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Financial and Energy Exchange Traded Funds Futures: An evidence of  
 1  

  2  Spillover and Portfolio Hedging  
 3  

  4    
 5  

  6  Abstract  
 7  

 8 This paper examines spillover from financial exchange traded funds (ETF) future to energy  9  

10 exchange traded funds (ETF) futures using adjusted daily data extending from April 2, 2009 to 11 

November 23, 2020. We also explore the portfolio hedging based conditional variance and co12 variance 

derived from dynamic conditional correlation. The proxies for the financial ETF 13  

14 futures are financial select sector SPDR fund (XLF) and generic 1st S&P 500 index futures 15 (SP1) 

while generic 1st crude oil WTI futures (CL1), generic 1st natural gas futures (NG1) and 16  

17 energy select SPDR fund (XLE) are proxies of energy ETF future. The results obtained from 18 Granger 

causality indicates that there is unidirectional causality from RXLF to RSP1 while  

19 bidirectional causality between RXLF and RCL1 at 5% significance level. Further, dynamic 20  

21 conditional correlation indicates the spillover effect from RXLF to RCL1, RXLF to RXLE,  

22 RSP1 to RCL1 and RSP1 to RXLE both in short run and long run. The spillover from RXLF  
23  

24 to RNG1 is witnessed only in short run while the spillvoer from RSP1 to RNG1 is present in  

25 long run. The present study corroborates with the studies of Chang et al., (2018) and Lau et al.,  

26 (2017). We notice that the average optimal hedge ratio of RXLF/RNG1 pair is most expensive 
27  

 28  while the cheapest hedging strategy is of RSP1/RCL1 pair.   
29  

 30  Keywords: Financial ETF, Energy ETF, Spillover, Portfolio hedging, dynamic connectedness   
31  

 32    
33  

 34  1. Introduction  
35  

 36  Exchange traded funds (ETF) is often referred to implied tradable spot price is actually spot  
37  

38 index that facilitates trade and aims to provide the return mirroring that of an underlying 39 benchmark 

index. ETF future is one of the derivative products based on existing exchange  
40  

41 traded funds. It is an agreement or contract to buy or sell underlying ETF for a specified period 42 of 

time and at an agreed-upon price. ETF futures act as a tool for investors for diversification  

 43  of the non-systematic risk and reduction of total risk. It also allows for reduction in volatility  
44  
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45 as investment made into a bag of stocks or commodities rather than a single stock. ETFs are 46 traded 

like stocks, while mutual funds trades happen on the end of the day prices. Moreover,  
47  

48 due to passive management style the managing fees is found to be lower for ETFs as against  

49 mutual funds, making ETFs more popular with short-horizon liquidity traders (Ben-David et  

50 al., 2018). We thus chose ETFs against indices, mutual funds or derivatives of financial and  
51  

52 energy markets as they fully represent the underlying indices and have a characteristic of being 53 

traded the spot as well as futures markets (Chang et al., 2017). Exchange Traded Funds (ETFs)  

54 were introduced in the financial markets in early 1990s and by 2020 assets under management globally 

amounted to approximately $7.74 trillion, of which United States accounted for more than 70 

per cent of the global assets (approximately $5.6 trillion).   

ETFs have been examined profusely to identify unidirectional price discovery and bidirectional 

volatility spillover (Krause and Tse, 2013) and portfolio optimization (Sawik, 2012). 

Furthermore, researchers examined the ETFs in various markets for examining spillover and 

volatility transmission, such as equity (Krause and Tse, 2013), oil (Aromi and Clements, 2017; 

Lau et al., 2017), energy (Tan et al., 2020), precious metals (Lau et al., 2017), agriculture 

(Chang et al., 2019).  

The growing demand for energy is directly associated with the economic growth (Shahbaz et  

 10  al., 2013) and has a measurable impact on energy and financial markets (Wang and Wang,  
11  

12 2019). The global financial crisis has caused an increase in the volatility in energy and financial 13 

markets (Tsuji, 2018). Volatility spillovers have been widely documented in energy futures  

14  

15 market (Lin and Tamvakis, 2001) and its examination allows for preparing appropriate 16 dynamic 

hedging strategy (Chang et al., 2018). Therefore, it becomes imperative to examine 17 whether investors 

can benefit from inherent linkages between the financial sector and energy 18  

19 sector. Moreover, it would be interesting to examine how this relationship fans out in the spot  

20 and futures markets. The contributions of the present study are threefold: First, in spite of the  
21  

22 limited associations in existing literatures, it contains broad proxies of financial ETF futures 23 

(financial select sector SPDR fund, Generic 1st S&P 500 index futures) and energy ETF futures  

24 (Generic 1st crude oil WTI futures, Generic 1st natural gas futures and energy select SPDR 25  

26 fund). Secondly, we do not consider only financial ETF future but also energy ETF future.  
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27 Thirdly, we include US ETF future for the analysis purpose based on dynamic conditional  
28  

 29  correlation, optimal portfolio weight and optimal hedge ratio.  
30  

31  To examine the spillover from financial sector to energy sector, we use the ETFs of both the 32 sectors. 

Financial select sector SPDR fund (XLF) and Generic 1st S&P 500 index futures (SP1)  

33 were taken as proxies for financial sector. While, for representing the energy futures, three 34  

35 proxies have been employed, namely, Generic 1st crude oil WTI futures (CL1), Generic 1st 36 natural 

gas futures (NG1) and energy select SPDR fund (XLE). By applying Granger Causality 37  

38 and Dynamic Conditional Correlation (DCC) GARCH, we seek to examine whether there is  

39 any spillover effect from financial ETF futures to Energy ETF futures. More importantly, we  
40  

41 examine if such spillover will help derivatives market hedgers to minimise the risk and adopt  

42 appropriate hedging strategy by employing optimal portfolio weights and hedging ratio. The  

43 results of this study are expected to be of use to short-horizon liquidity traders who seek to  
44  

45 exploit arbitrage opportunities by taking minimum risk. This study examines the ETFs of most  

46 important sectors and the findings would allow for determination of optimal portfolio with  

47 minimum risk.   
48  
49  

50 The paper proceeds as follows. The next section presents the review of extant literature on the 51 topic. 

Section 3 outlines the data used and econometric models employed in the study. Section 52 4 exhibits the 

results, and the final section draws out conclusions, important implications and  

53  

 54  scope for future research.   

2. Literature Review  

There are large number of evidences present in the literature on the use of exchange traded funds 

(ETFs) to measure the spill over effects on various markets, their performance in portfolio 

decisions, causality relationships between the volatility in various ETFs, etc. (Yavas and 

Rezayat, 2016; Ben-David et al., 2017; 2018; da Costa Neto et al., 2019). Most of these studies 

confirmed the significant role of ETFs to review the underlying index in portfolio decisions 

indicating the economic performance of the whole sector. da Costa Neto et al., (2019) explained 

the use of ETFs in various sectors including commodities, currencies, volatility, etc. that allow 
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extensive exposure to traditional and exotic investment opportunities. They further confirmed 

that developed economies like US still prefer traditional ETFs investment strategies 10 and in 

contrast, emerging markets like India and Brazil look for informational based arbitrage 11 

opportunities while investing in ETFs. In support to this, large studies confirmed ETFs as high  

12 volatile investment due to the increasing arbitrage opportunities and mispricing derived from 13  

14 ETFs and hence, preferred over individual’s sectors, indices, stocks, etc. (Krause and Tse,  

15 2013; Yavas and Rezayat, 2016; Chang et al., 2018). Poterba and Shoven (2002) mentioned 16  

17 exchange traded funds as one of the best investment avenues as it is found more tax efficient 18 and 

holds more volatility in term of holding broad baskets of stocks. However, there are few  

19 portfolio studies that confirmed lack of information asymmetry in ETFs and low arbitrage 20  

21 opportunities in comparison to tradition stock portfolios (Chen, 2017). Keeping in mind the 22 multiple 

views of the performance of ETFs in portfolio diversification, many studies draw their  
23  

24 attention to measure the volatility spill over effect of ETFs in financial markets (Roy and Roy, 25 

2017; Chang et al., 2019). The present study reviews the existing literature and applies the 26 phenomenon 

in the US financial market to understand volatility spill over between energy and 27  

 28  financial sector.  
29  

30 According to Krause et al., (2012), exchange traded funds have high volatility spill over effect  

31 due to its high liquidity and use of volatile derivatives used in respective ETFs. They also 32  

33 assessed the bidirectional spill over effect between ETFs futures and stocks and found higher 34 effect 

from ETFs to stocks. In a later year, Krause and Tse (2013) indicated the volatility flow  
35  

36 between two different equity market (Canadian and US) ETFs and confirmed the information 37 

diffusion to market participants. Such spill over effect in ETFs have been explored in different  

 38  sectors in a single market (Chang et al., 2018), between two different equity markets (Marshall  
39  

40 et al., 2013; Yavas and Rezayat, 2016), between two different sectors and markets (agriculture,  

41 commodities, equity, finance, etc. (Lau et al., 2017; Roy and Roy, 2017; Chang et al., 2019).  
42  

43 We also found few studies discussing the volatility correlation between energy and financial 44 sectors 

and use of their respective ETFs for the investment decisions to streamline the current  

 45  research (Lau et al., 2017; 2019).   
46  
47  



 1  
 2  
 3  
 4  
 5  
 6  
 7  
 8  
 9  

55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  

48 Dependency of oil companies’ performance on crude oil volatility, changing interest rates and 49 bank 

loans are very high (McLannahan and Gray 2016; Ben-David et al., 2017). Studies  

50 confirmed that financial sector faces huge losses due to defaults and losses in oil companies’ 51  

52 portfolios that lead to low credit deployment and poor interest margins to the financial sectors  

53 (Olson et al., 2016).  Talking about developed economies like US, high volatility in oil prices  

54 affect the profit margins of energy and oil companies that may lead them to financial constraints 

including high price volatility, low credit ratings and poor market capitalizations (Zhu and 

Singh, 2016; Chang et al., 2017). In few decades, it has been noticed in US market that oil prices 

volatility has created uncertainty in revenues, cost to business to US oil companies and leads to 

huge defaults and loan crisis to energy and banking sector in the country (Krause et  

al., 2012; Zhu and Singh, 2016). Moreover, creation of synthetic oil by other markets like China 

and Brazil also creates price and profit fluctuations and leads to high volatility in US energy and banking 

sector (Diebold and Yilmaz, 2012; Ben-David et al., 2017). To conclude, consequences of such actions 

are very high and indicate low market performance to both the energy and financial sectors (Krause et al., 

2012). Change (downfall) in stock prices and their respective ETFs data indicate such consequences and 

exhibit poor investment decisions with high risk (Diebold and Yilmaz, 2012; Ben-David et al., 2018). 

According to Chen and Huang 10 (2010), such consequences and spill over effects should be assessed 

regularly by the fund 11 managers and necessary actions including portfolio rebalancing, diversifications, 

etc. should 12 be taken to get benefits of the situations. They further explained that due to high correlation 
13  

14 between the performance of financial and energy sector, investors may include both (with same 15 or 

opposite positions) for price discoveries, spill over effect, arbitration and hedging purposes.   
16  

 17  In this regard, Gastineau (2002) indicated the strong volatility spill over effect between  
18  

19 financial and energy sector ETFS and hence suitable for constructing a portfolio for hedging 20 purpose. 

