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Abstract 

Decision making to mitigate the effects of natural hazards, such as earthquakes, has always been a 

challenging subject. This is particularly the case in periods of increased seismicity (e.g. in a foreshock 

or aftershock period of a major earthquake) when the population is anxious and would like advice but 

when the chance of potentially damaging earthquake ground motions in the coming days remains low. 

In this study, a decision-making method based on multiple criteria is combined with cost-benefit 

analyses to create a hybrid decision-making framework to help decide amongst potential loss 

mitigation actions (or even to take no action). The proposed framework is demonstrated for three 
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hypothetical case studies using Patras (Greece) as an example of a high seismicity location. The 

results show that the proposed approach is flexible enough to adapt to new problems, end-users and 

stakeholders. Additionally, it is revealed that reasonable mitigation actions are viable and financially 

beneficial during periods of increased seismic hazard in order to reduce the potential consequences of 

earthquakes. Finally, the case studies show that the results can be highly sensitive to the inputs to the 

framework and hence it is vital to involve end users to help constrain these inputs when making such 

calculations. 

1. Introduction 

A disaster is a social situation characterised by non-routine, life-threatening physical destruction 

(Quarantelli 1998). Disasters can be classified as: natural, for those caused by geophysical, 

hydrological, meteorological, biological, extra-terrestrial, or climatological hazards; anthropogenic 

(technological); or technological triggered by a natural disaster (Natech) (Guha-Sapir et al. 2016). 

Until recently, droughts and floods killed most people worldwide, but deaths from these events are 

now generally low. The deadliest disasters today (apart from disease pandemics) tend to be triggered 

by earthquakes (e.g. Haiti 2010, Tohoku 2011) (Ritchie 2014). 

Disaster/emergency management is the body of policy and administrative decisions, the 

operational activities, the actors, and technologies that pertain to the various stages and levels of a 

disaster (Lettieri et al. 2009). Due to the immense losses caused by natural hazards, effective disaster 

management is vital. Because of the changing nature of disasters and the uncertainty in managing 

them, disaster management is studied across many disciplines. Disaster management involves 

strategic interactions among various decision-makers, including different levels of government, 

private companies and non-profit organisations, making Operational Earthquake Forecasting (OEF) 

an exciting approach in this field (Goltz 2015). OEF is an emerging concept that aims to provide 

short-term forecasts of earthquakes to increase alertness and readiness among decision-makers and to 

initiate civil protection actions (Jordan et al. 2011; Field and Milner 2018). 

Procedures for short-term forecasts through time-dependent seismic hazard assessment have been 

applied in various studies over the past decade, particularly in periods of increased seismicity such as 

following a large earthquake (Convertito and Zollo 2011; Peruzza et al. 2017). Despite acknowledged 

weaknesses (Jordan et al. 2011; Wang 2015; Wang and Rogers 2014), OEF is the best available 

approach to forecast future earthquakes. The short-term probability of a severe earthquake is low 

(often less than one per cent daily) even in a heightened hazard situation, which presents a formidable 

challenge when making decisions based on OEF (Woo and Marzocchi 2014). Therefore, no 

comprehensive framework for OEF decision-making is yet available in the technical literature, 

although using cost-benefit analyses has been proposed (e.g. Douglas and Azarbakht, 2021). The 

purpose of this article is to propose another approach for decision making in the context of OEF and 

to apply the approach in some hypothetical situations. 
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Decisions to undertake mitigation actions based on OEF depend on the balance between costs and 

benefits, which are specific to the risk at hand (Field et al. 2016). Because these decisions are 

contingent on a host of economic, political, and psychological considerations that lie beyond the 

science of hazard analysis, scientific information about future earthquake activity should be 

developed independently of any specific risk assessment or mitigation effort (Field et al. 2016). 

Moreover, all validated OEF information should be made available to all potential end-users in an 

appropriate well-formatted and timely manner. These hazard-risk separation and transparency 

principles imply that seismologists should provide potential end-users with complete, probabilistic 

forecasts, including their epistemic uncertainties (Jordan et al. 2014). The OEF systems should be 

policy-neutral. In other words, OEF systems should not withhold information until some activity level 

or probability threshold is exceeded, or until a “significant” mainshock has occurred. Otherwise, 

doing so would not only imply that we know how to define these things for all potential users, but 

would also effectively put scientists in the inappropriate role of making policy decisions (Field et al. 

2016). In summary, OEF systems should be used to inform potential decision-makers at all levels, not 

as a holistic decision-making tool itself.  

Recent events have revealed the public’s hunger during ongoing earthquake sequences for 

information from OEF. It is well known that information vacuums invite unfounded predictions and 

misinformation (Mileti and Peek 2000), such as the rumours on Twitter that “experts are holding back 

on a prediction to avoid panic” within hours of the 2010 El Mayor–Cucapah earthquake (Jordan and 

Jones 2010). The level of apparent certainty provided by amateur predictors can also be particularly 

attractive and therefore distracting (Marzocchi 2012). The infamous L’Aquila trial, in which seven 

Italian officials were charged with involuntary manslaughter, was at least partly a consequence of 

miscommunications about earthquake risk by the Italian Department of Civil Protection (Field et al. 

2016). That agency convened its Grand Risk Commission before the L’Aquila earthquake to address 

ill-founded earthquake predictions that were worrying the public during the seismic sequence 

preceding the L’Aquila mainshock. Still, this Commission lacked the operational capabilities to 

accurately assess and report on the evolving seismic hazard (Marzocchi 2012). The best solution in 

such predicaments is to have an OEF system that produces authoritative scientific information (Jordan 

2013; Jordan et al. 2011). 

