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Abstract 

Machine learning methods have the potential to transform imaging techniques and analysis for 

healthcare applications with automation, making diagnostics and treatment more accurate and efficient, 

as well as to provide mechanistic insights into tissue deformation and fracture in physiological and 

pathological conditions. Here we report an exploratory investigation for the classification and prediction 

of mechanical states of cortical and trabecular bone tissue using convolutional neural networks (CNNs), 

residual neural networks (ResNet), and transfer learning applied to a novel dataset derived from high-

resolution synchrotron-radiation micro-computed tomography (SR-microCT) images acquired in uniaxial 

continuous compression in situ. We present the systematic optimization of CNN architectures for 

classification of this dataset, visualization of class-defining features detected by the CNNs using gradient 

class activation maps (Grad-CAMs), comparison of CNN performance with ResNet and transfer learning 

models, and perhaps most critically, the challenges that arose from applying machine learning methods 

to an experimentally-derived dataset for the first time. With optimized CNN architectures, we obtained 

trained models that classified novel images between failed and pristine classes with over 98% accuracy 

for cortical bone and over 90% accuracy for trabecular bone. Harnessing a pre-trained ResNet with 

transfer learning, we further achieved over 98% accuracy on the cortical dataset, and 99% on the 

trabecular dataset. This demonstrates that powerful classifiers for high-resolution SR-microCT images 

can be developed even with few unique training samples and invites further development through the 

inclusion of more data and training methods to move towards novel, fundamental, and machine 

learning-driven insights into microstructural states and properties of bone. 
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1. Introduction 

Medical imaging and understanding of bone fracture mechanics are critical for detection, diagnoses, and 

treatment of bone injuries. However, X-ray computed-tomography (CT) and other imaging methods are 

often difficult to manually interpret as a result of image ambiguity, noise, and other limitations. 

Diagnostics are even more prone to error due to their reliance on human judgement, which is imperfect 

and often limited by situational effects1–3. In fact, there is a 3-5% estimated error rate in diagnostics 

involving imaging, resulting in 40 million annual misdiagnoses worldwide with subsequent consequences 

in patient outcomes and economic fallout1. Here, deep learning methods have a clear advantage.   

As automated and algorithmic entities, machine learning models can take an objective and 

comprehensive approach to medical image analysis 4. Numerous studies have investigated machine 

learning applications for various disease states, demonstrating their growing potential in detection, 

classification, segmentation, and other problems 5–7. With specific regards to bone fracture, Yahalomi 

et.al. successfully trained a model that detected wrist fractures in X-ray images with an accuracy of 96%, 

while up to 30% of wrist X-ray images are incorrectly diagnosed in clinical settings 8. Tanzi et. al. 

developed a multistage convolutional neural network that classified proximal femur X-ray images into 5 

fracture types with average accuracy of 81% and demonstrated that their tool helped specialists to 

classify fracture images with a 14% increase in accuracy 9. These are just two of numerous similar 

studies—nevertheless, there remain large hurdles between state-of-the-art machine learning methods 

and translation into clinical settings, including lack of data and lack of algorithm robustness 10. In bone 

tissue mechanics specifically, there is a lack of fundamental understanding of how, and what, deep 

neural networks can be designed to decipher the complex minutiae that characterize the mechanical 

behavior of bone at different dimensional scales, and particularly, damage initiation and progression at 

the microscale11. Key to overcoming these hurdles is continual expansion of datasets, including 

development of novel datasets, and investigation of various machine learning architectures, including 

development of strategies that can maximally harness limited datasets.  

In this work, we utilize a novel dataset of high-resolution synchrotron-radiation micro-computed 

tomography (SR-microCT) images of cortical bone and trabecular bone to develop tools that can label 

mechanical states of bone undergoing uniaxial continuous compression in situ12  (details see Methods). 

We derive a large dataset by augmenting two-dimensional cross-sections of a limited set of 3-

dimensional SR-microCT scans. There are several previous studies that investigate applied machine 

learning in bone tissue mechanics6–9, however to our knowledge, no previous work specifically examines 

such exploitation of high-resolution SR-microCT images derived from controlled experiments, which 

contain abundant information of bone microstructure but are each individually expensive to obtain. This 

contrasts with previously investigated datasets that comprise of clinical images, which are not uniformly 

collected and have limited voxel resolution due to technical and radiation dosage limitations13. As such, 

these microCT scans present an opportunity to gain fundamental understanding of the microstructural 

properties that characterize bone mechanics.  Furthermore, because the SR-microCT scans were 

collected in situ during continuous compression up to failure, they uniquely contain data on various 

strain states of the tissue that ultimately allow study of bone damage initiation and progression, as well 

as detection limits of trained classification models.  