Baffles et al. (2015) found a strong correlation between oil prices and performance of  
21  

22 financial (banking sector) across the globe. Chang et al., (2018) measured the strong volatility 23 

dissemination between energy and spot markets in US and UK market. Further to elaborate this 24 context, 

Johnson and So (2012) found derivatives of ETFs in financial and energy sector more  

25  

26 appropriate and liquid to exemplify the spill over effect of respective underlying sectors. Chang  

27 et al., (2017), mentioned futures of exchange traded funds are better than spot index for  
28  
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29 investments as they represent implied spot prices and have high tradability. In various related 30 studies, 

it is confirmed that future and spot prices of ETFs may have an influence on another  

 31  market prices of stocks or ETFs (Ben-David et al., 2016; da Costa et al., 2019).   
32  

33 To this end, the present study reviews the existing literature and proposes following objectives. 34  

35 First, the study assesses the volatility spill over effect between energy and financial sector ETFs 36 

derivatives in the US market. Understanding of ETFs price volatility in derivatives market may  
37  

38 help firms, banks in price discovery and trade in future contracts influencing oil prices. Second,  

39 unlike existing literature with limited findings on spill over effect (Ben-David et al., 2016; Ben- 
40  

41 David et al., 2017; da Costa et al., 2019), the study extends by measuring the portfolio weight 42 and 

optimal hedge ratio between energy and financial US market. Very limited studies explored 43 such data 

that highlights optimal hedging portfolios to banks, hedge funds, trading managers  

44  

45 by using energy and financial ETFs derivatives (Elsayed et al. 2020. The present study fills the  

46 gap. Finally, the study used more than one proxy for each energy and financial ETFs future  
47  

48 and tested various short term and long-term combinations of spill over effect between both the 49 

markets. This will help in portfolio designing and diversification strategies that are relevant to  

 50  trader, finance managers, exporter and importers having exposure in both the markets in short  
51  

 52  and long run.   
53  

 54    

3. Data and Econometric Model  

3.1 Data  
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The objective of this paper is to examine the spillover effect from financial ETF futures to 2 

energy ETF futures. The proxies for the financial ETF futures are financial select sector SPDR 3 

fund (XLF) and generic 1st S&P 500 index futures (SP1) while generic 1st crude oil WTI 4 

futures (CL1), generic 1st natural gas futures (NG1) and energy select SPDR fund (XLE) are 5 

proxies of energy ETF future. The daily adjusted closing price of the constituent series has been 6 

collected from April 2, 2009 to November 23, 2020. Further, the raw series has been converted 7 

into log return series by making logarithmic differences of two successive days prices. The 8 

following formula has been used to convert into log return series:  9 

𝑃𝑖,𝑡 10 

𝑅𝑖,𝑡 = 𝑙𝑜𝑔 ( )  11 

(𝑃𝑖,𝑡−1) 12 

Where Ri,t represents logarithmic return at time t, while Pi,t–1 and Pi,t  are the daily closing prices 13 

of ith fund on successive days. The table 1 furnishes data description of the considered series:  14 

Market  Asset  Acronyms  Source  

Financial ETF future  Financial select sector SPDR 

fund   

XLF  Bloomberg  

Financial ETF future  Generic 1st S&P 500 index  

futures   

SP1  Bloomberg  

Energy ETF future  Generic 1st crude oil WTI 

futures  

CL1  Bloomberg  

Energy ETF future  Generic  1st  natural  gas  

futures   

NG1  Bloomberg  

Energy ETF future  Energy select SPDR fund  XLE  Bloomberg  

Source: Author’s own presentation   15 

3.2 Econometric Models  16 

To examine the spillover effect, we apply econometric models like Granger causality and 17 

dynamic conditional correlation (DCC). Further, the portfolio weight and hedge ratio have been 18 

also calculated. This section describes the aforesaid models briefly:   19 
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3.2.1 Granger causality and dynamic conditional correlation  20 

Granger causality is employed to examine the presence of causal linkages between two time 21 

series (Granger, 1969). The results allow to infer whether historical value of one series contains 22 

pertinent evidence to predict or influence change in other series (Friston et al., 2003). It also 23 

provides information on the direction of causality, whether it is unidirectional or bidirectional 24 

without any a priori hypothesis. Granger causality requires stationarity and if series are 25 

nonstationary, it is first converted to stationary series.   26 

The literature on spillover presents evidence on use of various multivariate volatility models 27 

that examine conditional covariance. The notable among these are the diagonal model  28 

(Bollerslev et al..1988); diagonal vech model and multivariate GARCH model (Engle and 29 

Kroner, 1995); vector ARMA-GARCH or VARMA-GARCH model (Ling and McAleer, 30 

2003); Dynamic Conditional Correlation (DCC) GARCH model (Eagle, 2002) and Varying  31 
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Conditional Correlation (VCC) model (Tse and Tsui, 2002). Based on perusal of these models 

and their prospective explanatory power, the DCC GARCH model of Eagle (2002) that 

assesses time varying correlations has been applied. Its estimation requires two steps, firstly 

the GARCH parameters are tested followed by estimation of correlations. To model rit, the 

following equation is estimated:  

 rit = a + b1rt−1 + εit ,  εit = hit(1/2)vit,                (1)  

10 where a is constant, b1 is the coefficient of lagged return, εit is the random error term that has 11 

conditional variance hit while vit is a vector n × 1 of residuals that are identically distributed and  

12 independent. In second step of DCC-GARCH, correlations are estimated using the following 13  

14  equation:  
15  

16  Ht = DtRtDt                      (2)  
17  

18 where Ht is a covariance matrix, Rt is a conditional covariance matrix and Dt is an n x n diagonal  

19 matrix with time varying standard deviations on the diagonal.  
20  
21  

22  Dt = diag (h1t1/2,..., h1/2nt)                  (3)  

23  

24  𝑅𝑡  𝑄 𝑡𝑄𝑡𝑄𝑡                

     (4)  
25  

26  Where Qt  is a symmetric positive definite matrix   
27  

28  𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑄’ + 𝑎𝜀𝑡−1𝜀′𝑡−1 + 𝑏𝑄𝑡−1            (5)  
29  

30  Q’ is an unconditional covariance matrix of the standardised errors and Qt* is the diagonal  
31  

32 matrix comprising of square root of diagonal of Qt which may be shown as diag (q1/211t, 33 

q1/222t,...,q1/2mnt). Two DCC parameters in the equation are a and b which are non-negative  

34 with a sum lower than 1. Lower conditional correlation is representative of higher 35  
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36 diversification opportunities while higher values represent integration (Yu et al., 2010). The  

37 alpha and beta estimators derived from DCC-GARCH are time varying. Alpha measures the  
38  

39 volatility impact for shorter duration while including the impact of persistence of residuals 40 from 

preceding period. The beta in DCC measures the long-term impact of a shock on  

41  conditional correlation. The dynamic correlations are estimated as:  
42  
43  

44  ρ = 𝑞𝑖𝑗,𝑡 / 𝑞𝑗𝑗,𝑡                     (6)  
45  

46 Eagle (2002) estimates DCC GARCH model using two-step likelihood 

estimation method.  

47 The likelihood function is presented as follows: 48  

49 2 + ln(|𝑅𝑡 |) + 𝜀𝑡′ 𝐷𝑡−2 𝜀𝑡        (7) 50  𝑙𝑛𝑙𝑛 

|𝐷𝑡| 

51  

52  So, this is a dynamic model with time-varying mean, variances and covariance.  
53  

54  3.2.2 Portfolio weight and hedging  

Referring the results of dynamic conditional correlation, it is found that there is spillover from 

financial ETF future to energy ETF future. Therefore, it is important to check that how the 

financial ETF future risk or unfavourable financial ETF future movements can be hedged 

effectively. The major objective of this section is to furnish risk hedging strategy without 

reducing an expected return. Minimum variance hedge ratio is one of the popular hedging 

strategies which is based on portfolio variance minimization (Kroner & Sultan, 1993).  

As per Kroner and Ng (1998), the optimal weight of financial ETF future in one-dollar portfolio 

of energy ETF future market in time t can be shown as below:  

𝑤𝒊𝒋,𝒕 = 𝒉 𝒊𝒊,𝒕𝒉−𝒋𝒋𝟐𝒉,𝒕−𝒊𝒋𝒉.𝒕𝒊𝒋+,𝒕𝒉𝒋𝒋.𝒕   
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10 This portfolio is considered to have two different asset classes that is, i and j, where 𝑤𝒊𝒋,𝒕 is the weight 11 

assigned to asset 1 (financial ETF future), that is, i and (1-𝑤𝒊𝒋,𝒕) was the weight of asset 2 (energy ETF  

12  

13 future), that is j. 𝑤𝒊𝒋,𝒕 is the proportion of $1 investment made in portfolio of  financial and energy ETF  

14 future. The time varying portfolio weight is computed applying the time varying conditional volatility  
15  

16  and co-variances derived from the DCC model.   

17  

18 Finally, we analyse the diversification opportunities and respective hedge ratios of between financial 19 ETF 

future and energy ETF future. To compute hedge ratio, Kroner and Sultan (1993) method is applied 20 which is 

based on conditional co-variances and variances. The hedge ratio helps to hold long position 21 in one asset that 

can be hedged with a short position in another asset to protect from the probable risk  

22  

23  without reducing risk. The hedge ratio is shown as below:  
24  

25  𝛽𝑖𝑗𝑡 =ℎ𝑖𝑗𝑡⁄ℎ𝑗𝑗𝑡   
26  

27 where,  𝛽𝑖𝑗𝑡 is the hedge ratio between asset 1, that is, i and asset 2, that is, j; ℎ𝑖𝑗𝑡 is the time varying 28 conditional 

co-variances between i & j , ℎ𝑗𝑗𝑡 is the time varying conditional variances. The conditional  

29  

30  variance and co-variance have been derived from DCC model.   
31  

32  4. Results and Discussion  
33  

34 This section includes the results obtained from summary statistics, Granger causality, dynamic  

35 conditional correlation, optimal portfolio weight and optimal hedge ratio.   
36  

37  4.1 Summary statistics and Granger Causality  
38  

39 To examine the spillover effect from financial exchange traded funds (ETF) futures to energy 40  

41 exchange traded funds (ETF) futures, we apply dynamic conditional correlation. Further,  
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42 portfolio diversification opportunities have been identified using portfolio weight and hedge  
43  

44 ratio. We initiate an analysis reporting the result of descriptive statistics which is presented in 45 table 

2. The mean of, RXLE, RSP1 and RCL1 is positive while NG1 reports negative mean 46 which confirms 

that NG1 is riskier; the same has been witnessed by high standard deviation 47  

48 (0.0316) of this series.  RXLF, RXLE and RSP1 exhibit negative skewness and RCL1 and 49 RNG1 

exhibit positive skewness. It ensures an asymmetric tail expanding towards more  
50  

51 negative values.  As per the kurtosis value, each series has leptokurtic distribution (greater than 52 3). 