The probability from a time-dependent forecast, produced by short-term forecasting models, can 

be quite high (Probability Gains, PG>100) relative to the time-independent probability (e.g. Gulia et 

al., 2016). In these situations, the forecasting intervals are typically much shorter than the recurrence 

intervals of large earthquakes (days compared to hundreds of years), and the probability of potentially 

damaging earthquakes remains much less than unity (generally <1% per day). As a result, although 

the value of long-term forecasts for ensuring seismic safety is clear, the interpretation of short-term 

forecasts is problematic, because earthquake probabilities may vary over many orders of magnitude. 

Such forecasts cannot provide earthquake ”predictions” associated with high probabilities. Translating 
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such low-probability forecasts into effective decision-making is a difficult challenge. Therefore, it is 

necessary to establish earthquake probability thresholds for different mitigation actions by means of, 

for example, a cost-benefit analysis (Douglas and Azarbakht 2021; Azarbakht et al. 2020) and also by 

taking psychological preparedness and resilience into account. In this context, a multi-criteria decision 

support system (DSS) is also helpful since cost-benefit analyses are only straightforward when one 

action is compared to the case of no action, and such analyses cannot account for end-user priorities 

that are not expressed in financial terms. Alert procedures should be standardised to facilitate 

decisions at different levels of government and among the public if necessary. Moreover, the 

principles of effective public communication established by social science research should be applied 

to delivering seismic hazard information (Jordan et al., 2011).  

In the present study, we adapt a recent multi-criteria DSS, initially introduced by Cremen and Galasso 

(2021) for Earthquake Early Warning (EEW) systems, for use in an OEF framework. The method is 

described in detail in the following section. This method is then applied to three case studies and some 

conclusions drawn. 

2. Method 

As mentioned in the previous section, decision making in OEF is still a challenging area of 

research since many considerations influence this problem, and the likelihood of false alarms is 

always high. Multi-criteria decision making using the Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS) was initially proposed in general terms by Hwang and Yoon (1981) and 

implemented in the field of earthquake engineering by Caterino et al. (2008). Cremen and Galasso 

(2021) have recently adapted this framework to EEW. However, EEW only considers two possible 

actions (trigger or not trigger an alarm), whereas many mitigation actions could be triggered by OEF. 

It is also worth emphasising that OEF concerns a longer time frame (often days or weeks) instead of a 

few seconds in the case of EEW. In EEW, it is considered almost certain that an earthquake will occur 

in the next few seconds (probability near to unity), whereas for OEF, the chance of an earthquake 

actually occurring during the forecast period (e.g. next days or next week) is small, which means the 

risk of a ”false alarm” is much higher, making it more likely that the best action is “no action”. 

Actions will generally be far reaching and have a more significant impact in the context of OEF than 

for EEW as they will be in place for a long time and affect many people. Nevertheless, significant 

planning for low probability/high consequence events (such as earthquakes) may be made without 

being overly disruptive to social and economic activities. This is because many actions triggered by 

OEF are actions that are routinely performed. Actions such as drills and exercises, communicating on 

recommended evacuation routes in case of tsunamis and having a survival kit can be reinforced 

during periods of enhanced seismic hazard since public concern about a possible event in the short 

term is increased. 
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Being inspired by the approach of Cremen and Galasso (2021), the method of the current study 

starts with defining a set of OEF mitigation actions ({Ai}) that have been selected by the end user, and 

also the option of taking no action (�̅). We also need to assign a specific consequence ({Cj}) to each 

action. Each consequence is case-specific and associated with a group of corresponding uncertain 

consequences if a particular action is taken. A given weight ({wi}) can be assigned to each 

consequence criterion to reflect its importance and to comply with end-user preferences. The explicit 

incorporation of these preferences results in improvements over conventional decision-making 

approaches. The suggested action(s) can be subject to further scrutiny using a cost-benefit analysis. 

Therefore, we have combined TOPSIS with a cost-benefit analysis to construct a comprehensive 

framework for an OEF DSS. 

The main steps in the proposed OEF DSS framework are described below. The first step aims at 

defining the probabilistic consequences ({Cj}) for each action ({Ai}), as seen in Table 1. The main 

consequences are assumed to be direct cost, downtime and casualties, as these have been widely used 

in the field of earthquake engineering. Nevertheless, other consequences could be added to this 

framework, e.g. indirect costs, reputation loss and environmental damage.  

Table 1. The consequence matrix in the proposed OEF DSS algorithm.  

 C1, direct cost ($) C2, downtime (days) C3, casualties (number) 

A1 Expected A1 action direct 

and reconditioning costs + 

expected direct cost from 

estimated shaking that is not 

eliminated with mitigation 

action A1   

= E(A1,C1) 

Expected A1 action 

downtime + expected 

downtime from estimated 

shaking that is not 

eliminated with mitigation 

action A1 

= E(A1,C2) 

Expected A1 action 

casualties + expected casualties 

from estimated shaking that is 

not eliminated with mitigation 

action A1 

= E(A1,C3) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. ��� Expected ��� action direct 

and reconditioning costs +  

expected direct cost from 

estimated shaking that is not 

eliminated with mitigation 

action ��� 

= E(���,C1) 

Expected ��� action 

downtime + expected 

downtime from estimated 

shaking that is not 

eliminated with mitigation 

action ��� 

= E(���,C2) 