With this novel dataset, we explore classification efficacy of convolutional neural networks (CNNs) and 

transfer learning strategies with a Residual Neural Network (ResNet). CNNs are widely regarded as a 



break-through technology for computer vision, and therefore are a popular choice for image recognition 

and classification in machine learning 14. CNNs function by sequentially sliding sets of small filters over 

input images to detect specific features in a hierarchical manner, producing activation maps of where 

features occur. Despite the success of deep CNNs, it has been empirically shown that performance of 

traditional CNN models is limited by a maximum threshold for depth 15. This limitation can be alleviated 

with the use of ResNets, which incorporate skip connections that add outputs from previous layers to 

outputs of later, deeper layers. Such skip connections allow models to learn identity functions that 

guarantee each layer performs at least as well as the previous one, easing the training of substantially 

deeper networks15.  

As deep neural nets have become increasingly advanced and able to solve increasingly complex 

problems, a new strategy for harnessing their power has emerged: transfer learning. Transfer learning is 

a method that makes use of knowledge gained while training a model for one problem by applying it to 

a different, usually related, problem 21, such as applications to predict mechanical properties of 

biomimetic and biological materials16–20.  Oftentimes this involves fixing the layers of a pre-trained 

network such that its weights cannot be updated and replacing only the final layer of the network with a 

new layer to be tuned to data for the new problem. In this way, previously learned feature extractors 

can be applied to the new data, reducing the quantity of training data needed for the new problem. 

Alternatively, the entire network can be set as trainable, simply using the pre-trained model to initialize 

weights. This is known as fine-tuning and is especially applicable for transfer learning problems where 

the new dataset is very different from the original one.   

Overall, this study aims to systematically investigate application of machine learning strategies in a novel 

instance of high-resolution image analysis. Such investigation contributes a first step toward bridging 

the gap between deep learning and bone tissue mechanics with this data, which has the potential to 

enhance accuracy and efficiency in the characterization of bone deformation and fracture, and 

ultimately to allow better understanding of the influence of pathological conditions on the 

biomechanical response of bone tissue. 

2. Materials and methods  

2.1 Dataset Preparation 

The datasets comprise of SR-microCT scans of 5 unique samples each of bovine cortical bone (CB) and 

trabecular bone (TB) at various strain states, ranging from totally pristine (i.e. unloaded) to totally failed 

(i.e. maximum compression). The dataset was collected as part of a previous study where continuous 

SR-microCT images were acquired during uniaxial compression of the bone samples at the Diamond-

Manchester Imagining Branchline I13-2 at Diamond Light Source (UK)22. The dataset is limited to 5 

samples each of CB and TB as a result of experimental costs and beamtime limitations.  

Briefly, cortical and trabecular bone were cored from fresh-frozen bovine mid-femoral diaphysis and 

tibial condyle, respectively, and cylindrical samples (4mm diameter for CB and 6 mm diameter for TB) 

were extracted in the proximal-distal direction. Prior to the experiment, the ends of the samples were 

embedded into brass endcaps, achieving a nominal free length of 8 mm and 12 mm for CB and TB, 

respectively22. Samples were mounted in a loading stage (CT5000, Deben, UK) and continuous loading 

was performed at 0.1 mm/min up to 6-7% apparent strain with SR-microCT images acquired 

simultaneously.  A total of 1201 projection images per scan with an exposure time of 10 ms and 15 ms 



for cortical and trabecular bone, respectively, were acquired under load uninterruptedly and resulted in 

an effective voxel size of 6.5 µm. The projection images were reconstructed into 3D datasets and rigidly 

registered to the first scan for each sample. 3D reconstructions of the bone samples in their initial 

(unloaded) states are shown in Figure 1, along with their corresponding stress-strain curves under 

compression. Further details on sample preparation, experimental testing, and image acquisition are 

reported elsewhere12,22. 