It signifies that the financial ETF futures and energy ETF may generate either very large or 53 very small 

future returns. Hence, the skewness and kurtosis imply the rejection of normality in  

54 these series which can be justified by the result of Jarque-Bera test. The Augmented – Dickey Fuller 

(ADF) and Phillips-Perron (PP) test have been applied to check the stationarity in these 

series. As per the results of ADF and PP test, it is confirmed that each series of financial ETF 

and energy ETF futures is stationary or integrated at level i.e. I (0). Figure 1 presents the time  

series plot of RXLF, RSP1, RXLE, RNG1 and RCL1. It is noticed that RXLF, RSP1, RXLE 

and RCL1 returns fell at the end of 2016 while RNG1 has realized the positive as well as 

negative stock return. This graphical representation helps us to understand how the series 

varied over the time. Every series is witnessed with volatility clustering as high changes are 

followed by high changes and low changes are followed by low changes in these series.   

Further, Granger Causality test is applied to check the direction of transmission of information 

from financial ETF to energy ETF futures and vice-versa. Table 3 presents the result of Granger  

10  Causality. There is bidirectional causality between RXLF and RCL1 at 5% significance level.  
11  

12 RXLF does not Granger cause RNG1 and vice versa. Similarly, RXLE does not Granger cause 13 

RCL1 and RNG1 while there is bidirectional causality between RXLE and RSP1. In sum, we  
14  

15 observe that there is possibility of transmission of volatility from RXLF to RCL1 and from  

16 RXLE to RSP1 and vice versa while the study finds evidence of unidirectional transmission of  

17 information from RXLF to RSP1. 18  
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19  Table 2: Summary Statistics   
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40    

41  Source: Author’s own presentation 

42  

43  Table 3: Granger Causality Result  

44  

           RXLF         RSP1        RCL1       RNG1         RXLE  

Minimum  -0.1502  -0.1095  -0.2822  -0.1805  -0.2249  

Maximum  0.1439  0.0935  0.3196  0.2677  0.1487  

Mean  0.0005  0.0005  0.0003  -0.0001  0.0001  

Std. dev  0.0171  0.0112  0.0246  0.0316  0.0170  

Skewness  -0.0573  -0.6239  0.1684  0.7856  -0.8454  

Kurtosis  10.9283  10.1094  27.7083  5.5860  16.2300  

ARCH Test  0.0040  0.0000  0.0000  0.0000  0.0003  

Jarque-Bera  20012  17384  126.39  5642.7  44609  

Sig. value  0.0000  0.0000  0.0000  0.0000  0.0000  

ADF Test   0.0000  0.0000  0.0000  0.0000  0.0003  

PP Test   0.0010  0.0000  0.0000  0.0001  0.0000  

Nobs  4016  4016  4016  4016  4016  
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45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
10  
11  
12  
13  
14 

 Source: 

Author’s 

own 

presentation  
15  

16  Figure 1: Time series plot of constituent series  
17  

                          Null Hypothesis           F-value  Probability  

RXLF does not Granger cause RCL1.  4.0013            0.04556 *  

RCL1 does not Granger cause RXLF.  8.1868          0.03275 **  

RXLF does not Granger cause RNG1.  4.0013            0.5156    

RNG1 does not Granger cause RXLF.  1.1868             0.19540  

RXLF does not Granger cause RXLE.  1.9605       0.16160  

RXLE does not Granger cause RXLF.  0.0805   0.6916  

RSP1 does not Granger cause RCL1.  1.6993            0.1005  

RCL1 does not Granger cause RSP1.  0.4876   0.4851  

RSP1 does not Granger cause RNG1.  2.8037   0.09416  

RNG1 does not Granger cause RSP1.  0.034   0.8538  

RSP1 does not Granger cause RXLE.  2.578  0.0313*  

RXLE does not Granger cause RSP1.  3.1643   0.0132 *  
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10    
11  

12    
13  

14    
15  

16  4.2 Result of Dynamic conditional 

correlation   
17  

18 Next, we apply dynamic conditional correlation (DCC) GARCH to examine the spillover from  

19 financial exchange traded funds (ETF) futures to energy exchange traded funds (ETF) future.  
20  

21 we applied bivariate dynamic conditional correlation (DCC) GARCH presented in table 3. The 22 

table consists of spillover results from RXLF to RCL1, RXLF to RNG1, RXLF to RXLE, RSP1  

23  

24 to RCL1, RSP1 to RNG1 and RSP1 to RXLE. Referring the results of spillover from RXLF 

to  

25 RCL1, overall mean and constants are represented by “mu” and “omega”. “alpha 1” and 

“beta  
26  

27 1” signify the autoregressive conditional heteroscedasticity (ARCH) and generalized  

28 autoregressive conditional heteroscedasticity (GARCH) respectively. The alpha shows  

29 whether there is volatility in short run or not which is based on the previous disturbances or  
30  

31 error term. GARCH represents the persistence in the volatility that measures the impact of a 32 shock 

on conditional correlation for the long run. Individually, the alpha1 and beta1 are positive  

33  and significant at 5% significance level which confirms the persistence of volatility. We  
34  

35 observe that the sum of alpha1 and beta1 of both series is less than one which shows time decay  

36 over the time in volatility persistence. The sum of alpha and beta of RXLF and RCL1 are  
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37  

38 0.9809 and 0.9882 respectively. It indicates that RXLF has fast decay in volatility persistence 39 than 

RCL1. Further, dcca 1 and dccb 1 denotes the parameters of the dynamic conditional 40 correlation. The 

coefficients of dcca 1 and dccb 1 are positive and significant at 5% significance  

41  

42 level. It reveals that there is spillover or transmission of information in short run and long run. 43 

Turning to the spillover from RXLF to RNG1, we find the evidence of persistence in the  
44  

45 volatility as alpha 1 and beta 1 of both series (RXLF and RNG1) are significant at 5% 46 significant 

level. The sum of coefficients of alpha is less than 1 which confirms that there is 47 time decay. Notably, 

RXLF is witnessed with fast time decay because the summation of  

48  

49 coefficients of RXLF (0.9809) is less than the summation of coefficients of RNGI (0.9895).  

50 The dcca1 parameter is positive and significant while the dccb1 is not significant. It ensures 51  

52 the evidence of short term long run spillover or transmission of information from RXLF to 53 RNG1. 

It is worth noting that the summation of dcca1 and dccb1 is less than 1, therefore, 54 dynamic conditional 

correlation is assumed to be mean reverting. As regards with DCC from RXLF to RXLE, the coefficients 

(alpha 1 and beta 1) of RXLF and RXLE are positive and significant. It indicates that there is short term 

and long-term persistence of the volatility. The sum of coefficients of both series is less than 1 which 

confirms the time decay in the series.  

The dcca1 and dccb1 parameters are positive and significant, hence, we find the existence of 

short term and long term spillover from RXLF to RXLE.   

Further, spillover from RSP1 to RCL1 has been checked. The alpha 1 and beta 1 of RSP1 and 

RCL1 are positive and significant. We find the evidence of short run and long run volatility persistence in 

both the series. The sum of their coefficients is 0.9814 and 0.9882 respectively, hence, there is fast decay 

of volatility persistence in RSP1 compared to RCL1. There is spillover or transmission of information of 

transmission from RSP1 to RCL1 as the dcca 1 and 10 dccb 1 are positive and significant. Additionally, 

we examine spillover from RSP1 to NG1 and 11  

12 RSP1 to RXLE. The coefficients of each series are positive and significant, and their sum is  

13 less than one. The result confirms the short run and long run volatility persistence in each series.  
14  
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15 Referring the spillover results from RSP1 to RNG1, we observe that the dcca 1 is positive but 16 not 

significant which indicates that there is no spillover or no transmission of information in  

17  short run while there is existence of long run spillover as dccb 1 is positive an significant. At  
18  

19 last, turning to the results of spillover from RSP1 to RXLE, we do not find spillover neither in  

20 short run nor in long run. The sum dcca 1 and dccb 1 is less than 1 which indicates that the  
21  

22  dynamic conditional correlation is mean reverting.   
23  

24  Table 4: Results of pairwise DCC of constituent series  
25  
26    

 DCC from RXLF to RCL1   

    Estimate            Std. Error  t-statistics  P-value  

[RXLF].mu  0.0008  0.0002  4.5922  0.0000  

[RXLF].omega  0.0000  0.0000  0.7255  0.4681  

[RXLF].alpha1  0.1424  0.0179  7.9665  0.0000  

[RXLF].beta1  0.8385  0.0416  20.1358  0.0000  

[RCL1].mu  0.0005  0.0002  2.4772  0.0132  

[RCL1].omega  0.0000  0.0000  1.9282  0.0538  

[RCL1].alpha1  0.0972  0.0192  5.0539  0.0000  

[RCL1].beta1  0.8910  0.0193  46.2553  0.0000  

[Joint]dcca1  0.0388  0.0039  9.9290  0.0000  

[Joint]dccb1  0.9591  0.0042  226.9941  0.0000  

 DCC from RXLF to RNG1   

     Estimate            Std. Error  T-Statistics  P-value  

[RXLF].mu  0.0008  0.0002  4.5898  0.0000  

[RXLF].omega  0.0000  0.0000  0.7250  0.4685  

[RXLF].alpha1  0.1424  0.0178  7.9887  0.0000  
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27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  

[RXLF].beta1  0.8385  0.0417  20.1066  0.0000  

[RNG1].mu  0.0000  0.0004  -0.0055  0.9956  

[RNG1].omega  0.0000  0.0000  1.0950  0.2735  

[RNG1].alpha1  0.0740  0.0248  2.9859  0.0028  

[RNG1].beta1  0.9155  0.0057  160.6857  0.0000  

[Joint]dcca1  0.0375  0.0178  2.1002  0.0357  
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[Joint]dccb1  0.4780  0.2898  1.6498  0.0990  

DCC from RXLF to RXLE  

[RXLF].mu  0.0008  0.0002  4.5922  0.0000  

[RXLF].omega  0.0000  0.0000  0.7255  0.4681  

[RXLF].alpha1  0.1424  0.0179  7.9665  0.0000  

[RXLF].beta1  0.8385  0.0416  20.1358  0.0000  

[RXLE].mu  0.0005  0.0002  2.4772  0.0132  

[CL1].omega  0.0000  0.0000  1.9282  0.0538  

[RXLE].alpha1  0.0972  0.0192  5.0539  0.0000  

[RXLE].beta1  0.8910  0.0193  46.2553  0.0000  

[Joint]dcca1  0.0388  0.0039  9.9290  0.0000  

[Joint]dccb1  0.9591  0.0042  226.9941  0.0000  

DCC from RSP1 to CL1  

[sp1].mu  0.0008  0.0001  6.1684  0.0000  

[sp1].omega  0.0000  0.0000  1.0793  0.2805  

[sp1].alpha1  0.1769  0.0197  8.9983  0.0000  

[sp1].beta1  0.8045  0.0243  33.1224  0.0000  

[CL1].mu  0.0005  0.0002  2.4792  0.0132  

[CL1].omega  0.0000  0.0000  1.9216  0.0547  

[CL1].alpha1  0.0972  0.0193  5.0461  0.0000  

[CL1].beta1  0.8910  0.0193  46.1105  0.0000  

[Joint]dcca1  0.0448  0.0049  9.0526  0.0000  

[Joint]dccb1  0.9540  0.0051  186.1126  0.0000  

DCC from RSP1 to NG1  

[RSP1].mu  0.0008  0.0001  6.1629  0.0000  

[RSP1].omega  0.0000  0.0000  1.0856  0.2776  

[RSP1].alpha1  0.1769  0.0197  8.9940  0.0000  

[RSP1].beta1  0.8045  0.0239  33.6584  0.0000  

[RNG1].mu  0.0000  0.0004  -0.0055  0.9956  

[RNG1].omega  0.0000  0.0000  1.0952  0.2734  

[RNG1].alpha1  0.0740  0.0248  2.9862  0.0028  

[RNG1].beta1  0.9155  0.0057  160.8183  0.0000  

[Joint]dcca1  0.0028  0.0037  0.7686  0.4422  

[Joint]dccb1  0.9841  0.0258  38.1849  0.0000  

DCC from RSP1 to RXLE  
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10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  