Expected ��� action 

casualties + expected casualties 

from estimated shaking that is 

not eliminated with mitigation 

action ��� 

= E(���,C3) 

�̅ (no 

action) 

Expected direct cost from 

estimated shaking if no  

action is taken 

= E(�̅,C1) 

Expected downtime 

from estimated shaking if 

no action is taken 

= E(�̅,C2) 

Expected casualties from 

estimated shaking if no action 

is taken 

= E(�̅,C3) 
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We also need to assume a crisis period, which usually is during a foreshock or aftershock sequence 

where seismicity increases significantly. It is worth mentioning that OEF mitigation actions need to 

be undertaken for a relatively long period of time (e.g. weeks or months) and cannot be altered daily 

(or hourly) as this would create confusion in the population. Also, there needs to be some 

simplification in order for the calculations to be feasible as it is not possible to assess exactly how the 

seismic hazard will change in the future. Hence, we assume a 30 days’ time duration for the crisis 

period, to appropriately simulate a heightened hazard situation prior to a possible mainshock. 

Therefore, we assume that we have access to the results of a time-dependent probabilistic seismic 

hazard analysis, i.e. an estimated daily frequency of exceedance (���) of a given Intensity Measure 

(IM). ��� is usually represented versus the value of an IM, e.g. peak ground acceleration (PGA) or 

response spectral acceleration for a given structural period and a given critical damping ratio.  

Next, we need to define an IM threshold based on the end user's preferences, e.g. if falling 

secondary systems (such as air conditions or unanchored furniture) are of interest, one may choose a 

PGA threshold equal to 0.05g, roughly corresponding to macroseismic intensity V (Caprio et al. 

2015), to define the initiation of damage to such systems. A fragility function can be defined based on 

the estimate of the median threshold and commonly assumed log-normal distribution (or, in fact, 

another appropriate distribution) with a particular standard deviation expressing the uncertainty in 

damage initiation. It is worth emphasising that one can use an actual (analytical or experimental) 

fragility function for a given structure under investigation but here we are considering generic 

systems. 

In the following, P represents the cumulative distribution function for the fragility curve, and �(Cǀim) denotes the probability of damage at a given IM. Therefore, we can calculate the mean daily 

frequency of damage (�	), using Equation 1 [for more details, see, for example, Gkimprixis et al. 

(2019) and Azarbakht et al. (2015)]. 

�	 = � �(Cǀim)|����(��)| �
�  

 

(1) 

Then the mean daily frequency of damage (�	) can be transformed into the mean probability of 

damage during the crisis period (‘cp’ days, we assume cp=30 days in the current study) by assuming a 

Poisson distribution. With ��� we can calculate the consequences of the no-action case and account 

for the associated uncertainty. In other words, all the consequences will be multiplied by ��� in the 

case of taking no-action. Then, we need to normalise and weight, based on the importance of each 

category, the results. For this, we use Equation (2) to normalise the consequence matrix (see Table 2) 

(Hwang and Yoon 1981; Cremen and Galasso 2021): 
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���, ! =  E(�#, $%)&∑ [E)�*, $%+,] + E(�̅, $%),]��*/0
 

 

(2) 

where ���, ! is the normalised value of the jth criterion for the ith action (the rest of the parameters 

were defined previously). ���, ! values are then weighted, ideally based on end-user preferences for 

each criterion, to create the decision matrix seen in Table 2. One option is to use the analytical 

hierarchy process of Saaty (1980) to obtain the weightings ({wi}). This framework involves an end-

user doing a series of pairwise comparisons for each criterion, on the basis of qualitative phrasing to 

determine their relative importance.  

Table 2. The decision matrix in the proposed OEF DSS algorithm.  

 C1, direct cost ($) C2, downtime (days) C3, casualties 

(number) 

A1 ��1, 1 ×  30 ��1, 4 ×  3, ��1, 5 ×  36 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. ��� ��7� , 1 ×  30 ��7� , 4 ×  3, ��7� , 5 ×  36 �̅ (no action) ��̅, 1 × 30 ��̅, 4 ×  3, ��̅, 5 × 36 

 

Finally, we need to determine the optimal decision among {Ai} and �̅. For this, we need to find the 

maximum and minimum values for each criterion among all possible options. As all the criteria in this 

study are negative consequences, the best quantity of the jth criterion (8%9) is its minimum value, 

which is, 8%9 = min%(��1,$< × 3< , … , ��>? ,$< × 3< , ��@ ,$< × 3<) and the worst value (8%A) is its maximum value, 

which is, 8%A = max%(��1,$< × 3< , … , ��>? ,$< × 3< , ��@ ,$< × 3<). The total distance of a given action, Ai, from 

the best (D#9) and worst (D#A) solutions are then, respectively, calculated as: 

D#9 = EF(8%9 − (���,$< ×  3<)),�H
%/0  

 

(3) 
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D#A = EF(8%A − (���,$< ×  3<)),�H
%/0  

 

(4) 

Consequently, the optimal action is the largest I# value, which is calculated as:  

I# = D#AD#9 + D#A 

 

(5) 

The final output is the ‘Closeness Value’ (I#, known as C hereafter), i.e. the similarity to the best 

possible solution. This could be used in future applications to determine which OEF mitigation 

actions are recommended, as the longer time frame for OEF compared with EEW allows for more 

thorough decision making. This method is demonstrated below for three different hypothetical 

examples but the method can be applied to help guide other decisions in the context of OEF. 