Each microCT scan was labeled with its bone sample name (CB5, CB6, CB8, CB12, CB22; TB5, TB6, TB9, 

TB11, TB12) and loading state. The registered 3D microCT scans were center-cropped to remove lens 

framing, histogram matched to normalize brightness, and median-filtered (3x3x3 kernel window) to 

remove noise, then sliced into 300 2D images from each direction (XY, XZ, YZ). Sample images are shown 

in Figure 2.  While total fracture is apparent in some planes, it is not necessarily easy to distinguish in 

others, such as the image from the XZ plane in the CB examples shown. This ultimately yielded a large 

dataset of 2-dimensional bone images ranging between totally pristine, partially failed, and totally 

failed. For the initial classification problem, pristine vs. failed bone, only images from the completely 

unloaded state ('pristine' bone) and the highest loading state ('failed' bone) for each bone sample were 

used. Classifiers for cortical and trabecular bone were trained separately in parallel due to their largely 

differing microstructure23. For example, the bone volume fraction ranged from 12.8% to 30.9% in 

trabecular bone samples and from 96.5% to 97.2% in cortical bone samples. 

2.2 Convolutional Neural Network: Structure and Training 

Taking the well-known AlexNet architecture as inspiration14, CNNs were constructed using TensorFlow 

and Keras, open-source software libraries for machine learning24,25. The AlexNet CNN structure consists 

of alternating convolution+ReLU and MaxPooling layers, then two dense layers with a final softmax 

activation function for classification14. To optimize the CNN architecture for our use case, parameters 

including number of layers, learning rate, kernel size, and batch size were varied systematically, and the 

effects on classification of each bone type observed.  

For model training, 'failed' and 'pristine' images as previously described were divided into training, 

validation, and testing datasets. For each bone type, images were divided simply by bone sample; that 

is, for each experiment, images from 3 biological samples were placed in the training set (5400 images), 

images from 1 biological sample were placed in the validation set (1800 images), and images from the 1 

remaining sample were placed in the testing set (1800 images). This division was chosen because images 

from the same bone sample display similar bone and crack features, especially when taken from the 

same plane, so dividing based on bone sample maximally ensures that the model encounters completely 

new data during validation and testing stages. Furthermore, reserving all images from one bone sample 

for the testing set enables deeper investigation of model performance, such as classification ability on 

images where that same bone sample is only partially failed.  Images were randomly augmented with 

horizontal flips or shearing before being fed into the learning algorithm to avoid overfitting and increase 

variability in training. Models were trained on 20 epochs, enough for training accuracy to plateau. 

To evaluate performance of each CNN structure, k-fold cross validation with a validation and test set 

was utilized, which increases confidence in algorithm performance and eliminates selection bias from 

random data assignment into training, validation, and testing datasets26. As described above, the total 

datasets for both CB and TB were split based on bone sample, thus k=5 for each (Table 1). In k-fold cross 

validation for a particular CNN structure, one by one, each bone sample was used as the test set. For 



each bone sample test set, the remaining bone samples were each sequentially used as the validation 

set with images from the remaining three (k-2) bone samples combined as the training set. In this way, 

each CNN structure was trained and tested 20 times considering every possible permutation of the 5 

bone samples as training, validation, and testing sets, thus accounting for the variations in both 

microstructure and failure mechanism within the same bone sample type. Then, for a holistic 

representation of performance, each structure was evaluated based on average accuracy over all 20 

trials in the cross validation.  

Using model performance results from k-fold cross validation for each variation of the CNN structure, 

‘optimized’ CNN architectures were determined for classification of CB and for classification of TB. 

2.3 CNN Visualization & Detection Limits 

To gain insight into the optimized CNNs after training, and to ensure that they detect features related to 

bone mechanics, Gradient Class Activation Mapping (Grad-CAM) was used to visualize how the CNNs 

determine classifications.  The Grad-CAM method improves interpretability of CNNs by generating 

activation maps that highlight the discriminative regions in an image that a CNN uses to identify a 

particular class 27. For each trained model, this involves computing the gradient between the class 

output and the last convolutional layer in the CNN, then multiplying this gradient with the final 

convolutional layer to produce a heatmap showing CNN activations on the input image. Because the 

cross-validation procedures described above produced 20 trained models each, for both CB and TB, the 

models with the best classification performance from cross-validation of their respective optimized 

structures were selected for visualization.  