[RSP1].mu  0.0000  0.0004  -0.0055  0.9956  

[RSP1].omega  0.0000  0.0000  1.0947  0.2737  

[RSP1].alpha1  0.0740  0.0248  2.9844  0.0028  

[RSP1].beta1  0.9155  0.0057  160.8932  0.0000  

[RXLE].mu  0.0005  0.0002  2.4789  0.0132  

[CL1].omega  0.0000  0.0000  1.9270  0.0540  

[RXLE].alpha1  0.0972  0.0192  5.0539  0.0000  
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50  
51  
52  
53  
54  

[RXLE].beta1  0.8910  0.0193  46.2229  0.0000  

[Joint]dcca1  0.0073  0.0026  2.8352  0.0046  

[Joint]dccb1  0.9881  0.0048  207.1377  0.0000  

Source: Author’s own presentation  

4.3 Portfolio weight and hedge ratio  

After investigating the spillover from financial exchange traded funds (ETF) futures to energy 

10 exchange traded funds (ETF) futures, portfolio weight and hedging ratio are calculated 11 considering 

the series of conditional variance and conditional covariance derived from  
12  

13 symmetrical DCC-GARCH. Creating an optimal portfolio by managing the risk needs temporal 14 

covariance matrix. We calculate optimal portfolio weights to mitigate the risk efficiently in 15 financial 

ETF future and energy ETF future. In addition, we compute hedge ratios to design 16  

17 the strategy of optimal hedging. To reduce the risks without decreasing expected returns, we  

18 can build a portfolio of financial ETF future and energy ETF future. We present that a portfolio  
19  

20 investor hedges the exposure to financial ETF future movements by investing their funds in 21 energy 

ETF futures. For the portfolio weight and hedging, we apply Kroner and Ng (1998) and  

22 Kroner and Sultan (1993) respectively. The mean of portfolio weight indicates the optimal 23  

24 allocation of financial ETF futures to energy ETF futures to reduce the portfolio risk without 25 

changing expected returns. Further, the mean of hedge ratio shows that investors can take either  
26  

27 a short or long position for the constituent series. Table 5 presents the summary of portfolio  

28 weights and hedge ratio of financial ETF futures (RXLF, RSP1) and energy ETF futures 29 

(RCL1, RNG1 and RXLE). Referring the results of summary of portfolio weights presented in 
30  

31 table 5, it ranges from 0.024 to 0.232 which are assigned to the SP1/NG1 and SP1/XLE  

32 respectively; lowest weight 0.024 signifies that for a portfolio of $1, 2 cents has to be invested  
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33  

34 in  SP1 and remainder 98 (1-Wjit) cents must be invested in NG1. Comparatively, high weights  

35 (0.232) indicates that 23 cents must be invested in SP1 and rest of the 77 cents (1-Wjit) should  

36 be invested in XLE.   
37  
38  

39  Table 5: Summary statistics of portfolio weight and hedge ratio   

40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  

RSP1/RXLE  0.0191  0.0400  0.0027  0.6636  

  Portfolio Weights     

 Series  Mean   Std. Dev  Min   Max  

RXLF/RCL1   0.1684  0.2001   -0.3976  0.6341  

RXLF/RNG1   0.0318  0.0372   -0.1635  0.2569  

RXLF/RXLE   0.2156  0.3440   -0.2953  0.8844  

RSP1/RCL1   0.1684  0.2002   -0.3975  0.6343  

RSP1/RNG1   0.0244  0.0079   0.0062  0.0478  

RSP1/RXLE   0.2320  0.3697   -0.3365  0.935  

  Hedge Ratio     

 Series   Mean  St Dev   Min  Max  

RXLF/RCL1   0.0373  0.0701   0.0070  1.0488  

RXLF/RNG1   0.0428  0.0352   0.0115  0.34563  

RXLF/RXLE   0.0268  0.0540   0.0048  0.8132  

RSP1/RCL1   0.0133  0.0196   -1.010  19.4078  

RSP1/RNG1   0.0303  0.0246   0.0077  0.3160  



 1  
 2  
 3  
 4  
 5  
 6  
 7  
 8  
 9  

55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  

Source: Author’s own presentation  

Further, we compute the hedge ratio proposed by Kroner and Sultan (1993) to mitigate the risk 

of the portfolio (financial ETF future and energy ETF future) presented in table 5. We consider 

by how much a long position of $1 in financial ETF future can be hedged by a short position 

in energy ETF future. Long position signifies “buy” whereas short position indicates “sell”.  

We observe that the average optimal hedge ratio of RXLF/RNG1 pair (0.0428) is most 10 

expensive while the cheapest hedging strategy is of RSP1/RCL1 pair (0.0133). The optimal 11  

12 hedge ratio of RXLF/RNG1 signifies that $1 long position in financial ETF futures should be  

13 hedged shorting an investment of energy ETF future by 4 cents to minimize the risk. Similarly,  
14  

15 the hedge ratio of RSP1/RCL1 shows that the volatility in the portfolio can be hedged holding  

16 $1 long position in RSP1 by 1 cent investment in RCL1. To be precise, the hedging costs of 17 

 the RXLF investments undertaking the short position in RNG1 is high than rest of the pairs. 18  

19  The present study corroborates with the studies of Chang et al., (2018) and Lau et al., (2017).  
20  

21  5. Conclusion and policy implications  
22  

23 Exchange traded fund (ETF) is considered as one of the tradable assets that tracks an index 24 

reflecting the economic condition of underlying sector.  It has potential catalyst to furnish 25  

26 systematic reduction of risk for the portfolio and preferred more by short-horizon liquidity  

27 traders. The popularity of the financial ETF future has grown with an increase of adoption of  
28  

29 standard ETF. On the other hand, due to the rapid development and huge demand of energy 30 

products, investors prefer the energy ETF future. Derivative market hedgers, further, want to 31 minimize 

the risk adopting an appropriate hedging strategy with optimal portfolio weight and 32  

33 hedge ratio. This paper investigates the spillover effect from financial ETF to 

energy ETF and  

34 build optimal portfolio weight and hedge ratio to minimize the risk. 35  

36 We employ Granger causality and dynamic conditional correlation using daily data extending 37  

38 from April 2, 2009 to November 23, 2020. The results obtained from Granger causality 39 indicates 

that there is unidirectional causality from RXLF to RSP1 while bidirectional causality  

40 between RXLF and RCL1 at 5% significance level. Rest of the variables do not have cause and 41  



 1  
 2  
 3  
 4  
 5  
 6  
 7  
 8  
 9  

55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  

42 effect relationship. Further, dynamic conditional correlation indicates the spillover effect from  

43 RXLF to RCL1, RXLF to RXLE, RSP1 to RCL1 and RSP1 to RXLE both in short run and 44  

45 long run. The spillover from RXLF to RNG1 is witnessed only in short run while the spillvoer 46 from 

RSP1 to RNG1 is present in long run. The present study corroborates with the studies of 47 Chang et al., 

(2018) and Lau et al., (2017). After investigating the spillover from financial 48  

49 exchange traded funds (ETF) futures to energy exchange traded funds (ETF) futures, portfolio 50 

weight and hedging ratio are calculated to minimize the risk for ETF investor without reducing 51  

52 expected return. The portfolio weight ranges from 0.024 to 0.232 which are assigned to the 53 

SP1/NG1 and SP1/XLE respectively. Referring the result of optimal hedge ratio proposed by  

54 by Kroner and Sultan (1993), we notice that the average optimal hedge ratio of RXLF/RNG1 pair 

(0.0428) is most expensive while the cheapest hedging strategy is of RSP1/RCL1 pair (0.0133).   

The contributions of the present study are threefold: First, in spite of the limited associations in 

existing literatures, it contains broad proxies of financial ETF futures (financial select sector SPDR fund, 

Generic 1st S&P 500 index futures) and energy ETF futures (Generic 1st crude oil WTI futures, Generic 1st 

natural gas futures and energy select SPDR fund). Secondly, we do not consider only financial ETF future 

but also energy ETF future. Thirdly, we include US ETF future for the analysis purpose based on dynamic 

conditional correlation, optimal portfolio weight and optimal hedge ratio. It has two policy implications. 

First, our result indicates the 10 spillover or dynamic connectedness from financial ETF future to energy 

ETF future. The ETF 11 exchange must know this fact and monitor the pricing accordingly with respect 

to the demand 12 and supply gap in exchange traded fund (ETF) market. Second, it furnishes the hedging 

across 13  

14 the ETF tradeable asset due to which an investor knows how much they should invest in 15 financial 

ETF future and energy ETF future. Apart from investor, regulators and policymakers 16  

17  must be aware of dynamic linkages and spillover of the volatility among constituent variables.   
18  
19    
20  
21    
22  
23    
24  
25    
26  
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39  

40 traded funds. It is an agreement or contract to buy or sell underlying ETF for a specified period  

41 and at an agreed-upon price. ETFs and ETF futures act as tools for investors for diversification  
42  

43 of the non-systematic risk and reduction of total risk. They also allow for a reduction in 44 volatility 

as an investment is made into a bag of stocks or commodities rather than a single 45 stock. Both mutual 

funds and ETFs allow for diversification however, they are fundamentally 46  

47 different as ETFs are traded like stocks, while mutual funds trades happen on the end of the 48 day 

prices. Moreover, due to the passive management style, the managing fees are found to be  

49  

50 lower for ETFs as against mutual funds, making ETFs more popular with short-horizon 51 liquidity 

traders (Ben-David et al., 2018). We thus chose ETFs against indices, mutual funds,  

52 or derivatives of financial and energy markets as they fully represent the underlying indices 53  

54 and have a characteristic of being traded on the spot as well as futures markets (Chang et al., 2017). 

ETFs were introduced in the financial markets in the early 1990s and by 2020 assets under 

management globally amounted to approximately $7.74 trillion, of which the United States 

accounted for more than 70 percent of the global assets (approximately $5.6 trillion).   