3. Case study 1: DSS for boxes falling in a warehouse 

As seen in Figure 1, boxes falling in a warehouse have been observed in many past earthquakes 

(FEMA E-74, 2012). Therefore, a hypothetical example of a warehouse holding stock on shelves, 

located in Patras (Greece) is investigated in this section. This city is chosen since it is in one of 

Europe’s highest seismicity regions and it is a testbed of the TURNkey project1.  Time-dependent 

seismic hazard analysis for this region is discussed in Azarbakht et al. (2021). However, for 

simplicity, the long-term (time-independent) seismic hazard in this study is taken from the European 

Seismic Hazard Model 2013 (ESHM13) (Woessner et al. 2015), and different scenarios of heightened 

seismic hazard are assumed to form a generic study. Each scenario is the product of a constant PG and 

the hazard curve from ESHM13 for Patras as written in Equation (6).  

���(��) = �J. ���L (��) 
 

(6) 

where ���L (��)  is the non-heightened daily frequency of exceedance of a given IM, which 

corresponds to long-term (background) hazard conditions, and ���(��)  is the heightened daily 

frequency of exceedance of a given IM, which was also used in Equation (1), PGs equal to 1, 10, 100 

and 1000 are assumed to cover the range of potential values (e.g. Douglas and Azarbakht, 2021).  

Table 3. The adapted consequence matrix for the warehouse example (case study 1). 

 Direct cost ($) Downtime (hours) Number injured 

                                                      
1 Towards more Earthquake-resilient Urban Societies through a Multi-sensor-based Information System 

enabling Earthquake Forecasting, Early Warning and Rapid Response actions (https://earthquake-turnkey.eu/) 
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Move Boxes to Floor Quantity of stock × Hours 
to move stock × Hourly 
wage of workers 

�	  × Downtime duration 
in hours 

0 

Secure Boxes to Shelves Quantity of stock × ( 
Equipment cost + Hours 
to secure stock × Hourly 
wage of worker) 

�	  × Downtime duration 
in hours 

0 

Move Boxes to Storage Hourly wage of worker × 
(Transport time + 
Quantity of stock × Hours 
to move stock) + Storage 
cost 

�	 × (Quantity of stock × 
Hours to move stock + 
transport time) 

0 

No OEF Action �	× Value of stock �	  × Replacement time �	× Number of workers 

 

Table 4. Input parameters for the warehouse example (case study 1).  

Type of parameter Value 

Number of items in warehouse 100 

Value of one item of stock $100/item 

Number of employees at risk within warehouse 10 

Wage of employee $20/hour 

Cost of renting a storage facility for a month $250/month 

Cost of equipment to secure stock to shelves per stock $10/stock 

Time to replace entire stock if damaged 5 days 

Time to move one item from shelf to floor 0.1 hrs 

Time to secure one item on a shelf 0.2 hrs 

Time to transport entire stock to storage 0.333 hrs 

Downtime cost per day $1,000/day 

Cost per injury $10,000/injury 

Weightings of each criterion, [Wdirect_cost, Wdowntime, Winjury] [1/3 1/3 1/3] 

 

Four possible OEF actions are assessed on the basis of three criteria consisting of: direct cost, 

downtime, and injuries as illustrated in Table 1 and Table 3. It is also assumed that with no OEF in 

place, all staff at risk would be injured and all stock would be damaged (if an earthquake occurred), 

that it would take five days for the stock to be replaced, and that the cost of replacing the stock would 

be the same as the value of the original stock. In contrast, it is assumed that with OEF in place, there 

would be no injuries to staff and no stock would be damaged and, hence, the stock would not require 

replacement. It is worth emphasising that the damage only occurs if the earthquake actually happens. 

If there is no OEF in place, but there is no earthquake, then the warehouse is undamaged. The criteria 

are reliant on ”the probability of a false alarm”, or, in other words, the probability that the earthquake 

shaking will not exceed the PGA threshold during the crisis period. This ”false alarm” would trigger 

downtime, which is not beneficial to the warehouse. The input parameters for this case study are 

summarised in Table . It should be noted that these values would be fixed based on discussions with 

the end user and tailored to the actual warehouse and stock in a real application of the DSS.  
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Figure 1. Damage to overloaded racks during the 1994 Northridge (USA) earthquake (FEMA 460, 2005) 

 
Originally a step function was assumed: i.e. below a PGA threshold nothing falls or is damaged 

and above the threshold everything falls. Such a step function was used by Douglas and Azarbakht 

(2021) for their Europe-wide cost-benefit analyses for OEF. As shown in Figure 2(left), such a 

function led to a rapid decrease in actions becoming viable, with the curves for each potential action 

quickly plateauing. Incorporating the convolution of the fragility and hazard functions accounts for 

uncertainty in the damage threshold, which is more realistic. It is worth mentioning that element-

specific fragility curves would ideally be used here to account for the element’s characteristics in 

terms of height, size, shape and so forth. For comparison, the results for the step function and the 

fragility function are shown in Figure 2. For the purpose of simplicity, we have assumed a log-normal 

fragility curve with the logarithmic mean identical to the PGA threshold and a logarithmic standard 

deviation equal to 0.84, based on the global intensity-PGA conversion formula of Caprio et al. (2015).  