To further verify and investigate the CNNs, using the same two models that were visualized with Grad-

CAM, we considered fracture detection limits by measuring classification performance on the spectrum 

of images between the ‘totally failed’ and ‘totally pristine’ mechanical states. These images, taken at 

various degrees of compressive loading, were not used in model training. For each loading state, the 

trained models were tasked to classify between the ‘totally pristine’ state, labeled ‘pristine’, and that 

specific loading state, labeled ‘failed’.   

2.5 Mixed Dataset 

As described, for the initial classification task, bone images were divided into cross-validation groups 

based on the bone samples they were derived from. Because this presents a useful but simplistic 

investigation, the optimized CNN architectures were also trained with the data more thoroughly mixed; 

i.e. randomly split by both biological sample and direction of slicing. This increases variability in training 

data, and therefore increases generalizability28. Although all images from the same bone sample are 

related, images from each slicing plane depicts bone and crack features differently, as shown in Figure 2, 

thus vary enough that they can be considered different pieces of data. As a result, a model trained on 

images from one plane of a sample, and tested on images from another plane of the same sample, is not 

considered to be tested on the same data it is trained on. Separating by bone sample and slicing plane 

yielded 15 groups of image data (5 bone samples by 3 directions each) for the CB and TB datasets each, 

which were randomly divided into 5 sets (3 groups each; Table 1).  These 5 sets of image data were used 

in 5-fold cross validation as described above to evaluate performance of the optimized CNNs on these 

more complex ‘mixed’ datasets.  



2.6 ResNet Transfer Learning 

Taking our trained-from-scratch CNNs as baselines, we then investigated the efficacy of transfer learning 

strategies. Our transfer learning study utilized ResNet-50, a 50-layer deep residual neural network with 5 

blocks, each of which contain both convolutional layers and identity layers15. ResNet-50 was trained on 

over a million images from the ImageNet database, and can classify images into 1000 object categories 

including everyday objects such as keyboard, pencil, and various animals 15. Using transfer learning with 

this network allows us to harness the knowledge it possesses while saving computational expense29. 

Constructing the transfer learning model involved loading the ResNet-50 architecture and its 

corresponding pre-trained weights without its final layer, setting the pre-trained weights to be 

untrainable, and adding a new dense layer to perform classification for our new problem30. 

Hyperparameters were maintained from the optimized CNNs for consistency. 5-fold cross validation was 

performed on both the bone-split datasets and the mixed-split datasets for CB and TB described above. 

For each of these, the transfer learning method was repeated with fine-tuning enabled by setting pre-

trained weights from ResNet-50 as trainable. Because transfer learning is expected to decrease the 

training data and time necessary, transfer learning models were trained on only 5 epochs, enough for 

training accuracy curves to plateau. The ResNet-50 structure was also trained from scratch (i.e. with 

randomly initialized weights) over 20 epochs for comparison with transfer learning results and the 

optimized CNNs.  

3. Results and Discussion 

3.1 Dataset Preparation 

Image post-processing, particularly histogram matching and median filtering, was found to be critical to 

the development of successful deep learning classifiers. In preliminary trials where the SR-microCT scans 

were directly cropped and sliced into 2D images without these processing steps, classifiers that were 

able to distinguish perfectly between images from the pristine state and images from any loaded state 

were easily trained. Upon visualization with the Grad-CAM method31, however, it was found that the 

models were not classifying based on fracture, but simply based on noise that was present in the 

pristine images and not in the others—likely an artifact of the experimental methods involved in 

collection of the SR-microCT scans (Appendix A). The post-processing steps taken mitigated this effect, 

similarly to other image analysis techniques such as digital volume correlation, where image post-

processing plays a fundamental role on the optimization of the method32.  