ETFs have been examined profusely to identify unidirectional price discovery and bidirectional 

volatility spillover (Krause and Tse, 2013), and portfolio optimization (Sawik, 2012). 

Furthermore, researchers examined the ETFs in various markets for examining spillover and 

volatility transmission, such as equity (Krause and Tse, 2013), oil (Aromi and Clements, 2017; 

Lau et al., 2017), energy (Tan et al., 2020), precious metals (Lau et al., 2017), agriculture 

(Chang et al., 2019).  

The growing energy demand is directly associated with economic growth (Shahbaz et al., 2013;  

10 Yadav et a.., 2020) and has a measurable impact on energy and financial markets (Wang and 11  

12 Wang, 2019). The global financial crisis has caused an increase in volatility in energy and 13 financial 

markets (Tsuji, 2018). Volatility spillovers have been widely documented in the  

14  

15 energy futures market (Lin and Tamvakis, 2001) and its examination allows for preparing an 16 

appropriate dynamic hedging strategy (Chang et al., 2018). Therefore, it becomes imperative 17 to 

examine whether market participants can benefit from inherent linkages between the 18  

19 financial sector and the energy sector. Moreover, it would be interesting to examine how this  

20 relationship pans out in the futures markets.   
21  
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 22  This study is relevant and contributes to the existing body of knowledge in following ways.  
23  

24 First, the study assesses the volatility spillover effect between energy and financial sector ETFs 25 

derivatives in the US market. Understanding ETFs price volatility in the derivatives market  

26 may help firms, banks in price discovery and trade in futures contracts influencing oil prices. 27  

28 Financial select sector SPDR fund (XLF) and Generic 1st S&P 500 index futures (SP1) are  

29 taken as proxies for the financial sector. While, for representing the energy futures, three 30  

31 proxies have been employed, namely, Generic 1st crude oil WTI futures (CL1), Generic 1st 32 natural 

gas futures (NG1), and energy select SPDR fund (XLE). Second, the study extends the  

33 limited findings on the spillover effect (Ben-David et al., 2016; Ben-David et al., 2017; da 34  

35 Costa et al., 2019), by measuring the portfolio weight and optimal hedge ratio between energy  

36 and financial US market. Very limited studies explored such data that highlights optimal 37  

38 hedging portfolios to banks, hedge funds, trading managers by using energy and financial ETFs 39 

derivatives (Elsayed et al. 2020). The present study fills the gap. Finally, the study uses more  

40  

41 than one proxy for each energy and financial ETFs futures and tested various short-term and 42 long-

term combinations of spillover effects between both the markets. The findings of this 43 study will help 

in portfolio designing and diversification strategies that are relevant to the 44  

45 traders, finance managers, exporters, and importers having exposure in both the markets in the  

46 short and long run. Explicitly, the results of this study are expected to be of use to short-horizon  
47  

48 liquidity traders who seek to exploit arbitrage opportunities by taking the minimum risk. It 49 would 

also be beneficial for derivatives market hedgers to minimize the risk and adopt an  

 50  appropriate hedging strategy by employing optimal portfolio weights and hedging ratios.  
51  

52 The paper proceeds as follows. The next section presents the review of the extant literature on 53  

54 the topic. Section 3 outlines the data used and econometric models employed in the study. Section 4 

exhibits the results, and the final section draws out conclusions, important implications and 

scope for future research.   

  

2. Literature Review  

Extant literature documents the use of ETFs to measure the spillover effects on various markets, 

assess performance in portfolio decisions, causality relationships between the volatility in various ETFs, 
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etc. (Yavas and Rezayat, 2016; Ben-David et al., 2017; 2018; da Costa Neto et al., 2019). Most of these 

studies confirmed the significant role of ETFs to review the role of the underlying index in portfolio 

decisions indicating the economic performance of the whole sector. da Costa Neto et al., (2019) explained 

the use of ETFs in various sectors including 10 commodities, currencies, volatility, etc. that allow 

extensive exposure to traditional and exotic 11  

12 investment opportunities. They further confirmed that developed economies like the US still  

13 prefer traditional ETFs investment strategies and in contrast, emerging markets like India and  
14  

15 Brazil look for informational-based arbitrage opportunities while investing in ETFs. In support 16 of 

this, a large number of studies confirmed ETFs as a highly volatile investment option due to  

 17  the increasing arbitrage opportunities and mispricing derived from ETFs and hence, preferred  
18  

19 over individual’s sectors, indices, stocks, etc. (Krause and Tse, 2013; Yavas and Rezayat, 2016;  

20 Chang et al., 2018).   
21  

22 Poterba and Shoven (2002) mentioned exchange traded funds (ETFs) as one of the best 23  

24 investment avenues as it is found more tax-efficient and holds more volatility in terms of 25 holding 

broad baskets of stocks. However, few portfolio studies confirmed the lack of 26 information asymmetry 

in ETFs and low arbitrage opportunities in comparison to traditional 27  

28 stock portfolios (Chen, 2017). Keeping in mind the multiple views of the performance of ETFs 29 in 

portfolio diversification, many studies draw their attention to measuring the volatility 30  

31 spillover effect of ETFs in financial markets (Roy and Roy, 2017; Chang et al., 2019).  

32 According to Krause et al., (2012), exchange traded funds have high volatility spillover effect 

33 due to their high liquidity and use of volatile derivatives used in respective ETFs. They also 
34  

35 assessed the bidirectional spillover effect between ETFs futures and stocks and found higher  

36 effects from ETFs to stocks. Later, Krause and Tse (2013) indicated the volatility flow between  
37  

38 two different equity market (Canadian and US) ETFs and confirmed the information diffusion  

39 to market participants. Such spillover effects in ETFs have been explored in different sectors  
40  

41 in a single market (Chang et al., 2018), between two different equity markets (Marshall et al., 42 2013; 

Yavas and Rezayat, 2016), between two different sectors and markets (agriculture,  

 43  commodities, equity, finance, etc. (Lau et al., 2017; Roy and Roy, 2017; Chang et al., 2019).   
44  
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45 We found few studies discussing the volatility correlation between energy and financial sectors 46  

47 and the use of their respective ETFs for the investment decisions to streamline the current  

48 research (Lau et al., 2017; 2019). In this context, few studies explained that the dependency of 
49  

50 oil companies’ performance on crude oil volatility, changing interest rates, and bank loans are 51 very 

high (McLannahan and Gray 2016; Ben-David et al., 2017). Studies confirmed that the  

52  

53 financial sector faces huge losses due to defaults and losses in oil companies’ portfolios that 54 lead 

to low credit deployment and poor interest margins to the financial sectors (Olson et al., 2016).  Talking 

about developed economies like the US, high volatility in oil prices affects the profit margins of energy 

and oil companies that may lead them to financial constraints including high price volatility, low credit 

ratings, and poor market capitalizations (Zhu and  

Singh, 2016; Chang et al., 2017). In the last few decades, it has been noticed in the US market  

that oil prices volatility has created uncertainty in revenues, cost to business to US oil 

companies and leads to huge defaults and loan crises to energy and banking sector in the country (Krause 

et al., 2012; Zhu and Singh, 2016). Moreover, the creation of synthetic oil by other markets like China and 

Brazil also creates price and profit fluctuations and leads to high volatility in the US energy and banking 

sector (Diebold and Yilmaz, 2012; Ben-David et al., 2017). To conclude, the consequences of such actions 

are very high and indicate low market performance to both the energy and financial sectors (Krause et al., 

2012). Change (downfall) 10 in stock prices and their respective ETFs data indicate such consequences 

and exhibit poor  

11 investment decisions with high risk (Diebold and Yilmaz, 2012; Ben-David et al., 2018).  

12 According to Chen and Huang (2010), such consequences and spillover effects should be 13  

14 assessed regularly by the fund managers and necessary actions including portfolio rebalancing,  

15 diversifications, etc. should be taken to get benefits of the situations. They further explained 16  

17 that due to the high correlation between the performance of the financial and energy sectors, 18 

investors may include both (with the same or opposite positions) for price discoveries, spillover  

 19  effect, arbitration, and hedging purposes.   
20  
21  

22 In this regard, Gastineau (2002) indicated the strong mean return spillover effect between 23 financial 

and energy sector ETFs and hence suitable for constructing a portfolio for hedging 24 purposes. Baffles 

et al. (2015) found a strong correlation between oil prices and the 25  

26 performance of the financial (banking sector) across the globe. Chang et al., (2018) measured  

27 the strong mean-volatility dissemination between energy and spot markets in US and UK  
28  
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29 markets. Further to elaborate this context, Johnson and So (2012) found derivatives of ETFs in 30 the 

financial and energy sectors more appropriate and liquid to exemplify the spillover effect  

31 of respective underlying sectors. Chang et al., (2017), mentioned futures of exchange traded 32  

33 funds are better than spot index for investments as they represent implied spot prices and have  

34 high tradability. In various related studies, it is confirmed that future and spot prices of ETFs  
35  

36 may influence other market prices of stocks or ETFs (Ben-David et al., 2016; da Costa et al., 37 2019). 

The present study is in line with the findings of Chang et al. (2018). Unlike Chang et  

38 al., (2018) findings that explained the volatility spillover effect between financial and energy 39  

40 sector ETFs in both spot and futures markets, the present study discussed the spillover effect 41 only 

in the futures market. Second, the present study not only measures the volatility spillover  
42  

43 effect between financial and energy ETFs in the US market like Chang et al. (2018) but also 44 takes 

a step further by suggesting portfolio risk hedging strategies with calculating optimal  

 45  hedge ratio and portfolio weights.  
46  
47  

48 The present study reviews the existing literature and finds the following research gaps in the 49 

literature: First, with regards to volatility spillover effects among various sectors, most studies  

50 focussed mainly on energy markets, commodity markets, and foreign exchange markets or 51  

52 spillover effect among developed and developing countries ETFs particularly, equity ETFs.  

