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W. Kaialy c 

a The Wolfson Centre, University of Greenwich at Medway Kent, ME4 4TB, UK 
b Military Technological College, Al Matar Street, Muscat, Oman 
c School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, UK   

1. Introduction 

In recent years, the use of the electrostatic inductive sensor is getting 
more popular, and the inductive sensor has been serving different in-
dustries for many years. Charge measurement using the non-contact 
method, which has been developed based on an electrostatic inductive 
sensor, offers numerous advantages for the investigation of charge dis-
tribution in terms of bipolar charging in a population of particulate 
materials [1–7]. The pulses present in the charge signal acquired as a 
result of moving charged particles through the sensor indirectly repre-
sent the polarity and magnitude of the charge on moving particles. 
During signal acquisition, the charge signal shows a mixture of char-
acteristics including signals of interest (transient pulse peaks), noise, 
drift in the baseline, and the existence of overlapping peaks, making it 
difficult to extract the distribution of charges in a population of parti-
cles. A signal processing method is then required to reduce the level of 
noise and thus improve the signal-to-noise ratio, detect the peaks (pos-
itive and/or negative), and present the charging distribution data 
required to understand the complex phenomenon of turbocharging. 

Vaseghi briefly reviewed several types of noise and signal processing 
methodologies and their application to reduce the noise level in a range 
of different types of signals, such as modern telecommunication, infor-
mation system processing, and adaptive network management [8]. A 
charge signal is usually time-varying, non-stationary, and contains the 
transient pulses (peaks) representing the moving charged particles 
through the sensor [5]. Therefore, for such signals, data analysis and 
modelling methods in multiple scales (where frequencies change over 
time) are better suited for noise reduction than methods where fre-
quencies don’t change over time. Short-time Fourier transform and 
wavelet transform are useful methods to determine the frequency con-
tent in a signal [9]. However, the Fourier transform provides a less 

efficient representation for those functions which contain discontinu-
ities in comparison to the short Fourier and Wavelet transform. 
Short-time Fourier Transform (STFT) is a useful tool for the signal where 
noise distributes uniformly in the entire frequency domain [8,10]. One 
of the main limitations of the short-time Fourier transform is that, once 
the window size is fixed, it remains the same for all frequencies despite 
some signals requiring a more flexible approach [9]. One of the solutions 
to this problem is the use of wavelet transform which allows multi-
resolution analysis to examine functions at different levels. 

Xu et al. used the electrostatic inductive sensor to measure the par-
ticle mean velocity during pneumatic conveying [11]. Due to the noise 
factor in the acquired signal from the electrostatic inductive sensor, the 
peak frequency fmax was submerged in local frequencies which can 
misinterpret the results to measure the particle mean velocity [11]. Xu 
et al. adapted the multi-scaling wavelet-based filtration method for the 
power spectrum, which effectively overcomes the issue of noise factor 
and improves the particle mean velocity measurement accuracy [11]. in 
recent years, many researchers have used wavelet transform as a tool for 
reducing the noise level in raw data. These solutions employ windowing 
techniques with variable-sized regions matched to the signal scale 
depending on the chosen mother wavelet transform rather than the size 
of the window [12–17]. 

The presence of noise in raw signal causes a continuous background 
signal which sometimes completely takes over the signal from those 
particles containing low-level charges and as a result, the ability of the 
sensor to detect charge distribution gets limited [18]. This paper high-
lights for the first time the use of wavelet transforms to denoise the 
charge signal to improve the SNR of a charge signal which contains the 
transient peaks generated as an abrupt change and contains the infor-
mation of interest. In comparison to the traditional noise reduction 
method Wavelet transform successfully isolate and minimize the noisy 
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and preserves the shape and quality of the signal while achieving 
improved SNR. 

2. Wavelet transform 

Wavelet transform is a signal processing technique where the signal 
is successively decomposed into various resolutions with the help of 
multiple high and low pass filters. Compared to the Fourier transform, 
which is also used for signal analysis, the wavelet transform allows for 
the analysis of non-stationary signals and preserves the temporal char-
acteristics of the raw data [19–21]. Wavelet transform is based on a 
windowing technique with variable-sized regions matched to the signal 
scale depending on the selected mother wavelet transform [12]. This 
work focus on discrete wavelet transforms (DWT), which is a special 
type of wavelet transform. DWT is ideal for denoising the signal and 
compressing the signal and images. With DWT, the raw data signal is 
passed through two complementary filters, low pass filter h(n) and high 
pass filter g(n). The coefficients of these filters are determined by the 
mother wavelet. Equations (1) and (2) present the mathematical rep-
resentation of this process which is a convolution of the signal with the 
impulse response of the filters to map out the wavelet coefficients [22]. 

Yhigh(k)=
∑

n
x(t) ∗ g(2K − t) (1)  

Ylow(k)=
∑

n
x(t) ∗ h(2K − t) (2)  

3. Experimental tests 

3.1. Solids material 

Glass beads S-100 (nominal particle size from 45 μm to 60 μm) used 
as a test material were provided by Silibeads, Germany. The glass beads 
were charged in a plastic stoppered test tube (9.0 cm high × 2.5 cm in 
diameter) in whirl mixer (PV-1 vortex mixer, Cambridge) for 5 min at 
the speed of 1200 (rpm). 