3.2 CNN Optimization and Performance 

During CNN optimization, when varying one parameter, all others were held constant at “baseline” 

values selected from preliminary trials of model training: layers=3, learning rate = 0.0001, kernel 

size=(5,5), batch size=20. For each trial, the CNN was trained using minibatch gradient descent, Adam 

optimization, and categorical cross-entropy loss over 20 epochs. Figure 3 summarizes how model 

performance, defined by classification accuracy, varied based on several different parameters for the CB 

and TB datasets. The CB and TB datasets largely displayed similar trends. When varying number of 

hidden layers in the CNN architecture, classification accuracy increased with increasing number of 

layers, then decreased slightly after 3 layers for CB and 5 layers for TB. As more layers increase the 

complexity of the CNN and the features it can detect, this eventual decrease in performance may be 

attributable to overfitting to the training set33. Classification accuracy similarly increased, then 



decreased as learning rate increased, with maximums at 0.0001 for CB and 0.001 for TB. This trend is 

expected, as large learning rates can result in divergence, while learning rates too small can result in 

getting stuck at local minima or simply taking too long to train34. CNN performance varied minimally as 

batch size was varied, peaking at batch size 10 before decreasing and increasing slowly for CB, and 

approximately plateauing after peaking at batch size 20 for TB. This contrasts from the typical effect 

observed, where small batch sizes induce a regularizing effect and better overall performance35. Finally, 

classification accuracy decreased with increasing kernel size, which is reasonable because large kernel 

sizes introduce more parameters and can make the receptive field too large relative to the original 

image36. 

From this systematic assessment of CNN architecture, we conclude that 4 hidden layers, learning rate = 

0.0001, batch size = 10, and kernel size = (5,5) yields the optimal CNN for the classification of CB fracture 

SR-microCT scans (Figure 3). These values for learning rate, batch size, and kernel size each produced 

the best performance when varying the respective parameters. Three hidden layers yielded the best 

performance while varying layers with the baseline parameters, but produced a model that performed 

relatively poorly with the other optimized parameters. The 4-layer model performed only negligibly 

worse during optimization, well within the first standard deviation for overall accuracy in the 3-layer 

model. Thus the ‘optimized’ model was changed to have 4 layers, and this structure yielded an 

impressive average classification accuracy of 0.983 over its cross-validation. This was higher than all but 

one of the models investigated during cross-validation. The model with baseline parameters and batch 

size 10 had average classification accuracy of 0.988, however with standard deviation of .017, this 

difference in performance is negligible.  

For TB, the optimal CNN structure was determined to have 5 layers, learning rate = 0.001, batch size 20, 

and kernel size = (3,3). These parameter values each yielded the highest performing models in their 

respective optimizations, and together formed a model that achieved average classification accuracy of 

0.901 over its cross-validation, higher than any of the models investigated during optimization. The 

optimized CNN architectures for classification of CB and TB are depicted in Figure 4a and 4b. 

These results highlight the intricacies involved in determining the structure of an appropriate deep 

learning model for different applications. From the investigation of CB, we observed that simple 

optimization is not always sufficient, and the interplay of different parameters have significant effects 

on model performance. Furthermore, we observed that different datasets, even when related like the 

two bone datasets investigated here, can require different machine learning structures for optimal 

classification performance. This makes sense as different datasets may have differing critical features, 

such as largely different porosities, which require varying levels of hierarchical feature extraction and 

different learning parameters to sufficiently capture. Throughout optimization of the CNNs, it was 

evident that models generally performed better on the CB dataset than the TB dataset. Even after 

separate optimization for each dataset, classification accuracy was nearly 10% lower for the TB dataset. 

This further indicates the uniqueness of different datasets and may be attributable to the larger 

variations in microstructure of TB compared to CB samples.  As previously reported, while TB11 and 

TB12 showed a bone volume fraction above 25% and a plate-like structure, TB6 and TB5 displayed a 

considerably lower bone volume fraction (i.e. below 17%) and a rod-like structure, which yielded to 

different failure mechanisms. Trabecular rods experienced significant bending prior to fracture, whereas 

plate-like structures failed at lower strain levels by buckling. Conversely, the microstructure of the 



unique CB samples was fairly consistent (i.e. 3.3 ± 0.3 % porosity, 0.76 ± 0.03 degree of anisotropy), and 

all samples displayed a longitudinal crack, piercing the volume, after failure22.  

While we have selected the described optimized CNNs, we note that several of the CNN structures 

investigated produced models with similarly good performances. Further, there are more complex CNN 

architectures that we did not investigate37–40. This means that our selected structures are not the only 

ones satisfactory for our current study, and it is possible that different structures could produce even 

better results. However, we emphasize that these results are valuable as proof-of-concept for 

classification of bone fracture states in SR-microCT scans even with just a few original samples and invite 

further study of this dataset. 

