complex systems such as molecular systems [66] and public health systems [49], in which
the causality is useful for designing novel experiments and interventions, respectively.

It is worth noting that in order to ensure that the optimal cross-map lag of extended
CCM is unique, we define a bounded testing window which depends on the period of
time series (Formulas (3) and (4)). This means that the real time delay between driving
variable and response variable should be in the testing window. Otherwise, we would give
a wrong causality and a wrong time delay between two variables. Nonetheless, we are
still confident that our work has a broad applicability in time series analysis. For seasonal
diseases such as respiratory infections, the period of the time series is usually very long and
the unit is years. Therefore, the testing window is wide enough to cover the real time delay
between driving variable and response variable. In addition, due to the temporal decay of
information in transfer process, when the extended CCM is used to infer causality, only a
rough approximation of the action time delay can be estimated. In some cases, the estimates
of action time delay may not be reliable (Figure 5b,c). Related to this, we inferred causality
by following the rule that the values of the driving variable are better to estimate the future
value of the response variable, whereas the values of the response variable are better to
estimate the past value of the driving variable [35].

In summary, we refined a published method (CCM) for causal inference through theo-
retical analysis. Using this refined method to analyze the time series of influenza-like illness,
air quality, temperature, and humidity in Xi’an, we established a causal network where the
nodes are these variables. In this network, air pollution promotes respiratory infections
risk while higher temperature and humidity limit the risk (Figure 4d). It will be of interest
to test the robustness of this causal network using different datasets, and to determine how
these results will impact the design of novel interventions against respiratory infections
in populations.
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Appendix A

Appendix A.1. The Generation and Analysis of Simulated Data

The system (5) is initialized as S(1) = 5, I(1) = 4, and F(1) = 5, and run for 3500 time
steps with the parameters λ(t) = 0.6− 0.3sin(t/2), r = 6, σ = 0.5, α = 8, β = 0.01, and
γ = 0.01 to generate the time series of I(t) and F(t). These time series are analyzed using
s = 1 and Π = 3 which ensure the requirements of Takens’ embedding theorem [30,31].
We first test CCM [28] using these simulated data, selecting 100 pairs of 100 vectors of
random libraries over time points 101–1000, computing the cross-map skill for each pair of
libraries using time series length 7–100, and averaging out the cross-map skill of 100 random
libraries, respectively. We then apply extended CCM [35] to identify the optimal cross-map
lags, selecting 100 pairs of random libraries of 2000 vectors over time points 101–3000,
computing cross-map skill for each pair of libraries with maximum length using different
cross-map lag and averaging out the cross-map skill of these random libraries, respectively.

Appendix A.2. Kalman Filtering

Kalman filtering was achieved by using the function kalman in MATLAB (available
from: https://www.mathworks.com/help/control/ref/ss.kalman.html accessed on 19
January 2021). The low–frequency component was derived first (Figure A1a) and this was
subtracted from the original series (high-frequency component) to provide the residual.
After standardization, we found that the residuals were fitted with a standard normal
distribution (Figure A1b).

https://www.mathworks.com/help/control/ref/ss.kalman.html
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6

a

b

Figure A1. Results of Kalman filtering. (a) Data of the influenza−like illness (ILI) cases, air quality
index (AQI), lowest daily temperature and relative humidity, low−frequency component, and original
date (high−frequency component). (b) The time series and distribution of standardized residuals.
The residuals were calculated by subtracting low−frequency component from the original series.

References
1. Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious

diseases. Nature 2008, 451, 990–993. [CrossRef] [PubMed]
2. Weiss, R.A.; McMichael, A.J. Social and environmental risk factors in the emergence of infectious diseases. Nat. Med. 2004,

10, S70–S76. [CrossRef] [PubMed]
3. McMichael, A.J. Environmental and social influences on emerging infectious diseases: Past, present and future. Philos. Trans. R.

Soc. London. Ser. B Biol. Sci. 2004, 359, 1049–1058. [CrossRef] [PubMed]
4. Hay, S.; Tatem, A.; Graham, A.; Goetz, S.; Rogers, D. Global environmental data for mapping infectious disease distribution. Adv.