53 We still lack studies measuring the spillover effect between ETFs of energy and the financial  

54 sector in the US context. Second, the majority of past studies used one or two benchmarks for 

testing the spillover effect. The present study includes six diversified ETFs from the financial 

sector, energy sector, an index fund, and two ETFs futures on crude oil, natural gas to broaden 

the scope of present findings. Moreover, the study measures the dynamic correlation along with 

unidirectional and bidirectional causality among all the funds. Third, methodologically, most  

past studies tested the short-term or long-term movement or co-movement between the ETFs 

in these markets. In addition, those studies mainly focused on mean return spillover with less focus on risk 

spillover effects. The present study fills the gap by measuring both short- and long-term volatility or risk 

spillover effect between energy and financial ETFs in US financial market. Fourth, the present study used 

daily data as opposed to weekly or monthly data used in the literature. Daily data provides a larger set of 

observations that may help select hedge funds and develop portfolio hedging strategies. Also, ETFs are 

recently available and not very 10 old traded funds, so daily data is better for the observations. Finally, 

and most importantly, the 11 study extends the literature by not only measuring the spillover effect but 

suggesting portfolio  
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12 risk hedging strategies through portfolio weights distributed among the benchmark ETFs and 13  

 14  with the help of optimal hedge ratio.   
15  

16  3. Data and Econometric Model 18  3.1 Data  
17  
19  

 20  The objective of this paper is to examine the spillover effect from financial ETF futures to  
21  

22 energy ETF futures. The proxies for the financial ETF futures are financial select sector SPDR  

23 fund (XLF) and generic 1st S&P 500 index futures (SP1) while generic 1st crude oil WTI 24 

futures (CL1), generic 1st natural gas futures (NG1), and energy select SPDR fund (XLE) are 25  

26 proxies of energy ETF futures. The daily adjusted closing price of the constituent series has 27 been 

collected from April 2, 2009, to November 23, 2020. Further, the raw series has been  

28  

29 converted into log return series by making logarithmic differences of two successive days  

30 prices. The following formula has been used to convert into log return series:  
31  

32 𝑃𝑖,𝑡 

33 𝑅𝑖,𝑡 = 𝑙𝑜𝑔 (( 𝑃𝑖,𝑡−1))                    

     (1)  

34  

 35  Where Ri,t represents logarithmic return at time t, while Pi,t–1 and Pi,t  are the daily closing prices  
36  

 37  of the ith fund on successive days. Table 1 furnishes data description of the considered series.  
38  

 39  Table 1: Data Description  
40  
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41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  

Source: Author’s own presentation   

  

3.2 Econometric Models  

To examine the spillover effect, we apply econometric models like Granger causality and 

dynamic conditional correlation (DCC). Further, the portfolio weight and hedge ratio have been 

also calculated. This section describes the aforesaid models briefly:   

3.2.1 Granger causality and dynamic conditional correlation  

Granger causality is employed to examine the presence of causal linkages between two time 

series (Granger, 1969). The results allow inferring whether the historical value of one series 10 contains 

pertinent evidence to predict or influence change in other series (Friston et al., 2003). 11 It also provides 

information on the direction of causality, whether it is unidirectional or  

12 bidirectional without any a priori hypothesis. Granger causality requires stationarity and if 13  

 14  series are nonstationary, it is first converted to stationary series.   
15  

16 The literature on spillover presents evidence on the use of various multivariate volatility models 17 

that examine conditional covariance. The notable among these are the diagonal model 18  

19 (Bollerslev et al.,1988); diagonal vech model and multivariate GARCH model (Engle and 20 Kroner, 

1995); vector ARMA-GARCH or VARMA-GARCH model (Ling and McAleer,  

21  

Market  Asset  Acronyms  Source  

Financial ETF futures  Financial select sector SPDR 

fund   

XLF  Bloomberg  

Financial ETF futures  Generic 1st S&P 500 index  

futures   

SP1  Bloomberg  

Energy ETF futures  Generic 1st crude oil WTI 

futures  

CL1  Bloomberg  

Energy ETF futures  Generic  1st  natural  gas  

futures   

NG1  Bloomberg  

Energy ETF futures  Energy select SPDR fund  XLE  Bloomberg  



 1  
 2  
 3  
 4  
 5  
 6  
 7  
 8  
 9  

55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  

22 2003); Dynamic Conditional Correlation (DCC) GARCH model (Eagle, 2002) and Varying 23 

Conditional Correlation (VCC) model (Tse and Tsui, 2002). Based on a perusal of these models 24 and 

their prospective explanatory power, the DCC GARCH model of Eagle (2002) that 25  

26 assesses time-varying correlations has been applied. Its estimation requires two steps, firstly 27 the 

GARCH parameters are tested followed by estimation of correlations. To model rit, the  

28  

 29  following equation is estimated:  
30  

 31  rit = a + b1rt−1 + εit ,  εit = hit(1/2)vit,                (2)  
32  

33 where a is constant, b1 is the coefficient of lagged return, εit is the random error term that has 34 

conditional variance hit while vit is a vector n × 1 of residuals that are identically distributed and  

35  

36 independent. In second step of DCC-GARCH, correlations are estimated using the following  

37 equation:  
38  

 39  Ht = DtRtDt                      (3)  
40  

 41  where Ht is a covariance matrix, Rt is a conditional covariance matrix and Dt is an n x n diagonal  
42  

 43  matrix with time-varying standard deviations on the diagonal.  

44  

 45  Dt = diag (h1t1/2,..., h1/2nt)                  (4)  
46  

 47  𝑅𝑡 = 𝑄𝑡∗−1𝑄𝑡𝑄𝑡∗−1                    (5)  
48  

49  Where Qt  is a symmetric positive definite matrix  50  

 51  𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑄’ + 𝑎𝜀𝑡−1𝜀′𝑡−1 + 𝑏𝑄𝑡−1                         (6)  
52  

53 Q’ is an unconditional covariance matrix of the standardized errors and Qt* is the diagonal  

54 matrix comprising of the square root of diagonal of Qt which may be shown as diag (q1/211t, 

q1/222t,...,q1/2mnt). Two DCC parameters in the equation are a and b which are non-negative 

with a sum lower than 1. Lower conditional correlation is representative of higher diversification 

opportunities while higher values represent integration (Yu et al., 2010). The alpha and beta 

estimators derived from DCC-GARCH are time-varying. Alpha measures the  
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volatility impact for a shorter duration while including the impact of persistence of residuals 

from the preceding period. The beta in DCC measures the long-term impact of a shock on 

conditional correlation. The dynamic correlations are estimated as:  

 ρ = 𝑞𝑖𝑗,𝑡 / 𝑞𝑗𝑗,𝑡                     (7)  

Eagle (2002) estimates DCC GARCH model using the two-step likelihood estimation method. The 

likelihood function is presented as follows:  
10  

 11  𝑙𝑛  𝑙𝑛 |𝐷𝑡|2 + ln(|𝑅𝑡 |) + 𝜀𝑡′ 𝐷𝑡−2 𝜀𝑡        (8)  
12  

 13  So, this is a dynamic model with time-varying mean, variances, and covariance.  
14  

 15  3.2.2 Portfolio weight and hedging  
16  

17 Referring to the results of dynamic conditional correlation, it is found that there is spillover 18  

19 from financial ETF futures to energy ETF futures. Therefore, it is important to check that how 20 the 

financial ETF futures risk or unfavorable financial ETF futures movements can be hedged 21 effectively. 

The major objective of this section is to furnish a risk hedging strategy without 22  

23 reducing an expected return. The minimum variance hedge ratio is one of the popular hedging  

24 strategies which is based on portfolio variance minimization (Kroner & Sultan, 1993).  
25  

 26  As per Kroner and Ng (1998), the optimal weight of financial ETF futures in the one-dollar  
27  

 28  portfolio of energy ETF future market in time t can be shown as below:  
29  

 30 𝑤𝒊𝒋,𝒕 = 𝒉 𝒊𝒊,𝒕𝒉−𝒋𝒋𝟐𝒉,𝒕−𝒊𝒋𝒉.𝒕𝒊𝒋+,𝒕𝒉𝒋𝒋.𝒕                   

 (9)  
31  
32  

33 This portfolio is considered to have two different asset classes that is, i and j, where 𝑤𝒊𝒋,𝒕 is the  

34 weight assigned to asset 1 (financial ETF futures), that is, i and (1-𝑤𝒊𝒋,𝒕) was the weight of asset  
35  

36 2 (energy ETF futures), that is j. 𝑤𝒊𝒋,𝒕 is the proportion of $1 investment made in the portfolio  

37 of financial and energy ETF futures. The time-varying portfolio weight is computed applying  
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38  

 39  the time-varying conditional volatility and co-variances derived from the DCC model.   
40  

41 Finally, we analyze the diversification opportunities and respective hedge ratios between  

42 financial ETF futures and energy ETF futures. To compute hedge ratio, Kroner and Sultan 43  

44 (1993) method is applied which is based on conditional co-variances and variances. The hedge 45 

ratio helps to hold a long position in one asset that can be hedged with a short position in 46 another asset 

to protect from the probable risk without reducing risk. The hedge ratio is shown 47  

 48  as below:  
49  

 50  𝛽𝑖𝑗𝑡 = ℎ𝑖𝑗𝑡⁄ℎ𝑗𝑗𝑡                              (10)  
51  

 52  where,  𝛽𝑖𝑗𝑡 is the hedge ratio between asset 1, that is, i and asset 2, that is, j; ℎ𝑖𝑗𝑡 is the time- 
53  

54 varying conditional co-variances between i & j , ℎ𝑗𝑗𝑡 is the time-varying conditional variances. The 

conditional variance and co-variance have been derived from DCC model.   

4. Results and Discussion  

This section includes the results obtained from summary statistics, Granger causality, dynamic 

conditional correlation, optimal portfolio weight, and optimal hedge ratio.   

4.1 Summary statistics and Granger Causality  

To examine the spillover effect from financial ETF futures to energy ETF futures, we applied 

dynamic conditional correlation. Further, portfolio diversification opportunities have been identified using 

portfolio weight and hedge ratio. We initiate an analysis reporting the result of 10 descriptive statistics 

which is presented in table 2. The mean of, RXLE, RSP1 and RCL1 is 11 positive while NG1 reports a 

negative mean which confirms that NG1 is riskier; the same has  

12 been witnessed by the high standard deviation (0.0316) of this series.  RXLF, RXLE and RSP1 13  

14 exhibit negative skewness, and RCL1 and RNG1 exhibit positive skewness. It ensures an 15 

asymmetric tail expanding towards more negative values.  As per the kurtosis value, each series 16  

17 has leptokurtic distribution (greater than 3). It signifies that the financial ETF futures and 18 energy 

ETF may generate either very large or very small impending returns. Hence, the  

19 skewness and kurtosis imply the rejection of normality in these series which can be justified 20  

21 by the result of Jarque-Bera test. The Augmented – Dickey Fuller (ADF) and Phillips-Perron  

22 (PP) test have been applied to check the stationarity in these series. As per the results of ADF  
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23  

24 and PP test, it is confirmed that each series of financial ETF and energy ETF futures is 25 stationary 

or integrated at level i.e. I (0). Figure 1 presents the time series plot of RXLF, RSP1, 26 RXLE, RNG1 

and RCL1. It is noticed that RXLF, RSP1, RXLE and RCL1 returns fell at the 27  

28 end of 2016 while RNG1 has realized the positive as well as negative stock return. This 29 graphical 

representation helps us to understand how the series varied over the time. Every series 30  

31 is witnessed with volatility clustering as high changes are followed by high 

changes and low  

32 changes are followed by low changes in these series.  33  

 34  Further, the Granger Causality test is applied to check the direction of transmission of  
35  

36 information from financial ETF to energy ETF futures and vice-versa. Table 3 presents the 37 result 

of Granger Causality. There is bidirectional causality between RXLF and RCL1 at 5% 38 significance 

level. RXLF does not Granger cause RNG1 and vice versa. Similarly, RXLE does 39  

40 not Granger cause RCL1 and RNG1 while there is bidirectional causality between RXLE and  