3.3 CNN Visualization & Detection Limits 

Figure 3c shows the test set classification results for the best performing trained models from cross-

validation of the optimized CNNs for CB and TB. These models were used for visualization and 

investigation of detection limits. The model trained on CB5, CB8, and CB22, validated on CB6, and tested 

on CB12 achieved perfect classification accuracy on the test set. The average softmax outputs for both 

the ‘failed’ and ‘pristine’ images were very close to 1, indicating that the model was not only correct, but 

also confident in its classifications. For TB, the model trained on TB6, TB11, and TB12, validated on TB9, 

and tested on TB5 achieved test set classification accuracy of 0.986, with softmax outputs close to 1 but 

lower than those of the CB model, especially for pristine images. To identify the features that 

contributed most to a specific classification, Figure 5a depicts the Grad-CAM heatmaps for a ‘pristine’ 

image and a ‘failed’ image from the CB test set, as well as the heatmaps overlaid on the original images. 

The trained model appears to universally detect native features of the cortical bone microstructure, 

such as Haversian and Volkmann canals. In the failed image, the model also detects and is highly 

activated at the visible crack features. Interestingly, the model is able to distinguish between 'pristine' 

and 'failed' images very well even though it is activated by bone features present in both image groups, 

allowing us to speculate that the model may detect differences in bone microstructure under loaded 

conditions.  Detection of crack features is further verified by the detection limits of the model (Figure 

5b), which shows how its overall classification accuracy is perfect at high loading states, then decreases 

sharply at Load 11, and hovers at approximately 0.6 before dropping to 0.5 at Load 1 (the unloaded 

state), where all images the model is tasked to classify are actually ‘pristine’. Note that classification 

accuracy of pristine images at each loading stage is constant because the ‘pristine’ category images are 

always the same. As evident in Figure 4c, cracks are easily distinguishable at loading states 13 and 

above, but difficult to identify at loading state 12, and not visible at loading states 11 and below. This 

corresponds with the drop in classification accuracy and further verifies that the model distinguishes 

between ‘failed’ and ‘pristine’ images based on crack features. Interestingly, because the model is able 

to distinguish between loaded and ‘pristine’ images (albeit minimally) even when there are no distinct 

crack features, it may be able to detect indicators or predictors of failure during the linear-elastic 

mechanical response of the tissues that are indistinguishable to the human eye. 

The Grad-CAM visualizations and detection limits for the TB model are shown in Figure 6. Here we see 

surprising results—similarly to the CB analysis, classification accuracy of the model is very good at higher 

loading states, then dips when fractures are no longer visible to the human eye. Fascinatingly, however, 

classification accuracy remains relatively high at lower loading states, even returning to near perfect 

accuracy at loading states 3 and 4. This is unexpected because the images at lower loading states 



resemble the pristine images more and more closely, so it was anticipated that classification accuracy 

would decrease. Grad-CAM visualization for the ‘failed’ image reveals that the CNN was activated at 

some, but not all sites of bone fracture. To further investigate, Grad-CAM was used to visualize model 

activations throughout the whole spectrum of loading states, shown in Figure 7a. The particular slice 

shown was classified correctly as ‘failed’ at loading states 3 and 4, but incorrectly as ‘pristine’ (which was 

expected) at all other loading states until visible fractures appeared. Strangely, there are no apparent 

differences in the activations detected in loading states 3 and 4, and the other loading states where the 

images were classified as ‘pristine’. Furthermore, the activated regions do not appear to correspond 

with bone or fracture features. This contrasts with the Grad-CAM activations for CB, shown in Figure 7b. 

This indicates that while the model has been trained to detect some fractures, evidenced by the dropoff 

in classification accuracy once fractures are no longer apparent, it also detects and determines 

classification based on something not obviously visible and potentially not actually associated with bone 

mechanics or fracture—for example, image artifacts such as the ring artifacts clearly visible in the 

images41. This suggests the need for an even more robust image pre- and post-processing pipeline prior 

to modelling with machine learning. For TB, the high activation on the left image borders and low 

activation on the right image borders also suggest some boundary effect as an artifact of imaging or 

model training, however its origin is unclear as the images were cropped from the center of larger SR-

microCT scans prior to training. 