Parasitol. 2006, 62, 37–77. [PubMed]
5. Eisenberg, J.N.; Desai, M.A.; Levy, K.; Bates, S.J.; Liang, S.; Naumoff, K.; Scott, J.C. Environmental determinants of infectious

disease: A framework for tracking causal links and guiding public health research. Environ. Health Perspect. 2007, 115, 1216–1223.
[CrossRef]

6. Koelle, K.; Rodó, X.; Pascual, M.; Yunus, M.; Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 2005,
436, 696–700. [CrossRef]

7. Mordecai, E.A.; Caldwell, J.M.; Grossman, M.K.; Lippi, C.A.; Johnson, L.R.; Neira, M.; Rohr, J.R.; Ryan, S.J.; Savage, V.; Shocket,
M.S.; et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 2019, 22, 1690–1708. [CrossRef]

8. Johansson, M.A.; Apfeldorf, K.M.; Dobson, S.; Devita, J.; Buczak, A.L.; Baugher, B.; Moniz, L.J.; Bagley, T.; Babin, S.M.; Guven,
E.; et al. An open challenge to advance probabilistic forecasting for dengue epidemics. Proc. Natl. Acad. Sci. USA 2019,
116, 24268–24274. [CrossRef]

9. Shocket, M.S.; Ryan, S.J.; Mordecai, E.A. Temperature explains broad patterns of Ross River virus transmission. eLife 2018,
7, e37762. [CrossRef]

10. Deyle, E.R.; Maher, M.C.; Hernandez, R.D.; Basu, S.; Sugihara, G. Global environmental drivers of influenza. Proc. Natl. Acad. Sci.
USA 2016, 113, 13081–13086. [CrossRef]

11. Ali, S.T.; Cowling, B.J.; Wong, J.Y.; Chen, D.; Shan, S.; Lau, E.H.; He, D.; Tian, L.; Li, Z.; Wu, P. Influenza seasonality and its
environmental driving factors in mainland China and Hong Kong. Sci. Total Environ. 2022, 818, 151724. [CrossRef]

12. Sly, P.D.; Trottier, B.; Ikeda-Araki, A.; Vilcins, D. Environmental impacts on infectious disease: A literature view of epidemiological
evidence. Ann. Glob. Health 2022, 88, 91. [CrossRef]

http://doi.org/10.1038/nature06536
http://www.ncbi.nlm.nih.gov/pubmed/18288193
http://dx.doi.org/10.1038/nm1150
http://www.ncbi.nlm.nih.gov/pubmed/15577934
http://dx.doi.org/10.1098/rstb.2004.1480
http://www.ncbi.nlm.nih.gov/pubmed/15306389
http://www.ncbi.nlm.nih.gov/pubmed/16647967
http://dx.doi.org/10.1289/ehp.9806
http://dx.doi.org/10.1038/nature03820
http://dx.doi.org/10.1111/ele.13335
http://dx.doi.org/10.1073/pnas.1909865116
http://dx.doi.org/10.7554/eLife.37762
http://dx.doi.org/10.1073/pnas.1607747113
http://dx.doi.org/10.1016/j.scitotenv.2021.151724
http://dx.doi.org/10.5334/aogh.3670


Entropy 2023, 25, 807 14 of 15

13. Lin, H.H.; Ezzati, M.; Murray, M. Tobacco smoke, indoor air pollution and tuberculosis: A systematic review and meta-analysis.
PLoS Med. 2007, 4, e20. [CrossRef]

14. Xiang, K.; Xu, Z.; Hu, Y.Q.; He, Y.S.; Dan, Y.L.; Wu, Q.; Fang, X.H.; Pan, H.F. Association between ambient air pollution and
tuberculosis risk: A systematic review and meta-analysis. Chemosphere 2021, 277, 130342. [CrossRef]

15. Wong, C.M.; Yang, L.; Thach, T.Q.; Chau, P.Y.K.; Chan, K.P.; Thomas, G.N.; Lam, T.H.; Wong, T.W.; Hedley, A.J.; Peiris, J.M.
Modification by Influenza on Health Effects of Air Pollution in Hong Kong. Environ. Health Perspect. 2009, 117, 248–253.
[CrossRef]

16. Liang, Y.; Fang, L.; Pan, H.; Zhang, K.; Kan, H.; Brook, J.R.; Sun, Q. PM 2.5 in Beijing–temporal pattern and its association with
influenza. Environ. Health 2014, 13, 102. [CrossRef] [PubMed]