As can be seen in Figure 2 (PG=100), plotting C for a range of PGA thresholds shows that moving 

the boxes to storage is consistently the best option. The lowest threshold of 0.05g is ranked at 0.995 

(i.e. very close to the optimum of 1), meaning that it is the best-case scenario – lowest cost, 

downtime, and injuries out of the four options. However, increasing the PGA threshold makes all of 

the mitigation actions less viable, and the option of taking no action becomes more acceptable. This is 

because the chances of the earthquake shaking exceeding the PGA threshold becomes smaller, so 

actions become less beneficial as they rely on the earthquake occurring to be cost and time effective. 
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It is important to note that moving the boxes to storage for small PGA thresholds is still the best 

course to take. This is due to the assumption that if the earthquake occurred with no mitigation in 

place, it would damage all the stock and injure everyone working there, which is not necessarily true 

for an earthquake causing such a low PGA, considering that �	  is highest for the lowest PGA 

thresholds.  

As TOPSIS only compares the available options, ranking them from best to worst, it does not 

consider whether the superior action is financially justifiable (Hwang and Yoon 1981). In other 

words, an action may be considered the best out of the set of actions considered, but it may still not be 

the most beneficial amongst all possible actions or beneficial at all. Thanks to the longer time frame 

available to consider mitigation actions for OEF, it is possible to introduce a secondary check to the 

DSS, by considering cost-benefit analyses, to address this limitation of TOPSIS. 

Figure 2. (left): C versus different PGA thresholds using a step function, (right): C versus different PGA 

thresholds using a log-normal fragility function. PG=100. 

 
By manipulating the consequence matrix from the DSS algorithm, by summing each criterion 

multiplied by costs, i.e. a downtime cost of $1,000(/day) and an injury cost of $10,000(/injury), as 

shown in Table , it is possible to calculate the total cost and the mitigated loss corresponding to each 

action within a cost-benefit analysis using these equations: 

Cost of {���} action = E(��� , C1) (7) 

Mitigated loss by {���}  action = [E(�̅, C1) + E(�̅, C2) × Downtime_cost(/person) + E(�̅, C3) ×Injury_cost(/person)] − E(��� , C2) × Downtime_cost(/person) − E(��� , C3) × Injury_cost(/person)
   (8) 
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The costs, Equation (7), obtained from Table 1 and Table 3, can then be compared to the mitigated 

loss, Equation (8), by calculating the benefit-to-cost ratio, R, expressed by (Marzocchi and Woo, 

2009; Woo, 2010; Douglas and Azarbakht, 2021): 

  f = �Hg×Mitigated loss by {�>?}  action Cost of {�>?} action           (9) 

for each of the OEF mitigation actions. In the case of PG equal to 10 (seismic hazard increased to 

ten times the background level), the right graph in Figure 3 shows R versus PGA threshold, where an 

action is assumed cost-beneficial when the corresponding R is greater than unity (benefits are greater 

than the costs). It is worth mentioning that this analysis does not consider the no-action case, only 

mitigation actions. On the other hand, TOPSIS compares all the actions, including the no-action case; 

however, it does not explicitly compute the financial benefits of each action. 

As can be seen in Figure 3, the TOPSIS algorithm recommends ”Moving boxes to storage” as the 

superior action for all PGA thresholds and with a remarkable distance from the other actions. 

However, this action is not the best financially, as seen in the right-hand graph of Figure 3, but still 

the benefit-to-cost ratio is greater than unity. The ”Moving boxes to storage” is apparently more 

costly when compared to the other actions; however, it minimises the downtime by more than the 

other actions. Therefore, TOPSIS helps decide based on the consequence matrix elements, and further 

being normalized in the decision matrix to be unitless, and looks at different actions to find the action 

that is closest to the optimum solution. This means that ”Moving boxes to storage” has a more 

balanced benefit in the consequence matrix compared to the other actions. On the other hand, R only 

considers monetary values and looks at different actions individually. The cost of “Moving boxes to 

storage“ is almost 2.5 times the “Moving boxes to floor“ cost. Their implications in terms of 

downtime is the opposite, however. The risk of injuries is zero for both actions. This is why ”Moving 

boxes to storage” is not optimum in terms of R. Therefore, we suggest neglecting the TOPSIS results 

if the benefit-to-cost ratio is less than unity. In other words, we add the cost-benefit analysis on top of 

the TOPSIS algorithm to confirm that the action recommended by the TOPSIS algorithm is 

individually financially justifiable. Additionally, the benefit-to-cost ratio expresses the level of 

financial benefits, as shown in Figure 4.  

The final results of the DSS are shown in Figure 4, where the top line presents the results of the 

TOPSIS-only algorithm. The other lines present the results of combining TOPSIS and cost-benefit 

analysis. The classification is based on R, with “Highly cost-beneficial”, “Clearly cost-beneficial”, 

“Moderately cost-beneficial”, “Marginally cost-beneficial”, and “Not cost-beneficial” defined by 

R≥5, 2.5≤R<5, 1.5≤R<2.5, 1≤R<1.5 and R<1, respectively (Douglas and Azarbakht 2021). As seen in 

Figure 4, TOPSIS recommends the ”Moving boxes to storage” action for all PGA thresholds but R 

reveals that this action is highly cost-beneficial up to 0.2g, clearly cost-beneficial between 0.25g and 

0.35g, moderately cost-beneficial between 0.4g and 0.45g, marginally cost-beneficial between 0.5g 

and 0.55g, and not cost-beneficial beyond 0.6g.  
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Figure 3. (left): C versus different PGA thresholds, (right): R versus PGA thresholds for different OEF 

actions. PG=10. 

  

Figure 4. The final recommended actions for TOPSIS only (top row), and the combination of TOPSIS and 

cost-benefit analyses. PG=10. 