3.4 Mixed Dataset 

After training with the new mixed datasets, the optimized CNN models for CB and TB achieved average 

classification accuracies of 0.967 and 0.926, respectively (Figure 8). This represents a small decrease in 

classification accuracy for CB, and a slight increase for TB. The disparity is likely attributable to the 

different characteristics of CB and TB. Because CB is less porous and did not often show fracture in all 

three directions, rather demonstrating a predominance of longitudinal cracks12 , it is possible that some 

partitions of the data hindered the model’s ability in learning to detect all indicators of failure. TB, 

alternatively, did not exhibit a dominant direction for failure as it resulted from an overall structural 

collapse following bending of transversally oriented trabecular rods and buckling of longitudinally 

oriented trabecular plates (with respect to the applied load)42 , as reported in Fernández et. al.22  Thus, 

mixing the data likely exposed the model to a better representation of the entire distribution space of 

bone images and fracture features. 

3.5 Transfer Learning 

The transfer learning method involved pre-loading ResNet-50 weights, then training a final dense layer 

with our bone fracture data. For reference, this network structure has 23,561,152 parameters, only 

4,098 of which are trainable. The optimized CB CNN discussed above has 19,265,858 trainable 

parameters, and the TB CNN has 20,446,018. With both the CB and TB datasets, the transfer learning 

network was trained with batch size 20, learning rate = 0.0001, minibatch gradient descent, Adam 

optimizer, and categorical cross-entropy loss. With data split by bone, also shown in Figure 8, the 

transfer learning network achieved average classification accuracy of 0.959 on the CB dataset and 0.951 

on the TB dataset over 5-fold cross validation. When the network was trained with fine-tuning enabled, 

the model achieved classification accuracy of 0.988 for CB and 0.996 for TB. This means that for CB, 

transfer learning without fine tuning performed worse than the optimized CNN, and transfer learning 

with fine tuning performed just scarcely better. For TB, transfer learning performed better than the 



optimized CNN, and transfer learning with fine tuning performed best, achieving near perfect accuracy. 

Improvement with fine-tuning enabled makes sense, as fine-tuning allows the models to adapt their 

feature detectors for attributes specific to the bone fracture problem43. Similar patterns emerged with 

the mixed split datasets for both CB and TB; the transfer learning models performed better than their 

respective optimized CNNs, and transfer learning with fine tuning performed best of all. Results from 

these and from training the ResNet structure from scratch are also shown in Figure 8 for comparison; 

the ResNet performed very poorly with the CB dataset, and approximately as well as the optimized CNN 

for the TB dataset. In every case, transfer learning with the pre-trained ResNet and fine-tuning enabled 

yielded the highest classification accuracy despite having fewer training epochs and similar number of 

training parameters as compared to the optimized CNNs, demonstrating the power of the transfer 

learning strategy. 

Finally, investigation of detection limits of models trained with transfer learning and fine tuning revealed 

that the transfer learning models for CB and TB displayed the same patterns as their respective 

optimized CNNs (Figure 9). That is, their classification accuracies are perfect or near perfect until they 

drop notably at loading states where fractures are no longer clearly visible, then nearly perfectly trace 

the shapes of the CNN curves as they fluctuate at lower loading states. These similar curves indicate that 

the unexpected trends of very high classification accuracy at very low loading states are attributable to 

features in the images, rather than anomalies resulting from model training or overfitting. Interestingly, 

whether these features were intentional or not (i.e. strain indicators or artifacts from experimental 

methodology), they are largely indistinguishable from looking at the images, but each of the deep 

learning models were able to detect and exploit them. This is exciting, as it indicates that deep learning 

has the potential to harness information on bone tissue local mechanics captured by SR-microCT scans 

that is not readily available from visual observation, or even to inform development of better image 

processing methods, though this will indubitably require further investigation into elucidating internal 

mechanisms of deep learning models.  