17. Chen, G.; Zhang, W.; Li, S.; Zhang, Y.; Williams, G.; Huxley, R.; Ren, H.; Cao, W.; Guo, Y. The impact of ambient fine particles on
influenza transmission and the modification effects of temperature in China: A multi-city study. Environ. Int. 2017, 98, 82–88.
[CrossRef]

18. Feng, C.; Li, J.; Sun, W.; Zhang, Y.; Wang, Q. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of
influenza-like-illness: A time-series analysis in Beijing, China. Environ. Health 2016, 15, 17. [CrossRef]

19. Tang, S.; Yan, Q.; Shi, W.; Wang, X.; Sun, X.; Yu, P.; Wu, J.; Xiao, Y. Measuring the impact of air pollution on respiratory infection
risk in China. Environ. Pollut. 2018, 232, 477–486. [CrossRef]

20. Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 2020,
264, 114732. [CrossRef] [PubMed]

21. Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England.
Environ. Pollut. 2021, 268, 115859. [CrossRef]

22. Berkeley, G. A Treatise Concerning the Principles of Human Knowledge; JB Lippincott and Company: Philadelphia, NY, USA, 1881.
23. Mirsaeidi, M.; Motahari, H.; Taghizadeh Khamesi, M.; Sharifi, A.; Campos, M.; Schraufnagel, D.E. Climate change and respiratory

infections. Ann. Am. Thorac. Soc. 2016, 13, 1223–1230. [CrossRef] [PubMed]
24. Eichler, M., Causal Inference in Time Series Analysis. In Causality; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2012; Chapter 22,

pp. 327–354.
25. Sugihara, G.; May, R.M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature

1990, 344, 734–741. [CrossRef]
26. Sugihara, G. Nonlinear forecasting for the classification of natural time series. Philos. Trans. R. Soc. London. Ser. A Phys. Eng. Sci.

1994, 348, 477–495.
27. Dixon, P.A.; Milicich, M.J.; Sugihara, G. Episodic fluctuations in larval supply. Science 1999, 283, 1528–1530. [CrossRef]
28. Sugihara, G.; May, R.; Ye, H.; Hsieh, C.H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting Causality in Complex Ecosystems. Science

2012, 338, 496–500. [CrossRef]
29. Ye, H.; Sugihara, G. Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science 2016,

353, 922–925. [CrossRef]
30. Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence; Springer: Berlin/Heidelberg, Germany,

1981; pp. 366–381.
31. Stark, J. Delay Embeddings for Forced Systems. I. Deterministic Forcing. J. Nonlinear Sci. 1999, 9, 255–332. [CrossRef]
32. Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.D.;

Muñoz-Marí, J.; et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 2019, 10, 1–13. [CrossRef]
33. Cheke, R.A.; Young, S.; Wang, X.; Tratalos, J.A.; Tang, S.; Cressman, K. Evidence for a causal relationship between the solar cycle

and locust abundance. Agronomy 2020, 11, 69. [CrossRef]
34. Doi, H.; Yasuhara, M.; Ushio, M. Causal analysis of the temperature impact on deep-sea biodiversity. Biol. Lett. 2021, 17, 20200666.

[CrossRef] [PubMed]
35. Ye, H.; Deyle, E.R.; Gilarranz, L.J.; Sugihara, G. Distinguishing time-delayed causal interactions using convergent cross mapping.

Sci. Rep. 2015, 5, 14750. [CrossRef]
36. Rulkov, N.F.; Sushchik, M.M.; Tsimring, L.S.; Abarbanel, H.D. Generalized synchronization of chaos in directionally coupled

chaotic systems. Phys. Rev. E 1995, 51, 980. [CrossRef]
37. Sugihara, G.; Deyle, E.R.; Ye, H. Reply to Baskerville and Cobey: Misconceptions about causation with synchrony and seasonal

drivers. Proc. Natl. Acad. Sci. USA 2017, 114, E2272–E2274. [CrossRef]
38. Bjørnstad, O.N.; Viboud, C. Timing and periodicity of influenza epidemics. Proc. Natl. Acad. Sci. USA 2016, 113, 12899–12901.