 
We have assumed PG=10 and equal weighting for different consequences, i.e. direct costs, 

downtime, and injuries in Figures 3 and 4. Results for other PG values are shown in Figure 5, 

confirming that no OEF action is financially justifiable in the normal hazard situation (PG=1) for 

PGA thresholds greater than 0.15g. In other words, this confirms that risk mitigation is recommended 

even in the normal hazard situation if minor earthquake shaking (PGA thresholds less than 0.15g) can 

cause stock to fall from the warehouse shelves. However, TOPSIS recommends ”Moving boxes to 

storage” at any level of heightened hazard, without considering its financial trade-off.  
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As seen in the top right graph of Figure 5, the recommended action is highly cost-beneficial for 

PG=100 in the case of a PGA threshold less than 0.8g, and this is true for the entire considered PGA 

range in the case of PG equal to 1,000 (bottom graph). In addition, the recommended OEF action is 

cost-beneficial even in the case of a PGA threshold equal to 1g when PG=1,000, which is obviously a 

period of extremely high seismic hazard.  

 

 

 

Figure 5. The final recommended actions for different scenarios of heightened seismic hazard, as represented 

by PG equal to 1 (top-left), 100 (top-right), and 1,000 (bottom).  

 
The last question to investigate in this section is the impact of a specific end user wanting to put 

more emphasis on a particular criterion in the consequence matrix. The results of the decision making 

for three different weighting combinations are shown in Figure 6. To emphasis a specific criterion the 

weight corresponding to this criterion is set equal to 1/2 and giving 1/4 weight to the two other criteria 

(as opposed to a weight of 1/3 for all three). As seen in Figure 6, the recommended mitigation action 

is the same (“Moving boxes to storage”); however, no action becomes more beneficial when the 

emphasis is on the direct cost or the downtime, but when the emphasis is on the injury criterion ”No 

action” is never recommended, at least for the mitigation actions considered in this study. These 

conclusions hold for PG equal to 1, 100, and 1,000.  
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Figure 6. C for weights emphasising the direct cost (top-left), downtime (top-right), and injuries (bottom).  

 

4. Case study 2: DSS for secondary systems falling from a building 

It is essential to implement the DSS algorithm for different examples to check whether the method 

has general applicability and whether it can be easily adapted to different end users. It is not efficient 

to need different methods for different industries and end users. In this section an example 

considering the risk of a secondary system (such as a sign, air conditioning unit, façade or road 

blocking due to a wall damage) falling from a building, and potentially hitting a pedestrian or causing 

damage to the immediate area, is considered (Figure 7 shows an example of this situation in a US 

earthquake). This case study is based on the same hazard curve for Patras and uses the same three 

criteria: direct costs, downtime, and injuries, as in the previous example.  
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It is assumed that the secondary system will fall if no OEF mitigation action is taken and that it 

will injure someone if it does fall. Additionally, if the system were to fall, it would be damaged and 

require five days to be replaced. The absence of the element will lead to a 50% reduction in 

productivity and revenue for the business. On the other hand, with the OEF action taken, the system 

will not fall or be damaged, and there will be no injuries. If the building is evacuated, it will take half 

a working day (four hours) for it to be considered safe to return. On the basis of these assumptions, 

the adapted consequence matrix and all the input variables are, respectively, summarised in Table  

and Table 6.  

Table 5. The adapted consequence matrix for the secondary systems falling from a building example (case study 
2). 

 Direct cost ($) Downtime (hours) Number injured 

Remove element Hours to remove element × 
Hourly wage of employee + 
Storage cost × Duration of 
crisis  + Productivity 
reduction × Revenue × 
Duration of crisis 

�	 × (Hours to remove 
element +  Productivity 
reduction × Duration of 
crisis) 

0 

Secure element Hours to secure element × 
Hourly wage of employee + 
Equipment cost 

�	  × Hours to secure 
element 

0 

No OEF Action �	 × (Cost of element + Cost 
of damage + Productivity 
reduction × Revenue × 
Replacement time) 

�	  × (Replacement time 
+ Closure time if an 
earthquake occurs) 

�	 × Number of 
employees 

 

 

Figure 7. Failure of a commercial sign in the 1979 Imperial Valley, California earthquake (FEMA E-74, 

2012). 

 

Table 6. Input parameters for the example of a secondary systems falling from a building.  

Type of parameter Value 

Cost of element $200 

Cost of damage $200/item 
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Revenue per day $500/day 

Productivity reduction 0.5 

Cost of renting a storage facility $300/month 

Cost of equipment to secure element $10/element 

Number of employees at risk 5 

Wage of employee $20/hour 

Time to remove element 1 hour 

Time to secure element 2 hrs 

Time to shut if an earthquake occurs 4 hrs 

Time to replace an element 5 days 

Downtime cost per day $1,000/day 

Cost per injury $10,000/injury 

Weightings of each criterion, [Wdirect_cost, Wdowntime, Winjury] [1/3 1/3 1/3] 

 

Figure 8. (left): C versus different PGA thresholds, (right): R versus PGA thresholds for different OEF 

actions for the example of a secondary systems falling from a building.  
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Figure 9. The final result of the TOPSIS only algorithm (top row), and the combination of TOPSIS and cost-

benefit analyses for the example of a secondary system falling from a building. 