41 RSP1. In sum, we observe that there is a possibility of transmission of volatility from RXLF to  
42  

43 RCL1 and from RXLE to RSP1 and vice versa while the study finds evidence of unidirectional  

44 transmission of information from RXLF to RSP1.  
45  

46  Table 2: Summary Statistics  47  
48  
49  
50  
51  
52  
53  
54  

           RXLF         RSP1        RCL1       RNG1         RXLE  

Mean  0.0005  0.0005  0.0003  -0.0001  0.0001  

Std. dev  0.0171  0.0112  0.0246  0.0316  0.0170  

Minimum  -0.1502  -0.1095  -0.2822  -0.1805  -0.2249  

Maximum  0.1439  0.0935  0.3196  0.2677  0.1487  

Skewness  -0.0573  -0.6239  0.1684  0.7856  -0.8454  

Kurtosis  10.9283  10.1094  27.7083  5.5860  16.2300  

ARCH Test  0.0040  0.0000  0.0000  0.0000  0.0003  

JB Test  20012  17384  126.39  5642.7  44609  



 

 

Sig. value  0.0000  0.0000  0.0000  0.0000  0.0000  1 

ADF Test   0.0000  0.0000  0.0000  0.0000  0.0003  2 

PP Test   0.0010  0.0000  0.0000  0.0001  0.0000  3 

Nobs  4016  4016  4016  4016  4016  4 

Notes: The table provides descriptive statistics of constituent variables under examination. Std. dev is standard 5 

deviation, JB test is Jarque-Bera test for normality, ADF is Augmented Dickey Fuller test while PP is Philips and 6 

Perron test for checking the stationarity.  7 

Table 3: Granger Causality Result  8 

Null Hypothesis  F-value  Probability  

RXLF does not Granger cause RCL1.  4.0013  0.04556 **  

RCL1 does not Granger cause RXLF.  8.1868  0.03275 **  

RXLF does not Granger cause RNG1.  4.0013  0.5156  

RNG1 does not Granger cause RXLF.  1.1868  0.19540  

RXLF does not Granger cause RXLE.  1.9605  0.16160  

RXLE does not Granger cause RXLF.  0.0805  0.6916  

RSP1 does not Granger cause RCL1.  1.6993  0.1005  

RCL1 does not Granger cause RSP1.  0.4876  0.4851  

RSP1 does not Granger cause RNG1.  2.8037  0.09416  

RNG1 does not Granger cause RSP1.  0.034  0.8538  

RSP1 does not Granger cause RXLE.  2.578  0.0313**  

RXLE does not Granger cause RSP1.  3.1643  0.0132**  

Notes: we check the unidirectional and bidirectional Granter causality test for cause and effect.    
 *** Significant at 1 percent; ** Significant at 5 percent; * Significant at 10 percent   

  9 

Figure 1: Time series plot of constituent series  10 

  11 
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26  
27    
28  
29    
30  

31  4.2 Result of Dynamic conditional correlation   
32  
33  

34 Next, we apply dynamic conditional correlation (DCC) GARCH to examine the spillover from 35 

financial ETF futures to energy ETF futures. We applied bivariate dynamic conditional 36 correlation 

(DCC) GARCH presented in table 3. The table consists of spillover results from 37  

38 RXLF to RCL1, RXLF to RNG1, RXLF to RXLE, RSP1 to RCL1, RSP1 to RNG1 and RSP1 39 to 

RXLE. Referring to the results of spillover from RXLF to RCL1, overall mean and constants  
40  

41 are represented by “mu” and “omega”. “alpha 1” and “beta 1” signify the autoregressive  

42 conditional  heteroscedasticity  (ARCH)  and  generalized  autoregressive 
 conditional 43  heteroscedasticity (GARCH) respectively. The alpha shows 

whether there is volatility in short 44  

45 run or not which is based on the previous disturbances or error terms. GARCH represents the  

46 persistence in the volatility that measures the impact of a shock on conditional correlation for  
47  

48 the long run. Individually, the alpha1 and beta1 are positive and significant at a 5% significance 49 

level which confirms the persistence of volatility. We observe that the sum of alpha1 and beta1  

50  of both series is less than one which shows time decay over time in volatility persistence. The  
51  

52 sum of alpha and beta of RXLF and RCL1 are 0.9809 and 0.9882 respectively. It indicates that  
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53 RXLF has fast decay in volatility persistence than RCL1. Further, dcca 1 and dccb 1 denotes  

54 the parameters of the dynamic conditional correlation. The coefficients of dcca 1 and dccb 1 

are positive and significant at 5% significance level. It reveals that there is spillover or 

transmission of information in short run and long run. Turning to the spillover from RXLF to 

RNG1, we find evidence of persistence in the volatility as alpha 1 and beta 1 of both series  

(RXLF and RNG1) are significant at 5% significant level. The sum of coefficients of alpha is  

less than 1 which confirms that there is time decay. Notably, RXLF is witnessed with fast time 

decay because the summation of coefficients of RXLF (0.9809) is less than the summation of 

coefficients of RNGI (0.9895). The dcca1 parameter is positive and significant while the dccb1 

is not significant. It ensures the evidence of short run and long run spillover or transmission of 

information from RXLF to RNG1. It is worth noting that the summation of dcca1 and dccb1 is 

less than 1, therefore, dynamic conditional correlation is assumed to be mean reverting. As 

regards with DCC from RXLF to RXLE, the coefficients (alpha 1 and beta 1) of RXLF and  

10 RXLE are positive and significant. It indicates that there is short term and long-term persistence 11 of 

the volatility. The sum of coefficients of both series is less than 1 which confirms the time  

12 decay in the series. The dcca1 and dccb1 parameters are positive and significant, hence, we 13  

14  find the existence of short term and long term spillover from RXLF to RXLE.   
15  

16 Further, spillover from RSP1 to RCL1 has been checked. The alpha 1 and beta 1 of RSP1 and 17 RCL1 

are positive and significant. We find evidence of short run and long run volatility  
18  

19 persistence in both series. The sum of their coefficients is 0.9814 and 0.9882 respectively, 20 hence, 

there is fast decay of volatility persistence in RSP1 compared to RCL1. There is 21 spillover or 

transmission of information of transmission from RSP1 to RCL1 as the dcca 1 and  
22  

23 dccb 1 are positive and significant. Additionally, we examine spillover from RSP1 to NG1 and 24 

RSP1 to RXLE. The coefficients of each series are positive and significant, and their sum is 25 less than 

one. The result confirms the short run and long run volatility persistence in each series.  

26 Referring the spillover results from RSP1 to RNG1, we observe that the dcca 1 is positive but 27  

28 not significant which indicates that there is no spillover or no transmission of information in 29 short 

run while there is the existence of long run spillover as dccb 1 is positive and significant.  

30  At last, turning to the results of spillover from RSP1 to RXLE, we find spillover neither in  
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31  

32 short run nor in long run. The sum dcca 1 and dccb 1 is less than 1 which indicates that the 33 dynamic 

conditional correlation is mean reverting. Further, we apply Sign Bias test to check 34 the asymmetry in 

volatility. The p-value of the Sign-Bias test is insignificant which confirms  
35  

36 the rejection of null hypotheses (Ho: There is asymmetry in the volatility of a series). Therefore, 37 

there is no requirement of asymmetrical dynamic conditional correlation (DCC).  
38  

39  Table 4: Results of pairwise DCC of constituent series  
40  
41    
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  

 DCC from RXLF to RCL1   

    Estimate            Std. Error  t-statistics  P-value  

[RXLF].mu  0.0008  0.0002  4.5922  0.0000  

[RXLF].omega  0.0000  0.0000  0.7255  0.4681  

[RXLF].alpha1  0.1424  0.0179  7.9665  0.0000  

[RXLF].beta1  0.8385  0.0416  20.1358  0.0000  

[RCL1].mu  0.0005  0.0002  2.4772  0.0132  

[RCL1].omega  0.0000  0.0000  1.9282  0.0538  

[RCL1].alpha1  0.0972  0.0192  5.0539  0.0000  

[RCL1].beta1  0.8910  0.0193  46.2553  0.0000  

[Joint]dcca1  0.0388  0.0039  9.9290  0.0000  

[Joint]dccb1  0.9591  0.0042  226.9941  0.0000  

 DCC from RXLF to RNG1   
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     Estimate            Std. Error  T-Statistics  P-value  

[RXLF].mu  0.0008  0.0002  4.5898  0.0000  

[RXLF].omega  0.0000  0.0000  0.7250  0.4685  

[RXLF].alpha1  0.1424  0.0178  7.9887  0.0000  

[RXLF].beta1  0.8385  0.0417  20.1066  0.0000  

[RNG1].mu  0.0000  0.0004  -0.0055  0.9956  

[RNG1].omega  0.0000  0.0000  1.0950  0.2735  

[RNG1].alpha1  0.0740  0.0248  2.9859  0.0028  

[RNG1].beta1  0.9155  0.0057  160.6857  0.0000  

[Joint]dcca1  0.0375  0.0178  2.1002  0.0357  

[Joint]dccb1  0.4780  0.2898  1.6498  0.0990  

DCC from RXLF to RXLE  

[RXLF].mu  0.0008  0.0002  4.5922  0.0000  

[RXLF].omega  0.0000  0.0000  0.7255  0.4681  

[RXLF].alpha1  0.1424  0.0179  7.9665  0.0000  

[RXLF].beta1  0.8385  0.0416  20.1358  0.0000  

[RXLE].mu  0.0005  0.0002  2.4772  0.0132  

[CL1].omega  0.0000  0.0000  1.9282  0.0538  

[RXLE].alpha1  0.0972  0.0192  5.0539  0.0000  

[RXLE].beta1  0.8910  0.0193  46.2553  0.0000  

[Joint]dcca1  0.0388  0.0039  9.9290  0.0000  

[Joint]dccb1  0.9591  0.0042  226.9941  0.0000  

DCC from RSP1 to CL1  

[sp1].mu  0.0008  0.0001  6.1684  0.0000  

[sp1].omega  0.0000  0.0000  1.0793  0.2805  

[sp1].alpha1  0.1769  0.0197  8.9983  0.0000  

[sp1].beta1  0.8045  0.0243  33.1224  0.0000  

[CL1].mu  0.0005  0.0002  2.4792  0.0132  

[CL1].omega  0.0000  0.0000  1.9216  0.0547  

[CL1].alpha1  0.0972  0.0193  5.0461  0.0000  

[CL1].beta1  0.8910  0.0193  46.1105  0.0000  

[Joint]dcca1  0.0448  0.0049  9.0526  0.0000  

[Joint]dccb1  0.9540  0.0051  186.1126  0.0000  

DCC from RSP1 to NG1  

[RSP1].mu  0.0008  0.0001  6.1629  0.0000  

[RSP1].omega  0.0000  0.0000  1.0856  0.2776  

[RSP1].alpha1  0.1769  0.0197  8.9940  0.0000  
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29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  

[RSP1].beta1  0.8045  0.0239  33.6584  0.0000  

[RNG1].mu  0.0000  0.0004  -0.0055  0.9956  

[RNG1].omega  0.0000  0.0000  1.0952  0.2734  

[RNG1].alpha1  0.0740  0.0248  2.9862  0.0028  

[RNG1].beta1  0.9155  0.0057  160.8183  0.0000  
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53  
54  