[CrossRef]
39. wikipedia. Air Quality Index. 2022. Available online: https://en.wikipedia.org/wiki/Air_quality_index (accessed on 18

February 2020).
40. tianqihoubao. Air Quality Index. 2022. Available online: http://www.tianqihoubao.com/aqi/xian.html (accessed on 18

February 2020).
41. Administration, C.M. Meteorological Data. 2022. Available online: http://data.cma.cn (accessed on 18 February 2020).
42. Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969,

37, 424–438. [CrossRef]

http://dx.doi.org/10.1371/journal.pmed.0040020
http://dx.doi.org/10.1016/j.chemosphere.2021.130342
http://dx.doi.org/10.1289/ehp.11605
http://dx.doi.org/10.1186/1476-069X-13-102
http://www.ncbi.nlm.nih.gov/pubmed/25471661
http://dx.doi.org/10.1016/j.envint.2016.10.004
http://dx.doi.org/10.1186/s12940-016-0115-2
http://dx.doi.org/10.1016/j.envpol.2017.09.071
http://dx.doi.org/10.1016/j.envpol.2020.114732
http://www.ncbi.nlm.nih.gov/pubmed/32387671
http://dx.doi.org/10.1016/j.envpol.2020.115859
http://dx.doi.org/10.1513/AnnalsATS.201511-729PS
http://www.ncbi.nlm.nih.gov/pubmed/27300144
http://dx.doi.org/10.1038/344734a0
http://dx.doi.org/10.1126/science.283.5407.1528
http://dx.doi.org/10.1126/science.1227079
http://dx.doi.org/10.1126/science.aag0863
http://dx.doi.org/10.1007/s003329900072
http://dx.doi.org/10.1038/s41467-019-10105-3
http://dx.doi.org/10.3390/agronomy11010069
http://dx.doi.org/10.1098/rsbl.2020.0666
http://www.ncbi.nlm.nih.gov/pubmed/34283931
http://dx.doi.org/10.1038/srep14750
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1073/pnas.1700998114
http://dx.doi.org/10.1073/pnas.1616052113
https://en.wikipedia.org/wiki/Air_quality_index
http://www.tianqihoubao.com/aqi/xian.html
http://data.cma.cn
http://dx.doi.org/10.2307/1912791


Entropy 2023, 25, 807 15 of 15

43. Tsonis, A.A.; Deyle, E.R.; May, R.M.; Sugihara, G.; Swanson, K.; Verbeten, J.D.; Wang, G. Dynamical evidence for causality
between galactic cosmic rays and interannual variation in global temperature. Proc. Natl. Acad. Sci. USA 2015, 112, 3253–3256.
[CrossRef]

44. Cobey, S.; Baskerville, E.B. Limits to causal inference with state-space reconstruction for infectious disease. PLoS ONE 2016,
11, e0169050. [CrossRef]

45. Southallzy, B.; Buxtony, B.; Marchant, J. Controllability and observability: Tools for Kalman filter design. In Proceedings of the
British Machine Vision Conference, Southampton, UK, 14–17 September 1998; Volume 98, pp. 164–173.

46. Whitney, H. Differentiable manifolds. Ann. Math. 1936, 37, 645–680. [CrossRef]
47. Xia, F.; Deng, F.; Tian, H.; He, W.; Xiao, Y.; Sun, X. Estimation of the reproduction number and identification of periodicity for

HFMD infections in northwest China. J. Theor. Biol. 2020, 484, 110027. [CrossRef]
48. Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [CrossRef]
49. Chen, D.; Xiao, Y.; Tang, S. Air quality index induced nonsmooth system for respiratory infection. J. Theor. Biol. 2019, 460, 160–169.

[CrossRef]
50. Li, M.; Zhang, L. Haze in China: Current and future challenges. Environ. Pollut. 2014, 189, 85–86. [CrossRef] [PubMed]
51. Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [CrossRef] [PubMed]
52. Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature

mortality on a global scale. Nature 2015, 525, 367–373. [CrossRef]
53. Maria Neira, A.P.U.; Mudu, P. Reduce air pollution to beat NCDs: From recognition to action. Lancet 2018, 392, 1178–1179.

[CrossRef]
54. Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.;

Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [CrossRef]
55. Pandian, J.D.; Gall, S.L.; Kate, M.P.; Silva, G.S.; Akinyemi, R.O.; Ovbiagele, B.I.; Lavados, P.M.; Gandhi, D.B.C.; Thrift, A.G.

Prevention of stroke: A global perspective. Lancet 2018, 392, 1269–1278. [CrossRef]
56. Xie, W.; Li, G.; Zhao, D.; Xie, X.; Wei, Z.; Wang, W.; Wang, M.; Li, G.; Liu, W.; Sun, J.; et al. Relationship between fine particulate

air pollution and ischaemic heart disease morbidity and mortality. Heart 2015, 101, 257–263. [CrossRef] [PubMed]
57. Franklin, B.A.; Brook, R.; Arden Pope, C. Air Pollution and Cardiovascular Disease. Curr. Probl. Cardiol. 2015, 40, 207–238.