 
The results are shown in Figure 8 and Figure 9 in the case of PG equal to 10 and the equal 

weighting scheme. The example of a secondary system falling from a building contrasts greatly with 

the previous example of boxes falling in a warehouse. Here there are three well-defined and separated 

optimal actions, with few trade-offs within the rankings – an outcome that was not necessarily 

expected. The present example was harder to conceptualise, and it would help greatly to contact 

relevant end-users to help refine the consequence matrix. Considering this example greatly benefits 

the refinement of the DSS as it shows how different situations can be considered. The C values 

change slightly at small PGA threshold values; however, they begin to plateau at 0.2g and reach 

constant values around 1g. In fact, at higher PGA values, the plateau of the curve is reached as the 

probability of exceeding the threshold becomes low enough that it can be considered zero, with the 

probability of the threshold not being exceeded obviously being very close to one. Due to the nature 

of OEF, which operates in the domain of (very) small probabilities, it would be interesting to explore 

further the idea of creating general graphs for different DSS examples using the probability of 

exceeding the PGA threshold as zero and understanding how well defined the action rankings are. 

This could be done in the pre-crisis period, when there are many different actions to consider, thereby 

allowing the weaker actions (i.e. those with less mitigation potential) to be weeded out and a more 

efficient determination of the best mitigation action to be made. 

As seen in Figure 8, ”No action” is better than ”Removing element” because this action does not 

solve the inherent problem and it also results in a significant reduction in business productivity (this 

conclusion holds for all considered PG values). On the other hand, the ”Securing element” action is 

the best choice as it is recommended by TOPSIS. The benefit-to-cost ratios are also shown in Figure 

9, where ”Securing element” is highly cost-beneficial up to 0.3g, clearly beneficial between 0.35g and 
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0.45g, moderately beneficial between 0.5g and 0.55g, marginally beneficial between 0.6g and 0.7g, 

and not beneficial beyond 0.75g. 

5. Case study 3: DSS for community earthquake drills and evacuation 

Community earthquake drills aim at simulating the scenarios that might accompany a serious 

earthquake to improve disaster preparedness. This is an opportunity for the community residents to 

speak freely about scenarios that are too frightening and chaotic. The quality of the drill exercise is 

dependent on the skills of both planners and participants. Additionally, a large scale community-based 

earthquake drill has the power to change the political climate of support for such activities (Simpson 

2002). It is noted here that another case study that could have been considered in this article was the 

evacuation of schools or hospitals during periods of heighted hazard. Given the number of uncertain 

variables involved in such an example it was decided not to consider this here. 

Evacuation is the most difficult and disruptive decision that authorities could make prior to an 

earthquake or during an aftershock sequence. Evacuation as a mitigation action is likely rarely cost-

effective (e.g. Van Stiphout et al. 2010). That is why we choose earthquake drills and evacuation as 

two contrasting mitigation actions to be compared with taking no action. The adapted consequence 

matrix and the input variables for this situation are summarised, respectively, in Table  and Table 8, 

where we have tried to reduce the parameters in order to undertake a sensitivity analysis to reveal the 

most influential input variables. As seen in Table , we have assumed that the population of the 

community is 100,000, that a severe earthquake will cause injuries to 2 per cent of the population and 

kill 0.4 per cent (Van Stiphout et al. 2010) in the absence of any mitigation actions. The annual cost of 

an earthquake drill is taken as $150,000, the cost of an injury equal to $10,000 per person, and the 

cost of a casualty as $1,000,000 per person. Finally, it is assumed that the earthquake drill will reduce 

the injuries and casualties by a factor of 5, and the evacuation will eliminate the entire risk of 

casualties and injuries. Evacuation will cost $500 per person per day. Hence, the total evacuation cost 

is the product of $500, the community population and the duration of the crisis. Two sensitivity 

calculations will investigate these assumptions in the next section. It is worth emphasising that the 

downtime criterion is replaced by the casualty criterion in this example, showing the flexibility in the 

proposed framework.  

The results are shown in Figure 10 and Figure 11. As seen in Figure 10, an earthquake drill is 

recommended for all PGA thresholds and it is preferred over evacuation by a considerable distance. 

Additionally, the benefit-to-cost ratio for earthquake drills is always greater than unity; however, 

evacuation, at least within the assumed variables here, is not recommended financially. The level of 

financial feasibility is shown in Figure 11 where an earthquake drill is highly cost-beneficial up to 

0.35g, clearly cost-beneficial between 0.4g and 0.5g, moderately cost-beneficial between 0.55g and 

0.7g, and marginally cost-beneficial between 0.75g and 0.85g and not cost-beneficial beyond 0.9g. 
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Table 7. The adapted consequence matrix for the community earthquake drills and evacuation example (case 
study 3). 

 Direct cost ($) Number injured Number of casualties 

Earthquake drill Drill cost �	 × (Community 
population × Percentage 
injured in large 
earthquake)/Drill 
efficiency 

�	 × (Community 
population × Percentage 
killed in large 
earthquake)/Drill 
efficiency 

Earthquake evacuation Evacuation cost 0 0 

No OEF Action 0 �	 × (Community 
population × Percentage 
injured in large 
earthquake) 

�	 × (Community 
population × Percentage 
killed in large 
earthquake) 

 

Table 8. Input parameters for earthquake drills and evaluation in a community example.  

Type of parameter Value 

Crisis period 7 days 

Community population 100,000 

A severe earthquake scenario with 2 % injury and 0.4 % casualty (no 

action) 

 

Annual earthquake drill cost  $150,000 

Injury cost $10,000/person 

Casualty cost $1,000,000/person 

Annual earthquake drill will reduce the injury and casualty by a factor of 5 

Evacuation cost $500 per person per day 

Weightings of each criterion, [Wdirect_cost, Wdeath, Winjury] [1/3 1/3 1/3] 

 

 

Figure 10. (left): C versus different PGA thresholds, (right): R versus PGA thresholds for different OEF 

actions for earthquake drills in a community example.  
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Figure 11. The final result of the TOPSIS only algorithm (top row) and the combination of TOPSIS and 

cost-benefit analysis for the community example. 