 [Joint]dcca1  0.0028  0.0037  0.7686  0.4422  

 [Joint]dccb1  0.9841  0.0258  38.1849  0.0000  

DCC from RSP1 to RXLE  

 [RSP1].mu  0.0000  0.0004  -0.0055  0.9956  

 [RSP1].omega  0.0000  0.0000  1.0947  0.2737  

 [RSP1].alpha1  0.0740  0.0248  2.9844  0.0028  

[RSP1].beta1  0.9155  0.0057  160.8932  0.0000 10  [RXLE].mu 

 0.0005  0.0002  2.4789  0.0132  

11  [CL1].omega  0.0000  0.0000  1.9270  0.0540  
12  

13 [RXLE].alpha1  0.0972  0.0192  5.0539  0.0000  

14 [RXLE].beta1  0.8910  0.0193  46.2229  0.0000  
15  

16 [Joint]dcca1  0.0073  0.0026  2.8352  0.0046  

17 [Joint]dccb1  0.9881  0.0048  207.1377  0.0000  
18  
19 Notes: This table incapsulates bivariate dynamic conditional correlation (DCC)-GARCH. The table consists of  

20 spillover results from RXLF to RCL1, RXLF to RNG1, RXLF to RXLE, RSP1 to RCL1, RSP1 to RNG1 and  

21 RSP1 to RXLE. *** Significant at 1 percent; ** Significant at 5 percent; * Significant at 10 percent  

22    
23  

24  4.3 Portfolio weight and hedge ratio  
25  

26 After investigating the spillover from financial exchange traded funds (ETF) futures to energy  

27 exchange traded funds (ETF) futures, portfolio weight and hedging ratio are calculated  
28  

29 considering the series of conditional variance and conditional covariance derived from 30 symmetrical 

DCC-GARCH. Creating an optimal portfolio by managing the risk needs a  
31  

32 temporal covariance matrix. We calculate optimal portfolio weights to mitigate the risk 33 efficiently 

in the financial ETF futures and energy ETF futures. In addition, we compute hedge  

34 ratios to design the strategy of optimal hedging. To reduce the risks without decreasing 35  
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36 expected returns, we can build a portfolio of financial ETF futures and energy ETF futures. We  

37 present that a portfolio investor hedges the exposure to financial ETF futures movements by  
38  

39 investing their funds in energy ETF futures. For the portfolio weight and hedging, we apply 40 Kroner 

and Ng (1998) and Kroner and Sultan (1993) respectively. The mean of portfolio weight 41 indicates the 

optimal allocation of financial ETF futures to energy ETF futures to reduce the 42  

43 portfolio risk without changing expected returns. Further, the mean of the hedge ratio shows  

44 that investors can take either a short or long position for the constituent series. Table 5 presents  
45  

46 the summary of portfolio weights and hedge ratio of financial ETF futures (RXLF, RSP1) and 47 

energy ETF futures (RCL1, RNG1 and RXLE). Referring to the results of summary of portfolio  

48 weights presented in table 5, it ranges from 0.024 to 0.232 which are assigned to the SP1/NG1 49  

50 and SP1/XLE respectively; lowest weight 0.024 signifies that for a portfolio of $1, 2 cents has 51 to 

be invested in SP1 and remainder 98 (1-Wjit) cents must be invested in NG1. Comparatively,  

52  

53 high weights (0.232) indicate that 23 cents must be invested in SP1, and the rest of the 77 cents 54 (1-

Wjit) should be invested in XLE.   

Table 5: Summary statistics of portfolio weight and hedge ratio   

 Por tfolio Weights    

 Series  Mean  Std. Dev  Min  Max  

 RXLF/RCL1  0.1684  0.2001  -0.3976  0.6341  

 RXLF/RNG1  0.0318  0.0372  -0.1635  0.2569  

 RXLF/RXLE  0.2156  0.3440  -0.2953  0.8844  

 RSP1/RCL1  0.1684  0.2002  -0.3975  0.6343  

 RSP1/RNG1  0.0244  0.0079  0.0062  0.0478  

 RSP1/RXLE  0.2320  0.3697  -0.3365  0.935  

Hedge Ratio  

10 Series  Mean  St Dev  Min  Max  

11 RXLF/RCL1  0.0373  0.0701  0.0070  1.0488  
12  

13 RXLF/RNG1  0.0428  0.0352  0.0115  0.34563  

14 RXLF/RXLE  0.0268  0.0540  0.0048  0.8132  
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15  

16 RSP1/RCL1  0.0133  0.0196  -1.010  19.4078  

17 RSP1/RNG1  0.0303  0.0246  0.0077  0.3160  
18  

19 RSP1/RXLE  0.0191  0.0400  0.0027  0.6636  

20 Notes: This table presents the portfolio weight and hedging ratio of constituent series based on conditional  

21 variance and conditional covariance using symmetrical DCC-GARCH.  
22    
23  

24 Further, we compute the hedge ratio proposed by Kroner and Sultan (1993) to mitigate the risk 25 of 

the portfolio (financial ETF futures and energy ETF futures) presented in Table 5. We  

26 consider by how much a long position of $1 in financial ETF futures can be hedged by a short 27  

28 position in energy ETF futures. Long position signifies “buy” whereas short position indicates 29 

“sell”. We observe that the average optimal hedge ratio of the RXLF/RNG1 pair (0.0428) is  

30  

31 the most expensive while the cheapest hedging strategy is of the RSP1/RCL1 pair (0.0133). 32 The 

optimal hedge ratio of RXLF/RNG1 signifies that a $1 long position in financial ETF 33 futures should 

be hedged shorting an investment of energy ETF futures by 4 cents to minimize  

34  

35 the risk. Similarly, the hedge ratio of RSP1/RCL1 shows that the volatility in the portfolio can 36 be 

hedged holding $1 long position in RSP1 by 1 cent investment in RCL1. To be precise, the  
37  

38 hedging costs of the RXLF investments undertaking the short position in RNG1 is high than  

39 rest of the pairs.   
40  

41  5. Conclusion and policy implications 42  

43  ETF is considered as one of the tradable assets that tracks an index reflecting the economic  
44  

45 condition of the underlying sector.  It has a potential catalyst to furnish systematic reduction of 46 risk 

for the portfolio and is preferred more by short-horizon liquidity traders. The popularity of 47 the financial 

ETF futures has grown with an increase in the adoption of standard ETF. On the 48  

49 other hand, due to the rapid development and huge demand for energy products, investors  

50 prefer the energy ETF futures. Derivative market hedgers, further, want to minimize the risk  
51  
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52 by adopting an appropriate hedging strategy with portfolio weight and optimal hedge ratio. 53 This 

paper investigates the spillover effect from financial ETF to energy ETF and builds 54 optimal portfolio 

weight and hedge ratio to minimize the risk.  

We employ Granger causality and dynamic conditional correlation using daily data extending 

from April 2, 2009, to November 23, 2020. The findings of the study have been derived from 

the Granger causality test that highlights the unidirectional causality flow from RXLF to RSP1 

and bidirectional causality between RXLF and RCL1 ETFs futures funds. The rest of the 

variables do not have cause and effect relationship. In addition, based on the results of dynamic 

conditional correlation, the study confirms the spillover effect between RXLF and RCL1, 

RXLF and RXLE, RSP1 and RCL1, and lastly, between RSP1 and RXLE. These results were 

measured for both short- and long-term volatility movements. In this regard, the present study 

determines the spillover effect from RXLF to RNG1 is presented in the short term while the 

volatility spillover impact between RSP1 and RNG1 is shown in long term. The study validates 

10 the findings of Chang et al., (2018) and Lau et al., (2017). Based on spillover findings, the  

11  study suggests a risk hedging framework by calculating the portfolio weight and optimal 12 

 hedging ratio for investors investing in ETFs without reducing their expected return. The 13  

14 portfolio weight ranges from 0.024 to 0.232 which are assigned to the SP1/NG1 and SP1/XLE 15 

respectively. Referring to the result of the optimal hedge ratio proposed by Kroner and Sultan 16  

17 (1993), we notice that the average optimal hedge ratio of RXLF/RNG1 pair (0.0428) is most  

18 expensive while the cheapest hedging strategy is of RSP1/RCL1 pair (0.0133).   
19  

20  The research contributions of the present study are threefold: First, the study contains broad  
21  

22 proxies of financial ETF futures (financial select sector SPDR fund, Generic 1st S&P 500 index 23 

futures) and energy ETF futures (Generic 1st crude oil WTI futures, Generic 1st natural gas 24 futures 

and energy select SPDR fund) to assess the spillover effect. This will help upcoming  

25  

26 researchers to further examine the volatility, co-movement, and pricing of these securities. This 27 

will further help in determining the various hedging and trading strategies involving these ETFs  

28  

29 (Lau et al., 2017; Roy and Roy, 2017). The second contribution of the present study is the 30 

confirmation of short- and long-term volatility (risk) spillover effects between the financial  

31 sector and the energy sector. This will help the institutions, fund managers, investors to 32  



 1  
 2  
 3  
 4  
 5  
 6  
 7  
 8  
 9  

55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  

33 understand the arbitrage opportunities in both the markets due to mispricing of securities or  

34 high volatility in various periods. This will also help banks and oil firms to hedge their exposure  
35  

36 in these markets by using ETFs as a vehicle of diversification (Zhu and Singh, 2016; Ben37 David et 

al., 2017). Further, findings related to optimal hedge ratio and portfolio weights of  

38 ETFs will offer investors and fund managers access to a diversified portfolio of assets that can 39  

40 be used to hedge volatility risk in the financial and energy sector in the short and long term.  

41 Finally, findings related to unidirectional or bidirectional causality will help the investors to  
42  

43 understand price co-movements and the causal effect between the ETFs. For example, 44 

unidirectional causality between SPDR fund and index fund suggests that the volatility of  

45 SPDR fund should be considered as an additional source of risk (volatility) while making 46  

47 investment decisions in index funds by institutional investors, banks, policymakers, fund  

48 managers (da Costa Neto et al. 2019). Similarly, bidirectional causality for example between  
49  

50 SPDR fund and Crude Oil ETF reflects both as a risk for each other that affect investment 51 returns 

and decisions of investors. It has two policy implications. First, our result indicates the 52 spillover or 

dynamic connectedness from financial ETF futures to energy ETF futures. The 53  

54 ETF exchange must know this fact and monitor the pricing accordingly concerning the demand and 

supply gap in ETF market. This can be used to suggest diversification strategies to investors 

and identify them as an additional source of systematic risk (Ben‐ David et al. 2018; Aromi and 

Clements, 2019). Second, it furnishes the hedging across the ETF tradeable asset due to which 

an investor knows how much they should invest in financial ETF futures and  

energy ETF futures. Apart from the investors, regulators and policymakers must be aware of 

dynamic linkages and spillover of the volatility among constituent variables.   

5.1 Limitations and Future Scope of Work  

The present study includes only US ETF futures for the analysis purpose based on dynamic 

conditional correlation, optimal portfolio weight, and optimal hedge ratio. Further studies may enhance 

these results by testing the causal effect among various developed and developing 10 economies. 

Furthermore, upcoming research may assess the spillover effect between both spot 11 and futures markets. 

The findings of the study may be elaborated by examining the spillover  

12 by splitting the data in different periods like before and after great financial crisis or during 13  
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