3.2. Experimental setup 

Fig. 1 illustrates the experimental setup. A grounded shield around 
the inductive sensor was installed to resist electromagnetic interference. 
Charged glass beads were fed into the sensor using vibratory orifice 
feeder. Experimental work was undertaken at a retention time of 6 s and 
in temperature and humidity control room (20 ◦C, 50% RH). The 
method assumes particles moving under central flow condition. 

3.3. Signal acquisition and analysis 

The data acquisition system NI 6034E from National Instruments 
with high performance NI CB-68LPR connector block was used to 
convert the analogue signal into the digital domain. Fig. 2 shows a 
typical example of the voltage signal from the inductive charge sensor 
for glass beads with nominal particle size distribution of 45–60 μm 
travelling at 1.10 ms− 1 velocity over a 6s time interval. The charge 
amplifier configured as a pure integrator with capacitance 10 pF, for a 
particle carrying charge +2o fC the output expected volt peak will be 
+2 mV. The voltage signal shows a mixture of numerous characteristic 
signals of interest (peaks), noise, as well as over lapping peaks which 
cannot be dismissed. In-situ there may arise many electrical distur-
bances which contribute to the background noise in the signal. 

The noise causes a continuous background signal which sometime 
covers the amplitude of the signal of interest having positive and/or 
negative peaks with amplitudes ≤2 mV. The estimated minimum 
amplitude of the peaks in the signal representing the charged particle 
moving through the sensor is 2 mV. 

4. Results and discussion 

MATLAB wavelet toolbox provides a platform to implement the noise 
reduction steps with the help of wavelet transform. Equation 3 was used 
to choose the mother wavelet Daubechies wavelet filter of order 6 (db6) 
as an optimal mother wavelet because it maximizes its cross-correlation 
coefficient with the signal of interest as compared to others. Level 5 of 
decomposition was used as the optimal choice for decomposition 
because other choices can cause transient peaks to disappear. The right 
thresholding technique is crucial to reducing the level of noise. In both 
soft thresholding and hard thresholding, coefficients are less than 
thresholding values set to zero. As shown in Fig. 3, thresholding has a 
positive effect. MATLAB’s Wavelet toolbox includes a universal thresh-
olding method that can be used to apply soft and hard thresholding 
techniques. The processed signal showed the suitability of the hard 
thresholding method, as the signal-to-noise ratio (SNR) is improved 
from 3.52 dB to 10 dB by embracing this technique. 

Fig. 4 shows the comparison between the raw data obtained and the 
signal processing for noise reduction. One of the main advantages of the 
proposed method is that it preserves the shape and quality of the signal 
while achieving improved SNR. When compared to the other methods, 
such as low pass filtering and FFT (presented in Fig. 3), these methods 
besides removing the noise from the signal, also make the signal smooth 
and remove the peaks that contain the desired information. In such a 
case, the signals of interest are compromised as can be seen in Fig. 3. 

Fig. 4 also shows the difference between the processed signals by 

Fig. 1. Schematic diagram of experimental test facility [2,5].  Fig. 2. Raw data for further processing noise reduction.  
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using two different methods. Fig. 4 (a) shows the filtration with the help 
of a low pass filter by using Fourier analysis, whereas Fig. 4 (b) shows 
the filtration of signal with the help of wavelet transform. The results 
clearly show that in the case of wavelet transform the number of peaks 
and quality of the signal compared to the original signal remains the 
same, only the noisy component in the signal is removed to achieve 
better SNR. Fig. 5 explains the successful implementation of the noise 
reduction method and peak detection method on raw charge signal data 
and presents the result in charge distribution in a population of partic-
ulate. The processed signal contains positive and negative peaks and 
their magnitude which contains information of bipolar charge distri-
bution in the population of particulates passing through the sensor [2 5]. 

5. Conclusion 

This article presented investigations on the signal acquisition, 
recording, and post-test run processing to denoise the charge signal 
obtained as a result of charged particles fed into the sensor. Traditional 
methods used for noise reduction in the signal just remove the noise 
from the peaks, however, such a solution can also compromise the in-
formation of interest. To isolate and minimize the noisy component from 
the charge signal, the orthogonal wavelet transforms show significant 
advantages. Results clearly indicated that the wavelet transform used for 
the signal processing has better efficiency in noise reduction from the 
raw data than the other noise reduction method while preserving the 

Fig. 3. Implication on selection of thresholding type (a) Thresholding of wavelet coefficients with the help of hard thresholding method, (b) Thresholding of wavelet 
coefficients with the help of soft thresholding method. 

Fig. 4. Recorded charge signal and minimising the noise level (a) Recorded 
charge signal, (b) Noise reduction with the help of wavelet transform and (c) 
Noise reduction with the low pass filtering. 

Fig. 5. Method successfully detect the positive and negative peaks in the signal [5].  
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shape, magnitude, and a number of peaks, which was critical for 
determining the charge results. This study will be helpful to go to the 
next level to monitor charging characteristics in real-time monitoring in 
harsh industrial environments. 
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