[CrossRef]
58. Hautot, D.; Pankhurst, Q.A.; Khan, N.; Dobson, J. Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease

brain tissue. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, S62–S64. [CrossRef] [PubMed]
59. Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.;

Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113,
10797–10801. [CrossRef]

60. Pope III, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006,
56, 709–742. [CrossRef] [PubMed]

61. Sinharay, R.; Gong, J.; Barratt, B.; Ohman-Strickland, P.; Ernst, S.; Kelly, F.J.; Zhang, J.J.; Collins, P.; Cullinan, P.; Chung, K.F.
Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area
in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: A randomised,
crossover study. Lancet 2018, 391, 339–349.

62. Gauderman, W.J.; Urman, R.; Avol, E.; Berhane, K.; McConnell, R.; Rappaport, E.; Chang, R.; Lurmann, F.; Gilliland, F. Association
of Improved Air Quality with Lung Development in Children. N. Engl. J. Med. 2015, 372, 905–913. [CrossRef] [PubMed]

63. Dockery, D.W.; Ware, J.H. Cleaner Air, Bigger Lungs. N. Engl. J. Med. 2015, 372, 970–972. [CrossRef]
64. Mysterud, A.; Stenseth, N.C.; Yoccoz, N.G.; Langvatn, R.; Steinheim, G. Nonlinear effects of large-scale climatic variability on

wild and domestic herbivores. Nature 2001, 410, 1096–1099. [CrossRef]
65. Wagner, B.K.; Kitami, T.; Gilbert, T.J.; Peck, D.; Ramanathan, A.; Schreiber, S.L.; Golub, T.R.; Mootha, V.K. Large-scale chemical

dissection of mitochondrial function. Nat. Biotechnol. 2008, 26, 343–351. [CrossRef]
66. Chen, D.; Forghany, Z.; Liu, X.; Wang, H.; Merks, R.M.; Baker, D.A. A new model of Notch signalling: Control of Notch receptor

cis-inhibition via Notch ligand dimers. PLoS Comput. Biol. 2023, 19, e1010169. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1073/pnas.1420291112
http://dx.doi.org/10.1371/journal.pone.0169050
http://dx.doi.org/10.2307/1968482
http://dx.doi.org/10.1016/j.jtbi.2019.110027
http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
http://dx.doi.org/10.1016/j.jtbi.2018.10.016
http://dx.doi.org/10.1016/j.envpol.2014.02.024
http://www.ncbi.nlm.nih.gov/pubmed/24637256
http://dx.doi.org/10.1016/S0140-6736(14)60617-6
http://www.ncbi.nlm.nih.gov/pubmed/24792855
http://dx.doi.org/10.1038/nature15371
http://dx.doi.org/10.1016/S0140-6736(18)32391-2
http://dx.doi.org/10.1016/S1470-2045(13)70487-X
http://dx.doi.org/10.1016/S0140-6736(18)31269-8
http://dx.doi.org/10.1136/heartjnl-2014-306165
http://www.ncbi.nlm.nih.gov/pubmed/25341536
http://dx.doi.org/10.1016/j.cpcardiol.2015.01.003
http://dx.doi.org/10.1098/rsbl.2003.0012
http://www.ncbi.nlm.nih.gov/pubmed/12952638
http://dx.doi.org/10.1073/pnas.1605941113
http://dx.doi.org/10.1080/10473289.2006.10464485
http://www.ncbi.nlm.nih.gov/pubmed/16805397
http://dx.doi.org/10.1056/NEJMoa1414123
http://www.ncbi.nlm.nih.gov/pubmed/25738666
http://dx.doi.org/10.1056/NEJMe1415785
http://dx.doi.org/10.1038/35074099
http://dx.doi.org/10.1038/nbt1387
http://dx.doi.org/10.1371/journal.pcbi.1010169

	Introduction
	Materials and Methods
	The Data
	The Method

	Results
	Testing on an Infectious Disease Model
	Correlation Analysis and Wavelet Analysis of Real Data
	Causality Analysis of Real Data

	Discussion
	Appendix A
	Appendix A.1
	Appendix A.2

	References