 

5.1. Sensitivity Analysis 

A tornado analysis (Howard 1988; Eschenbach 1992) was carried out for this example to find 

where significant variation could come from so that variables needing further refinement can be 

spotted and plans can be made to improve their accuracy at a later stage. All but one of the variables 

was held at its 50th percentile (median) value to carry out the tornado analysis, whilst the variable in 

question was changed to its 10th percentile and 90th percentile value. The resulting C, corresponding to 

the earthquake drill mitigation action, were then plotted, making it easy to see the origin of the 

variation in the output of the DSS. Five input variables are selected for investigation in this example, 

as summarised in Table . Expert judgments were made for the lower and upper bounds of the 

investigated parameters in Table .  

Table 9. Selected input parameters for sensitivity analysis of earthquake drills in a community example. 

Investigated parameter Lower and upper bounds 

Community population [10,000, 100,000] 

A severe earthquake scenario with X % injury (no action) [.5, 2], % of the population 

A severe earthquake scenario with X % casualty (no action) [.1, .4] , % of the population 

Annual earthquake drill cost  [$0.5, $5]/person 

Annual earthquake drill will reduce the injury and casualty by a 

factor of 

[1 10] 
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Figure 12. Result of tornado sensitivity analyses for five selected variables in Table  and the drill mitigation 

action.  

 
The PGA threshold is chosen as 0.5g, PG is assumed equal to 10, and an equal weighting scheme 

has been used. The results revealed that the sensitivity decreases as the PGA threshold increases. The 

results are shown in Figure 12, in which the variation of C and R are, respectively, shown in the left 

and right graphs. As it is seen in Figure 12, the drill’s efficiency (reducing the casualties and injuries 

by a certain factor), the drill’s cost, and the casualty rate are the most influential variables within 

TOPSIS. It is worth emphasising that the results are not sensitive to the community population since 

the injury, casualty, and drilling cost are defined as being proportional to the community’s population. 

However, the drill’s efficiency mainly influences the cost-benefit analysis. Therefore, the three top 

variables (in Figure 12) are chosen for more careful considering using a bootstrap analysis (Efron 

1979; Efron and Tibshirani 1994). One thousand samples are randomly generated (the probability 

distributions shown in Error! Reference source not found. are assumed to be uniform distributions), 

and C and R are calculated using sets of the three investigated variables, i.e. the drill’s efficiency, 

cost, and casualty rate. The results are shown in Figure 13, Figure 14, and Figure 15 by illustrating C 

(TOPSIS algorithm) and R (cost-benefit analysis).  

As seen in Figure 13(left), the more efficient the drill, the more drills are recommended by the 

TOPSIS algorithm. However, as seen in Figure 13(right), from the cost-benefit point of view, the drill 

is recommended when the casualties are significant. As a rule of thumb, a drill efficiency of more 

than six would result in the recommendation of drill by the TOPSIS algorithm. However, a drill is 

barely recommended when the drill’s efficiency is low. Also, financial feasibility increases as the 

casualty rate increases, as seen in Figure 13(right), e.g. it is more financially justifiable in 

communities with vulnerable structures. These results demonstrate that the assumed drill efficiency is 

a key variable.  
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Figure 13. Bootstrap analysis results of C (left) and R (right) versus the drill efficiency and the casualty 

variables.  

 Figure 14. Bootstrap analysis results of C (left) and R (right) versus the drill efficiency and the drill cost 

variables. 

 

Figure 15. Bootstrap analysis results of C (left) and R (right) versus the drilling cost and the casualty 

variables. 
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As seen in Figure 14(left), drill efficiency again controls the results, and the cost of the drill does 

not play an important role since the cost is assumed proportional to the population. However, a lower 

drill cost results in higher values of R (more cost-beneficial), as seen in Figure 14(right). Also, drills 

are highly recommended when the drill efficiency is high, and the drill cost is low. Therefore, it can 

be concluded that reasonable drill costs with a good drill organisation (high efficiency) can make this 

mitigation action a logical choice for authorities. As seen in Figure 15(left), there is no meaningful 

trend between the drill cost and the casualties. However, as shown in Figure 15(right), the highest 

benefit-to-cost ratios are when the drill cost is low and the casualty rate is high, i.e. small 

communities with vulnerable structures. 

6. Conclusions 

This study has introduced a new approach to systematically investigate the effectiveness of 

mitigation actions during a period of heightened seismicity in the context of operational earthquake 

forecasting. A recently proposed decision support algorithm for early warning systems has been 

adapted to the problem of operational earthquake forecasting. This algorithm has been combined with 

a cost-benefit analysis to examine the financial benefits of the recommended actions. Three 

hypothetical cases were studied: (1) boxes falling in a warehouse, (2) secondary systems falling from 

a building, and (3) earthquake drills and evacuation for a community. The results show that mitigation 

actions are beneficial if damage is caused by low shaking levels and when the actions are cheap 

enough and can mitigate a significant portion of the underlying risk. Also, a sensitivity analysis has 

revealed which assumptions have the most influence on the final results. These examples show that 

the approach has the potential to be adapted to various contexts but that applying the methodology for 

a specific end user is a vital next step. 
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