4. Conclusion 

The optimized CNN models and ResNet transfer learning models were all able to achieve extremely high 

average classification accuracy on both cortical bone and trabecular bone fracture datasets. The transfer 

learning models with fine tuning enabled uniformly performed the best, achieving average classification 

accuracy of 0.988 and 0.996 for CB and TB images split by bone sample, respectively, and 0.997 and 

0.990 for CB and TB images split by both bone and SR-microCT scan slicing direction. This demonstrates 

that transfer learning strategies are highly advantageous for saving computing power and making use of 

even very limited datasets like the one described here. Our results highlight not only the importance of 

selecting proper deep learning strategies and architectures for a particular dataset, but also emphasize 

how crucial it is to properly investigate and pre-process the dataset, even when (or perhaps especially 

when) it is experimentally-derived under apparently well-controlled conditions. Similarly, it is clearly 

imperative to have accountability mechanisms for explicating how a particular model is working.  

These results serve as a first foray into applied machine learning with high-resolution microCT images 

for greater understanding of bone microstructure and local mechanics. Looking forward, we anticipate 

making further strides to harness the microstructural and mechanical information contained in this 

dataset by applying different deep learning methods, such as developing regression models to predict 

strain levels or utilizing generative adversarial networks (GANs) to predict full-field strain from microCT 



images. This, in conjunction with further investigation of how to best process the SR-microCT scans from 

raw experimental data into appropriate deep learning datasets, will generate more advanced models for 

understanding and prediction of bone tissue mechanics.  
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Figure 1: 3D-reconstructed SR-microCT scans of 5 cortical bone and 5 trabecular bone samples with 

corresponding stress-strain curves from compression testing. Note the varied microstructure between 

cortical bone and trabecular bone, including bone porosity differences.  



 

Figure 2: Sample images from one (a) cortical bone sample and one (b) trabecular bone in the datasets. 

From left to right, images are XY, YZ, and XZ slices from the respective SR-microCT scans for pristine and 

failed states. 



Table 1: Bone image data were divided into 5 groups for k-fold cross validation of model classification 

accuracy based on (a, b) bone sample and based on (c, d) bone sample and image slicing plane. 

 

  



 

Figure 3: Average classification accuracy of CNNs over 5-fold cross-validation with validation and test set 

as it varied based on number of hidden layers, learning rate, batch size, and kernel size for the (a) CB 

dataset and (b) TB dataset. Error bars denote standard deviation.  



 

Figure 4: Optimized CNN structures for classification of (a) cortical bone (CB) images and (b) trabecular 

bone (TB) images. These AlexNet inspired architectures consist of alternating convolution and 

MaxPooling layers, then two fully connected dense layers. (c) Classification performance on the test sets 

for models with the best performance from cross-validation of the optimized structures, including 

classification accuracy of failed images, pristine images, and overall accuracy, as well as the average 

softmax outputs for the failed and pristine images which corresponds to prediction confidence. 

  



 

Figure 5: (a) Grad-CAM activation heatmaps for the optimized CB CNN on pristine and failed CB images, 

and the heatmaps overlaid over the original images. (b) Classification accuracy of pristine images, failed 

(loaded) images, and overall classification accuracy at all loading states ranging from totally pristine 

(loading state 1) to totally failed (loading state 20) for CB. (c) Slices of the CB test set bone sample at 

loading states 10-14; fracture is only easily visible above loading state 12. 



 

Figure 6: (a) Grad-CAM activation heatmaps for the optimized TB CNN on pristine and failed TB images, 

and the heatmaps overlaid over the original images. (b) Classification accuracy of pristine images, failed 

(loaded) images, and overall classification accuracy at all loading states ranging from totally pristine 

(loading state 1) to totally failed (loading state 15) for TB. (c) Slices of the TB test set bone sample at 

loading states 10-14; fracture is only easily visible above loading state 11. 

  



 

Figure 7: Visualization of Grad-CAM heatmap activations for slices of all loading conditions in (a) 

trabecular bone and (b) cortical bone.  

  



 

 

Figure 8: Average classification accuracy over 5-fold cross validation for the optimized CNNs, ResNet 

trained from scratch, ResNet transfer learning, and ResNet transfer learning with fine tuning for (a) 

cortical bone and (b) trabecular bone. Error bars denote standard deviation. 

  



 

Figure 9: Detection limits of the transfer learning models with fine tuning for (a) CB and (b) TB as 

determined by overall classification accuracy between pristine (loading state 1) and failed (loaded) 

images at different loading states. Note the similar patterns between classification accuracy of the 

transfer learning models and the optimized CNNs across the spectrum of loading states. 


